12.7 GHz to 15.4 GHz, GaAs, MMIC,
Upper Sideband, Differential Upconverter
Data Sheet
ADMV1009
Rev. B Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2017-2018 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
RF output frequency range: 12.7 GHz to 15.4 GHz
IF input frequency range: 2.8 GHz to 4 GHz
LO input frequency range: 9 GHz to 12.6 GHz
Matched 50 Ω RF output, LO input, and IF input
20 dB of image rejection
32-terminal, 4.9 mm × 4.9 mm LCC package
APPLICATIONS
Point to point microwave radios
Radars and electronic warfare systems
Instrumentation, automatic test equipment
FUNCTIONAL BLOCK DIAGRAM
14
11 3
2
10
15
18
19 26 27
29 317
ADMV1009
VGMIX
IF1 RFOUT
GND
GND
GND
GND
IF2
VGRF VDRF
LOIN VGLO VDLO
15770-001
Figure 1.
GENERAL DESCRIPTION
The ADMV1009 is a compact, gallium arsenide (GaAs) design,
monolithic microwave integrated circuit (MMIC), upper sideband
(USB), differential, upconverter in a RoHS compliant package
optimized for point to point microwave radio designs that
operate in the 12.7 GHz to 15.4 GHz frequency range.
The ADMV1009 provides 21 dB of conversion gain with 20 dB
of sideband rejection. The ADMV1009 uses a radio frequency (RF)
amplifier preceded by a passive, double balanced mixer, where a
driver amplifier drives the local oscillator (LO). IF1 and IF2 mixer
inputs are provided, and an external 180° balun is needed to
drive the IF pins differentially. The ADMV1009 is a much
smaller alternative to hybrid style single sideband (SSB)
upconverter assemblies and eliminates the need for wire
bonding by allowing the use of surface-mount manufacturing
assemblies.
The ADMV1009 upconverter comes in a compact, thermally
enhanced, 4.9 mm × 4.9 mm LCC package. The ADMV1009
operates over the −40°C to +85°C temperature range.
ADMV1009 Data Sheet
Rev. B | Page 2 of 23
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Absolute Maximum Ratings ............................................................ 4
Thermal Resistance ...................................................................... 4
ESD Caution .................................................................................. 4
Pin Configuration and Function Descriptions ............................. 5
Typical Performance Characteristics ............................................. 6
IF Frequency = 2.8 GHz .............................................................. 6
IF Frequency = 3.4 GHz .............................................................. 8
IF Frequency = 4 GHz ............................................................... 10
IF Bandwidth .............................................................................. 12
Leakage Performance ................................................................. 13
Return Loss Performance .......................................................... 14
Spurious Performance ............................................................... 15
M × N Spurious Performance ................................................... 17
Theory of Operation ...................................................................... 18
LO Driver Amplifier .................................................................. 18
Mixer ............................................................................................ 18
RF Amplifier ............................................................................... 18
Applications Information .............................................................. 19
Typical Application Circuit ....................................................... 19
Evaluation Board Information ................................................. 20
Bill of Materials ........................................................................... 22
Outline Dimensions ....................................................................... 23
Ordering Guide .......................................................................... 23
REVISION HISTORY
4/2018—Rev. A to Rev. B
Changes to Thermal Resistance Section and Table 3 ................... 4
1/2018—Rev. 0 to Rev. A
Change to Product Title ................................................................... 1
Changes to General Description and Figure 1 ............................. 1
Changes to Table 1 ............................................................................ 3
Changes to Table 2 ............................................................................ 4
Added Thermal Resistance Section and Table 3; Renumbered
Sequentially ....................................................................................... 4
Changes to Figure 2 and Table 4 ..................................................... 5
Changes to Figure 4, Figure 7, Figure 4 Caption, and Figure 7
Caption ............................................................................................... 6
Changes to Figure 14, Figure 17, Figure 14 Caption, and Figure 17
Caption ............................................................................................... 8
Changes to Figure 24, Figure 27, Figure 24 Caption, and Figure 27
Caption ............................................................................................ 10
Changes to Figure 35 and Figure 36............................................. 12
Changes to Figure 37 through Figure 40 ..................................... 13
Changes to Figure 47 through Figure 52 ..................................... 15
Changes to Figure 53 through Figure 58 ..................................... 16
Changes to Table 5 and M × N Spurious Performance Section .... 17
Change to Theory of Operation Section ..................................... 18
Changes to Figure 59 ...................................................................... 19
Changes to Power On Sequence Section and Power Off
Sequence Section ............................................................................ 20
Change to Table 6 ........................................................................... 22
Changes to Ordering Guide .......................................................... 23
10/2017—Revision 0: Initial Version
Data Sheet ADMV1009
Rev. B | Page 3 of 23
SPECIFICATIONS
VDRF = 5 V, V D L O = 5 V, I D L O = 60 mA, IDRF = 250 mA, LO = −4 dBm LO ≤ +4 dBm, 40°C ≤ TA ≤ +85°C; data taken with
Mini-Circuits NCS1-422+, RF transformer as upper sideband, unless otherwise noted.
Table 1.
Parameter Symbol Test Conditions/Comments Min Typ Max Unit
RF OUTPUT FREQUENCY RANGE
15.4
GHz
INPUT FREQUENCY RANGE
Local Oscillator LO 9 12.6 GHz
Intermediate Frequency IF 2.8 4 GHz
LO AMPLITUDE −4 0 +4 dBm
IF INPUT POWER −25 0 dBm
PERFORMANCE With balun
Conversion Gain 15 21 25 dB
Noise Figure NF 14 16.5 dB
Output Third-Order Intercept IP3 At output power (POUT) = 8 dBm 31 35 dBm
Output 1 dB Compression Point P1dB 23 25 dBm
Sideband Rejection
60
dBc
Leakage
LO to RF −30 −10 dBm
LO to IF −25 −20 dBm
RF Output IF = 0 dBm
2× LO 2× IF Spur 45 52 dBc
4× IF Spur
75
dBc
Return Loss
RF Output 12 10 dB
LO Input −4 dBm ≤ LO ≤ +4 dBm 12 10 dB
IF Input 11 10 dB
POWER INTERFACE
Amplifier Voltage
RF VDRF 5 V
LO
VDLO
5
V
Gate Voltage
RF VGRF −1.5 −0.5 V
LO VGLO −1.5 −0.5 V
Mixer Voltage VGMIX −1.1 V
Amplifier Current
RF IDRF Adjust VGRF between −1.5 V and −0.5 V to achieve IDRF 250 300 mA
LO IDLO Adjust VGLO between −1.5 V and −0.5 V to achieve IDLO 60 mA
Gate Current
RF IGRF < 3 mA
LO IGLO < 1 mA
Total Power 1.55 W
ADMV1009 Data Sheet
Rev. B | Page 4 of 23
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter Rating
Supply Voltage
VDRF
6 V
VDLO 6 V
VGLO −2 V to 0 V
VGRF −2 V to 0 V
VGMIX −2 V to 0 V
Maximum Junction Temperature 175°C
Lifetime at Maximum Junction Temperature
>1 million hours
Maximum Power Dissipation 2.9 W
Operating Temperature Range −40°C to +85°C
Storage Temperature Range −65°C to +150°C
Moisture Sensitivity Level (MSL) Rating MSL3
Input Power
LO
15 dBm
IF 15 dBm
Lead Temperature Range (Soldering 60 sec) 260°C
Electrostatic Discharge (ESD) Sensitivity
Human Body Model (HBM) 750 V
Field Induced Charged Device Model
(FICDM)
750 V
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
Thermal performance is directly linked to printed circuit board
(PCB) design and operating environment. Careful attention to
PCB thermal design is required.
θJA is thermal resistance, junction to ambient (°C/W), and θJC is
thermal resistance, junction to case (°C/W).
Table 3.
Package Type θJA1 θJC1 Unit
E-32-1
33.4
31
°C/W
1 See JEDEC standard JESD51-2 for additional information on optimal thermal
impedance (printed circuit board (PCB) within 3 × 3 vias)
ESD CAUTION
Data Sheet ADMV1009
Rev. B | Page 5 of 23
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
24 NIC
23 NIC
22 NIC
21 NIC
20 NIC
19 LOIN
18 GND
17 NIC
1
2
3
4
5
6
7
8
NIC
PIN1
INDICATOR
GND
RFOUT
NIC
NIC
NIC
VGRF
NIC
9
10
11
12
13
14
15
16
NIC
GND
IF2
NIC
NIC
IF1
GND
NIC
32
31
30
29
28
27
26
25
NIC
VDRF
NIC
VGMX
NIC
VDLO
VGLO
NIC
TOP VIEW
(No t t o Scale)
ADMV1009
15770-002
NOTES
1. NIC = NOT INTERNALLY CONNECTED. IT IS
RECOM MENDED TO GRO UND THES E P INS
ON T HE P CB.
2. EXPOSED PAD. EXPOSED PAD MUST BE
CONNECTED TO GND. GO OD RF AND THERM AL
GRO UNDING IS RE COMM E NDE D.
Figure 2. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1, 4 to 6, 8, 9, 12, 13, 16,
17, 20 to 25, 28, 30, 32
NIC Not Internally Connected. It is recommended to ground these pins on the PCB.
2, 10, 15, 18 GND Ground. These pins are grounded internally and must also be grounded on the PCB.
3
RFOUT
RF Output. This pin is ac-coupled internally and matched to 50 Ω, single-ended.
7 VGRF Power Supply Voltage for the Gate of the RF Amplifier. Refer to the Applications Information
section for the required external components and biasing.
11, 14 IF2, IF1 Differential IF Inputs. These pins are matched to 50 Ω and are ac-coupled. No external dc block is
required.
19 LOIN Local Oscillator Input. This pin is ac-coupled and matched to 50 Ω.
26 VGLO Power Supply Voltage for the Gate of the LO Amplifier. Refer to the Applications Information
section for the required external components and biasing.
27 VDLO Power Supply Voltage for the LO Amplifier. Refer to the Applications Information section for the
required external components and biasing.
29 VGMIX Power Supply Voltage for the Mixer. This pin is a high impedance port. Refer to the Applications
Information section for the required external components and biasing.
31 VDRF Power Supply Voltage for the RF Amplifier. Refer to the Applications Information section for the
required external components and biasing.
EPAD Exposed pad. The exposed pad must be connected to GND. Good RF and thermal grounding is
recommended.
ADMV1009 Data Sheet
Rev. B | Page 6 of 23
TYPICAL PERFORMANCE CHARACTERISTICS
IF FREQUENCY = 2.8 GHz
VDRF = 5 V, V D L O = 5 V, I D L O = 60 mA, IDRF = 250 mA, LO = −4 dBm LO ≤ +4 dBm, 40°C ≤ TA ≤ +85°C, data taken with
Mini-Circuits NCS1-422+, RF transformer as upper sideband, unless otherwise noted.
25
0
5
10
15
20
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
15770-003
Figure 3. Conversion Gain vs. RF Frequency at Various Temperatures
80
0
10
30
50
70
20
40
60
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
15770-004
Figure 4. Sideband Rejection vs. RF Frequency at Various Temperatures
50
0
5
15
25
40
10
20
30
45
35
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
OUTPUT IP 3 (d Bm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
15770-005
Figure 5. Output IP3 vs. RF Frequency at Various Temperatures
25
0
5
10
15
20
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
+4dBm
0dBm
–4dBm
15770-006
Figure 6. Conversion Gain vs. RF Frequency at Various LO Powers
80
0
10
30
50
70
20
40
60
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
+4dBm
0dBm
–4dBm
15770-007
Figure 7. Sideband Rejection vs. RF Frequency at Various LO Powers
50
0
5
15
25
40
10
20
30
45
35
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
OUTPUT IP 3 ( dBm)
RF FREQ UE NCY ( GHz)
+4dBm
0dBm
–4dBm
15770-008
Figure 8. Output IP3 vs. RF Frequency at Various LO Powers
Data Sheet ADMV1009
Rev. B | Page 7 of 23
30
16
18
22
26
20
24
28
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
OUTPUT P1d B (d Bm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-009
Figure 9. Output P1dB vs. RF Frequency at Various Temperatures
18
8
9
11
13
16
10
12
14
17
15
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-010
Figure 10. Noise Figure vs. RF Frequency at Various Temperatures
30
16
18
22
26
20
24
28
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
OUTPUT P1d B (d Bm)
RF FREQ UE NCY ( GHz)
+4dBm
0dBm
–4dBm
15770-011
Figure 11. Output P1dB vs. RF Frequency at Various LO Powers
18
8
9
11
13
16
10
12
14
17
15
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
+4dBm
0dBm
–4dBm
15770-012
Figure 12. Noise Figure vs. RF Frequency at Various LO Powers
ADMV1009 Data Sheet
Rev. B | Page 8 of 23
IF FREQUENCY = 3.4 GHz
VDRF = 5 V, V D L O = 5 V, I D L O = 60 mA, IDRF = 250 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with
Mini-Circuits NCS1-422+, RF transformer as upper sideband, unless otherwise noted.
25
0
5
10
15
20
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
15770-013
Figure 13. Conversion Gain vs. RF Frequency at Various Temperatures
90
80
0
10
30
50
70
20
40
60
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
15770-014
Figure 14. Sideband Rejection vs. RF Frequency at Various Temperatures
50
0
5
15
25
40
10
20
30
45
35
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
OUTPUT IP 3 (d Bm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
15770-015
Figure 15. Output IP3 vs. RF Frequency at Various Temperatures
25
0
5
10
15
20
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
+4dBm
0dBm
–4dBm
15770-016
Figure 16. Conversion Gain vs. RF Frequency at Various LO Powers
90
80
0
10
30
50
70
20
40
60
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
15770-017
+4dBm
0dBm
–4dBm
Figure 17. Sideband Rejection vs. RF Frequency at Various LO Powers
50
0
5
15
25
40
10
20
30
45
35
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
OUTPUT IP 3 (d Bm)
RF FREQ UE NCY ( GHz)
15770-018
+4dBm
0dBm
–4dBm
Figure 18. Output IP3 vs. RF Frequency at Various LO Powers
Data Sheet ADMV1009
Rev. B | Page 9 of 23
30
16
18
22
26
20
24
28
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
OUTPUT P1d B (d Bm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
15770-019
Figure 19. Output P1dB vs. RF Frequency at Various Temperatures
18
8
9
11
13
16
10
12
14
17
15
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
15770-020
Figure 20. Noise Figure vs. RF Frequency at Various Temperatures
30
16
18
22
26
20
24
28
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
OUTPUT P1d B (d Bm)
RF FREQ UE NCY ( GHz)
15770-021
+4dBm
0dBm
–4dBm
Figure 21. Output P1dB vs. RF Frequency at Various LO Powers
18
8
9
11
13
16
10
12
14
17
15
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
15770-022
+4dBm
0dBm
–4dBm
Figure 22. Noise Figure vs. RF Frequency at Various LO Powers
ADMV1009 Data Sheet
Rev. B | Page 10 of 23
IF FREQUENCY = 4 GHz
VDRF = 5 V, V D L O = 5 V, IDLO = 60 mA, IDRF = 250 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with
Mini-Circuits NCS1-422+, RF transformer as upper sideband, unless otherwise noted.
25
0
5
10
15
20
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
15770-023
Figure 23. Conversion Gain vs. RF Frequency at Various Temperatures
100
90
80
0
10
30
50
70
20
40
60
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
15770-024
Figure 24. Sideband Rejection vs. RF Frequency at Various Temperatures
50
0
5
15
25
40
10
20
30
45
35
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
OUTPUT IP 3 (d Bm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
15770-025
Figure 25. Output IP3 vs. RF Frequency at Various Temperatures
25
0
5
10
15
20
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
CONVE RS IO N GAI N ( dB)
RF FREQ UE NCY ( GHz)
15770-026
+4dBm
0dBm
–4dBm
Figure 26. Conversion Gain vs. RF Frequency at Various LO Powers
100
90
80
0
10
30
50
70
20
40
60
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
15770-027
+4dBm
0dBm
–4dBm
Figure 27. Sideband Rejection vs. RF Frequency at Various LO Powers
50
0
5
15
25
40
10
20
30
45
35
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
OUTPUT IP 3 ( dBm)
RF FREQ UE NCY ( GHz)
15770-028
+4dBm
0dBm
–4dBm
Figure 28. Output IP3 vs. RF Frequency at Various LO Powers
Data Sheet ADMV1009
Rev. B | Page 11 of 23
30
16
18
22
26
20
24
28
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
OUTPUT P1d B (d Bm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-029
Figure 29. Output P1dB vs. RF Frequency at Various Temperatures
18
8
9
11
13
16
10
12
14
17
15
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-030
Figure 30. Noise Figure vs. RF Frequency at Various Temperatures
30
16
18
22
26
20
24
28
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
OUTPUT P1d B (d Bm)
RF FREQ UE NCY ( GHz)
15770-031
+4dBm
0dBm
–4dBm
Figure 31. Output P1dB vs. RF Frequency at Various LO Powers
18
8
9
11
13
16
10
12
14
17
15
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
15770-032
+4dBm
0dBm
–4dBm
Figure 32. Noise Figure vs. RF Frequency at Various LO Powers
ADMV1009 Data Sheet
Rev. B | Page 12 of 23
IF BANDWIDTH
VDRF = 5 V, V D L O = 5 V, I D L O = 60 mA, IDRF = 250 mA, LO = −4 dBm ≤ LO ≤ +4 dBm at 10.2 GHz, −40°C ≤ TA ≤ +85°C, data taken
with Mini-Circuits NCS1-422+, RF transformer as upper sideband, unless otherwise noted.
25
0
5
10
15
20
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.63.4 3.8 4.0
CONVE RS IO N GAI N ( dB)
IF FREQUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-033
Figure 33. Conversion Gain vs. IF Frequency at Various Temperatures
50
0
10
20
30
40
45
5
15
25
35
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.63.4 3.8 4.0
OUT P UT I P 3 ( dBm)
IF FREQUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-034
Figure 34. Output IP3 vs. IF Frequency at Various Temperatures
25
0
5
10
15
20
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.63.4 3.8 4.0
CONVE RS IO N GAI N ( dB)
IF FREQUENCY ( GHz)
15770-035
+4dBm
0dBm
–4dBm
Figure 35. Conversion Gain vs. IF Frequency at Various LO Powers
50
0
10
20
30
40
45
5
15
25
35
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.63.4 3.8 4.0
OUT P UT I P 3 ( dBm)
IF FREQUENCY ( GHz)
15770-036
+4dBm
0dBm
–4dBm
Figure 36. Output IP3 vs. IF Frequency at Various LO Powers
Data Sheet ADMV1009
Rev. B | Page 13 of 23
LEAKAGE PERFORMANCE
VDRF = 5 V, V D L O = 5 V, I D L O = 60 mA, IDRF = 250 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with
Mini-Circuits NCS1-422+, RF transformer as upper sideband, unless otherwise noted.
0
–60
–40
–20
–10
–50
–30
8000 9000 10000 11000 12000 13000 14000
LO LEAKAGE AT RF OUTPUT (dBm)
LO F REQUENCY (MHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-037
Figure 37. LO Leakage at RFOUT vs. LO Frequency at Various Temperatures
0
–70
–60
–40
–20
–10
–50
–30
8000 9000 10000 11000 12000 13000 14000
LO LEAKAGE AT IF INPUT (dBm)
LO F REQUENCY (MHz)
TA = +85°C
TA = +25°C
TA = –40° C
15770-038
Figure 38. LO Leakage at IF Input vs. LO Frequency at Various
Temperatures
0
–60
–40
–20
–10
–50
–30
8000 9000 10000 11000 12000 13000 14000
LO LEAKAGE AT RF OUTPUT (dBm)
LO F REQUENCY (MHz)
15770-039
+4dBm
0dBm
–4dBm
Figure 39. LO Leakage at RFOUT vs. LO Frequency at Various LO Powers
0
–70
–60
–40
–20
–10
–50
–30
8000 9000 10000 11000 12000 13000 14000
LO LEAKAGE AT IF INPUT (dBm)
LO F REQUENCY (MHz)
15770-040
+4dBm
0dBm
–4dBm
Figure 40. LO Leakage at IF Input vs. LO Frequency at Various LO Powers
ADMV1009 Data Sheet
Rev. B | Page 14 of 23
RETURN LOSS PERFORMANCE
VDRF = 5 V, V D L O = 5 V, I D L O = 60 mA, IDRF = 250 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with
Mini-Circuits NCS1-422+, RF transformer as upper sideband, unless otherwise noted. Measurement includes trace loss and RF connector loss.
0
–50
–45
–35
–25
–10
–40
–30
–20
–5
–15
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
RF OUT PUT RETURN L OSS ( dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA
= –40° C
15770-041
Figure 41. RF Output Return Loss vs. RF Frequency at Various Temperatures
0
–50
–45
–35
–25
–10
–40
–30
–20
–5
–15
8 9 10 11 12 13 14
LO INPUT RETURN LOSS (dB)
LO FREQUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-042
Figure 42. LO Input Return Loss vs. LO Frequency at Various Temperatures
0
–25
–10
–20
–5
–15
1.0 1.5 2.0 3.0 4.0 5.02.5 3.5 4.5 5.5 6.0
IF INPUT RETURN LOSS (dB)
IF FREQUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-043
Figure 43. IF Input Return Loss vs. IF Frequency at Various Temperatures
0
–45
–35
–25
–10
–40
–30
–20
–5
–15
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
RF OUT PUT RETURN L OSS ( dB)
RF FREQ UE NCY ( GHz)
15770-044
+4dBm
0dBm
–4dBm
Figure 44. RF Output Return Loss vs. RF Frequency at Various LO Powers
0
–50
–45
–35
–25
–10
–40
–30
–20
–5
–15
8 9 10 11 12 13 14
LO INPUT RETURN LOSS (dB)
LO FREQUENCY ( GHz)
15770-045
+4dBm
0dBm
–4dBm
Figure 45. LO Input Return Loss vs. LO Frequency at Various LO Powers
0
–25
–10
–20
–5
–15
1.0 1.5 2.0 3.0 4.0 5.02.5 3.5 4.5 5.5 6.0
IF INPUT RETURN LOSS (dB)
IF FREQUENCY ( GHz)
15770-046
+4dBm
0dBm
–4dBm
Figure 46. IF Input Return Loss vs. IF Frequency at Various LO Powers
Data Sheet ADMV1009
Rev. B | Page 15 of 23
SPURIOUS PERFORMANCE
VDRF = 5 V, VDLO = 5 V, IDLO = 60 mA, IDRF = 250 mA, LO = 0 dBm, −40°C ≤ TA ≤ +85°C, data taken with Mini-Circuits NCS1-422+,
RF transformer as upper sideband, unless otherwise noted.
90
80
0
10
30
50
70
20
40
60
13000
13050
13100
13150
13200
13250
13300
13400
13350
13450
13500
2× LO – 2× IF S P UR ( dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-047
Figure 47. 2× LO − 2× IF Leakage vs. RF Frequency at Various
Temperatures, IF = 3.1 GHz, −10 dBm
15770-048
0
10
20
30
40
50
60
70
90
80
13000 13100 13200 13300 13400 13500
2× LO IF LEAKAGE ( dBc)
RF FREQ UE NCY ( M Hz )
–40°C
+25°C
+85°C
Figure 48. 2× LO 2× IF Leakage vs. RF Frequency at Various
Temperatures, IF = 3.3 GHz, −10 dBm
90
80
0
10
30
50
70
20
40
60
13000
13050
13100
13150
13200
13250
13300
13400
13350
13450
13500
2× LO – 2× IF S P UR ( dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-049
Figure 49. 2× LO 2× IF Leakage vs. RF Frequency at Various
Temperatures, IF = 3.5 GHz, −10 dBm
90
80
0
10
30
50
70
20
40
60
13000
13050
13100
13150
13200
13250
13300
13400
13350
13450
13500
2× LO – 2× IF LEAKAGE ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-050
Figure 50. 2× LO 2× IF Leakage vs. RF Frequency at Various
Temperatures, IF = 3.1 GHz, 0 dBm
90
80
0
10
30
50
70
20
40
60
13000
13050
13100
13150
13200
13250
13300
13400
13350
13450
13500
2× LO – 2× IF S P UR ( dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-051
Figure 51. 2× LO 2× IF Leakage vs RF Frequency at Various
Temperatures, IF = 3.3 GHz, 0 dBm
90
80
0
10
30
50
70
20
40
60
13000
13050
13100
13150
13200
13250
13300
13400
13350
13450
13500
2× LO – 2× IF S P UR ( dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-052
Figure 52. 2× LO 2× IF Leakage vs RF Frequency at Various
Temperatures, IF = 3.5 GHz, 0 dBm
ADMV1009 Data Sheet
Rev. B | Page 16 of 23
120
0
20
60
100
40
80
13000
13050
13100
13150
13200
13250
13300
13400
13350
13450
13500
4× IF SP UR ( dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-053
Figure 53. 4× IF Leakage vs. RF Frequency at Various Temperatures,
IF = 3.1 GHz, −10 dBm
120
0
20
60
100
40
80
13000
13050
13100
13150
13200
13250
13300
13400
13350
13450
13500
4× IF SP UR ( dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-054
Figure 54. 4× IF Leakage vs. RF Frequency at Various Temperatures,
IF = 3.3 GHz, −10 dBm
120
0
20
60
100
40
80
13000
13050
13100
13150
13200
13250
13300
13400
13350
13450
13500
4× IF SP UR ( dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-055
Figure 55. 4× IF Leakage vs. RF Frequency at Various Temperatures,
IF = 3.5 GHz, −10 dBm
120
0
20
60
100
40
80
13000
13050
13100
13150
13200
13250
13300
13400
13350
13450
13500
4× IF SP UR ( dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-056
Figure 56. 4× IF Leakage vs. RF Frequency at Various Temperatures,
IF = 3.1 GHz, 0 dBm
120
0
20
60
100
40
80
13000
13050
13100
13150
13200
13250
13300
13400
13350
13450
13500
4× IF SP UR ( dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-057
Figure 57. 4× IF Leakage vs. RF Frequency at Various Temperatures,
IF = 3.3 GHz, 0 dBm
120
0
20
60
100
40
80
13000
13050
13100
13150
13200
13250
13300
13400
13350
13450
13500
4× IF SP UR ( dBc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
15770-058
Figure 58. 4× IF Leakage vs. RF Frequency at Various Temperatures,
IF = 3.5 GHz, 0 dBm
Data Sheet ADMV1009
Rev. B | Page 17 of 23
Table 5. LO Harmonic Leakage at RFOUT
Harmonics
LO Frequency (MHz)1 1.0 2.0 3.0 4.0
9000 −51 −14 −50 −72
9500 −48 −5 −55 −67
10000 −40 −15 −51 −63
10500 −33 −28 −67 −62
11000 −33 −44 −74 −75
11500 −30 −44 −63 −77
12000 −35 −44 −73 −76
12600 −39 −40 −63 −75
1 All values are in dBm. LO Input Power = 0 dBm.
M × N SPURIOUS PERFORMANCE
LO = 0 dBm, Upper Sideband
IF = 3100 MHz at 0 dBm and RF = 13300 MHz. All values in dBc below RF power level. N/A means not applicable.
N × LO
0 1 2 3 4
M × IF
−4 N/A 98 83 83 105
−3 N/A 99 66 75 104
−2 N/A 60 52 77 89
−1 N/A 61 27 80 97
0 N/A 53 38 68 85
1 77 0 68 70 75
2 65 43 31 86 86
3 50 67 77 64 78
4 77 58 83 96 N/A
IF = 3300 MHz at 0 dBm and RF = 13300 MHz. All values in dBc below RF power level. N/A means not applicable.
N × LO
0 1 2 3 4
M × IF
−4 N/A 92 92 78 100
−3 N/A 100 85 67 101
−2 N/A 67 58 76 95
−1 N/A 57 29 76 99
0 N/A 58 32 60 80
1 74 0 73 60 79
2 64 43 32 86 82
3
57
63
79
67
91
4 78 67 80 96 N/A
IF = 3500 MHz at 0 dBm and RF = 13300 MHz. All values in dBc below RF power level. N/A means not applicable.
N × LO
0 1 2 3 4
M × IF
−4 N/A 92 92 78 100
−3 N/A 100 85 67 101
−2 N/A 67 50 76 95
−1 N/A 50 28 72 97
0 N/A 64 27 58 74
1
71
0
73
60
79
2 59 43 32 86 82
3 57 63 79 67 91
4 78 67 80 96 N/A
ADMV1009 Data Sheet
Rev. B | Page 18 of 23
THEORY OF OPERATION
The ADMV1009 is a GaAs, MMIC, SSB, upper side band
upconverter in a RoHS compliant package optimized for upper
sideband point to point microwave radio applications operating
in the 12.7 GHz to 15.4 GHz output frequency range. The
ADMV1009 supports LO input frequencies of 9 GHz to 12.6 GHz
and IF frequencies of 2.8 GHz to 4 GHz.
The ADMV1009 uses a RF amplifier preceded by a passive,
double balanced mixer, where a driver amplifier drives the
LO (see Figure 59). The combination of design, process, and
packaging technology allows the functions of these subsystems
to be integrated into a single die, using mature packaging and
interconnection technologies to provide a high performance,
low cost design with excellent electrical, mechanical, and
thermal properties. In addition, the need for external
components is minimized, optimizing cost and size.
LO DRIVER AMPLIFIER
The LO driver amplifier takes a single LO input and amplifies it
to the desired LO signal level for the mixer to operate optimally.
The LO driver amplifier requires a single dc bias voltage (VDLO)
and a single dc gate bias (VGLO) to operate. Starting at −2 V at
the gate supply (VGLO), the LO amplifier is biased at +5 V
(VDLO). Then, the gate bias (VGLO) is varied until the desired
LO amplifier bias current (IDLO) is achieved. The desired LO
amplifier bias current is 60 mA under the LO input drive of
−4 dBm to +4 dBm. The LO drive range of −4 dBm to +4 dBm
makes it compatible with Analog Devices, Inc., wideband
synthesizer portfolio without the requirement for an external
LO driver amplifier.
MIXER
The mixer has two differential inputs, IF1 and IF2, and an
external 180° balun is required to drive the IF ports differentially.
The ADMV1009 is optimized to work with the Mini-Circuit
NCS1-422+ RF balun. The mixer must be biased at −1.1 V
(VGMIX) to operate.
RF AMPLIFIER
The RF amplifier requires a single dc bias voltage (VDRF) and a
single dc gate bias (VGRF) to operate. Starting at −2 V at the
gate supply (VGRF), the RF amplifier is biased at +5 V (VDRF).
Then, the gate bias (VGRF) is varied until the desired RF amplifier
bias current (IDRF) is achieved. The desired RF amplifier bias
current is 250 mA under small signal conditions.
The ADMV1009 has an internal band-pass filter between the
mixer and the RF driver amplifier that reduces LO leakage and
filters out the lower sideband at the RF output. The balanced
input drive allows exceptional linearity performance compared
to similar single-ended solutions.
The typical application circuit (see Figure 59) shows the necessary
external components on the bias lines to eliminate any undesired
stability problems for the RF amplifier and the LO amplifier.
The ADMV1009 upconverter comes in a compact, thermally
enhanced, 4.9 mm × 4.9 mm, 32-terminal ceramic leadless chip
carrier (LCC) package. The ADMV1009 operates over the
−40°C to +85°C temperature range.
Data Sheet ADMV1009
Rev. B | Page 19 of 23
APPLICATIONS INFORMATION
TYPICAL APPLICATION CIRCUIT
The typical applications circuit is shown in Figure 59. The
application circuit shown has been replicated for the evaluation
board circuit.
U1
ADMV1009AEZ
C12
100pF
C13
10nF
C14
1µF
C3
1µF
C2
10nF
C1
100pF
24
NIC 23
NIC 22
NIC 21
NIC 20
NIC 19
LOIN LOIN
18
GND 17
NIC
1
2
3
4
5
6
7
8
NIC
GND
RFOUT
RFOUT
J1
SMA
SMA
SMA
SMA
J2
J3
NIC
NIC
NIC
VGRF
VGRF
TP5
TP1
VDRF
NIC
L1
56nH
L2
56nH
SEC_DOT
GND
NC
NC
4
5
6
SEC_BAL
3300MHz TO 4000MHz
NCS1-422+
U2
PRI_GND
PRI_DOT IFIN
3
2
1
C15
10pF C16
10pF
9
10
11
12
13
14
15
16
NIC
GND
IF2
NIC
NIC
IF1
GND
NIC
32
31
30
29
28
27
26
25
NIC
VDRF
NIC
VGMX
NIC
VDLO
VGLO
NIC
C5
1µF
C4
100pF
TP2
VGX
C8
1µF
C7
10nF
C6
470pF
TP3
VDLO
C11
1µF
C10
10nF
C9
100pF
TP4
5016
5016
5016
5016
VGLO
TP6
5016
5016
15770-059
Figure 59. Typical Application Circuit
ADMV1009 Data Sheet
Rev. B | Page 20 of 23
EVALUATION BOARD INFORMATION
The circuit board used in the application must use RF circuit
design techniques. Signal lines must have 50 Ω impedance, and
the package ground leads and exposed pad must be connected
directly to the ground plane, similar to what is shown in Figure 60
and Figure 61. Use a sufficient number of via holes to connect
the top and bottom ground planes. The evaluation circuit board
shown in Figure 59 is available from Analog Devices, Inc., upon
request.
Layout
Solder the exposed pad on the underside of the ADMV1009 to
a low thermal and electrical impedance ground plane. This pad
is typically soldered to an exposed opening in the solder mask
on the evaluation board. Connect these ground vias to all other
ground layers on the evaluation board to maximize heat
dissipation from the device package. Figure 60 shows the PCB
land pattern footprint for the ADMV1009-EVALZ, and Figure 61
shows the solder paste stencil for the ADMV1009-EVALZ
evaluation board.
Power-On Sequence
To set up the ADMV1009-EVALZ , take the following steps:
1. Power up the VGLO with a 1.5 V supply.
2. Power up the VDLO with a 5 V supply.
3. Adjust VGLO from −1.5 V to 0.5 V such that IDLO =
60 mA.
4. Power up VGRF with a 1.5 V supply.
5. Power up VDRF with a 5 V supply.
6. Adjust VGRF from 1.5 V to 0.5 V such that IDLO =
250 mA
7. Power up VGMIX with a 1.5 V supply.
8. Apply an LO signal.
9. Apply an IF signal.
Power Off Sequence
To tur n off the ADMV1009-E VA L Z , take the following steps:
1. Turn off the LO and IF signals.
2. Set VGRF and VGLO to 1.5 V.
3. Set the VDRF and VDLO supplies to 0 V and then turn off
the VDRF and VDLO supplies.
4. Turn off the VGRF and VGLO supplies.
0.138" SQUARE M AS K OPE NING
0.02 × 45° CHAM FER FO R P IN 1
0.197"
[0.50]
PAD SI ZE
0.026" × 0.010"
0.217" SQUARE
0.004" MAS K/ME TAL OVE RLAP
0.010" MINI M UM M AS K WI DTH
0.010" REF
0.030"
MASK O P E NING
0.156"
MASK
OPENING
PIN 1
GRO UND P AD
SOLDER MASK
0.146" SQUARE
GRO UND P AD
ø.010"
TYPICAL VIA
ø.034"
TYPICAL
VIA S P ACING
15770-104
Figure 60. PCB Land Pattern Footprint of the ADMV1009-EVALZ
Data Sheet ADMV1009
Rev. B | Page 21 of 23
0.219
SQUARE
0.017
0.017
0.027
TYP
0.010
TYP
0.0197
TYP
R0.00 40 T Y P
132 PLCS
0.132
SQUARE
15770-105
Figure 61. Solder Paste Stencil of the ADMV1009-EVALZ
15770-062
Figure 62. ADMV1009-EVALZ Evaluation Board Top Layer
ADMV1009 Data Sheet
Rev. B | Page 22 of 23
BILL OF MATERIALS
Table 6.
Qty. Reference Designator Description Manufacturer/Part No.
1
Not applicable
PCB
Analog Devices/600-01649-00
1 U1 ADMV1009AEZ Analog Devices/ADMV1009AEZ
4 C1, C4, C9, C12 100 pF ceramic capacitors, 5%, 50 V, C0G, 0402 Murata/GRM1555C1H101JA01D
4 C2, C7, C10, C13 10 nF ceramic capacitors, 50 V, 10%, X7R, 0603 Panasonic/ECJ-1VB1H103K
5 C3, C5, C8, C11, C14 1 µF ceramic capacitors, 50 V, 10%, X7R, 0603 Taiyo Yuden/UMK107AB7105KA-T
1 C6 470 pF ceramic capacitor, 5%, 50 V, COG, 0402, SMD Murata/GRM1555C1H471JA01D
2 C15, C16 10 pF ceramic capacitors, 5%, 25 V, C0G, 0402 Kemet/C0402C100J3GAL
2 J1, J2 SCD, COMP, SMA connectors, SRI SRI Connector Gage Co./21-141-1000-01
1 J3 SCD, COMP, SMA connector Johnson Components/142-0701-851
2 L1, L2 56 nH inductors, 0805, 5%, 500 mA Coilcraft/0805CS-560XJLB
6 TP1 to TP6 Test points, PC compact SMT Keystone Electronics/5016
1 U2 50 Ω RF transformer, 3300 MHz to 4000 MHz Mini-Circuits/NCS1-422+
1 Heatsink Aluminum heatsink Analog Devices/111332
Data Sheet ADMV1009
Rev. B | Page 23 of 23
OUTLINE DIMENSIONS
16
0.50
BSC
3.50 REF 0.20 MIN
BOT TOM VIEW
TOP VI EW
SIDE VIE W
1
32
9
17
24
25
8
FOR PROPE R CONNECTI ON OF
THE EXPOSED PAD, REFER TO
THE PIN CONF IGURATIO N AND
FUNCTION DE S CRIPTI ONS
SECT ION OF THI S DATA S HE E T.
04-24-2017-D
0.36
0.30
0.24
EXPOSED
PAD
P
KG-004843
PIN 1
INDICATOR
5.05
4.90 SQ
4.75
4.10 REF
1.10
1.00
0.90
0.38
0.32
0.26
3.60
3.50 SQ
3.40
PIN 1
0.08
REF
SEATING
PLANE
Figure 63. 32-Terminal Ceramic Leadless Chip Carrier [LCC]
(E-32-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Body Material Lead Finish Package Description Package Option
ADMV1009AEZ −40°C to +85°C Alumina Ceramic Gold Over Nickel 32-Terminal Ceramic LCC E-32-1
ADMV1009AEZ-R7 −40°C to +85°C Alumina Ceramic Gold Over Nickel 32-Terminal Ceramic LCC E-32-1
ADMV1009-EVALZ Evaluation Board
1 Z = RoHS Compliant Part.
©2017-2018 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D15770-0-4/18(B)