International Rectifier HEXFET Power MOSFET @ Surface Mount @ Available in Tape & Reel * Dynamic dv/dt Rating @ P-Channel @ Fast Switching Ease of Paralleling Simple Drive Requirements Description The HEXFET technology is the key to International Rectifiers advanced line of power MOSFET transistors. The efficient geometry and unique processing of the HEXFET design achieve very low on-state resistance combined with high transconductance and extreme device ruggedness. The SMD-220 is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The SMD-220 is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application. PD-9.919 IRF9620S Voss = -200V Rpgyon) = 1.50 Ib = -3.5A m SS SMD-220 Absolute Maximum Ratings Parameter Max. Units lp @ Tce = 25C Continuous Drain Current, Vas @ -10 V 3.5 Ip @ Tc = 100C | Continuous Drain Current, Ves @ -10 V -2.0 A Ibm Pulsed Drain Current @ -14 Pp @ Tc = 25C _| Power Dissipation 40 Ww Pp @ Ta= 25C | Power Dissipation (PCB Mount)** 3.0 Linear Derating Factor 0.32 WPC Linear Derating Factor (PCB Mount)** 0.025 Vas Gate-to-Source Voltage +20 Vv ium Inductive Current, Clamp -14 A dv/dt Peak Diode Recovery dv/dt -5.0 Vins Ta, Tste Junction and Storage Temperature Range -55 to +150 C Soldering Temperature, for 10 seconds 300 (1.6mm from case) Thermal Resistance Parameter Min. Typ. Max. Units Rac Junction-to-Case _ 3.1 Roa Junction-to-Ambient (PCB mount)** 40 CW Reva Junction-to-Ambient _ 62 ** When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. 365IRF9620S | | Electrical Characteristics @ Ty = 25C (unless otherwise specified) Parameter Min. | Typ. | Max. | Units Test Conditions VieR}Dss Drain-to-Source Breakdown Voltage -200 | _ Vi | Ves20V, Ip=-250nA AV erypss/ATy| Breakdown Voltage Temp. Coefficient |-0.22| | VC | Reference to 25C, [p=-1mA Rosvon) Static Drain-to-Source On-Resistance _ _ 1.5 Q | Vas=-10V, Ip=-1.5A Vesn) Gate Threshold Voltage -2.0 _ -4.0 Vi | Vos=Ves, lo=-2501A Ofs Forward Transconductance 1.0 _ _ S| Vos=-50V, Ip=-1.5A @ Iss Drain-to-Source Leakage Current _{ 100 pA Vos=-200V, Vas=0V -500 Vps=-160V, Vas=0V, Ty=125C lass Gate-to-Source Forward Leakage _ | -100 nA Vas=-20V Gate-to-Source Reverse Leakage _ _ 100 Vas=20V Qg Total Gate Charge _ = 22 Ip=-4.0A Qgs Gate-to-Source Charge --|- 12 | nC | Vps=-160V Qga Gate-to-Drain ("Miller") Charge _ _ 10 Vas=-10V See Fig. 6 and 12 @ tafon) Turn-On Delay Time 15 Vop=-100V tr Rise Time _ 25 _ ns Ip=-1.5A tavotty Turn-Off Delay Time 20 Re=5002 t Fall Time _ 15 _ Ro=67Q_ See Figure 10 Lo Internal Drain Inductance _ 45 Be oad } z 0H | from package ie Ls Internal Source Inductance 1/75) and center of a die contact $ Ciss Input Capacitance | 350 | Vas=0V Coss Output Capacitance { 100 | | PF | Vps=-25Vv Crss Reverse Transfer Capacitance _ 30 _ f=1.0MHz See Figure 5 Source-Drain Ratings and Characteristics Parameter Min. | Typ. | Max. | Units Test Conditions Is Continuous Source Current _ | 35 MOSFET symbol D (Body Diode) . A showing the Ism Pulsed Source Current _ _ 14 integral reverse (Body Diode) p-n junction diode. 8 Vsp Diode Forward Voltage _ _ 7.0 V | Ty=25C, Is=-3.5A, Veg=0V tr Reverse Recovery Time _ 300 | 450 | ns_ | Ty=25C, Ir=-3.5A Qr Reverse Recovery Charge _ 1.9 | 2.9 | wC |difdt=100A/is @ ton Forward Turn-On Time Intrinsic turn-on time is neglegible (turn-on is dominated by Ls+Lp) Notes: Repetitive rating; pulse width limited by Isps-3.5A, di/dt<95A/us, Vop 'p(an) * Roston) max, 80 us PULSE TEST o & tp, DRAIN CURRENT {AMPERES} & ig. ORAIN CURRENT (AMPERES) 0 ~10 -20 -30 -40 ~60 a -2 4 6 8 +10 Vos, ORAIN-TO-SQURCE VOLTAGE (VOLTS) Vs. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 10? OPERATION IN THIS AREA LIMITED 5 BY Fos (ON) Ip, ORAIN CURRENT (AMPERES) NEGATIVE Ip, ORAIN CURHENT (AMPERES) T, @ Ty=1509C ot SINGLE 0 1 2 3 4 4 4 2 5 10 2 S 402 2 5 103 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS) NEGATIVE Vgg, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area On 1 1. DUTY FACTOR, D= z SINGLE PULSE 0.02 THERMAL \MPEDANCE) 2. PER UNIT BASE = Ainge 2 5.12 DEG. C/W. 3. Tym - Te = Pom Zrnaclt) 6.01 105 2 5 wd 2 5 132 5 22 5 wl 2 5 10 2 5 10 1), SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 M Effective Tr i Thermal imped , Junction-to-Case Vs. Pulse Duration 367 ~ siIRF9620S fg, TRANSCONDUCTANCE (SIEMENS) 08 Ip. REVERSE DRAIN CURRENT (AMPERES) 2S 01 0 -1 2 3 -4 5 -2.0 3.2 44 56 -68 -8.0 Ip, DRAIN CURRENT (AMPERES) Vp. SOURCE-TO-ORAIN VOLTAGE {VOLTS) Fig. 6 Typical Transconductance Vs. Fig. 7 Typical Source-Drain Diode Drain Current Forward Voltage (NORMALIZED) BVpgg, ORAIN-TO-SOURCE BREAKDOWN VOLTAGE Roston). DRAIN-TO-SOURCE ON RESISTANCE (NORMALIZEO} -40 9 40 80 120 160 -40 0 40 80 120 160 Ty, JUNCTION TEMPERATURE (C) Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature Fig. 9 Normalized On-Resistance Vs. Temperature 500 8 3 figs + Cys + gg, Cas Criss = Cog Coc # Cg? Cys Cga oss * Cas * Cae eEag 3 3 = Cas + Cog , CAPACITANCE (pF} 100 Negative Vgg, Gate-to-Source Voltage (volts) 0 +10 +20 -30 -40 80 0 4 8 12 16 20 Vos, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Qg , Total Gate Charge (nC) Fig. 10 Typical Capacitance Vs. Fig. 11 Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage 368IRF9620S Rpston) MEASURED WITH CURRENT PULSE OF = |2.0us DURATION. INITIAL Ty = 25C, (HEATING a 2 [EFFECT GF 2.0 us PULSE IS MINIMAL.) | wy 5 & w 4 = S 3 2 E gs *10 5 a Zz 5 ] ; = 3 & / a 4 Zz 3 5 : Lt Z a 2 a 3 VY . z io "| we < Veg 2-20 g br |S 2 2! 5 5 3 a wy = Q 4 4 az 16 20 25 50 75 100 125 150 Ip. DRAIN CURRENT (AMPERES) Tc, CASE TEMPERATURE ( 9C) Fig. 12 Typical On-Resistance Vs. Fig. 13 Maximum Drain Current Vs. Drain Current Case Temperature VARY tp TO OBTAIN REQUIRED PEAK IL OUT Ves = v Ip I Vpp =0.58Vpss Ec = 0.75 BVpsg Fig. 15 Clamped Inductive Test Circuit Pp. POWER DISSIPATION (WATTS) 0 2 4 8 = 81012040 Tr, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve Fig. 16 Clamped Inductive Waveforms y Ro Vps We tan) tr taom 4 Ves D.ULT. 10% YoaN t] mf VY | =. Vop | , | 90% IK Bue wt 7 Outy Factor < 0.1% Vos + Fig. 17a Switching Time Test Circuit Fig. 17b Switching Time Waveforms 369IRF9620S | Current Regulator Same Type as D.U.T. -15V ja Ves PL Ve Charge + le 'p Current Sampling Resistors Fig. 18a Basic Gate Charge Waveform Fig. 18b Gate Charge Test Circuit Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit See page 1506 Appendix B: Package Outline Mechanical Drawing - See page 1507 Appendix C: Part Marking Information See page 1515 International Appendix D: Tape & Reel Information - See page 1519 Rectifi er 370