

2N6784 IRFF210

MECHANICAL DATA

Dimensions in mm (inches)

5.08 (0.200) lyp. 2.54 (0.100) 0.74 (0.029) 1.14 (0.045) 0.53 (0.021)

TO39 Package (TO-205AF) Underside View

Pin 1 - Source

Pin 2 - Gate

Pin 3 - Drain and Case

N-CHANNEL POWER MOSFET ENHANCEMENT MODE

FEATURES

- REPETITIVE AVALANCHE RATING
- SIMPLE DRIVE REQUIREMENTS
- HERMETICALLY SEALED

APPLICATIONS

- FAST SWITCHING
- MOTOR CONTROLS
- POWER SUPPLIES

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V_{DS}	Drain Source Voltage	200V
$I_D @ T_{case} = 25^{\circ}C$	Continuous Drain Current	2.25A
I _{D @} T _{case} = 100°C	Continuous Drain Current	1.5A
I _{DM}	Pulsed Drain Current ¹	9A
V_{GS}	Gate Source Voltage	±20V
P_D @ $T_{case} = 25$ °C	Maximum Power Dissipation	15W
$R_{ heta J-C}$	Thermal Resistance Junction To Case	8.3°C/W
$R_{\theta J-A}$	Thermal Resistance Junction To Ambient	175°C/W
$T_{J,T_{stg}}$	Operating and Storage Temperature Range	-55 to +150°C
Lead Temperature	(1.6mm from case for 10 secs)	300°C

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

2N6784 IRFF210

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
	STATIC ELECTRICAL RATINGS						
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$ $I_D = 1.0 \text{mA}$	200			V	
V _{GS(th)} *	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250\mu A$	2.0		4.0		
I _{GSSF}	Gate Body Leakage Forward	V _{GS} = 20V			100	nA	
I _{GSSR}	Gate Body Leakage Reverse	Body Leakage Reverse V _{GS} = -20V			-100] '''`	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 160V. V _{GS} =0			25	μΑ	
	<u> </u>	T _C = 125°C			250		
R _{DS(on)} *	Static Drain Source On-State	$V_{GS} = 10V$ $I_D = 1.5A$			1.5	Ω	
	Resistance	$V_{GS} = 10V$ $I_{D} = 2.25A$			1.725		
gfs*	Forward Transconductance	$V_{DS} = 15V$ $I_{DS} = 1.5A$	0.9			S (U)	
	DYNAMIC CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{GS} = 0$ $V_{DS} = 25V$		140			
C _{oss}	Output Capacitance	f = 1.0MHz		55		pF	
C _{rss}	Reverse Transfer Capacitance			8.6			
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 100V$ $I_{D} = 2.25A$			15		
t _r	Rise Time	$R_G = 7.5\Omega$			20	ns	
t _{d(off)}	Turn-Off Delay Time	(MOSFET switching times are essentially	/		30		
t _f	Fall Time	independent of operating temperature.)			20		
Qg	Total Gate Charge	$V_{GS} = 10V$ $I_{D} = 2.25A$	4.3		6.2		
Qgs	Gate To Source Charge	V _{DS} = 100V	0.7		1.2	nC	
Q _{gd}	Gate To Drain ("Miller") Charge		0.5		5.0		
	BODY- DRAIN DIODE RATINGS & O	CHARACTERISTICS			l.	ı	
I _S	Continuous Source Current (Body Diode)	Source Current (Body Modified MOS POWER symbol showing the intergal Godinary			2.25		
I _{SM}	Source Current (Body Diode)	P-N junction rectifier.			9.0	A	
V _{SD}	Diode Forward Voltage* $I_{S} = 2.25A \qquad V_{GS} = 0$ $T_{J} = 25^{\circ}C$				1.5	V	
t _{rr}	Reverse Recovery Time	$I_F = 2.25A$ $T_J = 25^{\circ}C$			350	ns	
Q _{RR}	Reverse Recovery Charge	$d_i / d_t = 100A/\mu s \ V_{DD} = 50V$			3.0	μС	

Notes

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 6444

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 1

^{*} Pulse Test: Pulse Width $\leq 300 \mu s, \, \delta \leq 2\%$