Order this document by MRF134/D SEMICONDUCTOR TECHNICAL DATA The RF MOSFET Line N-Channel Enhancement-Mode . . . designed for wideband large-signal amplifier and oscillator applications up to 400 MHz range. * Guaranteed 28 Volt, 150 MHz Performance Output Power = 5.0 Watts Minimum Gain = 11 dB Efficiency -- 55% (Typical) 5.0 W, to 400 MHz N-CHANNEL MOS BROADBAND RF POWER FET * Small-Signal and Large-Signal Characterization * Typical Performance at 400 MHz, 28 Vdc, 5.0 W Output = 10.6 dB Gain * 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR * Low Noise Figure -- 2.0 dB (Typ) at 200 mA, 150 MHz * Excellent Thermal Stability, Ideally Suited For Class A Operation % CASE 211-07, STYLE 2 MAXIMUM RATINGS Symbol Value Unit Drain-Source Voltage Rating VDSS 65 Vdc Drain-Gate Voltage (RGS = 1.0 M) VDGR 65 Vdc VGS 40 Vdc Drain Current -- Continuous ID 0.9 Adc Total Device Dissipation @ TC = 25C Derate above 25C PD 17.5 0.1 Watts W/C Storage Temperature Range Tstg -65 to +150 C Symbol Value Unit RJC 10 C/W Gate-Source Voltage THERMAL CHARACTERISTICS Rating Thermal Resistance, Junction to Case Handling and Packaging -- MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. REV 6 1 ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted.) Characteristic Symbol Min Typ Max Unit V(BR)DSS 65 -- -- Vdc Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) IDSS -- -- 1.0 mAdc Gate-Source Leakage Current (VGS = 20 V, VDS = 0) IGSS -- -- 1.0 Adc VGS(th) 1.0 3.5 6.0 Vdc gfs 80 110 -- mmhos Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss -- 7.0 -- pF Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Coss -- 9.7 -- pF Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Crss -- 2.3 -- pF Noise Figure (VDS = 28 Vdc, ID = 200 mA, f = 150 MHz) NF -- 2.0 -- dB Common Source Power Gain (VDD = 28 Vdc, Pout = 5.0 W, IDQ = 50 mA) Gps OFF CHARACTERISTICS Drain-Source Breakdown Voltage (VGS = 0, ID = 5.0 mA) ON CHARACTERISTICS Gate Threshold Voltage (ID = 10 mA, VDS = 10 V) Forward Transconductance (VDS = 10 V, ID = 100 mA) DYNAMIC CHARACTERISTICS FUNCTIONAL CHARACTERISTICS dB f = 150 MHz (Fig. 1) f = 400 MHz (Fig. 14) Drain Efficiency (Fig. 1) (VDD = 28 Vdc, Pout = 5.0 W, f = 150 MHz, IDQ = 50 mA) Electrical Ruggedness (Fig. 1) (VDD = 28 Vdc, Pout = 5.0 W, f = 150 MHz, IDQ = 50 mA, VSWR 30:1 at all Phase Angles) $ 11 -- 14 10.6 -- -- 50 55 -- No Degradation in Output Power $ $ % $ $ G( ( $ !'&"'& $ "'& '& *Bias Adjust C1, C4 -- Arco 406, 15-115 pF C2 -- Arco 403, 3.0-35 pF C3 -- Arco 402, 1.5-20 pF C5, C6, C7, C8, C12 -- 0.1 F Erie Redcap C9 -- 10 F, 50 V C10, C11 -- 680 pF Feedthru D1 -- 1N5925A Motorola Zener L1 -- 3 Turns, 0.310 ID, #18 AWG Enamel, 0.2 Long L2 -- 3-1/2 Turns, 0.310 ID, #18 AWG Enamel, 0.25 Long L3 -- 20 Turns, #20 AWG Enamel Wound on R5 L4 -- Ferroxcube VK-200 -- 19/4B R1 -- 68 , 1.0 W Thin Film R2 -- 10 k, 1/4 W R3 -- 10 Turns, 10 k Beckman Instruments 8108 R4 -- 1.8 k, 1/2 W R5 -- 1.0 M, 2.0 W Carbon Board -- G10, 62 mils Figure 1. 150 MHz Test Circuit REV 6 2 1 C "!'&"'&"!)$)&&% 9?> "!'&"'&"!)$)&&% 9?> ( ( # 7 "48 "'& "!)$ )&&% 1 C ( ( # 7 Figure 2. Output Power versus Input Power "48 7) 7) 7) # 7 1 C ( %'""+ (!& (!&% 7) # 7 1 C ( %'""+ (!& (!&% Figure 5. Output Power versus Supply Voltage "48 7) "!'&"'&"!)$)&&% 9?> "!'&"'&"!)$)&&% 9?> "48 7) 7) 7) # 7 1 C ( %'""+ (!& (!&% Figure 6. Output Power versus Supply Voltage 3 7) REV 6 Figure 4. Output Power versus Supply Voltage "48 "'& "!)$ )&&% Figure 3. Output Power versus Input Power "!'&"'&"!)$)&&% 9?> "!'&"'&"!)$)&&% 9?> # 7 1 C "48 7) 7) 7) ( %'""+ (!& (!&% Figure 7. Output Power versus Supply Voltage ( ( # 7 "48 ! %& & "!'&"'&"!)$)&&% 9?> $ '$$ &"% 1 C C &+" ( %!) (%>3 ( 1 (% &%!'$ (!& (!&% &+" ( %!) (%>3 ( (% ( # 7 7 7 & % &"$&'$ * (% ( 7/. $ '$$ &"% "& : 9== 4== <== (% $ %!'$ (!& (!&% Figure 12. Capacitance versus Voltage REV 6 4 1 $#' + C D% D D%D Figure 11. Maximum Available Gain versus Frequency D% D (% ( 1 C Figure 10. Gate-Source Voltage versus Case Temperature ( ( (% &%!'$ (!& (!&% Figure 9. Drain Current versus Gate Voltage (Transfer Characteristics) **'( / (%&H%!'$(!& !$, Figure 8. Output Power versus Gate Voltage & (% $ %!'$ (!& (!&% Figure 13. Maximum Rated Forward Biased Safe Operating Area $ $ ( ( $ , , $ !'&"'& $ $ "'& , , , '& *Bias Adjust R2 -- 10 k, 1/4 W R3 -- 10 Turns, 10 k Beckman Instruments 8108 R4 -- 1.8 k, 1/2 W Z1 -- 1.4 x 0.166 Microstrip Z2 -- 1.1 x 0.166 Microstrip Z3 -- 0.95 x 0.166 Microstrip Z4 -- 2.2 x 0.166 Microstrip Z5 -- 0.85 x 0.166 Microstrip Board -- Glass Teflon, 62 mils C1, C6 -- 270 pF, ATC 100 mils C2, C3, C4, C5 -- 0-20 pF Johanson C7, C9, C10, C14 -- 0.1 F Erie Redcap, 50 V C8 -- 0.001 F C11 -- 10 F, 50 V C12, C13 -- 680 pF Feedthru D1 -- 1N5925A Motorola Zener L1 -- 6 Turns, 1/4 ID, #20 AWG Enamel L2 -- Ferroxcube VK-200 -- 19/4B R1 -- 68 , 1.0 W Thin Film Figure 14. 400 MHz Test Circuit ( ( # 7 "9?> ) ,9 ,48 1 C 1 C ,! 1 C ,48 !37= ,! !37= 5 5 F 5 F 5 5 5 5 5 %3?8> $0=4=>9< ->0>9<9?8/ ,! 985?2->0 91 >30 9:>47?7 69-/ 47:0/-8.0 ,! 48>9 A34.3 >30 /0@4.0 9?>:?> 9:0<->0= -> ,! 24@08 9?>:?> :9A0< @96>-20 -8/ 1<0;?08.B Figure 15. Large-Signal Series Equivalent Input/Output Impedances, Zin, ZOL* REV 6 5 S11 S21 S12 S22 f (MHz) |S11| |S21| |S12| |S22| 1.0 0.989 -1.0 11.27 179 0.0014 89 0.954 -1.0 2.0 0.989 -2.0 11.27 179 0.0028 89 0.954 -2.0 5.0 0.988 -5.0 11.26 176 0.0069 86 0.954 -4.0 10 0.985 -10 11.20 173 0.014 83 0.951 -9.0 20 0.977 -20 10.99 166 0.027 76 0.938 -18 30 0.965 -30 10.66 159 0.039 69 0.918 -26 40 0.950 -39 10.25 153 0.051 63 0.895 -34 50 0.931 -47 9.777 147 0.060 57 0.867 -42 60 0.912 -53 9.359 142 0.069 53 0.846 -49 70 0.892 -58 8.960 138 0.077 49 0.828 -56 80 0.874 -62 8.583 135 0.085 46 0.815 -62 90 0.855 -66 8.190 131 0.091 43 0.801 -68 100 0.833 -70 7.808 128 0.096 40 0.785 -74 110 0.827 -73 7.661 125 0.101 38 0.784 -77 120 0.821 -76 7.515 122 0.107 36 0.784 -82 130 0.814 -79 7.368 119 0.113 34 0.784 -85 140 0.808 -82 7.222 116 0.119 32 0.783 -88 150 0.802 -86 7.075 114 0.125 31 0.783 -90 160 0.788 -89 6.810 112 0.127 30 0.780 -92 170 0.774 -92 6.540 110 0.128 28 0.774 -94 180 0.763 -94 6.220 108 0.130 26 0.762 -98 190 0.751 -97 5.903 106 0.132 24 0.760 -100 200 0.740 -100 5.784 104 0.134 23 0.758 -103 225 0.719 -104 5.334 100 0.136 20 0.757 -107 250 0.704 -108 4.904 97 0.139 19 0.758 -110 275 0.687 -113 4.551 92 0.141 16 0.757 -114 300 0.673 -117 4.219 89 0.141 14 0.750 -117 325 0.668 -120 3.978 86 0.142 12 0.757 -120 350 0.669 -123 3.737 83 0.142 10 0.766 -121 375 0.662 -125 3.519 80 0.143 9.0 0.768 -123 400 0.654 -127 3.325 77 0.142 8.0 0.772 -124 425 0.650 -129 3.170 75 0.140 7.0 0.772 -125 450 0.638 -131 3.048 72 0.141 6.0 0.783 -125 475 0.614 -132 2.898 71 0.136 6.0 0.786 -126 500 0.641 -133 2.833 68 0.136 5.0 0.795 -127 525 0.638 -135 2.709 66 0.135 5.0 0.801 -127 550 0.633 -137 2.574 64 0.133 4.0 0.802 -128 575 0.628 -138 2.481 62 0.131 5.0 0.805 -128 600 0.625 -140 2.408 60 0.129 5.0 0.814 The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. The scattering parameters were measured on the MRF134 device alone with no external components. Table 1. Common Source Scattering Parameters VDS = 28 V, ID = 100 mA REV 6 6 -128 (continued) S11 S21 S12 S22 f (MHz) |S11| |S21| |S12| |S22| 625 0.619 -142 2.334 58 0.128 5.0 0.818 -129 650 0.617 -144 2.259 56 0.125 6.0 0.824 -130 675 0.618 -146 2.192 55 0.123 7.0 0.834 -130 700 0.619 -147 2.124 53 0.122 8.0 0.851 -131 725 0.618 -150 2.061 51 0.120 9.0 0.859 -132 750 0.614 -152 1.983 49 0.118 11 0.857 -133 775 0.609 -154 1.908 48 0.119 13 0.865 -133 800 0.562 -155 1.877 49 0.118 15 0.872 -133 825 0.587 -156 1.869 46 0.119 16 0.869 -134 850 0.593 -158 1.794 44 0.118 18 0.875 -135 875 0.597 -160 1.749 43 0.119 18 0.881 -135 900 0.598 -162 1.700 41 0.118 18 0.889 -136 925 0.592 -164 1.641 40 0.115 18 0.888 -138 950 0.588 -166 1.590 39 0.112 20 0.877 -138 975 0.586 -168 1.572 39 0.108 23 0.864 -137 1000 0.590 -171 1.551 37 0.107 28 0.863 -137 The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. The scattering parameters were measurd on the MRF134 device alone with no external components. Table 1. Common Source Scattering Parameters (continued) VDS = 28 V, ID = 100 mA REV 6 7 E5 E E5 E5 E5 E E5 E5 % E5 1 C E5 E E5 E5 E Figure 16. S11, Input Reflection Coefficient versus Frequency VDS = 28 V ID = 100 mA E Figure 17. S12, Reverse Transmission Coefficient versus Frequency VDS = 28 V ID = 100 mA E5 E E 1 C % E5 E5 1 C E5 E5 E E E5 E5 E5 E5 E5 E5 E5 E E5 E5 1 C E E Figure 18. S21, Forward Transmission Coefficient versus Frequency VDS = 28 V ID = 100 mA REV 6 8 E5 % E5 E5 E5 Figure 19. S22, Output Reflection Coefficient versus Frequency VDS = 28 V ID = 100 mA DESIGN CONSIDERATIONS The MRF134 is a RF power N-Channel enhancement mode field-effect transistor (FET) designed especially for VHF power amplifier and oscillator applications. M/A-COM RF MOS FETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V-groove vertical power FETs. M/A-COM Application Note AN-211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation. DC BIAS The MRF134 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 9 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF134 was characterized at IDQ = 50 mA, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system. REV 6 9 GAIN CONTROL Power output of the MRF134 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 8.) AMPLIFIER DESIGN Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF134. See M/A-COM Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOS FETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s-parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs. RF power FETs are triode devices and, therefore, not unilateral. This, coupled with the very high gain of the MRF134, yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. The MRF134 was characterized with a 68-ohm input shunt loading resistor. Two port parameter stability analysis with the MRF134 s-parameters provides a useful-tool for selection of loading or feedback circuitry to assure stable operation. See MA-COM Application Note AN215A for a discussion of two port network theory and stability. Input resistive loading is not feasible in low noise applications. The MRF134 noise figure data was generated in a circuit with drain loading and a low loss input network. PACKAGE DIMENSIONS A U !&% %! &!$ "$ % + ! &$! %! M M Q R S B D K J H C E CASE 211-07 ISSUE N Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020 Visit www.macom.com for additional data sheets and product information. REV 6 10 %&+ " %!'$ & %!'$ $