INTEGRATED CIRCUITS DATA SHEET 74AHC1G08; 74AHCT1G08 2-input AND gate Product specification Supersedes data of 1998 Nov 25 File under Integrated Circuits, IC06 1999 Jan 27 Philips Semiconductors Product specification 2-input AND gate 74AHC1G08; 74AHCT1G08 FEATURES * Symmetrical output impedance * High noise immunity QUICK REFERENCE DATA GND = 0 V; Tamb = 25 C; tr = tf 3.0 ns. TYPICAL SYMBOL PARAMETER * ESD protection: HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V tPHL/tPLH propagation delay inA, inB to outY CI input capacitance * Low power dissipation CPD power dissipation capacitance CONDITIONS UNIT AHC1G AHCT1G * Balanced propagation delays * Very small 5-pin package CL = 15 pF; VCC = 5 V notes 1 and 2; CL = 50 pF; f = 1 MHz 3.2 3.6 ns 1.5 1.5 pF 17 19 pF Notes * Output capability: standard. 1. CPD is used to determine the dynamic power dissipation (PD in W). PD = CPD x VCC2 x fi + (CL x VCC2 x fo) where: DESCRIPTION fi = input frequency in MHz; The 74AHC1G/AHCT1G08 is a high-speed Si-gate CMOS device. fo = output frequency in MHz; CL = output load capacitance in pF; The 74AHC1G/AHCT1G08 provides the 2-input AND function. VCC = supply voltage in V. 2. The condition is VI = GND to VCC. FUNCTION TABLE See note 1. INPUTS PINNING OUTPUT PIN SYMBOL DESCRIPTION inA inB outY 1 inB data input L L L 2 inA data input GND ground (0 V) L H L 3 H L L 4 outY data output H H H 5 VCC DC supply voltage Note 1. H = HIGH voltage level. L = LOW voltage level. ORDERING AND PACKAGE INFORMATION PACKAGES TYPE NUMBER 74AHC1G08GW 74AHCT1G08GW 1999 Jan 27 TEMPERATURE RANGE -40 to +85 C PINS PACKAGE MATERIAL CODE MARKING 5 SC-88A plastic SOT353 AE 5 SC-88A plastic SOT353 CE 2 Philips Semiconductors Product specification 2-input AND gate 74AHC1G08; 74AHCT1G08 handbook, halfpage inB 1 inA 2 GND 5 VCC handbook, halfpage 08 3 4 1 inB 2 inA outY 4 outY MNA113 MNA112 Fig.1 Pin configuration. handbook, halfpage 1 Fig.2 Logic symbol. handbook, halfpage & inB 4 2 outY MNA114 inA MNA115 Fig.3 IEC logic symbol. 1999 Jan 27 Fig.4 Logic diagram. 3 Philips Semiconductors Product specification 2-input AND gate 74AHC1G08; 74AHCT1G08 RECOMMENDED OPERATING CONDITIONS 74AHC1G SYMBOL PARAMETER 74AHCT1G CONDITIONS UNIT MIN. TYP. MAX. MIN. TYP. MAX. VCC DC supply voltage 2.0 5.0 5.5 4.5 5.0 5.5 V VI input voltage 0 - 5.5 0 - 5.5 V VO output voltage 0 - VCC 0 - VCC V Tamb operating ambient temperature range see DC and AC characteristics per device -40 +25 +85 -40 +25 +85 C tr,tf (t/f) input rise and fall times except for Schmitt-trigger inputs VCC = 3.3 V 0.3 V - - 100 - - - ns/V VCC = 5 V 0.5 V - - 20 - - 20 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134); voltages are referenced to GND (ground = 0 V). SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VCC DC supply voltage -0.5 +7.0 V VI input voltage range -0.5 +7.0 V IIK DC input diode current VI < -0.5 - -20 mA IOK DC output diode current VO < -0.5 or VO > VCC + 0.5 V; note 1 - 20 mA IO DC output source or sink current -0.5 V < VO < VCC + 0.5 V - 25 mA ICC DC VCC or GND current - 75 mA Tstg storage temperature range -65 +150 C PD power dissipation per package 200 mW temperature range: -40 to +85 C; note 2 - Notes 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. Above +55 C the value of PD derates linearly with 2.5 mW/K. 1999 Jan 27 4 Philips Semiconductors Product specification 2-input AND gate 74AHC1G08; 74AHCT1G08 DC CHARACTERISTICS Family 74AHC1G Over recommended operating conditions; voltage are referenced to GND (ground = 0 V). TEST CONDITIONS SYMBOL PARAMETER VIL VOH VOH VOL VOL -40 to +85 +25 OTHER VIH Tamb (C) HIGH-level input voltage LOW-level input voltage VCC (V) MIN. TYP. MAX. MIN. MAX. 2.0 1.5 - - 1.5 - 3.0 2.1 - - 2.1 - 5.5 3.85 - - 3.85 - 2.0 - - 0.5 - 0.5 3.0 - - 0.9 - 0.9 5.5 - - 1.65 - 1.65 2.0 1.9 2.0 - 1.9 - 3.0 2.9 3.0 - 2.9 - HIGH-level output voltage; all outputs VI = VIH or VIL; IO = -50 A 4.5 4.4 4.5 - 4.4 - HIGH-level output voltage VI = VIH or VIL; IO = -4.0 mA 3.0 2.58 - - 2.48 - VI = VIH or VIL; IO = -8.0 mA 4.5 3.94 - - 3.8 - VI = VIH or VIL; IO = 50 A 2.0 - 0 0.1 - 0.1 3.0 - 0 0.1 - 0.1 4.5 - 0 0.1 - 0.1 VI = VIH or VIL; IO = 4 mA 3.0 - - 0.36 - 0.44 VI = VIH or VIL; IO = 8 mA 4.5 - - 0.36 - 0.44 LOW-level output voltage; all outputs LOW-level output voltage UNIT V V V V V V II input leakage current VI = VCC or GND 5.5 - - 0.1 - 1.0 A ICC quiescent supply current VI = VCC or GND; 5.5 IO = 0 - - 1.0 - 10 A CI input capacitance - 1.5 10 - 10 pF 1999 Jan 27 5 Philips Semiconductors Product specification 2-input AND gate 74AHC1G08; 74AHCT1G08 Family 74AHCT1G Over recommended operating conditions; voltage are referenced to GND (ground = 0 V). TEST CONDITIONS SYMBOL Tamb (C) PARAMETER -40 to +85 +25 OTHER VCC (V) MIN. TYP. MAX. MIN. MAX. UNIT VIH HIGH-level input voltage 4.5 to 5.5 2.0 - - 2.0 - V VIL LOW-level input voltage 4.5 to 5.5 - - 0.8 - 0.8 V VOH HIGH-level output voltage; all outputs VI = VIH or VIL; IO = -50 A 4.5 4.4 4.5 - 4.4 - V VOH HIGH-level output voltage VI = VIH or VIL; IO = -8.0 mA 4.5 3.94 - - 3.8 - V VOL LOW-level output voltage; all outputs VI = VIH or VIL; IO = 50 A 4.5 - 0 0.1 - 0.1 V VOL LOW-level output voltage VI = VIH or VIL; IO = 8 mA 4.5 - - 0.36 - 0.44 V II input leakage current VI = VIH or VIL 5.5 - - 0.1 - 1.0 A ICC quiescent supply current VI = VCC or GND; IO = 0 5.5 - - 1.0 - 10 A ICC additional quiescent supply current per input pin VI = 3.4 V other inputs at VCC or GND; IO = 0 5.5 - - 1.35 - 1.5 mA CI input capacitance - 1.5 10 - 10 pF 1999 Jan 27 6 Philips Semiconductors Product specification 2-input AND gate 74AHC1G08; 74AHCT1G08 AC CHARACTERISTICS Type 74AHC1G08 GND = 0 V; tr = tf 3.0 ns. TEST CONDITIONS SYMBOL Tamb (C) PARAMETER -40 to +85 +25 WAVEFORMS CL VCC (V) MIN. TYP. MAX. MIN. MAX. UNIT tPHL/tPLH propagation delay inA, inB to outY see Figs 5 and 6 15 pF 3.0 to 3.6 - 4.6(1) 8.8 1.0 10.5 ns tPHL/tPLH propagation delay inA, inB to outY see Figs 5 and 6 50 pF 3.0 to 3.6 - 6.5(1) 12.3 1.0 14.0 ns tPHL/tPLH propagation delay inA, inB to outY see Figs 5 and 6 15 pF 4.5 to 5.5 - 3.2(2) 5.9 1.0 7.0 ns tPHL/tPLH propagation delay inA, inB to outY see Figs 5 and 6 50 pF 4.5 to 5.5 - 4.6(2) 7.9 1.0 9.0 ns Notes 1. Typical values at VCC = 3.3 V. 2. Typical values at VCC = 5.0 V. Type 74AHCT1G08 GND = 0 V; tr = tf 3.0 ns. Tamb (C) TEST CONDITIONS SYMBOL -40 to +85 +25 PARAMETER WAVEFORMS CL VCC (V) MIN. TYP. MAX. MIN. MAX. UNIT tPHL/tPLH propagation delay inA, inB to outY see Figs 5 and 6 15 pF 4.5 to 5.5 - 3.6(1) 6.9 1.0 8.0 ns tPHL/tPLH propagation delay inA, inB to outY see Figs 5 and 6 50 pF 4.5 to 5.5 - 5.1(1) 7.9 1.0 9.0 ns Note 1. Typical values at VCC = 5.0 V. 1999 Jan 27 7 Philips Semiconductors Product specification 2-input AND gate 74AHC1G08; 74AHCT1G08 AC WAVEFORMS handbook, halfpage inA, inB INPUT VCC handbook, halfpage VM(1) PULSE GENERATOR tPLH tPHL VI VO D.U.T. RT outY OUTPUT VM(1) CL MNA101 MNA116 FAMILY VI INPUT REQUIREMENTS VM INPUT VM OUTPUT AHC1G GND to VCC 50% VCC 50% VCC AHCT1G GND to 3.0 V 1.5 V Fig.5 Definitions for test circuit; (1) CL = Load capacitance including jig and probe capacitance. (See Chapter "AC characteristics"). (2) RT = Termination resistance should be equal to the output impedance Zo of the pulse generator. 50% VCC The input (inA, inB) to output (outY) propagation delays. 1999 Jan 27 Fig.6 Load circuitry for switching times. 8 Philips Semiconductors Product specification 2-input AND gate 74AHC1G08; 74AHCT1G08 PACKAGE OUTLINE Plastic surface mounted package; 5 leads SOT353 D E B y X A HE 5 v M A 4 Q A A1 1 2 e1 3 bp c Lp w M B e detail X 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A A1 max bp c D E (2) e e1 HE Lp Q v w y mm 1.1 0.8 0.1 0.30 0.20 0.25 0.10 2.2 1.8 1.35 1.15 1.3 0.65 2.2 2.0 0.45 0.15 0.25 0.15 0.2 0.2 0.1 OUTLINE VERSION SOT353 1999 Jan 27 REFERENCES IEC JEDEC EIAJ SC-88A 9 EUROPEAN PROJECTION ISSUE DATE 97-02-28 Philips Semiconductors Product specification 2-input AND gate 74AHC1G08; 74AHCT1G08 * Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave. SOLDERING Introduction to soldering surface mount packages * For packages with leads on two sides and a pitch (e): This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011). - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board; There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used. - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves at the downstream end. * For packages with leads on four sides, the footprint must be placed at a 45 angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners. Reflow soldering Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method. Typical dwell time is 4 seconds at 250 C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. Typical reflow peak temperatures range from 215 to 250 C. The top-surface temperature of the packages should preferable be kept below 230 C. Manual soldering Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 C. Wave soldering Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 C. To overcome these problems the double-wave soldering method was specifically developed. If wave soldering is used the following conditions must be observed for optimal results: 1999 Jan 27 10 Philips Semiconductors Product specification 2-input AND gate 74AHC1G08; 74AHCT1G08 Suitability of surface mount IC packages for wave and reflow soldering methods SOLDERING METHOD PACKAGE REFLOW(1) WAVE BGA, SQFP not suitable HLQFP, HSQFP, HSOP, SMS not PLCC(3), SO, SOJ suitable suitable(2) suitable suitable suitable LQFP, QFP, TQFP not recommended(3)(4) suitable SSOP, TSSOP, VSO not recommended(5) suitable Notes 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods". 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version). 3. If wave soldering is considered, then the package must be placed at a 45 angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners. 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm. 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm. DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. 1999 Jan 27 11 Philips Semiconductors - a worldwide company Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Germany: Hammerbrookstrae 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 489 4339/4239, Fax. +30 1 481 4240 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SAO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: Allmendstrasse 140, CH-8027 ZURICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263 Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GULTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 62 5344, Fax.+381 11 63 5777 For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com (c) Philips Electronics N.V. 1999 SCA61 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 245002/00/02/pp12 Date of release: 1999 Jan 27 Document order number: 9397 750 04944