LTC4266
19
4266fg
For more information www.linear.com/LTC4266
ApplicAtions inForMAtion
802.3at 2-Event Classification
The 802.3at spec defines two methods of classifying a
Type 2 PD.
One method adds extra fields to the Ethernet LLDP data
protocol; although the LTC4266 is compatible with this
classification method, it cannot perform classification
directly since it doesn’t have access to the data path.
LLDP classification requires the PSE to power the PD as
a standard 802.3af (Type 1) device. It then waits for the
host to perform LLDP communication with the PD and
update the PSE port data. The LTC4266 supports chang-
ing the ILIM and ICUT levels on the fly, allowing the host
to complete LLDP classification.
The second 802.3at classification method, known as
2-event classification or ping-pong, is fully supported by
the LTC4266. A Type 2 PD that is requesting more than
13W will indicate Class 4 during normal 802.3af classifi-
cation. If the LTC4266 sees Class 4, it forces the port to
a specified lower voltage (called the mark voltage, typi-
cally 9V), pauses briefly, and then re-runs classification
to verify the Class 4 reading (Figure 1). It also sets a bit in
the High Power Status register to indicate that it ran the
second classification cycle. The second cycle alerts the
PD that it is connected to a Type 2 PSE which can supply
Type 2 power levels.
2-event ping-pong classification is enabled by setting a
bit in the port’s High Power Mode register. Note that a
ping-pong enabled port only runs the second classifica-
tion cycle when it detects a Class 4 device; if the first cycle
returns Class 0 to 3, the port assumes it is connected to
a Type 1 PD and does not run the second classification
cycle.
Invalid Type 2 Class Combinations
The 802.3at spec defines a Type 2 PD class signature as
two consecutive Class 4 results; a Class 4 followed by a
Class 0-3 is not a valid signature. In AUTO pin mode, the
LTC4266 will power a detected PD regardless of the clas-
sification results, with one exception: if the PD presents
an invalid Type 2 signature (Class 4 followed by Class 0
to 3), the LTC4266 will not provide power and will restart
the detection process. To aid in diagnosis, the Port Status
register will always report the results of the last class
pulse, so an invalid Class 4–Class 2 combination would
report a second class pulse was run in the High Power
Status register (which implies that the first cycle found
Class 4), and Class 2 in the Port Status register.
POWER CONTROL
External MOSFET, Sense R Summary
The primary function of the LTC4266 is to control the
delivery of power to the PSE port. It does this by control-
ling the gate drive voltage of an external power MOSFET
while monitoring the current via an external sense resis-
tor and the output voltage at the OUT pin. This circuitry
serves to couple the raw VEE input supply to the port in
a controlled manner that satisfies the PD’s power needs
while minimizing power dissipation in the MOSFET and
disturbances on the VEE backplane.
The LTC4266 is designed to use 0.25Ω sense resistors to
minimize power dissipation. It also supports 0.5Ω sense
resistors, which are the default when LTC4258/LTC4259A
compatibility is desired.
Inrush Control
Once the command has been given to turn on a port, the
LTC4266 ramps up the GATE pin of that port’s external
MOSFET in a controlled manner. Under normal power-up
circumstances, the MOSFET gate will rise until the port
current reaches the inrush current limit level (typically
450mA), at which point the GATE pin will be servoed to
maintain the specified IINRUSH current. During this inrush
period, a timer (t
START
) runs. When output charging is
complete, the port current will fall and the GATE pin will
be allowed to continue rising to fully enhance the MOSFET
and minimize its on-resistance. The final V
GS
is nominally
12V. If the tSTART timer expires before the inrush period
completes, the port will be turned back off and a tSTART
fault reported.
Current Limit
Each LTC4266 port includes two current limiting thresh-
olds (ICUT and ILIM), each with a corresponding timer (tCUT
and tLIM). Setting the ICUT and ILIM thresholds depends