General Description
The MAX17030 evaluation kit (EV kit) demonstrates the
high-power, dynamically adjustable, multiphase IMVP-
6.5 notebook CPU application circuit. This DC-DC con-
verter steps down high-voltage batteries and/or AC
adapters, generating a precision, low-voltage CPU core
VCC rail. The MAX17030 EV kit meets the Intel mobile
IMVP-6.5 CPU’s transient voltage specification, power-
good signaling, voltage regulator thermal monitoring
(VRHOT), and power-good output (PWRGD). The
MAX17030 EV kit consists of the MAX17030 3-phase
interleaved Quick-PWM™ step-down controller and one
external MAX8791 single synchronous MOSFET driver.
The MAX17030 EV kit includes active voltage position-
ing with adjustable gain, reducing power dissipation
and bulk output capacitance requirements. A slew-rate
controller allows controlled transitions between VID
codes, controlled soft-start and shutdown, and con-
trolled exit suspend voltage. Precision slew-rate control
provides “just-in-time” arrival at the new DAC setting,
minimizing surge currents to and from the battery.
Two dedicated system inputs (PSI and DPRSLPVR)
dynamically select the operating mode and number of
active phases, optimizing the overall efficiency during
the CPU’s active and sleep states.
The MAX17030 includes latched output undervoltage-
fault protection, overvoltage-fault protection, and ther-
mal-overload protection. It also includes a voltage regu-
lator power-good (PWRGD) output, a clock enable
(CLKEN) output, and a current monitor (IMON) output.
The MAX17030 provides a digitally adjustable 0 to
1.5000V output voltage (7-bit on-board DAC) from a 7V
to 20V battery-input range. Each phase is designed for
a 20A thermal design current, and delivers up to 22A
peak output current for a total of 66A. The EV kit oper-
ates at 300kHz switching frequency (per phase) and
has superior line- and load-transient response.
The MAX17030 EV kit also evaluates the MAX17000,
MAX17007A, and MAX17028 DC-DC converters.
Features
MAX17030:
Triple-Phase, Fast-Response Interleaved, Quick-PWM
2 Internal Drivers + 1 External Driver (MAX8791)
Intel IMVP-6.5 Code-Set Compliant (Calpella Socket
Configuration)
Dynamic Phase Selection Optimizes Active/Sleep Efficiency
Transient Phase Overlap Reduces Output Capacitance
Active Voltage Positioning with Adjustable Gain
High Speed, Accuracy, and Efficiency
Low Bulk Output Capacitor Count
7V to 20V Input-Voltage Range
0 to 1.5000V Output-Voltage Range (7-Bit DAC)
66A Peak Load-Current Capability (22A Each Phase)
Accurate Lossless Current Balance and Current Limit
300kHz Switching Frequency (per Phase)
IMVP-6.5 Power Sequencing and Timing Compliant
Remote Output and Ground Sense
Power-Good (PWRGD) Output and Indicator (D3)
Clock Enable (CLKEN) and Thermal Fault (VRHOT) Outputs
and Indicators (D4 and D5)
Current Monitor (IMON) Output
Output Overvoltage and Undervoltage Fault Protections
40-Pin Thin QFN Package
MAX17000:
Complete DDR Supplies: VCCDDR, VTTDDR, and VTTR
7V to 20V Input-Voltage Range
400kHz Switching Frequency
10A Output Current Capability (VCCDDR)
2A Output Current Capability (VTTDDR)
3mA Output Current Capability (VTTR)
Overvoltage Protection
Power-Good Output Indicators (D15 and D16)
24-Pin Thin QFN Package
MAX17007A:
I/O Supplies: VTT1 and VTT2
7V to 20V Input-Voltage Range
300kHz Switching Frequency
12A Output Current Capability (VTT1)
12A Output Current Capability (VTT2)
Overvoltage and Undervoltage Protections
Thermal Protection
Power-Good Output Indicators (D19 and D20)
28-Pin Thin QFN Package
MAX17028:
GMCH Graphics Supply: VCCAXG
7V to 20V Input-Voltage Range
400kHz Switching Frequency
14A Output Current Capability
Overvoltage and Undervoltage Protections
Thermal Fault (VRHOT) Output Indicator (D12)
Current Monitor (DFGT_IMON) Output
Power-Good (PWRGD) Output and Indicator (D13)
32-Pin Thin QFN Package
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
________________________________________________________________
Maxim Integrated Products
1
19-4713; Rev 0; 7/09
Ordering Information
PART TYPE
MAX17030EVKIT+ EV Kit
Quick-PWM is a trademark of Maxim Integrated Products, Inc.
+
Denotes lead(Pb)-free and RoHS compliant.
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
2 _______________________________________________________________________________________
Component List
DESIGNATION Q T Y DESCRIPTION
CLKEN,
CORE_VR_EN,
D FGT_D P RS LP VR,
DFGT_IMON,
DFGT_VR_EN,
DPRSLPVR,
DRSKP, EN1,
EN2,
GND_SENSE,
IMON, PGD_IN,
PGOOD1,
PGOOD2,
PGOODVTT1,
PGOODVTT2,
PSI, PWM,
PWRGD (x2),
SHDN, SKIP,
STDBY,
V C C AX G_S E N S E ,
VCCDDR,
VOUT_SENSE,
VRHOT, VRHOT1,
V S S AX G_S E N S E ,
VTT_1, VTT_2,
VTT1
32 Test points
C1–C4, C68, C69,
C105, C106,
C130, C131,
C160–C163
14
10µF ±20%, 25V X5R ceramic
capacitors (1210)
Murata GRM32DR61E106KA12L
TDK C3225X7R1E106M
AVX 12103D106M
Taiyo Yuden TMK325BJ106MM
KEMET C1210C106M3RAC
C5, C7, C8, C70,
C107, C149,
C166, C168
8
330µF, 2V, 4.5mΩ low-ESR polymer
capacitors (D case)
Panasonic EEFSX0D331E4 or
NEC TOKIN PSGV0E337M4.5
KEMET T520V337M2R5ATE4R5
C6, C71, C108,
C150, C167,
C169
0 Not installed, capacitors (D case)
C9 0 Not installed, capacitor (0805)
DESIGNATION Q T Y DESCRIPTION
C10, C11 2
2.2µF ±20%, 10V X5R ceramic
capacitors (0603)
TDK C1608X5R1A225M or
Murata GRM188R61A225M or
AVX 0603ZD225MAT
C12, C113, C121,
C134, C172,
C182
6
1000pF ±10%, 50V X7R ceramic
capacitors (0603)
TDK C1608X7R1H102K or
Murata GRM188R71H102K or
equivalent
C13–C16, C73,
C76, C111, C180 8
0.22µF ±20%, 10V X7R ceramic
capacitors (0603)
Murata GRM188R71A224K
Taiyo Yuden LMK107BJ224MA
TDK C1608X7R1C224M
AVX 06033D224KAT
C17, C18, C19,
C21–C26, C28,
C29, C31, C74,
C75, C77, C109,
C110, C112,
C114,
C137–C140,
C170, C171,
C175, C178,
C179, C181,
C183
0 Not installed, capacitors (0603)
C20, C102, C104,
C135, C136,
C164, C165,
C174
8
0.1µF ±10%, 25V X7R ceramic
capacitors (0603)
TDK C1608X7R1E104K or
Murata GRM188R71E104K
C27 0 Not installed, capacitor—short (PC
trace) (0603)
C30 0
Not installed, 1000µF, 50V
aluminum electrolytic capacitor
(12.5mm x 25mm)
SANYO 50MV1000AX
C32, C33,
C115–C120,
C141, C142,
C143,
C145–C148,
C184–C193
25
10µF ±20%, 6.3V X5R ceramic
capacitors (0805)
Murata GRM21BR60J106ME19L
TDK C2012X5R0J106M or
Taiyo Yuden AMK212BJ106MG
AVX 08056D106MAT
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
_______________________________________________________________________________________ 3
Component List (continued)
DESIGNATION QTY DESCRIPTION
C34–C60 27
22µF, 6.3V X5R ceramic capacitors
(0805)
Murata GRM21BR60J226ME39L
TDK C2012X5R0J226MT
Taiyo Yuden JMK212BJ226MG
C72, C100,
C101, C132,
C133, C176,
C177
7
1µF ±10%, 16V X5R ceramic
capacitors (0603)
TDK C1608X5R1C105K
Taiyo Yuden EMK107BJ683MA
Murata GRM188R61C105K
C103 1
100pF ±10%, 50V X7R ceramic
capacitor (0603)
TDK C1608X7R1H101K
Taiyo Yuden UMK107B101KZ
C144 1
0.47µF ± 20%, 10V X5R ceramic
capacitor (0603)
Murata GRM188R71C474M
Taiyo Yuden LMK107BJ474MA
TDK C1608X5R1A474M
C173 1
2200pF ±10%, 50V X7R ceramic
capacitor (0603)
Murata GRM188R71H222K
TDK C1608X7R1H222K
D1, D2, D6, D10,
D14, D17, D18 7
3A, 30V Schottky diodes
Nihon EC31QS03L
Central Semi CMSH3-40M
D3, D4, D5, D12,
D13, D15, D16,
D19, D20
9
LEDs, green, clear, SMD (0805)
Lite-On Electronics LTST-C170GKT
Digi-Key 160-1179-1-ND
JU1, JU4,
JU5, JU6 4 3-pin headers (0.1in centers)
JU8 1 2-pin header (0.1in centers)
L1, L2, L3 3
0.36µH, 36A, 0.82mΩ power
inductors
Panasonic ETQP4LR36ZFC
TOKO FDUE1040D-R36M
L4 1
0.42µH, 20A, 1.55mΩ power
inductor (6.7mm x 8mm x 4 mm)
NEC TOKIN MPC0740LR42C
TOKO FDUE640-R42M
DESIGNATION QTY DESCRIPTION
L5, L6, L7 3
0.6µH, 17A, 2.3mΩ power inductors
(6.7mm x 8mm x 5 mm)
NEC TOKIN MPC0750LR60C
N1, N2, N8, N11,
N13, N15, N17 7
n-channel MOSFETs
(8 SO, PowerPAK)
Fairchild FDS6298
Vishay (Siliconix) SI4386DY
N3–N6, N9, N10,
N12, N14, N16,
N18
10
n-channel MOSFETs
(8 SO, PowerPAK)
Fairchild FDS8670
Vishay (Siliconix) SI4626ADY
R1, R16, R44,
R46, R51, R73,
R74, R76, R77,
R107, R142
11 10Ω ±5% resistors (0603)
R2 1 137kΩ ±1% resistor (0603)
R3 1 14kΩ ±1% resistor (0603)
R4, R156 2 200kΩ ±1% resistors (0603)
R5, R6, R15, R19,
R24, R32, R47,
R50, R62, R65,
R79, R96, R97,
R106, R120,
R128, R139,
R170
18 0Ω resistors (0603)
R7, R11, R21,
R67, R69 5 2.21kΩ ±1% resistors (0603)
R8, R12, R35 3 3.24kΩ ±1% resistors (0603)
R9, R13, R34 3 40.2kΩ ±1% resistors (0603)
R10, R14, R36,
R68, R115, R134,
R148
7
10kΩ ±1% NTC thermistors,
β = 3380 (0603)
Murata NCP18XH103F03RB
TDK NTCG163JH103F
R17, R54, R133 3 6.04kΩ ±1% resistors (0603)
*
EP = Exposed pad.
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
4 _______________________________________________________________________________________
Component List (continued)
DESIGNATION QTY DESCRIPTION
R18, R48, R49,
R53, R71, R72,
R87, R89–R95,
R98, R99, R103,
R111, R112,
R117, R118,
R119,
R122–R127,
R129, R131,
R132, R137,
R138, R147,
R150, R151,
R157
0
Not installed, resistors (0603)
R18, R48, R49, R87, R89–R95, R98,
R99, R111, R112, R119,
R122–R127, R129, R147, R157 are
open; R53, R71, R72, R103, R117,
R118, R131, R132, R137, R138,
R150, R151 are short (PC trace)
R20, R52, R100,
R130 0Not installed, resistors—short (PC
trace) (1210)
R22, R23, R30 3 1.91kΩ ±5% resistors (0603)
R25, R60 2 13kΩ ±1% resistors (0603)
R26, R61 2
100kΩ ±5% NTC thermistors,
β = 4250 (0603)
Murata NCP18WF104J03RBTDK
NTCG163JF104J
R27, R28, R29,
R31, R58, R66,
R102, R108,
R109, R110,
R144, R155
12 100kΩ ±5% resistors (0603)
R33 1 11.5kΩ ±1% resistor (0603)
R37–R43,
R80–R86 14 100kΩ ±1% resistors (0603)
R45, R88 2 100Ω ±5% resistors (0603)
R55 1 63.4kΩ ±1% resistor (0603)
R56, R101, R145 3 150kΩ ±1% resistors (0603)
R57, R59, R78,
R104, R105,
R143, R154
71kΩ ±5% resistors (0603)
R63, R64, R153 3 10kΩ ±1% resistors (0603)
R70 1 15kΩ ±1% resistor (0603)
R75 1 13.3kΩ ±1% resistor (0603)
R113, R114 2 3.48 kΩ ±1% resistors (0603)
R116 1 20kΩ ±1% resistor (0603)
DESIGNATION QTY DESCRIPTION
R121 0 Not installed, resistor—short (PC
trace) (0805)
R135 1 4.22kΩ ±1% resistor (0603)
R136 1 3.01kΩ ±1% resistor (0603)
R140 1 90.9kΩ ±1% resistor (0603)
R141 1 110kΩ ±1% resistor (0603)
R146 1 4.99kΩ ±1% resistor (0603)
R149 1 1.3kΩ ±1% resistor (0603)
R152 1 5.76kΩ ±1% resistor (0603)
R158, R159,
R160 32Ω ±5% resistors (0603)
REFIN1, SKIPVTT 0 Not installed, test points
SW1, SW3 2 7-position low-profile DIP switches
SW2, SW4, SW5 3 4-position low-profile DIP switches
U1 1
3/2-phase Quick-PWM
VID controller (40 TQFN-EP*)
Maxim MAX17030GTL+
U2 1 CPU socket rPGA-989
U3 1 Single driver (8 TQFN)
Maxim MAX8791GTA+
U4 1
1-phase Quick-PWM
VID controller (32 TQFN-EP*)
Maxim MAX17028GTJ+
U5 1
DDR memory power controller
(24 TQFN)
Maxim MAX17000ETG+
U6 1
Dual step-down Quick-PWM
controller (28 TQFN)
Maxim MAX17007AGTI+
—1
PCB: MAX17030 EVALUATION
KIT+
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
_______________________________________________________________________________________ 5
Quick Start
Recommended Equipment
MAX17030 EV kit
7V to 20V power supply, battery, or notebook AC
adapter
DC bias power supply, 5V at 1A
DC bias power supply, 3.3V at 100mA
Three dummy loads capable of sinking 22A each
Digital multimeters (DMMs)
100MHz dual-trace oscilloscope
Procedure
The MAX17030 EV kit is fully assembled and tested.
Follow the steps below to verify board operation:
1) Ensure that the circuit is connected correctly to the
supplies and dummy load prior to applying any
power.
2) Verify that all positions of switch SW2 are off. The
DAC code settings (D6–D0) are set by switch SW1.
Set SW1 (2, 13), SW1 (4, 11), and SW1 (6, 9) to the
on positions. Set SW4 (1, 8) and SW5 (4, 5) to the
on positions.The output voltage is set for 0.9750V.
3) Turn on the battery power before turning on the 5V
bias power. Turn on the 5V and 3.3V power supplies.
4) Observe the 0.9750V output voltage with the DMM
and/or oscilloscope. Look at the LX switching nodes
and MOSFET gate-drive signals while varying the
load current.
Detailed Description of Hardware
This 66A multiphase buck-regulator design is optimized
for a 300kHz switching frequency (per phase) and out-
put-voltage settings around 1V. At VOUT = 1V and VIN
= 12V, the inductor ripple is approximately 30% (LIR =
0.30). The MAX17030 controller interleaves all the
active phases, resulting in out-of-phase operation that
minimizes the input and output filtering requirements.
The multiphase controller shares the current between
three phases that operate 120°out-of-phase, supplying
up to 22A per phase.
Component Suppliers
Note: Indicate that you are using the MAX17030 when contacting these component suppliers.
SUPPLIER PHONE WEBSITE
AVX Corporation 843-946-0238 www.avxcorp.com
Central Semiconductor Corp. 631-435-1110 www.centralsemi.com
Digi-Key Corp. 800-344-4539 www.digikey.com
Fairchild Semiconductor 888-522-5372 www.fairchildsemi.com
KEMET Corp. 864-963-6300 www.kemet.com
Murata Electronics North America, Inc. 770-436-1300 www.murata-northamerica.com
NEC TOKIN America, Inc. 408-324-1790 www.nec-tokinamerica.com
Nihon Inter Electronics Corp. 847-843-7500 www.niec.co.jp
Panasonic Corp. 800-344-2112 www.panasonic.com
SANYO Electric Co., Ltd. 619-661-6835 www.sanyodevice.com
Taiyo Yuden 800-348-2496 www.t-yuden.com
TDK Corp. 847-803-6100 www.component.tdk.com
TOKO America, Inc. 847-297-0070 www.tokoam.com
Vishay 402-563-6866 www.vishay.com
MAX17030 Evaluation Kit
_______________________________________________________________________________________ 5
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
6 _______________________________________________________________________________________
Table 1. MAX17030 Operating Mode Truth Table
INPUTS
SHDN
SW5
(1, 8)
DPRSLPVR
SW5
(2, 7)
PSI
SW5
(3, 6)
PHASE
OPERATION* OPERATING MODE
GND X X Disabled Low-Power Shutdown Mode. DL1 and DL2 are forced low and the
controller is disabled. The supply current drops to 1µA (max).
Rising X X
M ul ti p hase
p ul se- ski p p i ng
1/4 RT IM E
sl ew r ate
Startup/Boot. When SHDN is pulled high, the MAX17030 begins the
startup sequence. Once the REF is above 1.84V, the controller enables
the PWM controller and ramps the output voltage up to the boot
voltage.
High Low High
Multiphase
forced-PWM
nominal RTIME sl ew r ate
Full Power. The no-load output voltage is determined by the selected
VID DAC code (D0–D6, Table 2).
High Low Low
(N-1)-phase
forced-PWM
nominal RTIME sl ew r ate
Inter m ed i ate P ow er . The no- l oad outp ut vol tag e i s d eter m i ned b y the
sel ected V ID D AC cod e ( D 0–D 6, Tab l e 2) . W hen P SI i s p ul l ed l ow , the
M AX 17030 i m m ed i atel y d i sab l es p hase 3. PWM3 i s thr ee- state and
DRSKP i s l ow .
High High X
1-phase
pulse-skipping
nominal RTIME sl ew r ate
Deeper Sleep Mode. The no-load output voltage is determined by the
selected VID DAC code (D0–D6, Table 2). When DPRSLPVR is pulled
high, the M AX 17030 immediately enters 1-phase pulse-skipping
operation, allowing automatic PWM/PFM switchover under light loads.
The PWRGD and CLKEN upper thresholds are blanked. DH2 and DL2
are pulled low. PWM3 i s thr ee- state and DRSKP i s l ow .
Falling X X
Multiphase
forced-PWM
1/4 RTIME
sl ew r ate
Shutdown. When SHDN is pulled low, the M AX 17030 immediately pulls
PWRGD low, CLKEN becomes high impedance, all enabled phases are
activated, and the output voltage is ramped down to 12.5mV, then DH_
and DL_ are pulled low, and CSN1 discharge FET is turned on.
High X X Disabled
Faul t M od e. The faul t l atch has b een set b y the M AX 17030 U V P or
ther m al - shutd ow n p r otecti on, or b y the OV P p r otecti on. The contr ol l er
r em ai ns i n faul t m od e unti l V
C C
p ow er i s cycl ed or SHDN tog g l ed .
*
Multiphase operation = All enabled phases active.
X = Don’t care.
Setting the Output Voltage
The MAX17030 has an internal digital-to-analog con-
verter (DAC) that programs the output voltage. The out-
put voltage can be digitally set from 0 to 1.5000V
(Table 2) from the D0–D6 pins. There are two different
ways of setting the output voltage:
1) Drive the external VID0–VID6 inputs (all SW1
positions are off). The output voltage is set by dri-
ving VID0–VID6 with open-drain drivers (pullup
resistors are included on the board) or 3V/5V
CMOS output logic levels.
2) Switch SW1. When SW1 positions are off, the
MAX17030’s D0–D6 inputs are at logic 0 (connect-
ed to GND). When SW1 positions are on, D0–D6
inputs are at logic 1 (connected to VTT1). The out-
put voltage can be changed during operation by
activating SW1 on and off. As shipped, the EV kit is
configured with SW1 positions set for 0.9750V out-
put (Table 2). Refer to the MAX17030 IC data sheet
for more information.
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
_______________________________________________________________________________________ 7
Table 2. MAX17030 IMVP-6.5 Output-Voltage VID DAC Codes
D6 D5 D4 D3 D2 D1 D0 OUTPUT
VOLTAGE (V)
0000000 1.5000
0000001 1.4875
0000010 1.4750
0000011 1.4625
0000100 1.4500
0000101 1.4375
0000110 1.4250
0000111 1.4125
0001000 1.4000
0001001 1.3875
0001010 1.3750
0001011 1.3625
0001100 1.3500
0001101 1.3375
0001110 1.3250
0001111 1.3125
0010000 1.3000
0010001 1.2875
0010010 1.2750
0010011 1.2625
0010100 1.2500
0010101 1.2375
0010110 1.2250
0010111 1.2125
0011000 1.2000
0011001 1.1875
0011010 1.1750
0011011 1.1625
0011100 1.1500
0011101 1.1375
0011110 1.1250
0011111 1.1125
0100000 1.1000
0100001 1.0875
0100010 1.0750
0100011 1.0625
0100100 1.0500
0100101 1.0375
0100110 1.0250
0100111 1.0125
D6 D5 D4 D3 D2 D1 D0 OUTPUT
VOLTAGE (V)
1 0 0 0 0 0 0 0.7000
1 0 0 0 0 0 1 0.6875
1 0 0 0 0 1 0 0.6750
1 0 0 0 0 1 1 0.6625
1 0 0 0 1 0 0 0.6500
1 0 0 0 1 0 1 0.6375
1 0 0 0 1 1 0 0.6250
1 0 0 0 1 1 1 0.6125
1 0 0 1 0 0 0 0.6000
1 0 0 1 0 0 1 0.5875
1 0 0 1 0 1 0 0.5750
1 0 0 1 0 1 1 0.5625
1 0 0 1 1 0 0 0.5500
1 0 0 1 1 0 1 0.5375
1 0 0 1 1 1 0 0.5250
1 0 0 1 1 1 1 0.5125
1 0 1 0 0 0 0 0.5000
1 0 1 0 0 0 1 0.4875
1 0 1 0 0 1 0 0.4750
1 0 1 0 0 1 1 0.4625
1 0 1 0 1 0 0 0.4500
1 0 1 0 1 0 1 0.4375
1 0 1 0 1 1 0 0.4250
1 0 1 0 1 1 1 0.4125
1 0 1 1 0 0 0 0.4000
1 0 1 1 0 0 1 0.3875
1 0 1 1 0 1 0 0.3750
1 0 1 1 0 1 1 0.3625
1 0 1 1 1 0 0 0.3500
1 0 1 1 1 0 1 0.3375
1 0 1 1 1 1 0 0.3250
1 0 1 1 1 1 1 0.3125
1 1 0 0 0 0 0 0.3000
1 1 0 0 0 0 1 0.2875
1 1 0 0 0 1 0 0.2750
1 1 0 0 0 1 1 0.2625
1 1 0 0 1 0 0 0.2500
1 1 0 0 1 0 1 0.2375
1 1 0 0 1 1 0 0.2250
1 1 0 0 1 1 1 0.2125
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
8 _______________________________________________________________________________________
Reduced Power-Dissipation
Voltage Positioning
The MAX17030 includes a transconductance amplifier for
adding gain to the voltage-positioning sense path. The
amplifier’s input is generated by summing the current-
sense inputs, which differentially sense the voltage
across the inductor’s DCR. The transconductance ampli-
fier’s output connects to the voltage-positioned feedback
input (FBAC), so the resistance between FBAC and VOUT
(R17) determines the voltage-positioning gain. Resistor
R17 (6.04kΩ) provides a -1.9mV/A voltage-positioning
slope at the output when all phases are active. Remote
output and ground sensing eliminate any additional
PCB voltage drops.
Dynamic Output-Voltage
Transition Experiment
This MAX17030 EV kit is set to transition the output volt-
age at 6mV/µs. The speed of the transition is altered by
scaling resistors R2 and R3.
During the voltage transition, watch the inductor current by
looking at the current-sense inputs with a differential scope
probe. Observe the low, well-controlled inductor current
that accompanies the voltage transition. Slew-rate control
during shutdown and startup results in well-controlled
currents in to and out of the battery (input source).
There are two methods to create an output-voltage
transition. Select D0–D6 (SW1). Then either manually
change the SW1 settings to a new VID code setting
(Table 2), or disable all SW1 settings and drive the
VID0–VID6 PCB test points externally to the desired
code settings.
Table 2. MAX17030 IMVP-6.5 Output-Voltage VID DAC Codes (continued)
D6 D5 D4 D3 D2 D1 D0 OUTPUT
VOLTAGE (V)
0 1 0 1 0 0 0 1.0000
0 1 0 1 0 0 1 0.9875
0 1 0 1 0 1 0 0.9750
0 1 0 1 0 1 1 0.9625
0 1 0 1 1 0 0 0.9500
0 1 0 1 1 0 1 0.9375
0 1 0 1 1 1 0 0.9250
0 1 0 1 1 1 1 0.9125
0 1 1 0 0 0 0 0.9000
0 1 1 0 0 0 1 0.8875
0 1 1 0 0 1 0 0.8750
0 1 1 0 0 1 1 0.8625
0 1 1 0 1 0 0 0.8500
0 1 1 0 1 0 1 0.8375
0 1 1 0 1 1 0 0.8250
0 1 1 0 1 1 1 0.8125
0 1 1 1 0 0 0 0.8000
0 1 1 1 0 0 1 0.7875
0 1 1 1 0 1 0 0.7750
0 1 1 1 0 1 1 0.7625
0 1 1 1 1 0 0 0.7500
0 1 1 1 1 0 1 0.7375
0 1 1 1 1 1 0 0.7250
0 1 1 1 1 1 1 0.7125
D6 D5 D4 D3 D2 D1 D0 OUTPUT
VOLTAGE (V)
1 1 0 1 0 0 0 0.2000
1 1 0 1 0 0 1 0.1875
1 1 0 1 0 1 0 0.1750
1 1 0 1 0 1 1 0.1625
1 1 0 1 1 0 0 0.1500
1 1 0 1 1 0 1 0.1375
1 1 0 1 1 1 0 0.1250
1 1 0 1 1 1 1 0.1125
1 1 1 0 0 0 0 0.1000
1 1 1 0 0 0 1 0.0875
1 1 1 0 0 1 0 0.0750
1 1 1 0 0 1 1 0.0625
1 1 1 0 1 0 0 0.0500
1 1 1 0 1 0 1 0.0375
1 1 1 0 1 1 0 0.0250
1 1 1 0 1 1 1 0.0125
1111000 0
1111001 0
1111010 0
1111011 0
1111100 0
1111101 0
1111110 0
1111111 Off
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
_______________________________________________________________________________________ 9
Table 3. Shutdown Mode (SHDN)
SW5 (1, 8) SHDN PIN MAX17030 OUTPUT
Off Connected to V3P3 Output enabled—VOUT is selected by VID DAC code (D0–D6) settings
On Connected to GND Shutdown mode, VOUT = 0
Table 4. DPRSLPVR, PSI
DPRSLPVR
SW5 (2, 7)
PSI
SW5 (3, 6) POWER LEVEL OPERATING MODE
On (VCCP) X Low current 1-phase pulse-skipping mode
Off (GND) On (GND) Intermediate 2-phase forced-PWM mode
Off (GND)* Off (VCCP)* Full Normal operation—all phases are active, forced-PWM mode
*
Default position.
X = Don’t care.
Switch SW5 Settings
Shutdown SW5 (1, 8)
When SHDN goes low (SW5 (1, 8) = on), the MAX17030
enters low-power shutdown mode. PWRGD is pulled low
immediately and the output voltage ramps down at 1/4
the slew rate set by R2 and R3. When the controller
reaches the 12.5mV target, the drivers are disabled
(DH_ and DL_ driven low), the reference is turned off,
and the IC supply currents drop to 1µA (max).
When a fault condition activates the shutdown
sequence (output undervoltage lockout or thermal shut-
down), the protection circuitry sets the fault latch to
prevent the controller from restarting. To clear the fault
latch and reactivate the MAX17030, toggle SHDN or
cycle VDD power.
DPRSLPVR SW5 (2, 7), PSI SW5 (3, 6)
DPRSLPVR and PSI together determine the operating
mode, as shown in Table 4. The MAX17030 is in pulse-
skipping mode during startup and in boot mode, and is
forced into PWM mode during soft-shutdown.
PGD_IN, SW5 (4, 5)
PGD_IN indicates the power status of other system rails
and is used for power-supply sequencing. After power-
up to the boot voltage, the output voltage remains at
VBOOT, CLKEN remains high, and PWRGD remains low
as long as the PG_DIN stays low. When PGD_IN is
pulled high, the output transitions to selected VID volt-
age, and CLKEN is pulled low. If the system pulls
PGD_IN low during normal operation, the MAX17030
immediately drives CLKEN high, pulls PWRGD low, and
slews the output to the boot voltage (using 3-phase
pulse-skipping mode). The controller remains at the
boot voltage until PGD_IN goes high again, SHDN is
toggled, or the VDD is cycled.
Evaluating the MAX17028 Circuit
The MAX17030 EV kit also demonstrates the high-
power, dynamically adjustable, 1-phase MAX17028
Quick-PWM step-down VID power-supply controller.
This DC-DC converter steps down high-voltage batter-
ies and/or AC adapters, generating a precision, low-
voltage VCCAXG rail for Intel’s GMCH graphics core.
The MAX17028 circuit includes power-good signaling,
voltage regulator thermal monitoring (VRHOT), and cur-
rent monitor (DFGT_IMON) output. The MAX17028
includes active voltage positioning with adjustable
gain, reducing power dissipation and bulk output
capacitance requirements. An internal amplifier buffers
the DAC and accurately controls the slew rate for all
output-voltage transitions, including transitions between
Table 5. PGD_IN
SW5 (4, 5) PGD_IN PIN MAX17030 OUTPUT
Off Connected to GND VOUT remains at the boot voltage. CLKEN remains high, and PWRGD
remains low.
On Connected to V3P3 VOUT transitions to selected VID voltage, and CLKEN is pulled low.
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
10 ______________________________________________________________________________________
VID codes, startup, and shutdown. Precision slew-rate
control provides just-in-time arrival at the new DAC set-
ting, minimizing surge currents to and from the battery.
The MAX17028 includes output undervoltage fault,
overvoltage-fault protection, and thermal overload pro-
tection. It also includes a voltage regulator power-good
(PWRGD) output.
The output voltage (VCCAXG) can be digitally
adjustable from 0 to 1.5000V (7-bit on-board DAC) from
a 7V to 20V battery input range. It delivers up to 14A
output current. The MAX17028 circuit operates at
400kHz switching frequency and has superior line- and
load-transient response.
Setting the VCCAXG Output Voltage
The MAX17028 has an internal DAC that programs the
VCCAXG output voltage. The output voltage is digitally
set from 0 to 1.5000V (Table 6) using the D0–D6 pins.
When SW3 positions are off, the MAX17028’s D0–D6
inputs are at logic 0 (connected to GND). When SW3
positions are on, D0–D6 inputs are at logic 1 (connect-
ed to VTT1). The output voltage can be changed during
operation by activating SW3 on and off. As shipped,
the EV kit is configured with SW3 positions set for
0.9000V output (SW3 (5, 10), SW3 (6, 9) and SW2 (1, 8)
in the on positions) (Table 6). Refer to the MAX17028 IC
data sheet for more information.
Table 6. MAX17028 GMCH Output-Voltage Adjustment Settings
D6 D5 D4 D3 D2 D1 D0 OUTPUT
VOLTAGE (V) D6 D5 D4 D3 D2 D1 D0 OUTPUT
VOLTAGE (V)
0000000 1.5000 1 0 0 0 0 0 0 0.7000
0000001 1.4875 1 0 0 0 0 0 1 0.6875
0000010 1.4750 1 0 0 0 0 1 0 0.6750
0000011 1.4625 1 0 0 0 0 1 1 0.6625
0000100 1.4500 1 0 0 0 1 0 0 0.6500
0000101 1.4375 1 0 0 0 1 0 1 0.6375
0000110 1.4250 1 0 0 0 1 1 0 0.6250
0000111 1.4125 1 0 0 0 1 1 1 0.6125
0001000 1.4000 1 0 0 1 0 0 0 0.6000
0001001 1.3875 1 0 0 1 0 0 1 0.5875
0001010 1.3750 1 0 0 1 0 1 0 0.5750
0001011 1.3625 1 0 0 1 0 1 1 0.5625
0001100 1.3500 1 0 0 1 1 0 0 0.5500
0001101 1.3375 1 0 0 1 1 0 1 0.5375
0001110 1.3250 1 0 0 1 1 1 0 0.5250
0001111 1.3125 1 0 0 1 1 1 1 0.5125
0010000 1.3000 1 0 1 0 0 0 0 0.5000
0010001 1.2875 1 0 1 0 0 0 1 0.4875
0010010 1.2750 1 0 1 0 0 1 0 0.4750
0010011 1.2625 1 0 1 0 0 1 1 0.4625
0010100 1.2500 1 0 1 0 1 0 0 0.4500
0010101 1.2375 1 0 1 0 1 0 1 0.4375
0010110 1.2250 1 0 1 0 1 1 0 0.4250
0010111 1.2125 1 0 1 0 1 1 1 0.4125
0011000 1.2000 1 0 1 1 0 0 0 0.4000
0011001 1.1875 1 0 1 1 0 0 1 0.3875
0011010 1.1750 1 0 1 1 0 1 0 0.3750
0011011 1.1625 1 0 1 1 0 1 1 0.3625
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
______________________________________________________________________________________ 11
Table 6. MAX17028 GMCH Output-Voltage Adjustment Settings (continued)
D6 D5 D4 D3 D2 D1 D0 OUTPUT
VOLTAGE (V) D6 D5 D4 D3 D2 D1 D0 OUTPUT
VOLTAGE (V)
0011100 1.1500 1 0 1 1 1 0 0 0.3500
0011101 1.1375 1 0 1 1 1 0 1 0.3375
0011110 1.1250 1 0 1 1 1 1 0 0.3250
0011111 1.1125 1 0 1 1 1 1 1 0.3125
0100000 1.1000 1 1 0 0 0 0 0 0.3000
0100001 1.0875 1 1 0 0 0 0 1 0.2875
0100010 1.0750 1 1 0 0 0 1 0 0.2750
0100011 1.0625 1 1 0 0 0 1 1 0.2625
0100100 1.0500 1 1 0 0 1 0 0 0.2500
0100101 1.0375 1 1 0 0 1 0 1 0.2375
0100110 1.0250 1 1 0 0 1 1 0 0.2250
0100111 1.0125 1 1 0 0 1 1 1 0.2125
0101000 1.0000 1 1 0 1 0 0 0 0.2000
0101001 0.9875 1 1 0 1 0 0 1 0.1875
0101010 0.9750 1 1 0 1 0 1 0 0.1750
0101011 0.9625 1 1 0 1 0 1 1 0.1625
0101100 0.9500 1 1 0 1 1 0 0 0.1500
0101101 0.9375 1 1 0 1 1 0 1 0.1375
0101110 0.9250 1 1 0 1 1 1 0 0.1250
0101111 0.9125 1 1 0 1 1 1 1 0.1125
0110000 0.9000 1 1 1 0 0 0 0 0.1000
0110001 0.8875 1 1 1 0 0 0 1 0.0875
0110010 0.8750 1 1 1 0 0 1 0 0.0750
0110011 0.8625 1 1 1 0 0 1 1 0.0625
0110100 0.8500 1 1 1 0 1 0 0 0.0500
0110101 0.8375 1 1 1 0 1 0 1 0.0375
0110110 0.8250 1 1 1 0 1 1 0 0.0250
0110111 0.8125 1 1 1 0 1 1 1 0.0125
0111000 0.8000 1 1 1 1 0 0 0 0
0111001 0.7875 1 1 1 1 0 0 1 0
0111010 0.7750 1 1 1 1 0 1 0 0
0111011 0.7625 1 1 1 1 0 1 1 0
0111100 0.7500 1 1 1 1 1 0 0 0
0111101 0.7375 1 1 1 1 1 0 1 0
0111110 0.7250 1 1 1 1 1 1 0 0
0111111 0.7125 1 1 1 1 1 1 1 0
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
12 ______________________________________________________________________________________
Switch SW2 Settings
Switch SW2 controls the MAX17028 operating modes
(Table 7).
Evaluating the MAX17000 Circuit
The MAX17030 kit also demonstrates the MAX17000
DDR memory power-solution circuit. The MAX17000
provides the regulated voltages required in a complete
DDR memory system. The MAX17000 generates the
main memory voltage (VCCDDR), the tracking
sinking/sourcing termination voltage (VTTDDR), and the
reference voltage (VTTR). The MAX17000 circuit oper-
ates at 400kHz switching frequency, generates a pre-
set 1.5V VCCDDR main memory voltage that is capable
of sourcing 10A from 7V to 20V battery input range. The
termination regulator provides a 0.75V VTTDDR supply
that is capable of sinking/sourcing 2A. The termination
reference buffer provides a 0.75V VTTR supply that is
capable of sinking/sourcing 3mA.
Setting the VCCDDR Output Voltage
The MAX17000 feedback input (FB) is connected to a
network of resistors, which set the VCCDDR output volt-
age. By default, the output voltage is preset to a fixed
1.5V output (R120 = 0Ω). For a fixed 1.8V output,
remove R120 and install a short across resistor R99.
For an adjustable VCCDDR output (1V to 2.7V), con-
nect FB to resistive divider R119 and R120 from the
output voltage
VCCDDR. Install feedback resistors with values accord-
ing to the following equation:
where VFB = 1V. Use 10kΩfor R120, and calculate
R119 for the desired VCCDDR output voltage.
MAX17000 Standby Control Input (
STDBY
)
and Shutdown Control Input (
SHDN
)
The MAX17000 features independent standby and
shutdown controls by implementing switches SW4 (4,
5) and SW4 (3, 6) to control the STDBY and SHDN
inputs, respectively. Switches SW4 (4, 5) and SW4 (3,
6) allow flexible sequencing to support all DDR operat-
ing states. The shutdown and standby control logic is
illustrated in Table 8.
VCCDDR VFB R
R
=+
1119
120
Table 7. MAX17028 Operating Mode Truth Table
INPUTS
SHDN
SW2 (1, 8)
DPRSLPVR
SW2 (2, 7) PGD_IN STATE OPERATING MODE
Low X X Disabled
Low-Power Shutdown Mode. DL forced low, and the
controller is disabled. The controller’s bias supply current
drops to 15µA (typ).
High Low High 1-phase forced-PWM
1/2 RTIME slew rate
Full Power. The no-load output voltage is determined by the
selected VID DAC code (D0–D6).
High High High
1-phase pulse-
skipping
nominal RTIME slew
rate
Skip Mode. The no-load output voltage is determined by the
selected VID DAC code (D0–D6). When DPRSLPVR is pulled
high, the MAX17028 immediately enters 1-phase pulse-
skipping operation, allowing automatic PWM/PFM switchover
under light loads.
Falling X X 1-phase forced-PWM
1/8 RTIME slew rate
Shutdown. When SHDN is pulled low, the MAX17028
immediately pulls PWRGD low and the output voltage is
ramped down to ground. Once the output reaches 0V, the
controller enters the low-power shutdown state.
SW4 (4, 5)
(STDBY)
SW4 (3, 6)
(SHDN)
VCCDDR
OUTPUT VTTDDR VTTR
X Off Disabled Disabled Disabled
On On Enabled Enabled Enabled
Off On Enabled Disabled Enabled
Table 8. SW4 (4, 5) (STDBY) and
SW4 (3, 6) (SHDN) Functions
X = Don’t care.
X = Don’t care.
Evaluating the MAX17007A Circuit
The MAX17030 kit also demonstrates the MAX17007A
I/O power solution circuit.
This DC-DC converter steps down high-voltage batter-
ies to generate low-voltage core or chipset/RAM bias
supplies in notebook computers. The MAX17007A cir-
cuit generates two independent I/O voltages (VTT1 and
VTT2) from a 7V to 20V battery-input range. VTT1 and
VTT2 are configured for 1.1V output voltages. Each out-
put delivers up to 12A. The VTT1 and VTT2 outputs
operate at 270kHz and 330kHz switching frequencies,
respectively. Both outputs can be configured for other
voltages by changing R140, R141, R152, and R153 val-
ues. Refer to the MAX17007A IC data sheet for more
details.
The outputs can also be combined to operate as a 2-
phase, high-current, single-output regulator. In this
mode, the output is configured for either a preset,
adjustable, or dynamically adjustable output voltage
using REFIN1. Refer to the
Combined-Mode Operation
(FB2 = V
CC
)
section in the IC MAX17007A data sheet
for more details.
The MAX17007A provides access to the device’s
enable control pins (EN1 and EN2), through SW4
switches SW4 (1, 8) and SW4 (2, 7), respectively. EN1
is used to control the VTT1 output and EN2 is used to
control the VTT2 output. When in combined mode, EN1
is used for output control and EN2 must be connected
to GND. Tables 9 and 10 list the options for each out-
put-enable pin.
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
______________________________________________________________________________________ 13
SW4 (1, 8) EN1 PIN VTT1 OUTPUT
On Connected to V3P3 Enabled, VTT1 = 1.1V
Off Connected to GND
through R144
Shutdown mode,
VTT1 = 0V
Table 9. Switch SW4 (1, 8) Functions
SW4 (2, 7) EN2 PIN VTT2 OUTPUT
On Connected to V3P3 Enabled, VTT2 = 1.1V
Off Connected to GND
through R155
Shutdown mode,
VTT2 = 0V
Table 10. Switch SW4 (2, 7) Functions
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
14 ______________________________________________________________________________________
Figure 1a. MAX17030 EV Kit Schematic (Sheet 1 of 5)
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
______________________________________________________________________________________ 15
Figure 1b. MAX17030 EV Kit Schematic (Sheet 2 of 5)
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
16 ______________________________________________________________________________________
Figure 1c. MAX17030 EV Kit Schematic (Sheet 3 of 5)
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
______________________________________________________________________________________ 17
Figure 1d. MAX17030 EV Kit Schematic (Sheet 4 of 5)
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
18 ______________________________________________________________________________________
Figure 1e. MAX17030 EV Kit Schematic (Sheet 5 of 5)
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
______________________________________________________________________________________ 19
Figure 2. MAX17030 EV Kit Component Placement Guide—Component Side
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
20 ______________________________________________________________________________________
Figure 3. MAX17030 EV Kit PCB Layout—Component Side
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
______________________________________________________________________________________ 21
Figure 4. MAX17030 EV Kit PCB Layout—Internal Layer 2 (PGND Plane)
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
22 ______________________________________________________________________________________
Figure 5. MAX17030 EV Kit PCB Layout—Internal Layer 3 (Signal Layer)
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
______________________________________________________________________________________ 23
Figure 6. MAX17030 EV Kit PCB Layout—Internal Layer 4 (AGND/PGND Layer)
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
24 ______________________________________________________________________________________
Figure 7. MAX17030 EV Kit PCB Layout —Internal Layer 5 (PGND Layer)
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
______________________________________________________________________________________ 25
Figure 8. MAX17030 EV Kit PCB Layout —Internal Layer 6 (Signal Layer)
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
26 ______________________________________________________________________________________
Figure 9. MAX17030 EV Kit PCB Layout —Internal Layer 7 (PGND Layer)
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
______________________________________________________________________________________ 27
Figure 10. MAX17030 EV Kit PCB Layout—Solder Side
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
28
__________________
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
SPRINGER
Figure 11. MAX17030 EV Kit Component Placement Guide—Solder Side
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Maxim Integrated:
MAX17030EVKIT+