W5100E01-AVR Users Manual
(Version 1.1.0)
© 2007 WIZnet Co., Ltd. All Rights Reserved.
For more information, visit our website at http://www.wiznet.co.kr
W5100E01-AVR User‟s Manual ii
Document History Information
Revision
Data
Description
Ver. 1.0.0
Febrary 1, 2007
Original Document
Ver. 1.1.0
June 17, 2013
The software CD is not provide anymore.
For more software contents, please visit our website.
(www.wiznet.co.kr)
modified the comment about S/W CD.
(CH 1.1, 4.3.1, 4.3.2, 4.4.4, 4.5.1, 4.5.2)
W5100E01-AVR User‟s Manual iii
WIZnet’s Online Technical Support
If you have something to ask about WIZnet Products, Write down your question on
Q&A Board in WIZnet website (www.wiznet.co.kr). WIZnet Engineer will give an answer
as soon as possible.
C
Cl
li
ic
ck
k
W5100E01-AVR User‟s Manual iv
COPYRIGHT NOTICE
Copyright 2007 WIZnet, Ltd. All Rights Reserved.
Technical Support: support@wiznet.co.kr
Sales & Distribution: sales@wiznet.co.kr
General Information: info@wiznet.co.kr
For more information, visit our website at http://www.wiznet.co.kr
W5100E01-AVR User‟s Manual v
Table of Contents
1. Overview ................................................................................................................................ 1
1.1. Package.................................................................................................................. 1
1.2. Feature ................................................................................................................... 2
1.2.1. H/W Features .................................................................................2
1.2.2. F/W Feature ..................................................................................2
2. Getting Started ....................................................................................................................... 3
2.1. System Configuration ............................................................................................. 3
2.1.1. EVB B/D Layout & Configuration ........................................................3
2.2. PC Programs Install ............................................................................................... 4
2.2.1. Development Program Install .............................................................4
2.2.2. EVB B/D Test PC Program Install .......................................................4
2.3. Quick Start .............................................................................................................. 5
2.4. EVB B/D Test .......................................................................................................... 6
2.4.1. Manage Program ............................................................................7
2.4.2. EVB B/D Test Applications .............................................................. 13
2.5. Troubleshooting Guide ......................................................................................... 18
2.5.1. Ping ........................................................................................... 18
2.5.2. Misc. .......................................................................................... 18
3. Programmer‟s Guide............................................................................................................ 19
3.1. Memory Map ........................................................................................................ 19
3.1.1. Code & Data Memory Map .............................................................. 19
3.1.2. AVR Internal EEPROM MAP ........................................................... 20
3.2. EVB B/D Firmware ............................................................................................... 26
3.2.1. Sources ...................................................................................... 27
3.2.2. How to Compile ............................................................................ 28
3.2.3. How to download .......................................................................... 29
3.2.4. EVB B/Ds main() .......................................................................... 29
3.2.5. Manage Program .......................................................................... 33
3.2.6. Applications ................................................................................. 49
4. Hardware Designer‟s Guide ................................................................................................ 92
4.1. Block Diagram ...................................................................................................... 92
4.2. Block Description .................................................................................................. 93
4.2.1. PM-A1 ........................................................................................ 93
W5100E01-AVR User‟s Manual vi
4.2.2. LCD ........................................................................................... 97
4.2.3. PAL............................................................................................ 98
4.2.4. SRAM ........................................................................................ 98
4.2.5. RS232 Port.................................................................................. 98
4.2.6. Expanded Board Interface .............................................................. 98
4.2.7. Power Regulator ......................................................................... 100
4.2.8. 3.3V Power On System Reset ....................................................... 100
4.3. Schematic ........................................................................................................... 101
4.3.1. W5100E01-AVR ......................................................................... 101
4.3.2. PM-A1 ...................................................................................... 101
4.4. PAL ..................................................................................................................... 102
4.4.1. IO Define .................................................................................. 102
4.4.2. External SRAM Area .................................................................... 103
4.4.3. LCD Area .................................................................................. 103
4.4.4. W5100 Area............................................................................... 104
4.5. Parts List ............................................................................................................. 106
4.5.1. W5100E01-AVR Parts List ............................................................ 106
4.5.2. PM-A1 Parts List ......................................................................... 106
4.6. Physical Specification ......................................................................................... 107
4.6.1. Power Consumption .................................................................... 107
W5100E01-AVR User‟s Manual vii
Figures
<FIG 2.1 : EVB B/D JUMPER SETTING> ..................................................................................................... 3
<FIG 2.2 : JP3 JUMPER SETTING > ............................................................................................................. 3
<FIG 2.3 : EVB B/D TEXT LCD DISPLAY > ................................................................................................. 5
<FIG 2.4 : OUTPUT OF TERMINAL PROGRAM> ............................................................................................ 6
<FIG 2.5 : EVB B/D PING REPLY TEST > .................................................................................................... 6
<FIG 2.6 : MANAGE PROGRAM EXECUTION > ............................................................................................. 7
<FIG 2.7 : NETWORK CONFIG > ................................................................................................................... 8
<FIG 2.8 : SOURCE IP ADDRESS SETUP EXAMPLE> .................................................................................. 9
<FIG 2.9 : MAC ADDRESS SETUP EXAMPLE> ............................................................................................. 9
<FIG 2.10 : MENU OF CHANNEL CONFIG> ................................................................................................ 10
<FIG 2.11 : LOOPBACK TCP CLIENT APPLICATION SETTING EXAMPLE> ................................................. 11
<FIG 2.12 : USAGE OF PING APPLICATION > ............................................................................................. 12
<FIG 2.13 : PING APPLICATION TEST> ...................................................................................................... 13
<FIG 2.14 : DHCP CLIENT TEST> ............................................................................................................. 14
<FIG 2.15 : LOOPBACK TCP SERVER TEST> ........................................................................................... 15
<FIG 2.16 : LOOPBACK TCP CLIENT>....................................................................................................... 15
<FIG 2.17 : LOOPBACK UDP TEST> ......................................................................................................... 16
<FIG 2.18 : WEB SERVER TEST> .............................................................................................................. 16
<FIG 2.19 : DEFAULT WEB PAGE OF EVB B/D> ....................................................................................... 17
<FIG 2.20 : WEB PAGE OF EVB B/D CONTROL> ..................................................................................... 17
<FIG 3.1: EVB B/D MEMORY MAP> ......................................................................................................... 19
<FIG 3.2: AVR INTERNAL EEPROM MAP> .............................................................................................. 20
<FIG 3.3: EVB B/D’S MAIN()> .................................................................................................................. 32
<FIG 3.4: CHECK_MANAGE()> ................................................................................................................... 33
<FIG 3.5: MANAGE_CONFIG()> .................................................................................................................. 34
<FIG 3.6: MANAGE_NETWORK()> .............................................................................................................. 36
<FIG 3.7: MANAGE_CHANNEL()> ............................................................................................................... 38
<FIG 3.8: PING_REQUEST()> ..................................................................................................................... 40
<FIG 3.9: PING_REQUEST() CONTINUE> ................................................................................................ 41
<FIG 3.10: ICMP MESSAGE VS PING MESSAGE> ................................................................................... 42
<FIG 3.11: PING()> ..................................................................................................................................... 45
<FIG 3.12: DISPLAYPINGSTATISTICS()> .................................................................................................... 46
<FIG 3.13: SENDPINGREPLY()> ................................................................................................................ 47
< FIG 3.14 : LOOPBACK_TCPS() > ............................................................................................................. 49
W5100E01-AVR User‟s Manual viii
<FIG 3.15: LOOPBACK_TCPC()> ................................................................................................................ 52
<FIG 3.16: LOOPBACK_UDP()> .................................................................................................................. 53
<FIG 3.17: HTTP MESSAGE FLOW> ......................................................................................................... 55
<FIG 3.18: WEB_SERVER()> ...................................................................................................................... 58
<FIG 3.19: PROC_HTTP()> ........................................................................................................................ 59
<FIG 3.20: PARSE_HTTP_REQUEST()>...................................................................................................... 61
<FIG 3.21: FIND_HTTP_URI_TYPE()> ........................................................................................................ 62
<FIG 3.22: GET_HTTP_URI_NAME() & GET_HTTP_PARSE_VALUE()> ....................................................... 62
<FIG 3.23: NETCONF.CGI PROCESSING> ............................................................................................. 63
<FIG 3.24: LCDNLED.CGI PROCESSING>.............................................................................................. 64
<FIG 3.25: DHCP MESSAGE FLOW> ........................................................................................................ 66
<FIG 3.26: DHCP MESSAGE FORMAT> .................................................................................................... 67
<FIG 3.27: DHCP MESSAGES OPTION FIELD FORMAT> ......................................................................... 68
<FIG 3.28: INIT_DHCP_CLIENT()> ............................................................................................................. 69
<FIG 3.29: GETIP_DHCPS()> .................................................................................................................. 70
<FIG 3.30: DHCP MESSAGE FLOW BY DHCP CLIENT STATE> ............................................................... 72
<FIG 3.31: CHECK_DHCP_STATE()> ........................................................................................................ 73
<FIG 3.32: PARSE_DHCPMSG() & CHECK_DHCP_TIMEOUT()>........................................................... 74
<FIG 3.33: DOMAIN NAME SYSTEM STRUCTURE & DNS MESSAGE FLOW> ........................................... 76
<FIG 3.34: DNS MESSAGE FORMAT> ....................................................................................................... 77
<FIG 3.35: HEADER SECTION FORMAT> ................................................................................................... 77
<FIG 3.36: QUESTION SECTION FORMAT> ............................................................................................... 77
<FIG 3.37: RECODE RESOURCES FORMAT>............................................................................................. 78
<FIG 3.38: GETHOSTBYADDR() & GETHOSTBYNAME()> ............................................................................ 80
<FIG 3.39: DNS_QUERY()> ........................................................................................................................ 81
<FIG 3.40: DNS_MAKEQUERY()> ............................................................................................................... 82
<FIG 3.41: EXAMPLE OF QNAME FIELD TRANSFORMATION OF QUESTION SECTION > .......................... 83
<FIG 3.42: DNS_PARSE_RESPONSE()> ..................................................................................................... 85
<FIG 3.43: DNS_PARSE_QUESTION() & DNS_ANSWER()> ........................................................................ 87
<FIG 3.44: PARSE_NAME()> ...................................................................................................................... 88
<FIG 3.45: DNS MESSAGE COMPRESSION SCHEME> ............................................................................. 89
<FIG 4.1: EVB B/D BLOCK DIAGRAM> ..................................................................................................... 92
<FIG 4.2: PM-A1 MODULE DIMENSION>................................................................................................ 93
W5100E01-AVR User‟s Manual ix
Tables
<TABLE 1-1: LIST OF ITEMS CONTAINED IN THE EVB B/D> ........................................................................ 1
<TABLE 1-2 : CONTENTS OF SOFTWARE> ................................................................................................... 1
<TABLE 2-1 : TERMINAL PROPERTIES SETTING> ........................................................................................ 5
<TABLE 2-2 : EVB B/D DEFAULT NETWORK INFORMATION> ...................................................................... 7
<TABLE 2-3 : MENU OF NETWORK CONFIG> ............................................................................................... 8
<TABLE 2-4 : EVB B/D DEFAULT CHANNEL INFORMATION> ....................................................................... 9
<TABLE 2-5 : MENU OF CHANNEL CONFIG> .............................................................................................. 10
<TABLE 2-6 : W5100 CHANNEL APPLICATION TYPE> ............................................................................... 10
< TABLE 2-7 APPLICATION DEFAULT VALUE > ............................................................................................ 11
<TABLE 3-1: DEVICE MAP DEFINITION> ................................................................................................... 20
<TABLE 3-2: AVR INTERNAL EEPROM MAP DEFINITION> ..................................................................... 21
<TABLE 3-3: SYSTEM INFORMATION> ........................................................................................................ 22
<TABLE 3-4: SYSINFO DATA TYPE DEFINITION> ..................................................................................... 22
<TABLE 3-5: SYSTEM INFORMATION ACCESS FUNCTIONS> ..................................................................... 22
<TABLE 3-6: NETWORK INFORMATION> .................................................................................................... 23
<TABLE 3-7: NETCONF DATA TYPE DEFINITION> ................................................................................... 23
<TABLE 3-8: NETWORK INFORMATION ACCESS FUNCTIONS> .................................................................. 23
<TABLE 3-9: CHANNEL INFORMATION> ...................................................................................................... 24
<TABLE 3-10: CHANNEL APPLICATION TYPE> ........................................................................................... 24
<TABLE 3-11: CHCONF DATA TYPE DEFINITION> ................................................................................... 25
<TABLE 3-12: CHANNEL INFORMATION ACCESS FUNCTION> ................................................................... 25
<TABLE 3-13: EVB B/D SOURCES>.......................................................................................................... 27
< TABLE 3-14 : W5100‟S DEFINE OPTION (TYPES.H) > ......................................................................... 29
<TABLE 3-15: REFERENCE FUNCTIONS IN EVB B/D‟S MAIN()> ............................................................... 31
<TABLE 3-16: CALLER FUNCTION AT MANAGE PROGRAM > ..................................................................... 35
<TABLE 3-17: REFERENCE FUNCTIONS IN MANAGE_CONFIG()> .............................................................. 37
<TABLE 3-18: CONSTRAINT BY APPLICATION TYPES> .............................................................................. 38
< TABLE 3-19: REFERENCE FUNCTIONS IN MANAGE_CHANNEL() > .......................................................... 39
<TABLE 3-20: PINGMSG DATA TYPE DEFINITION> ................................................................................. 43
<TABLE 3-21: PINGLOG DATA TYPE DEFINITION> .................................................................................. 43
<TABLE 3-22: REFERENCE FUNCTIONS IN PING_REQUEST()> ................................................................. 48
<TABLE 3-23: REFERENCE FUNCTIONS IN LOOPBACK_TCPS()> .............................................................. 50
<TABLE 3-24: REFERENCE FUNCTIONS IN LOOPBACK_TCPC()> .............................................................. 52
<TABLE 3-25: REFERENCE FUNCTIONS IN LOOPBACK_UDP()> ................................................................ 54
W5100E01-AVR User‟s Manual x
<TABLE 3-26: WEB BROWSERS HTTP REQUEST OPERATION PROCEDURE > ....................................... 55
<TABLE 3-27: HTTP MESSAGE FORMAT> ................................................................................................ 56
<TABLE 3-28: HTTP MESSAGE BETWEEN EVB B/D AND WEB BROWSER> .............................. 57
<TABLE 3-29: SYSTEM ENVIRONMENT VARIABLES USAGE AT EVBCTRL.HTML > ................................... 60
<TABLE 3-30: ST_HTTP_REQUEST DATA> .............................................................................................. 61
<TABLE 3-31: REFERENCE FUNCTIONS IN WEB_SERVER()> .................................................................... 65
<TABLE 3-32: DHCP MESSAGE DATA TYPE> ........................................................................................... 67
<TABLE 3-33: DHCP MESSAGE OPTION CODE DEFINITION> .................................................................. 68
<TABLE 3-34: DHCP CLIENT STATE & TIMEOUT DEFINITION>................................................................. 71
<TABLE 3-35: DHCP MESSAGE FLAG FIELD SETUP> .............................................................................. 71
<TABLE 3-36: REFERENCE FUNCTIONS IN DHCP CLIENT> ..................................................................... 75
<TABLE 3-37: DNS MESSAGE DATA TYPE>.............................................................................................. 79
<TABLE 3-38: QUERY TYPE DEFINITION AT DNS_QUERY()> ..................................................................... 79
<TABLE 3-39: CONSTANTS AND MACRO USED IN HEADER SECTION> ................................................... 83
<TABLE 3-40 : CONSTANTS DEFINITION AT QTYPE & QCLASS FIELD> ................................................ 84
<TABLE 3-41 : CONSTANT DEFINITION AT HEADER SECTIONS RCODE FIELD> ..................................... 86
<TABLE 3-42 : REFERENCE FUNCTIONS IN DNS CLIENT > ...................................................................... 91
<TABLE 4-1: PM-A1 MODULE PIN DESCRIPTION> ................................................................................ 94
<TABLE 4-2: ISP PIN DESCRIPTION> ........................................................................................................ 96
<TABLE 4-3: LCD PIN DESCRIPTION> ...................................................................................................... 97
<TABLE 4-4: EXPANDED BOARD INTERFACE PIN DESCRIPTION> ............................................................. 98
< TABLE 4-5 EVB B/D POWER CONSUMPTION > .................................................................................... 107
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
1
1. Overview
W5100E01-AVR is W5100 Evaluation B/D for AVR developers.
1.1. Package
When purchasing W5100E01-AVR B/D, please make sure you have all the following contents.
<Table 1-1: List of Items Contained in the EVB B/D>
Item
Quantity
EVB B/D
W5100E01-AVR Main Board
1
PM-A1 MCU Module
(Plugged In W5100E01-AVR)
1
Power Adaptor (DC5V / 2A)
1
Accessory
AVR ISP Internal Flash Programming Tool
Option
UTP Cable
1
Serial Cable
1
ISP Gender Type I
Option
<Table 1-2 : Contents of Software>
Directory
Contents
W5100E01-
AVR
DOCs
Manual
Users Manual
Datasheet
All sorts of Datasheet
Application Note
AVR Tool Gudie
ISP Gender Guide
HW
Schematics
All sorts of schematics
Part List
All sorts of Part List
PAL
Logic Source & JED File
SW
Firmware
EVB B/D Firmware
PC Utility
All sorts of Tool Program
W5100
The contents of Software could be changed by version. Please check the official website of WIZnet.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
2
1.2. Feature
1.2.1. H/W Features
W5100E01-AVR B/D is composed of 2 type B/Ds
PM-A1
- MCU : ATmega128, 8MHz
- RAM : 32KB SRAM (External)
- ROM : 128KB Flash (Atmega128 Internal Flash)
- ICE I/F : JTAG, ISP Support
W5100E01-AVR
- Power : DC5V, 2A Adaptor
- UART : Two 232 Serial Port, (default 57600 Baud Rate)
- LCD Display : 16 X 2 Text LCD
- PAL : Address Decoder
- W5100 : Hardwired TCP/IP Chip( embedded PHY chip )
- MagJack : RD1-125BAG1A (UDE) , Integrated Transformer(1:1)
Link & ACT & FDX LEDs
1.2.2. F/W Feature
The F/W of EVB B/D is made up of two parts.
Manager mode
- Network Config : MAC, Source IP, G/W IP, S/N, DNS IP Setup
- Channel Config : W5100 Test Application Setup for each channel
- Ping Test : Ping Request Test with DNS
Application mode
- Loopback TCP Server : TCP Server Mode Test Application
- Loopback TCP Client : TCP Client Mode Test Application
- Loopback UDP : UDP Test Application
- Web Server : Web Server Test Application
- DHCP Client : Dynamic Network Config using DHCP Server
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
3
2. Getting Started
2.1. System Configuration
2.1.1. EVB B/D Layout & Configuration
For testing the functions of the EVB B/D and developing applications, the EVB B/D should be configured as
shown below. First, the EVB B/D is connected to the PC using the crossed UTP Cable (for data
transmission) and the Serial Cable (for monitoring). Second, the dip switch and jumper should be set as
below;
<Fig 2.1 : EVB B/D Jumper Setting>
SPI Enable : J3
For interfacing W5100 with MCU through SPI mode, the pin of 2 and 3 of JP3 should go short. In case
that SPI mode is not used, the pin of 1 and 2 should be shorted.
1 2 3
[BUS] [SPI]
<Fig 2.2 : JP3 Jumper Setting >
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
4
2.2. PC Programs Install
2.2.1. Development Program Install
Please refer to “AVR Tool Guide Vx.x.pdf” for more information.
2.2.1.1. Compile Tool Chain
For installation and usage of WinAVR, refer to the related manual.
Firmware of EVB B/D is currently using AVR GCC Version 3.4.6 Compiler and can be changed with compiler
version upgrade.
2.2.1.2. ICE Programs
EVB B/D supports JTAG & ISP ICE for development and debugging. For ISP Program, “AVRStudio” program
is used. Please refer to AVR Tool Guide Vx.x.pdf for installation and usage of “AVR Studio” and ISP
GENDER Users Guide Vx.x.pdf for usage of ISP GENDER.
2.2.1.3. ROM File Maker Program
ROM File Maker Program is a utility program that provides convenience in using simple „ROM File System
for EVB B/D. The reason that ROM File Maker Program is used in EVB B/D is to access Web Pages for Web
Server Test Application as „ROM File System‟. Refer to ROM File Maker Manual Vx.x.pdf for further
instruction on installation and ROM File Maker Program
2.2.2. EVB B/D Test PC Program Install
2.2.2.1. Loopback Test Program (AX1) Install
Loopback Test Program (referred to as “AX1” from here on) is a program to evaluate the performance of
W5100 and does the Loopback the file and packet data in connection with EVB B/D channel applications
such as Loopback TCP Server/Client and Loopback UDP. Please refer to AX1 Manual Vx.x.pdf for
installation and usage.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
5
2.3. Quick Start
After the confirming the Package of EVB B/D, test EVB B/D in the order shown below.
Confirm the testing environment. Refer to Chapter 2.1
Connect test PC to EVB B/D using UTP cable directly.
Connect test PC to EVB B/D using serial cable directly.
Connect 5V power adaptor to EVB B/D
Confirm the network information of Test PC as the following
Source IP Address : 192.168.0.3
Gateway IP Address : 192.168.0.1
Subnet Mask : 255.255.255.0
Install AX1 on Test PC. Refer to Chapter 2.2.2.1
After the execution of serial terminal program (like Hyperterminal), set up the properties as the
following.
<Table 2-1 : Terminal Properties Setting>
Properties
Setting Value
Bits Per second(Baud Rate)
57600 bps
Data Bits
8 Bits
Stop Bits
1 Bit
Parity
No
Flow Control
None
After the completion of terminal setup, connect to EVB B/D and wait.
Turn on the power switch(SW1) of EVB B/D
Following items should be checked upon power on
- Check lighting on power LED(D2) of EVB B/D when powering on
- Check if LEDs of D3 and D4 blink three times by turns.
- Check if Text LCD display of EVB B/D outputs in the way shown in <Fig 2.3> and shown in <Fig
2.4> on the Terminal Program
<W5100E01 Vx.x>
192.168.000.002
< MANAGE MODE > After about 7 seconds
<Fig 2.3 : EVB B/D Text LCD Display >
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
6
After about 7 seconds
<Fig 2.4 : Output of Terminal Program>
Execute Ping test with EVB B/D
<Fig 2.5 : EVB B/D Ping Reply Test >
Execute “AX1” program. Refer to “AX1 Manaul Vx.x.pdf
Test the operation of “AX1” program with TCP Client. Refer to AX1 Manaul Vx.x.pdf
After setting the Server IP Address as “192.168.0.2” and port Number as “5000” by clicking
[TCP>>Connect] Menu, then click,[TCP>>Send] Menu or [Ts],[Tr],[] Icons.
Test the loopback with any file or packet between “AX1” Program and EVB B/D.
2.4. EVB B/D Test
The firmware of EVB B/D can be divided into Manage Program and EVB B/D Test Application.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
7
Manage Program performs system configuration to run EVB B/D, and EVB B/D Test Application is Network
Application Program for W5100 Test.
2.4.1. Manage Program
Manage Program is a program that is executed upon receiving character „M‟ or „m‟ from the terminal program
within 7 seconds when doing the manual reset of EVB B/D and EVB B/D power on. This program sets up the
channel application of W5100 to be tested, and perform certain ping request test with DNS server.
<Fig 2.6 : Manage Program Execution >
2.4.1.1. Network Configuration
It selects Network Information that is used in EVB B/D. When choosing „1‟ at terminal Program of <Fig 2.6>,
Network Information of EVB B/D can be set as desired. The default Network Information of EVB B/D is
shown in <Table 2-2>.
<Table 2-2 : EVB B/D Default Network Information>
Network Information
Default Value
MAC Address
00.08.DC.00.00.00
Source IP Address
192.168.0.2
Gateway IP Address
192.168.0.1
Subnet Mask
255.255.255.0
DNS Server IP Address
0.0.0.0
If “Network Config” menu is selected on Manage Program, menu shown in <Fig 2.7> can be displayed and
each function is described in <Table 2-3>.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
8
<Fig 2.7 : Network Config >
<Table 2-3 : Menu of Network Config>
Menu
Description
D : Display Config
Display current Network Information
1 : Source IP Address
Sets up Source IP Address
2 : Gateway IP Address
Sets up Gateway IP Address
3 : Subnet Mask
Sets up Subnet Mask
4 : DNS Server IP
Sets up DNS Server IP Address
<Warning> DNS Server is information needed for “Ping Request”
test and transformation of Domain Name into IP address.
Therefore, it must be set up as Static IP Address.
„A‟ or „a‟
Sets up Memory Allocation W5100 Memory Size
Register.(RMSR,TMSR)
Refer to W5100 Datasheet.pdf“.
F : Factory Reset
Initialization of the system with the default value.
Refer to <Table 2-2>
„M‟ or „m‟
Sets up MAC Address.
<Warning> This value is not changed when Factory Reset.
E : Exit
Exit “Net Config”
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
9
<Fig 2.8> is an example of setting the Source IP of EVB B/D in Network Config
<Fig 2.8 : Source IP Address Setup Example>
<Fig 2.9> is an example of setting the MAC address of EVB B/D in Network Config
<Fig 2.9 : MAC address Setup Example>
2.4.1.2. Channel Config
It sets up an application that can be operated in 4 channels of W5100. By selecting „2 : Channel Config‟,
each channel can be set up. The default W5100 channel information is shown in <Table 2-4>.
<Table 2-4 : EVB B/D Default Channel Information>
W5100 Channel
Test Application
1st
Loopback TCP Server (Port 5000)
2nd
Loopback TCP Server (Port 5000)
3rd
Loopback TCP Server (Port 5000)
4th
Loopback TCP Server (Port 5000)
If “Channel Config” menu is selected in manage program, <Fig 2.10> is displayed and the functionality of
each menu is described in <Table 2-5>.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
10
<Fig 2.10 : Menu of Channel Config>
<Table 2-5 : Menu of Channel Config>
Menu
Description
D : Display Config
Displays current set up Test Application type of each W5100 channel
0 : 1st Channel
Sets up test application type at W5100 No. “0” channel
<Warning> As developing EVB B/D, DHCP Client application setup is
possible only at no. “0” channel.
1 : 2nd Channel
Sets up test application type at W5100 no. “1” channel
2 : 3rd Channel
Sets up test application type at W5100 no. “2” channel
3 : 4th Channel
Sets up test application type at W5100 no. “3” channel
F : Factory Reset
Initialize into original setup status. Refer to <Table 2-4>
E : Exit
Exits “Channel Config”
Available test application of each W5100 channel is shown as <Table 2-6>
<Table 2-6 : W5100 Channel Application Type>
Application Type
Description
No Use
Not used
DHCP Client
Receiving Network Information of EVB B/D from DHCP Server
dynamically
<Warning> If DHCP Server does not exist in LAN, it sets back to
default value after certain amount of time
TCP Loopback Server
TCP Server Test Program
<Warning> EVB B/D : TCP Server, AX1 : TCP Client
TCP Loopback Client
TCP Client Test Program
<Warning> EVB B/D : TCP Client, AX1 : TCP Server
Loopback UDP
UDP Test Program
Web Server
Web Server Test Program
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
11
Other application types except for “DHCP Client” can be repeatedly set up regardless of channel.
<Fig 2.11> shows an example of 2nd channel setting of W5100 as “TCP Loopback Client”
When inputting simply [ENTER] without IP address or port number, the default value is applied. <Table 2-7>
shows default values required for each application.
<Fig 2.11 : Loopback TCP Client Application Setting Example>
< Table 2-7 Application Default Value >
Application Type
Default Value
DHCP Client
None
TCP Loopback Server
Listen Port Number : 5000
TCP Loopback Client
Server IP Address : 192.168.0.3
Server Port Number : 3000
Loopback UDP
Source Port Number : 3000
Web Server
HTTP Port Number : 80
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
12
2.4.1.3. Ping Application Test
Ping Application Test is a program created for IP RAW channel evaluation of W5100 and sends Ping request
to certain peer and receives Ping Reply. This program is set up identically with the ping command in the
DOS prompt. Its executed when „3 is chosen <Fig 2.6 : Manage Program Execution>.
<Fig 2.12 : Usage of Ping Application >
<Fig 2.12> displays the execution screen of Ping Application and shows how to use the Ping Application.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
13
<Fig 2.13> shows the real example of sending the Ping Request to the destination and receiving the Ping
Reply.
<Fig 2.13 : Ping Application Test>
To terminate the Ping Application type, type “exit” at the “PING>” prompt.
2.4.2. EVB B/D Test Applications
2.4.2.1. DHCP Client
DHCP Client Application is an application that dynamically assigns network information for EVB B/D from
DHCP Server. To test DHCP Client, first of all, W5100 1st channel application type must be set up asDHCP
Client” using [Manager>>Channel Config>>0th Channel] Menu.
Refer to Chapter 2.4.1.2
<Fig 2.14> is the screen that DHCP Client successfully obtains network information. Note that DHCP Client
will be set with default network information if DHCP Server does not exist or is not able to obtain network
information from DHCP Server.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
14
DHCP Client Start Log
Network Information received from DHCP Server
<Fig 2.14 : DHCP Client Test>
2.4.2.2. Loopback TCP Server
Loopback TCP Server Application is an application that loops back any file or packet data through TCP
channel connected with “AX1” Program of Test PC. First of all, set any channel as “Loopback TCP Server”
application type using [Manager>>Channel Config] menu of EVB B/D to test Loopback TCP Server.
When setting up “Loopback TCP Server” application type of EVB B/D, you can set listen port to any value.
Here, it‟s set as the default value, 5000. Refer to Chapter 2.4.1.2
After the setup of EVB B/D is complete, run “AX1” at Test PC then try the connection to the IP Address.
When the connection between EVB B/D and “AX1” is successful, loop back the data. Refer to AX1 Manual
Vx.x.pdf
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
15
Peer Connection Information in 0 channel of W5100
<Fig 2.15 : Loopback TCP Server Test>
2.4.2.3. Loopback TCP Client
Loopback TCP Client Application is an application that loops back any file and packet data through TCP
channel connected with “AX1” Program of Test PC
After running the “AX1” on the server, set any channel of W5100 as “Loopback TCP Client” application type
using [Manager>>Channel Config] menu of EVB B/D.
When setting up the “Loopback TCP Client” Application type of EVB B/D, set the Server IP as the IP Address
of the Test PC and set Server Port as the waiting Server Port Number(3000). Refer to Chapter 2.4.1.2.
After setting up EVB B/D is complete, exit from the manager program and run EVB Test Application. If EVB
B/D is connected to “AX1” successfully, loop back the desired data. Refer to AX1 Manual Vx.x.pdf
Peer Connection Information
in 1 channel of W5100
<Fig 2.16 : Loopback TCP Client>
2.4.2.4. Loopback UDP
Loopback UDP Application is an application that loops back any file and packet data through UDP Channel
connected with “AX1” Program of Test PC. First of all, to test Loopback UDP, set up any channel of W5100
as “Loopback UDP” Application Type using [Manager>>Channel Config] Menu of EVB B/D.
In setting up “Loopback UDP” Application type, set Source Port as any value. Here, its set with 3000. Refer
to Chapter 2.4.1.2
After EVB B/D setup is over, loop back desired data with IP Address and UDP Source Port of EVB B/D using
menu or Icon related to UDP.
Refer to “AX1 Manual Vx.x.pdf”.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
16
<Fig 2.17 : Loopback UDP Test>
2.4.2.5. Web Server
Web Server Application sends and receives web pages and EVB B/D control data through HTTP Channel
connected with web browser. For Web Server testing, set up any channel of W5100 as “Web Server”
Application Type using [Manager>>Channel Config] menu of EVB B/D.
When setting up “Web Server” Application Type of EVB B/D, set HTTP port as any value. Here, it‟s set to 80,
the default value. Refer to Chapter 2.4.1.2.
After setup for EVB B/D, run Web browser in the Test PC, type the URL(http://192.168.0.2/) of the EVB B/D
in the address field and connect to EVB B/D.
<Fig 2.18 : Web Server Test>
If the web browser is successfully connected to HTTP port of EVB B/D, the Web Page of <Fig 2.19> can be
viewed. In case Web Page of <Fig 2.19> is not shown, refresh the screen using the “Refresh” function of the
web browser.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
17
<Fig 2.19 : Default Web Page of EVB B/D>
If [Control] button on the Web Page in <Fig 2.19> is clicked, it can set the network information or show the
web page that can turn on or off LEDs(D3,D4) and display rows of text on Text LCD display.
<Fig 2.20 : Web Page of EVB B/D Control>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
18
2.5. Troubleshooting Guide
2.5.1. Ping
When you can not reach EVB B/D by Ping command,
Step 1. Check if you connect correctly test PC and EVB B/D with UTP cable.
Step 2. Check if interface jumper of JP3 is correctly set.
JP3 : SPI mode (pin2-3 should be connected), Bus mode(pin1-2 should be connected)
Step 3. Check if you correctly change your test PC's network environment (IP address, Gateway,
Subnet)? If not, you should change it as follows:
- IP address: 192.168.0.3
- Gateway address: 192.168.0.1
- Subnet Mask: 255.255.255.0
Step 4. Check if link LED of MAGJACK(left LED from rear view) is on? If it is off, check UTP cable is
working properly.
2.5.2. Misc.
When the serial terminal screen remains blank with the power on after a connection is made
Step 1. Check the connection condition of the serial cable.
Step 2. Check the COM Port numbers of the PC and terminal coincide.
Step 3. Check the terminal‟s baud rate 57600.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
19
3. Programmer‟s Guide
3.1. Memory Map
3.1.1. Code & Data Memory Map
Memory Map of EVB B/D is composed of code memory 128 Kbytes and data memory 64Kbytes. Data
memory is divided into SRAM, W5100, and Text LCD Area. Other than these, there is 4Kbytes AVR Internal
EEPROM. Various types of environmental variables are recorded on this EEPROM.
<Fig 3.1>, <Table 3-1> are representations of System Memory Map of EVB B/D.
CODE
AVR Internal Flash
128KB
AVR Internal
EEPROM 4KB
AVR Internal SRAM
External
SRAM
W5100
Control Regs.
Not Used
W5100
TX,RX Buffer
16KB
TEXT LCD
Not Used
0x00000
0x1FFFF
0x8000
AVR Regs.
0x0000
0x0100
0x8400
0x9000
0x9400
0xC000
0xFFFF
0x1100
<Fig 3.1: EVB B/D Memory Map>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
20
<Table 3-1: Device MAP Definition>
Device
Map Define
Source Code
W5100
#define __DEF_IINCHIP_MAP_BASE__ 0x8000
#if (__DEF_IINCHIP_BUS__ == __DEF_IINCHIP_DIRECT_MODE__)
#define COMMON_BASE __DEF_IINCHIP_MAP_BASE__
#else
#define COMMON_BASE 0x0000
#endif
#define __DEF_IINCHIP_MAP_TXBUF__ (COMMON_BASE + 0x4000)
#define __DEF_IINCHIP_MAP_RXBUF__ (COMMON_BASE + 0x6000)
mcu/types.h
Text LCD
#define LCD_BASEADDR 0x9000
evb/lcd.h
3.1.2. AVR Internal EEPROM MAP
<Fig 3.2>, <Table 3.2> are representations of AVR Internal EEPROM Map.
Refer to “evb/config.h” and “evb/config.c.”
<Fig 3.2: AVR Internal EEPROM Map>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
21
<Table 3-2: AVR Internal EEPROM MAP Definition>
System
Information
#define SYS_INFO 0x00
#define SYS_TEST (SYS_INFO)
#define SYS_VER (SYS_TEST + 2)
#define SYS_AUTORESET (SYS_VER + 4)
#define SYS_ANY_PORT (SYS_AUTORESET + 1)
Network
Information
#define NET_CONF 0x20
#define NET_TEST (NET_CONF)
#define NET_MAC (NET_TEST+2)
#define NET_SIP (NET_MAC + 6)
#define NET_GWIP (NET_SIP + 4)
#define NET_SN (NET_GWIP + 4)
#define NET_DNS (NET_SN + 4)
#define NET_MEMALLOC (NET_DNS + 4)
Channel
Information
#define CH_CONF 0x50
#define CH_TEST (CH_CONF)
#define CH_TYPE_0 (CH_TEST + 2)
#define CH_PORT_0 (CH_TYPE_0 + 1)
#define CH_DESTIP_0 (CH_PORT_0 + 2)
#define CH_TYPE_1 (CH_DESTIP_0 + 4)
#define CH_PORT_1 (CH_TYPE_1 + 1)
#define CH_DESTIP_1 (CH_PORT_1 + 2)
#define CH_TYPE_2 (CH_DESTIP_1 + 4)
#define CH_PORT_2 (CH_TYPE_2 + 1)
#define CH_DESTIP_2 (CH_PORT_2 + 2)
#define CH_TYPE_3 (CH_DESTIP_2 + 4)
#define CH_PORT_3 (CH_TYPE_3 + 1)
#define CH_DESTIP_3 (CH_PORT_3 + 2)
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
22
3.1.2.1. System Information
System Information area is used in recording System Information such as Firmware Version of EVB B/D.
<Table 3-3: System Information>
Name
Description
Default Value
SYS_TEST
Valid Check of System Information
0xA5A5 Valid
Others Invalid
SYS_VER
F/W Version
0xAABBCCDD (AA.BB.CC.DD)
SYS_AUTORESET
Auto reset check in case of setting up
any environmental variable
0x01 System Auto Reset
Others No Reset
SYS_ANY_PORT
Using Any Port Number at Socket
creation
1000 ~ 65535
System Information is accessed as SYSINFO Data Type.
<Table 3-4: SYSINFO Data Type Definition>
Type Definition
Instance
typedef struct _SYSINFO
{
u_int test;
u_long ver;
u_char auto_reset;
u_int any_port;
}SYSINFO;
SYSINFO SysInfo;
<Table 3-5: System Information Access Functions>
Function
Description
void set_sysinfo(SYSINFO* pSysInfo)
Save the System Information
void get_sysinfo(SYSINFO* pSysInfo)
Get the System Information
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
23
3.1.2.2. Network Information
Network Information is used in recording Network Configuration information to be used for EVB B/D.
<Table 3-6: Network Information>
Name
Description
Default Value
NET_TEST
Valid check of Network
Information
0xA5A5 Valid
Others Invalid
NET_SIP
Source IP Address
0xC0A80002 (192.168.0.2)
NET_GWIP
Gateway IP Address
0xC0A80001 (192.168.0.1)
NET_SN
Subnet Mask
0xFFFFFF00 (255.255.255.0)
NET_DNS
DNS Server IP Address
0x00000000 (0.0.0.0)
NET_MEMALLOC
W5100 Memory Allocation
0x55
Network Information is accessed as NETCONF Data Type.
<Table 3-7: NETCONF Data Type Definition>
Type Definition
Global Instance
typedef struct _NETCONF
{
u_int test;
u_char mac[6];
u_long sip;
u_long gwip;
u_long sn;
u_long dns;
u_char mem_alloc;
}NETCONF;
NETCONF NetConf;
<Table 3-8: Network Information Access Functions>
Function
Description
void set_netconf(NETCONF* pNetConf)
Save the Network Information
void get_netconf(NETCONF* pNetConf)
Get the Network Information
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
24
3.1.2.3. Channel Information
Following table introduces applications to be used in 4 channels of W5100.
<Table 3-9: Channel Information>
Name
Description
Default Value
CH_TEST
Valid check of channel
Information
0xA5A5 Valid
Others Invalid
CH_TYPE_X
Application type of
No.X Channel
Default - LB_TCPS
NOTUSE : Not Used
DHCP_CLIENT : DHCP Client
LB_TCPS : Loopback TCP Server
LB_TCPC : Loopback TCP Client
LB_UDP : Loopback UDP
WEB_SEVER : Web Server
CH_PORT_X
Source / Destination
Port number of No.X
Little Endian
LB_TCPS : Default Source Port, 0x5000
LB_TCPC : Default Destination Port, 0x3000
LB_UDP : Default Source Port, 0x3000
WEB_SERVER : 80
CH_DESTIP_X
Destination IP addres of
No. “X” channel
0xC0 A80003 (192.168.0.3)
Channel Information is used for recording application type for 4 channels of W5100.
Channel application type includes Loopback TCP Server, Loopback TCP Client, Loopback UDP, DHCP
Client, Web Server. Channel Information is defined as APPTYPE enumeration type.
<Table 3-10: Channel Application Type>
typedef enum _APPTYPE
{
NOTUSE,
DHCP_CLIENT,
LB_TCPS,
LB_TCPC,
LB_UDP,
WEB_SERVER
}APPTYPE;
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
25
Channel Information is accessed as CHCONF Data Type.
<Table 3-11: CHCONF Data Type Definition>
Type Definition
Global Instance
typedef struct _CHCONF
{
u_int test;
struct _CH_CONF
{
u_char type;
u_int port;
u_long destip;
}ch[4];
}CHCONF;
CHCONF ChConf;
<Table 3-12: Channel Information Access Function>
Function
Description
void set_chconf(CHCONF* pChConf)
Save the channel information
void get_chconf(CHCONF* pChConf)
Get the channel information
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
26
3.2. EVB B/D Firmware
EVB B/D Firmware -EVB main()- can be divided into two parts. - Manage Program that sets up various
environments for running EVB B/D and Loopback Programs that tests W5100 performance. There are
Internet Application using Internet Protocols such as DHCP, HTTP, DNS, and ICMP.
Let‟s look at the source list of which EVB B/D is composed and then look at each application source.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
27
3.2.1. Sources
<Table 3-13: EVB B/D Sources>
Classification
(Directory)
Files
Description
app
ping_app.h, ping_app.c
Ping Request App implementation
loopback.h, loopback.c
TCP, UDP Loopback Apps implementation
webserver.h, webserver.c
Webserver App implementation
mcu
delay.h, delay.c
Delay Function wait_xxx()
serial.h, serial.c
AVR UART control
timer.h, timer.c
AVR Timer enable & disable
types.h
AVR Data Type Definition, & Global Difinition
evb
channel.h, channel.c
Channel App Handler registration & cancellation
config.h, config.c
EVB B/D Environment
evb.h, evb.c
EVB B/D initialization
lcd.h, lcd.c
EVB B/D Text LCD control
led.h, led.c
EVB B/D LED(D3,D4) control
manage.h, manage.c
Manage App
inet
dhcp.h dchp.c
DHCP Client Protocol
dns.h, dns.c
DNS Client Protocol
httpd.h, httpd.c
HTTP Protocol
ping.h, ping.c
Ping Protocol
main
main.h, main.c
EVB B/D F/W main()
rom
[webpage]
EVB B/D Web Pages
romfs.h, romfs.c
EVB B/D Web Pages Image
searchfile.h,searchfile.c
EVB B/D Web Page control
util
myprintf.h
printf() for debugging
sockutil.h, sockutil.c
Utilities relating Socket
util.h, util.c
Utilities
iinChip
iinchip_conf.h
System Dependant Defintion of W5100
W5100.h, w5100.c
I/O Functions of W5100
socket.h, socket.c
Socket APIs for W5100
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
28
3.2.2. How to Compile
Sources of Chapter 3.2.1 compile in bundle after arranging SRC items.
Compiling of W5100E01-AVR B/D firmware can be processed by using WINAVR and AVRSTUDIO. First,
install the WINAVR and AVRSTUDIO at the PC. Then, open the firmware file, "~/sw/fw/W5100E01-AVR.aps"
through AVRSTUDIO project file to perform the compiling easily.
Be sure to check compile setting detail at the Configuration option of Project menu of AVRSTUDIO. For the
setting method, refer to AVR Studio User Guide.
As the firmware provided by WIZnet is based on AVR-GCC 3.4.6, it can not be operated correctly at another
version of the comiler.
*만일 이전 AVR-GCC 3.4.3 사용하실경우, "~/sw/fw/README.txt"파일을 고하세요
After compile is completed, a hex file will be created in the folder that user defined before. This file will be
programmed in Atmega128.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
29
< Table 3-14 : W5100’s DEFINE Option (types.h) >
#define _ENDIAN_LITTLE_ 0
#define _ENDIAN_BIG_ 1
#define SYSTEM_ENDIAN _ENDIAN_LITTLE_
#define __DEF_IINCHIP_DIRECT_MODE__ 1
#define __DEF_IINCHIP_INDIRECT_MODE__ 2
#define __DEF_IINCHIP_SPI_MODE__ 3
#define __DEF_IINCHIP_BUS__ __DEF_IINCHIP_DIRECT_MODE__
//#define __DEF_IINCHIP_BUS__ __DEF_IINCHIP_INDIRECT_MODE__
//# define __DEF_IINCHIP_BUS__ __DEF_IINCHIP_SPI_MODE__
Since EVB B/D is Little-Endian system, SYSTEM_ENDIAN should be defined _ENDIAN_LITTLE_ and used.
If the target system is Big-Endian, the defined items should be defined _ENDIAN_BIG_.
If W5100 is intended to be used as different mode other than Direct Bus Mode, use desired Bus Mode
defined as __DEF_IINCHIP_BUS__ instead of __DEF_IINCHIP_DIRECT_MODE__. If DEFINE OPTION of
W5100 is changed, the sources must Re-Build. To Re-Build project, do “make clean”, then “make”.
In case of SPI mode, be sure to change the configuration of JP3 in the W5100E01-AVR board. For more
detail, refer to Chapter 2.1.1 EVB B/D Layout & Configuration.
3.2.3. How to download
For downloading the hex file, we use AVRStudio and AVRISP Cable.
1) Connect AVRISP Cable to JP3 at the PM-A1.
2) Supply the power to EVB B/D.
3) Run AVRStudio.exe.
4) Select “ATmega128” in Device section.
5) Select the HEX file in FLASH section.
6) Click “Program” button.
Please refer to “AVR Tool Guide.pdf” for more information.
3.2.4. EVB B/D‟s main()
If we take closer look at main(), for certain amount of time, we wait for Manage Program from RS232
Terminal after initialization of board with board reset. At this point, if RS232 terminal displays the Manage
Program entering command, EVB B/D environment such as network information and channel Information
can be set and ping request program can be run.
If Manage Program is done or there is no entering command from RS232 terminal, the application for each
of 4 channels of W5100 is executed and initialized using previously set network information.
<Fig 3.3> process procedure of EVB B/D main(). Refer to “main/main.c”
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
30
If DHCP client exists in the application, the DHCP client obtains the network information from DHCP server
by calling „get_IP_DHCPS()‟ function. If DHCP client application does not exist or fails to obtain network
information from DHCP server, the EVB B/D is initialized with previously-set network information.
After the initialization, it runs test applications of EVB B/D by calling each registered application handler. For
further details on DHCP client program, refer to Chapter 3.2.6.5 DHCP Client.”
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
31
<Table 3-15: Reference Functions in EVB B/D’s main()>
Function Name
Description
Location
int main(void)
EVB B/D main()
main/main.c
void evb_init(void)
AVR, Text LCD,
UART initialization
evb/evb.c
void net_init(void)
EVB B/D Network initialization
evb/evb.c
void check_manage(void)
Manage Program action wait and
execution
evb/manage.c
void register_channel_handler
(u_char ch, void
(*handler)(u_char))
Channel Application Handler
registration
evb/channel.c
void unregister_channel_handler
(u_char ch)
Channel Application Handler
cancellation
evb/channel.c
void init_dhcp_client(SOCKET s,
void (*ip_update)(void),
void (*ip_conflict)(void))
DHCP Client Program initialization
inet/dhcp.c
u_int getIP_DHCPS(void)
Network Information acquisition from
DHCP Server
inet/dhcp.c
void check_DHCP_state(SOCKET
s)
Check to expire the leased time from
DHCP server
inet/dhcp.c
void loopback_tcps(u_char ch)
Loopback - TCP Server
app/loopback.c
void loopback_tcpc(u_char ch)
Loopback - TCP Client
app/loopback.c
void loopback_udp(u_char ch)
Loopback - UDP
app/loopback.c
void web_server(u_char ch)
Web Server Program
app/webserver.c
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
32
START
main()
Initialize EVB B/D
evb_init()
Check to enter the manage mode
check_manage()
ChConf[i] == DHCP_CLIENT
sock_flag = 0x80
sock_flag = 0x00
i = 0
i < MAX_SOCK_NUM
ChConf[i].type == NOTUSE
ChConf[i].type
==
DHCP_CLIENT
ChConf[i].type == LB_TCPS
ChConf[i].type == LB_TCPC
ChConf[i].type == LB_UDP
ChConf[i].type ==
WEB_SERVER
Register i-th Channel Apps Handle
register_channel_handle(check_DHCP_state())
Register i-th Channel Apps Handle
register_channel_handle(loopback_tcps())
Register i-th Channel Apps Handle
register_channel_handle(loopback_tcpc())
Register i-th Channel Apps Handle
register_channel_handle(loopback_udp())
Register i-th Channel Apps Handle
register_channel_handle(web_server())
Network Configruation
net_init()
i = 0
i < MAX_SOCK_NUM Call i-th Channel Apps Handle
i++
i++
Unregister i-th Channel Apps Handle
unregister_channel_handle()
Y
N
Y
N
Y
N
Y
N
Y
Y
Y
N
N
N
N
Y
Get a Network Info From a DHCP Server
get_IP_DHCPS()
Success ? ChConf[i].type = NOTUSE
Y
N
Y N
Get MAC Addr from EEPROM
get_netconf(&NetConf)
Set theMAC Addr to DHCP Cleint
memcpy(SRC_MAC_ADDR,NetConf.mac,6) Initialize DHCP Client
init_dhcp_client()
<Fig 3.3: EVB B/D’s main()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
33
3.2.5. Manage Program
Manage Program is a program that sets up network and channel information through RS232 terminal and
tests application by sending Ping Request to certain Destination.
Manage program can be started by calling check_manage() from main() function. check_manage() checks if
there is any entering command to Manage Program from RS232 terminal - if character „M‟ or „m‟ is input or
not. And if the command is detected, Manage Program will be entered through manage_config(). If the user
change the configuration, the EVB B/D automatically reboots and check_manage() is skipped.
START
check_manage()
Check to reset EVB B/D automatically
get_reset_flag()
Reset Automatically? Clear Reset Flag
set_reset_flag(SYSTEM_MANUAL_RESET)
Display the Followed Console Message
Press 'M' to enter the manager mode
i = 0
j = 0
Is Key pressed?
Check to Press a Key
uart_keyhit()
Get the pressed Key
uart0_getchar()
Key == M
or
Key == m
Key == ESC
Run Manage Program
manage_config()
Wait 10ms
wait_1ms(10)
j < 40
Display
the Progressing Character(.)
i < 16
END
END
N
i++
j++
N
YY
Y
N
N
Y
Y
Y
N
Y
N
<Fig 3.4: check_manage()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
34
<Fig 3.5: manage_config()>
If the EVB B/D is updated, the EVB B/D automatically reboots to apply the updated configuration.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
35
<Table 3-16: Caller Function at Manage Program >
Function Name
Description
Location
void check_manage(void)
Decision of Manage Program is executed
or not
evb/manage.c
void manage_config(void)
Manage Program
evb/manage.c
u_char manage_network(void)
Configure Network Information
evb/manage.c
u_char manage_channel(void)
Configure Channel Information
evb/manage.c
u_char get_reset_flag(void)
EVB B/D‟s Auto/Manual Reset recognition
and confirm
Auto : SYSTEM_AUTO_RESET
Manual : SYSTEM_MANUAL_RESET
evb/config.h
evb/config.c
void set_reset_flag(u_char flag)
Copy of EVB B/D Reset status
evb/config.c
void load_factory_netconf(void)
Factory Reset Network Information
evb/config.c
void load_factory_chconf(void)
Factory Reset Channel Information
evb/config.c
u_int uart_keyhit(u_char uart)
Checking the Input from UART(0,1)
mcu/serial.c
char uart0_getchar(void)
Read one character from UART0
mcu/serial.c
void wait_1ms(u_int cnt)
Delay Function
mcu/delay.c
void ping_request(void)
Ping Request Test Program
app/ping_app.c
3.2.5.1. Network Configuration
Network Configuration is a sub-program of Manage Program and built with manage_network(). And it‟s the
program that sets up Network Information of EVB B/D. In general, MAC Address of Network Information is
hardly updated after the initial setup. Accordingly, MAC Address setup does not provide Configuration Menu
such as Source IP, Gateway IP, or Subnet Mask but it provides hidden menu. Also, MAC Address is not
changed at the time of Factory Reset. MAC Address is updated using „M‟ or „m‟.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
36
END
Display
Network Config Menu
Y
Get the pressed Key
sel = uart0_get_char()
sel == d or
sel == D
Get the Network Information
get_netconf(&NetConf)
N
------------------
NETWORK CONFIG");
------------------
0 : Display Config
1 : Source IP");
2 : Gateway IP");
3 : Subnet Mask");
4 : DNS Server IP"
F : Factory Reset"
E : Exit");
------------------
Y
sel == 1
N
Y
sel == 2
N
Y
sel == 3
N
Y
sel == M
or
sel == m
N
Y
sel == F
or
sel == f
N
Y
sel == 4
N
Y
sel == E
or
sel == e
N
Get a Value
uart0_gets()
Verify the Value
VerifiyIPAddress() Verifty OK?
Update Source IP Address
NetConf.sip = htonl(inet_addr())
Get a Value
uart0_gets()
Verify the Value
VerifiyIPAddress() Verifty OK?
Update G/W IP Address
NetConf.gwip = htonl(inet_addr())
Get a Value
uart0_gets()
Verify the Value
VerifiyIPAddress() Verifty OK?
Update S/N Mask
NetConf.sn = htonl(inet_addr())
Get a Value
uart0_gets()
Verify the Value
VerifiyIPAddress() Verifty OK?
Update DNS IP Address
NetConf.dns = htonl(inet_addr())
Get a Value
uart0_gets()
Verify the Value
ValidATOI()
Update MAC Address
Factory Reset
load_factory_netconf()
Ysel == 0x1B
N
Verifty OK?
Display Network Information
display_netconf()
N
START
manage_network()
Update Network Information
set_netconf(&NetConf)
Y
N
N
Y
N
Y
N
Y
N
Y
<Fig 3.6: manage_network()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
37
<Table 3-17: Reference Functions in manage_config()>
Function Name
Description
Location
u_char manage_network(void)
Configure Network Information
evb/manage.
c
void get_netconf(NETCONF*
pNetConf)
Get the Network Information that is
previously set
evb/config.c
void set_netconf(NETCONF*
pNetConf)
Update the Network Information
evb/config.c
void display_netconf
(NETCONF* pNetConf)
Outputs the Network Information to
the terminal
evb/config.c
Void load_factory_netconf(void)
Load Factory Reset Network
Information
evb/config.c
char uart0_getchar(void)
Read one character from UART0
mcu/serial.c
int uart_gets(u_char uart, char * str,
char bpasswordtype, int max_len)
Read text lines from UART(0,1)
mcu/serial.c
char VerifyIPAddress(char* src)
Check if the string is IP Address
util/sockutil.c
Unsigned long htonl
(unsigned long hostlong)
Transforms ordering of Long Type
Data
util/sockutil.c
Unsigned long inet_addr
(unsigned char* addr)
Transforms IP string into long type
util/sockutil.c
3.2.5.2. Channel Configuration
Channel Configuration, a sub-program of Manage Program is made of manage_config() and decides which
application to be applied for each of 4 channels of W5100.
The application types that can be set up, are DHCP Client, Loopback TCP Server/Client, Loopback UDP, and
Web Server Program. Each channel can be set up with any one of the applications above. However, the
DHCP Client can only be supported by the first channel and the setting cannot be repeated on other
channels.
TCP Server Program (LB_TCPS,WEB_SERVER) can be set repeatedly by all channels. In such case, the
same port can be used. Here, the number of clients is as many as the same port number. Other applications
can be set repeatedly by channels, but the same port number cannot be used.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
38
<Table 3-18: Constraint by Application Types>
APPTYPE
Repeat
Setups
Port Repeat
Destination IP
Setup
DHCP_CLIENT
X
X
X
LB_TCPS
O
O, supports all the simultaneously
connected clients as many as the number
of repeated ports
X
LB_TCPC
O
X
O
LB_UDP
O
X
X
WEB_SERVER
O
O, supports all the simultaneously
connected clients as many as the number
of repeated ports
X
<Fig 3.7: manage_channel()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
39
< Table 3-19: Reference Functions in manage_channel() >
Function Name
Description
Location
u_char manage_channel(void)
Configure Channel Information
evb/manage.c
void select_ch_app
(CHCONF* pChConf, u_char ch)
Select available Application Type and Setup
required factors
evb/manage.c
void get_chconf
(CHCONF* pChConf)
Get Channel Information
evb/config.c
void set_chconf
(CHCONF* pChConf)
Update Channel Information
evb/config.c
void display_chconf
(CHCONF * pChConf)
Output Channel Information through Terminal
evb/config.c
void load_factory_chconf(void)
Factory Reset Channel Information
evb/config.c
char uart0_getchar(void)
Read one character from UART0
mcu/serial.c
3.2.5.3. Ping Request Program
Ping Request Program is a program that sends Ping Request to a certain destination. It uses ICMP protocol
message on IP protocol and made with ping_request().
ping_request() is created with the form similar to Ping program in DOS command prompt. It sends Ping
request to a destination after analyzing and processing the options.
Both domain name and IP address can be used for destination address to the Ping request. In case of using
domain name, domain name is changed into IP address using gethostbyname() or DNS. With the changed
IP address, the Ping request is sent.
When IP address is used with -a‟ option, domain name can be obtained through gethostbyaddr() from DNS
Server and the Ping request is sent to the IP address. When IP address is used without the -a‟ option, Ping
request is sent to input IP address without the connection with DNS.
gethostbyname(), gethostbyaddr() is DNS-related functions. For further information, refer to Chapter 3.2.6.6
DNS Client. <Fig 3.8> and <Fig 3.9> are processing procedures of ping_request().
<Fig 3.8> describes how tokens of inputs of Command, Option, and Option Value are created and the related
Bit of Argument Flag(PingArgsFlags) is decided.
<Fig 3.9> calls ping() based on relevant option and option after checking the validity of command, option,
and option value with bits of argument flag. ping() sends Ping request message to a certain destination and
processes the ICMP message which is received from any destination.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
40
<Fig 3.8: ping_request()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
41
<Fig 3.9: ping_request() Continue>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
42
Let‟s take a brief look at Ping message before we proceed to Ping program.
Ping message has the value of „0‟(Ping Reply) or „8‟(Ping Request) at Type Field. The Code Field of ICMP
Message has 0. Type Dependant Data Field(4Bytes) of ICMP Message can be re-defined as ID
Field(2Bytes), Sequence Number Field(2Bytes) respectively. Data Field of ICMP Message is filled with the
Ping data to be looped back.
Finally, it calculates the checksum of ICMP header and Ping data of which the checksum fields are 0. After
the calculation, it replaces 0 checksum fields with the newly calculated values.
<Fig 3.10> is a diagramming representation of the relationship between the ICMP message format and the
Ping message.
<Fig 3.10: ICMP Message VS Ping Message>
Checking the Ping reply to the Ping request can be processed by checking if the values of ID, sequence
number and ping data field are same or not. In case the Ping reply does not come back in wait time, the ping
can be sent again. In such case, the Ping request is sent with the sequence number incremented by 1.
Transmitting Ping request message and checking the Ping reply message were done by ping(). The
elements of ping() are of destination IP address, Ping reply wait time, number of Ping requests. Ping data
size and received Ping Replies are analyzed and processed to fit the elements.
<Fig 3.11> is the process of ping() and Ping message is defined and used as the data type of <Table 3-21>.
Refer to “inet/ping.h”
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
43
<Table 3-20: PINGMSG Data Type Definition>
typedef struct _PINGMSG
{
char Type; // 0 - Ping Reply, 8 - Ping Request
char Code; // Always 0
u_short CheckSum; // Check sum
u_short ID; // Identification
u_short SeqNum; // Sequence Number
char Data[PINGBUF_LEN]; // Ping Data
}PINGMSG;
Data field size of PINGMSG is of PINGBUF_LEN Byte. PINGBUF_LEN is defined as 32. However, data
field max size may be 1472. This is because the sending MTU of W5100 is 1480 bytes, and the sum of
Code, CheckSum, ID, and SeqNum Field Size is 8 Bytes. If we subtract 8 from 1480 we get 1472. Hence,
the size is 1472 bytes.
The results from ping() are saved in Data Type defined in <Table 3-22>.
<Table 3-21: PINGLOG Data Type Definition>
typedef struct __PINGLOG
{ u_short CheckSumErr;
u_short UnreachableMSG;
u_short TimeExceedMSG;
u_short UnknownMSG;
u_short ARPErr;
u_short PingRequest;
u_short PingReply;
u_short Loss;
}PINGLOG;
The saved Ping log can be output with RS232 terminal through DisplayPingStatistics() function. <Fig 3.12>
shows the process procedures of DisplayPingStatistics().
CheckSumErr field is incremented by 1 whenever the checksum of Ping Reply from peer is not correctly
received.
Unreachable MSG field and TimeExceedMSG field are incremented by 1 in case of receiving Unreachable
Message or Time Exceeded Message from peer or gateway.
UnknownMSG field is incremented by 1 when the unknown message is received.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
44
ARPErr field is incremented by 1 whenever ARP reply is not received upon ARP request to get the Hardware
address(MAC Address) of the peer.
PingRequest field is incremented by 1 whenever ping() sends Ping request.
PingReply field is incremented by 1 whenever Ping reply for Ping request from the peer is received.
Loss field is incremented by 1 whenever Wait Timeout is occurred because nothing is replied to the peer in
certain period of time after sending Ping request.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
45
Local Variable Declare & Init
SOCKET s =-1
PING PingRequest
PING PingReply
bLoop = 0, RemainTime =0, IsReceived = 0
long peerip = inet_aton(addr)
PingRequest.type = 8
PingRequest.code = 0
PingRequest.checksum = 0
PingRequest.id = Random Integer Number
PingRequest.seqnum = Random Integer Number
Fill in PingReqeust.data with a to w alphabet
Send a Ping-Reply to a peer
Call SendPingReply()
ping()
bLoop == 1 count > 0
count--
RemainTime = time / 2
PingRequest.seqnum++
PingRequest.checksum = 0
IsReceived = 0
Calculate Checksum of PingRequest
Update PingRequest.checksum
Successed to Send? PingLog.ARPErr++
Received packet ? s Socket Status ==
SOCK_CLOSED
RemainTime-- > 0
Y
PingLog.PingRequest++
Calculate Check Sum of PingReply
PingReply.type == 3
PingLog.Loss++
Display Loss
Ping Reply
PingLog.PingReply++
IsReceived = 1
PingLog.UnreachableErr++
IsReceived = 1
TTL
Expired
Display
Ping Reply OK
PingRequest.id
==
PingReply.id
PingRequest.seqnum-1
==
PingReply.Seqnum
addr
==
received peer addr
Check Sum Error?
addr == received
peer addr
PingReply.type == 0
PingLog.UnkonwMSG++
PingLog.ChecksumErr++
IsReceived = 1
PingReply.type == 11
Display
Checksum
Error
IsReceived = 0
PingLog.TimeExceedMSG++
IsReceived = 1
Display
Unknown
Peer
PingLog.UnkonwMSG++
Display
Unknown
Message
Display
Unreachable
Error
Is Pressed
CTRL-C?
PingReply.type == 8
END
Wait 2 ms
Y
N
N N
Y
Y
Y
N
NN
Y
N
N
Y
Y
Y
N
Y
Y
Y
N
N
Y
N
Y
NN
N
N
Y
Y
Y
Y
N
Open s Socket For IP_RAW Mode
setIPprotocol(s,IPPROTO_ICMP)
socket(s,SOCK_IPL_RAW)
Close Socket
close(s)
setIPprotocol(s,0)
Receive PingReply from a peer
recvfrom()
Send PingRequest to the specified peer
sendto() Reopen Socket
close(s)
setIPprotocol(s,IPPROTO_ICMP)
socket(s)
Verify the Arguments Successed to Open?
N
<Fig 3.11: ping()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
46
<Fig 3.12: DisplayPingStatistics()>
Ping request program is, as explained previously, a program that uses ICMP protocol which is running on IP
Protocol. In case of using ICMP channel at W5100, as shown in <Fig 3.11> and <Fig 3.13>, IP protocol to be
used must be decided. The socket must be created after calling setIPProtocol(s, IPPROT_ICMP). IP_RAW
channel must be created by calling socket(s,SOCK_IPL_RAW,port,flag) when creating the socket. In case of
closing ICMP Socket, setIPProtocol(s, 0x00) should be called after close(s) and clear the ICMP Flag which was
previously set.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
47
SendPingReply()
Declare & Initialize Local variables
SOCKET PingReplySocket;
u_int size = len;
size < PINGBUF_LEN size = PINGBUF_LEN
Find a Free Socket
Call getSocket(SOCK_CLOSED,S)
Assign the socket to PingReplySocket
PingReplySocket !=
MAX_SOCK_NUM
Create a IP RAW Socket
Call socket(IP_RAW)
Specify ICMP Protocol to the PingReplySocket
Call setIPprotocol(PingReplySocket,IPPROTO_ICMP)
Make a PingReply Packet
pingrequest.Type = 0
pingrequest.Code = 0
pingrequest.CheckSum = 0
Calculate the check sum of pingrequest
Send a Ping Reply to the specified peer
Call sendto(IP_RAW)
Successed to Create? Create Error
Successed to Send? Fail to Send
Close the PingReplySocket
Call close(PingReplySocket)
Clear the ICMP Proctocol of IP RAW
Call setIPprotocol(0)
RETURN
Fail to Send a Ping
Reply Packet
Y
N
Y
N
Y
N
Y
N
<Fig 3.13: SendPingReply()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
48
<Table 3-22: Reference Functions in ping_request()>
Function Name
Description
Location
void ping_request(void)
Ping Request program
app/ping_app.c
void ping_usage(void)
Outputs the instruction of Ping Request
program
app/ping_app.c
char ping
(int count, u_int size, u_int
time, u_char* addr, PINGLOG*
log)
Sends Ping Request to specific
destination, and processes ICMP
message received from any destination.
inet/ping.c
void DisplayPingStatistics
(PINGLOG log)
Outputs the results from ping() calling
inet/ping.c
void setIPprotocol
(SOCKET s, u_char ipprotocol)
Assigns IP protocol of the related socket
iinChip/w5100.c
char socket(SOCKET s,
u_char protocol, u_int port,
u_char flag)
Creates sockets related to as TCP/UDP/IP
iinChip/socket.c
void close(SOCKET s);
Closes the related socket
iinChip/socket.c
int sendto(SOCKET s,
const u_char * buf, u_int len,
u_char * addr, u_int port)
Sends Datagram packet to specific
destination.
iinChip/socket.c
int recvfrom(SOCKET s,
u_char * buf, u_int len,
u_char * addr, u_int * port)
Receives Datagram packet from any
destination
iinChip/socket.c
SOCKET getSocket(unsigned
char status, SOCKET start)
Searches for socket has the designated
status
util/sockutil.c
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
49
3.2.6. Applications
It‟s a network application using W5100. It includes Loopback program, Web Server, and DHCP Client.
Application is selected by Manager Program.
3.2.6.1. Loopback TCP Server
The Loopback TCP Server program of EVB B/D works as server mode, and AX1 program of the testing PC
works as client mode. AX1 tries to connect to EVB B/D and if the connection is successful, AX1 transmits the
data stream through the TCP channel. EVB B/D returns back the data stream from AX1 without processing
through the TCP channel.
Loopback TCP Server Program uses loopback_tcps() and <Fig 3.14> shows the process procedure of
loopback_tcps().
loopback_tcps()
Declare & Initialize Local Variables
u_char * data_buf = TX_BUF
Select Socket Status
getSn_SR()
SOCK_ESTABLISHED?
SOCK_CLOSE_WAIT?
SOCK_CLOSED?
Y
Y
N
N
Close Socket
close(ch)
Select Recieved Size
len = getSn_RX_RSR() len > 0 Receive the Data
recv(ch,data_buf,len)
Send the Received Data
send(ch,data_buf,len)
Create a TCP Socket
socket(ch,SOCK_STREAM,port,flag)
Wait a connetion with a client
NBlisten(ch)
RETURN
Y
Y
N
< Fig 3.14 : loopback_tcps() >
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
50
<Table 3-23: Reference Functions in loopback_tcps()>
Function Name
Description
Location
void loopback_tcps(u_char ch)
Loopback TCP Server program
app/loopback.c
uint8 getSn_SR(SOCKET s)
Get the socket status
iinChip/w5100.c
uint16
getSn_RX_RSR(SOCKET s)
size of data transmittable, and received
data
iinChip/w5100.c
u_char socket(SOCKET s,
u_char protocol, u_int port,
u_char flag)
Create the socket
iinChip/socket.c
u_char listen(SOCKET s)
It sets related socket as server mode
iinChip/socket.c
u_int send(SOCKET s,
const u_char * buf, u_int len)
Transfer the data to the connected socket.
iinChip/socket.c
u_int recv(SOCKET s,
u_char * buf, u_int len)
Receive the data to the connected socket.
iinChip/socket.c
void disconnect(SOCKET s);
Close the connection of the socket.
iinChip/socket.c
If the server socket is in SOCK_CLOSED status, loopback_tcps() calls socket() with the elements of
SOCK_STREAM, Listen Port Number, and Option Flag to create TCP server socket.
The socket() function changes the socket status to SOCK_INIT regardless of the previous socket status. If
the server socket is created successfully, it‟s put in TCP Server mode after calling listen() with the server
socket as the parameter. listen() makes the server socket status as SOCK_LISTEN status and maintains
SOCK_LISTEN status until any client‟s connection.
At this point, when any client tries to connect to the server socket, the server socket status is changed from
SOCK_LISTEN to SOCK_ESTABLISHED. This is when the connection between Client and Server is
complete and data transfer is possible in SOCK_ESTABLISHED status.
Data is transferred using recv() and send() at the SOCK_ESTABLISHED. The data transfer here is 1-on-1
transfer between EVB B/D(The server) and AX1(The client).
In the SOCK_ESTABLISHED status, if the client requests closing of the connection, the server socket status
is changed from SOCK_ESTABLISHED to SOCK_CLOSE_WAIT. In SOCK_CLOSE_WAIT status, data
communication is not available and the server socket must be closed. In SOCK_CLOSE_WAIT status,
disconnect() is called to close socket. disconnect() changes the socket status to SOCK_CLOSED regardless
of previous socket status.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
51
3.2.6.2. Loopback TCP Client
At Loopback TCP Client program, EVB B/D works in client mode and AX1, PC test program works in server
mode. EVB B/D tries to connect to AX1 which is waiting as the server, if the connection is successful EVB
B/D receives data stream through TCP channel and then EVB B/D sends back the received data stream to
AX1.
Loopback TCP client program is created with loopback_tcpc() and <Fig 3.15> is processing procedure of
loopback_tcpc().
If the client socket is in SOCK_CLOSED status, loopback_tcpc() calls socket() with the elements of
SOCK_STREAM, any Port Number, and Option Flag to create TCP client socket.
In creating socket here, any port number is used for get_system_any_port(). This is because connection may
be failed if it tries to connect to the same server with same port number. After successfully creating the
socket, call connect() with the elements of the client socket to connect to the AX1 server.
connect() makes the socket status into SOCK_SYNSENT and keeps the status as SOCK_SYNSENT until it
receives the authorization for connection from the server. If the connection is successful the socket status is
changed from SOCK_SYNSENT to SOCK_ESTABLISHED. In SOCK_ESTABLISHED status, the operation
is same as explained in loopback_tcps().
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
52
loopback_tcpc()
Declare & Initialize Local Variables
u_char * data_buf = TX_BUF
Select Socket Status
getSn_SR()
SOCK_ESTABLISHED?
SOCK_CLOSE_WAIT?
SOCK_CLOSED?
Y
Y
N
N
Close Socket
close(ch)
Select Recieved Size
len = getSn_RX_RSR() len > 0 Receive the Data
recv(ch,data_buf,len)
Send the Received Data
send(ch,data_buf,len)
Create a TCP Socket
socket(ch,SOCK_STREAM,any port,flag)
Wait a connetion with a client
NBconnect(ch,destip,destport)
RETURN
Y
Y
N
<Fig 3.15: loopback_tcpc()>
<Table 3-24: Reference Functions in loopback_tcpc()>
Function Name
Description
Location
void loopback_tcpc(u_char ch)
Loopback TCP Client Program
app/loopback.c
uint8 getSn_SR(SOCKET s)
Get the socket status
iinChip/w5100.c
uint16 getSn_RX_RSR(SOCKET
s)
size of data transmittable, and received
data
iinChip/w5100.c
u_char socket(SOCKET s,
u_char protocol, u_int port,
u_char flag)
Related socket can be created as
TCP/UDP/IP
iinChip/socket.c
u_char connect(SOCKET s,
u_char * addr, u_int port)
Attempts to connect to the specific
server with related socket
iinChip/socket.c
u_int send(SOCKET s,
const u_char * buf, u_int len)
Sends the data to related socket that is
in connection
iinChip/socket.c
u_int recv(SOCKET s,
u_char * buf, u_int len)
Receives the data to related socket that
is in connection
iinChip/socket.c
void disconnect(SOCKET s);
Close the related socket
iinChip/socket.c
u_int get_system_any_port(void)
Get any port number.
evb/config.c
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
53
3.2.6.3. Loopback UDP
Loopback UDP Program is a program that uses unicast datagram communication of UDP protocol. It
operates same as Loopback TCP Server/Client program does. UDP communication includes unicast
datagram communication and broadcast datagram communication, and basically supports 1-to-many
communication that is used for many destinations with one channel.
Loopback UDP program uses loopback_udp() and <Fig 3-16> shows processing procedure of
loopback_udp().
loopback_udp()
Declare & Initialize Local Variables
u_char * data_buf = TX_BUF
u_long destip = 0
u_int destport = 0
Select Socket Status
getSn_SR()
SOCK_INIT?
SOCK_UDP?
SOCK_CLOSED
?
Y
Y
N
N
Select Recieved Size
len = getSn_RX_RSR() len > 0 Receive the Data
recvfrom(ch,data_buf,len,&destip,&destport)
Send the Received Data
sendto(ch,data_buf,len,destip,destport)
Create a TCP Socket
socket(ch,SOCK_DGRAM,port,flag)
RETURN
Y
Y
N
<Fig 3.16: loopback_udp()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
54
<Table 3-25: Reference Functions in loopback_udp()>
Function Name
Description
Location
void loopback_udp(u_char ch)
Loopback udp program
app/loopback.c
uint8 getSn_SR(SOCKET s)
Gets the socket status
iinChip/w5100.c
uint16 getSn_RX_RSR(SOCKET
s)
size of data transmittable, and received
data
iinChip/w5100.c
u_char socket(SOCKET s,
u_char protocol, u_int port,
u_char flag)
Creates related socket as TCP/UDP/IP.
iinChip/socket.c
u_int sendto(SOCKET s,
const u_char * buf, u_int len,
u_char * addr, u_int port)
Sends data to specific port of specific
destination related socket
iinChip/socket.c
u_int recvfrom(SOCKET s,
u_char * buf, u_int len, u_char *
addr, u_int * port)
Sends data to any port of any
destination related socket
iinChip/socket.c
void close(SOCKET s)
Close related socket
iinChip/socket.c
If the udp socket is in SOCK_CLOSED status, socket() is called using SOCK_DGRAM, Port Number, and
Option Flag as the elements to create the UDP socket.
UDP communication, as opposed to TCP, is a datagram communication without the requirement of
connection process. So, direct data communication is possible immediately after socket creation. After
creation of UDP socket, the udp socket status will be changed from SOCK_CLOSED to SOCK_UDP.
Here, not like TCP for data communication which uses send() and recv(), sendto() and recvfrom() are used.
This is because TCP is 1-to-1 communication method of which destination is known but UDP is 1-to-many
communication without connection procedure. sendto() sends data to specific port of specific destination that
is sent as an element, recvfrom() is used to receive the incoming data from temporary port. Destination
information from recvfrom() is informed to user using destip and destport which are sent as elements.
In loopback_udp(), there is no example of using close(), but in case that the UDP communication is not
needed anymore, close() can be always called to close the udp socket.
3.2.6.4. Web Server
Web Server program is a TCP server program using HTTP protocol which is used on TCP protocol. Before
building Web server program, message structure of HTTP protocol that is transmitted between Web server
and Web client(Web browser) are needed to be understood.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
55
HTTP, which stands for Hyper Text Transfer Protocol, is a protocol used in Internet for transferring between
Web server and client browsers.
<Table 3-26: Web Browser’s HTTP Request Operation Procedure >
Request of Client(Web Browser)
--> URL Analysis(Transforming Domain Name to IP Address at DNS)
--> Connection to server at the other end
--> Client(Web Browser) requests document wanted from URL
--> Sending Document(Server)/Receiving Document (Client)
--> Displays received document on the browser
Web Server program analyzes method and URI(Uniform Resource Identifier) of HTTP Request message
received from web browser. In case the related URI simply requests for web page, the page will be sent. If it
requests an action such as CGI(Common Gateway Interface), it takes the action and the result is informed in
web page.
<Fig 3.17> shows HTTP message flow between web server and web client. <Table 3-28> shows structure of
HTTP message.
<Fig 3.17: HTTP Message Flow>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
56
<Table 3-27: HTTP Message Format>
HTTP-message = Simple-Request
| Simple-Response
| Full-Request
| Full-Response
Full-Request = Request-Line
*(General-Header | Request-Header | Entity-Header)
CRLF
[Entity-Body]
Full-Response = Status-Line
*((General-Header | Response-Header | Entity-Header) CRLF)
CRLF
[Entity-Body]
Request-Line = Method SP Request-URI SP HTTP-Version CRLF
Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF
Entity-Header = Allow
| Content-Encoding
| Content-Length
| Content-Type
| Expires
| Last-Modified
| extension-header
Entity-Body = *OCTET
Method = "GET" | "HEAD" | "POST" | extension-method
For further information on HTTP message, refer to RFC2616. HTTP request message varies according to
web browser type. <Table 3-29> shows the examples of HTTP message communication between Internet
Explores on Windows 2000 and EVB B/D.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
57
<Table 3-28: HTTP MESSAGE BETWEEN EVB B/D AND WEB BROWSER>
HTTP Request Message
Ex1> GET wiz_log.gif HTTP/1.1CRCF
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.-ms-
powerpoint, application/vnd.-ms-excel, application/ms-word, */*CRCF
Accept Language: koCRCF
Accept Encoding: gzip, deflateCRCF
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0; .NET CLR
1.3705)CRCF
Host: 192.168.0.2CRCF
Connection: Keep-AliveCRCF
CRCF
Ex2> GET http://192.168.0.2/LCDNLED.CGI?lcd=hi.+EVB B/D&led0=on HTTP/1.1CRCF
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.-ms-
powerpoint, application/vnd.-ms-excel, application/ms-word, */*CRCF
Accept Language: koCRCF
Accept Encoding: gzip, deflateCRCF
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0; .NET CLR
1.3705)CRCF
Host: 192.168.0.2CRCF
Connection: Keep-AliveCRCF
CRCF
HTTP Response Message
Ex1> HTTP/1.1 200 OK CRCF
Content-Type: text/htmlCRCF
Content-Length: 1451CRCFCRCF
[Html Document]
Ex2> HTTP/1.1 200 OKCRCF
Content-Type: gif/imageCRCF
Content-Length: 613CRCFCRCF
[GIF IMAGE]
Web Server program is composed of web_server() to manage HTTP server socket and proc_http() to
manage HTTP message.
<Fig 3.18> is processing procedure.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
58
web_server()
Declare & Initialize Local Variables
u_char * http_request = RX_BUF
Select Socket Status
getSn_SR()
SOCK_ESTABLISHED
?
SOCK_CLOSE_WAIT
?
SOCK_CLOSED?
Y
Y
N
N
Close Socket
close(ch)
Select Recieved Size
len = getSn_RX_RSR() len > 0 Receive the Data
recv(ch,http_request,len)
Create a TCP Socket
socket(ch,SOCK_STREAM,port,flag)
Wait a connetion with a client
NBlisten(ch)
RETURN
Y
Y
N
Process the HTTP Message
http_proc(ch,http_request,len)
Wait for sending the HTTP
Response completely
Close Socket
close(ch)
<Fig 3.18: web_server()>
Since web_server() is TCP server program, it is built in the similar way as loopback_tcps() as explained in
Chapter 3.2.6.1. Difference between web_server() and loopback_tcps() is in the data communication codes.
web_server() calls proc_http() that processes HTTP request message from web browser at
SOCK_ESTABLISHED of the http socket.
After calling function proc_http(), it waits until the HTTP response message to HTTP request from web
browser, and then calls disconnect() to close the http socket.
This socket close is called Active Close and, in the case, EVB B/D requests the close to the client first. For
your reference, Passive Close is where client requests disconnection first. The reason why web server
program supports Active Close is that EVB B/D supports the connection with other clients.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
59
<Fig 3.19: proc_http()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
60
proc_http() calls parse_http_request() to analyse the HTTP request message received from web browser. If
the METHOD of analyzed HTTP request message is “GET”, “HEAD”, or “POST”, get_http_uri_name() is
called and URI Name is extracted from HTTP Request message. If extracted URI Name is /”,replace URI
Name “/” to “index.html” which is web server default page of EVB B/D, because this means that web browser
is requesting default page of web server.
After getting the HTTP request type of HTTP request message by calling find_http_uri_type(), if HTTP
request type is “CGI”, it performs the related CGI command process.
After processing CGI commands or in case that HTTP request type is not the CGI, search file with URI Name
from ROM File Image which is built in EVB B/D.
If the file is found, create HTTP response message and send it.
HTTP Response message is composed of HTTP response header transmission and HTTP response body
transmission. For transmission of HTTP response header, it calls make_http_response_head() using HTTP
request type as the element to create HTTP response header. After transmitting the created HTTP response
header, the HTTP response body is transmitted. For example, if the HTTP response body is any file in ROM
File Image, the files are much bigger than the MTU of W5100. Hence it has to be divided into maximum size
of W5100 before transmission. At this point, if system environment variables that are defined in EVB B/D in
HTTP response body exist, it calls replace_sys_env_value() and replaces system environment variables to
system environment value stored in EVB B/D.
<Table 3-29: System Environment Variables Usage at “evbctrl.html” >
<tr>
<td width="110" height="22"><font color="#FEFEEF">...</font>Source IP</td>
<td width="240" height="27"><input name="sip" type="text" size="20" value="$SRC_IP_ADDRES$"></td>
</tr>
<tr>
<td width="110" height="22"><font color="#FEFEEF">...</font>Gateway IP</td>
<td height="27"><input name="gwip" type="text" size="20" value="$GW_IP_ADDRESS$"></td>
</tr>
<tr>
<td width="110" height="22"><font color="#FEFEEF">...</font>Subnet Mask</td>
<td height="27"><input name="sn" type="text" size="20" value="$SUB_NET__MASK$"></td>
</tr>
<tr>
<td width="110" height="22"><font color="#FEFEEF">...</font>DNS Server IP</td>
<td height="27"><input name="dns" type="text" size="20" value="$DNS_SERVER_IP$"></td>
</tr>
<tr>
<td width="110" height="22"><font color="#FEFEEF">...</font>MAC Address</td>
<td height="27">$SRC_MAC_ADDRESS$</td>
</tr>
<Table 3-30> is a part of “evbctrl.html” in ROM File Image of EVB B/D.
The length of the system environment variables is defined to fit the length of system environment value to be
replaced. For example, if Source IP Address of EVB is expressed in string, the maximum is 16. Hence, the
length of $SRC_IP_ADDRESS$ is 16 as well. „ROM File System‟ of EVB B/D can be created with
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
61
“ROMFileMaker.exe” provided by WIZnet. Refer to ROM File Maker Manual Vx.x.pdf for further
information.
HTTP Request message can be divided into Method and Request-URI by parse_http_request() and stored in
„st_http_request‟ Date Type which is defined in <Table 3-31>. It gets the requested URI Type with
get_http_uri_type().
<Table 3-30: “st_http_request” Data>
#define MAX_URI_SIZE (2048 - sizeof(char)*2)
typedef struct _st_http_request
{
u_char METHOD; /* request method(METHOD_GET...). */
u_char TYPE; /* request type(PTYPE_HTML...). */
char URI[MAX_URI_SIZE]; /* request file name. */
}st_http_request;
nexttok == NULL
Get a Method Token
nexttok = strtok(buf,SP)
parse_http_request()
Y
N
GET HEAD POST
request->method =
METHOD_GET request->method =
METHOD_HEAD request->method =
METHOD_POST
Get a Request-URI Token
nexttok = strtok(NULL,SP)
nexttok == NULL request->method =
METHOD_ERR
Copy nexttok to request->URI RETURN
NN
N
YYY
Y
N
Get a Request-URI Token
nexttok = strtok(NULL,\0')
<Fig 3.20: parse_http_request()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
62
<Fig 3.21: find_http_uri_type()>
Request-URI which is saved in URI [MAX_URI_SIZE] of st_http_request has URI Name before “?” symbol
and Query String after ?” sign. When Request-URI is transferred from Web Browser to Web Server, SP
(Space) text is transmitted in the form of „+‟ and, other Reserved Texts are transmitted in the form of
“%HEXHEX.” Accordingly, Reserved Texts in Request-URI needs to be decoded to the previous value, from
„+‟ to SP and from %HEXHEX to related ASCII vales. For the details of Request-URI decoding, refer to
RFC1738. URI name of Request-URI is extracted with get_http_uri_name().Query String of Request-URI can
include one or more variable=value” pair that has “&” as a separator. Through function
get_http_param_value(), it can extract the wanted variable value in Query String.
<Fig 3.22: get_http_uri_name() & get_http_parse_value()>
CGI processing of Web Server Program at EVB B/D is different from general Web Server Program which is
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
63
based on OS. Web Server Program which is based on OS creates separate process to take case of
communication between processes independently. However, Web Server of EVB B/D is OS-less, so, instead
of making independent process, it calls relevant functions to deal directly with CGI processing. EVB B/D
supports “NETCONF.CGI” which updates Network Information and “LCDNLED.CGI” which controls text LCD,
D1/D2 LED of EVB B/D. <Fig 3.23> and <Fig 3.24> shows both CGI processing.
<Fig 3.23: NETCONF.CGI Processing>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
64
<Fig 3.24: LCDNLED.CGI Processing>
<FORM> of NETCONF.CGI is submitted in “POST” Method. <FORM> submitted using “POST” Method is not
submitted in Query String but submitted in Entity Body of HTTP Request Message. Such value of parameter
for NETCONF.CGI, also, is used to extract related parameter value using get_http_param_value().
<FORM>of LCDNLED.CGI is submitted in “GET” Method and <FORM> submitted as “GET Method is
submitted in Query String of Request-URI. Parameters submitted by Query String of Request-URI can also
extract parameter value using get_http_param_value().
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
65
<Table 3-31: Reference Functions in web_server()>
Function Name
Description
Location
void web_server(u_char ch)
Web Server Program
app/webserver.c
void proc_http(SOCKET s,
u_char * buf, int length)
Processes HTTP Message using related
socket
app/webserver.c
u_int replace_sys_env_value
(u_char* base, u_int len)
Change Pre-defined System
Environment Variables in HTTP
Response Message to Real Values.
app/webserver.c
void parse_http_request
(st_http_request *, u_char *)
Analyzes and processes HTTP Request
Message and saves it in st_http_request
structure.
inet/httpd.c
void find_http_uri_type
(u_char *, char *)
Gets MIME Type of HTTP Request
Message.
inet/httpd.c
char* get_http_uri_name
(char* uri)
Gets Request-URI Name of HTTP
Request Message.
inet/httpd.c
char* get_http_param_value
(char* uri, char* param_name)
Gets Relevant Parameter Value in
Query String of Request-URI
inet/httpd.c
void unescape_http_uri(char *
url)
Transforms Escape Character
inet/httpd.c
void make_http_response_head
(char *, char, u_long)
Creates header of HTTP Response
Message
inet/httpd.c
uint8 getSn_SR(SOCKET s)
Informs the socket status
iinChip/w5100.c
uint16 getSn_RX_RSR(SOCKET
s)
size of data transmittable, and received
data
iinChip/w5100.c
u_char socket(SOCKET s,
u_char protocol, u_int port,
u_char flag)
Creates related socket as TCP/UDP/IP
iinChip/socket.c
void listen(SOCKET s)
Puts the related socket in Server Mode
iinChip/socket.c
u_int send(SOCKET s,
const u_char * buf, u_int len)
Sends data using connected socket
iinChip/socket.c
u_int recv(SOCKET s,
u_char * buf, u_int len)
Receives data from the data from the
connected socket
iinChip/socket.c
void disconnect(SOCKET s)
Closes the connection of the socket
iinChip/socket.c
void replacetochar(char * str,
char oldchar, char newchar)
Changes the special characters in text
rows into new characters.
util/util.c
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
66
3.2.6.5. DHCP Client
DHCP Client program is a program that assigns the network information from DHCP server in the network.
Note that DHCP Client program must be started prior to other programs because it manages Network
Information setup. First, review basic facts on DHCP(Dynamic Host Configuration Protocol) and get further
into the usage of DHCP Client program.
DHCP uses UDP protocol in Transport Layer and communicates with DHCP server using broadcast of UDP.
The reason why it uses broadcast is because it has no IP address and the IP address of server is unknown.
When UDP broadcast at W5100, destination IP address needs to be set ‟255.255.255.255‟ for broadcast
packet transmission.
<Fig 3.25> is a Message Flow between DHCP Server and Client.
<Fig 3.25: DHCP Message Flow>
First of all, DHCP client broadcasts DISCOVERY message to the local Network. If DHCP server exists at the
network then DHCP server receives Discovery message and provides network Information such as IP, G/W
IP, Subnet Mask, and DNS sever IP which can be used by DHCP Client, and information such as Lease
Time to the DHCP Client as OFFER message. DHCP Client can detect DHCP server by receiving the
OFFER message and then it sends REQUEST message to DHCP server to use the information suggested
by DHCP server. After receiving REQUEST message from DHCP Client, DHCP server finds out if the
requested network information is usable. If it is, it sends ACK message, if not, NACK message is sent to
DHCP Client. After receiving ACK message from DHCP server, DHCP Client uses the offered network
information. The network information is valid only for the Lease Time suggested by DHCP server. Hence, if
DHCP Client wants to keep using the network information, it retransmits REQUEST message to DHCP
server to maintain network information usually after half of the Lease Time. In this process, DHCP client can
get same or new network information from DHCP server. In case that it receives new network information,
the new one must be used.
Message between DHCP server and client has the format as in <Fig 3.26> with the size of 544 Bytes. Refer
to document „RFC1541‟ for detailed explanation for each field of DHCP message Format. op Field of the first
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
67
byte decided Request/Reply, and fields after ciaddr is used to deliver network information, and options field
of 312 byte is used to transmit message type or the information such as Client Identifier.
<Fig 3.26: DHCP Message Format>
<Table 3-32: DHCP Message Data Type>
typedef struct _RIP_MSG
{
u_char op; // DHCP_BOOTREQEUST or DHCP_BOOTREPLY
u_char htype; // DHCP_HTYPE10MB
u_char hlen; // DHCP_HLENETHERNET
u_char hops; // DHCP_HOPS
u_long xid; // DHCP_XID
u_int secs; // DHCP_SECS
u_int flags; // DHCP_FLAGSBROADCAST
u_char ciaddr[4];
u_char yiaddr[4];
u_char siaddr[4];
u_char giaddr[4];
u_char chaddr[16];
u_char sname[64];
u_char file[128];
u_char OPT[312];
}RIP_MSG;
DHCP Message of <Fig 3.26> is managed by RIP_MSG Data Type defined in <Table 3-33>. Refer to
“inet/dhcp.h”
To take a brief look at the Option Field of DHCP Message, Option Field has the format of <Fig 3.27>, it
contains Magic Cookie Field, a Lease Identification Cookie with the size of 4 Byte and Code Set ranged from
Code 0 to Code 255. From Code1 to Code 254, codes are composed of pairs of {Code, Len, Value}, and
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
68
Code 0 and Code 255 are composed of {Code} only. For further explanation of each Code of Option Field,
refer to RFC1533.
<Fig 3.27: DHCP Message’s Option Field Format>
<Table 3-33: DHCP Message Option Code Definition>
Code
Enumeration Type
Description
0
padOption
used to cause subsequent fields to align on word boundaries
1
subnetMask
specifies the client's subnet mask
3
routersOnSubnet
a list of IP addresses for routers on the client's subnet
6
dns
specifies a list of DNS servers available to the client
12
hostName
specifies the name of the client
50
dhcpRequestedIPaddr
request that a particular IP address be assigned by the server
51
dhcpIPaddrLeaseTime
a lease time for the IP address
53
dhcpMessageType
used to convey the type of the DHCP message
54
dhcpServerIdentifier
the IP address of the selected server
55
dhcpParamRequest
request values for specified configuration parameters
61
dhcpClientIdentifier
specify client unique identifier
255
endOption
marks the end of valid information
In the Option Field of 312 Bytes, the unused bytes are denoted with 0‟s padding.
<Table 3-34> is defined as enumeration data type in inet/dhcp.h” and shows most common Option Codes
that are used in DHCP Client Program.
Other codes that are not defined in <Table 3-34> are skipped from DHCP Client Program.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
69
The operation of DHCP Client Program is displayed in EVB B/Ds main(). Refer to <Fig 3.3>.
First, set up the MAC address to be used by DHCP Client at the initialization. MAC address is unique
address for all the devices in the network. MAC address is most basic address in Network communication
and necessary information to recognize DHCP Clients in DHCP Server. For MAC Address of DHCP Client
program, it sets up SRC_MAC_ADDR which is global variable of DHCP client using the MAC Address of
EVB B/D. By calling init_dhcp_client() after setup of SRC_MAC_ADDR, it can register two functions to be
called in case of collision of the IP received from DHCP Server and in case of renewal the IP from DHCP
Server.
When calling init_dhcp_client(), if each function is not specified, set_DHCP_network() and proc_ip_conflict()
of DHCP Client Program respectively.
<Fig 3.28: init_dhcp_client()>
When network information is renewed or IP collision occurs, register evb_soft_reset() to run auto reset for
EVB B/D.
Second, Network Information acquirement can be done through getIP_DHCPS().
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
70
getIP_DHCPS()
dhcp_state != STATE_DHCP_LEASED
Find a DHCP Server
send_DHCP_DISCOVER()
dhcp_state = STATE_DHCP_DISCOVER
Reset timeout value & retry count
reset_DHCP_time()
Set Timer for DHCP Client
set_timer(1s)
RETURN Success
N
DHCP_Timeout = 0
DHCP_Timeout == 1 Kill Timer for DHCP Client
kill_timer()
Check dhcp_state
dhcp_state =
check_DHCP_state()
N
Y
Y
RETURN Fail
<Fig 3.29: getIP_DHCPS()>
getIP_DHCPS() initializes W5100 using setIP(),setMACAddr(),and etc, and it initializes „dhcp_state‟ variable
as DHCP client program state to „STATE_DHCP_DISCOVER‟. After the initialization, it calls
send_DHCP_DISCOVER() to transfer a DHCP DISCOVERY message to DHCP server.
After transmitting DISCOVERY DHCP message, it initializes timer variables which are the leased time of
network information received from DHCP server by calling reset_DHCP_time() and uses „DHCP Timer‟ for 1-
sec interval using set_timer(). After the initialization of DHCP_Timeout with 0, it waits for DHCP message to
be received from DHCP server as long as the „DHCP_WAIT_TIME‟ defines and as many as the
MAX_DHCP_RETRYdefines. While waiting for „DHCP_WAIT_TIME & MAX_DHCP_RETRY‟ time, it
continuously checks if dhcp_state is changed to STATE_DHCP_LEASED through check_DHCP_state().
STATE_DHCP_LEASED state represents the network information and means that getIP_DHCP() is done
successfully. If network information is not obtained from DHCP Server during the waiting time for
„DHCP_WAIT_TIME & MAX_DHCP_RETRY‟, check_DHCP_state() sets DHCP_Timeout to 1. When
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
71
DHCP_Timeout is 1, getIP_DHCPS() returns failure after releasing the DHCP Timer.
When it failed to obtain network information from DHCP server, EVB B/D sets network configuration using
default network information or previously obtained network information.
<Table 3-35> is a definition of State, Timeout , and Retry Count of DHCP Client.
<Table 3-34: DHCP Client State & Timeout Definition>
Define
Description
#define STATE_DHCP_DISCOVER 1
DISCOVERY Transmission
#define STATE_DHCP_REQUEST 2
OFFER Receiving & REQUEST Transmission
#define STATE_DHCP_LEASED 3
ACK Receiving, Acquiring Network Information
#define STATE_DHCP_REREQUEST 4
After obtaining Network Information, REQUEST
Retransmission
#define STATE_DHCP_RELEASE 5
RELEASE Transmission
#define MAX_DHCP_RETRY 3
Number of Same DHCP Message Transmission, 3
times
#define DHCP_WAIT_TIME 5
Waiting time for receiving DHCP Message, 5 sec.
At getIP_DHCP(),„DHCP_XID‟ is variable to set up xid Field of DHCP message in <Fig 3.26: DHCP Message
Format>, it must be unique and maintain the same value until Lease Time of network information is expired.
DHCP_XID is fixed with „0x12345678‟ on here, but its recommended to use the random value.
Be advised to set source IP address as „0.0.0.0.‟ when initializing W5100 for communication with DHCP
server. You can use any IP address to set Source IP address of W5100, but using „0.0.0.0‟ is better because
„0.0.0.0‟ corresponds to Class A in IPv4 addressing and it‟s a Null IP address that is not actually used. For
this reason, there is no chance for collision with other network.
For DHCP server to transmit UDP broadcast packet, note that Flag field MSB of DHCP message must be set
1. Refer to <Fig 3.26: DHCP Message Format>.
<Table 3-36> is a part of code that sets up Flag field
<Table 3-35: DHCP Message Flag Field Setup>
#define DHCP_FLAGSBROADCAST 0x8000
pRIPMSG->flags = htons(DHCP_FLAGSBROADCAST);
Third, management of network information obtained from DHCP server can be performed by
check_DHCP_state(). <Fig 3.30> shows DHCP message flow due to DHCP client state change in the
check_DHCP_state() process.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
72
<Fig 3.30: DHCP Message Flow by DHCP Client State>
check_DHCP_state() checks if there is DHCP message from DHCP server. It receives and analyzes DHCP
message. Accoridng to the types of analyzed DHCP message, if it‟s DHCP message that can be receivable,
it changes to next state after it changes DHCP Client State as shown DHCP Message Flow of <Fig 3.30>.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
73
check_DHCP_state()
Declare & Initialize Local Variables
u_int len
u_char type = 0
len > 0
N
Receive & Analyze
type = parseDHCPMSG()
Y
dhcp_state
==
STATE_DHCP_DISCOVER
STATE_DHCP_REQUEST
STATE_DHCP_LEASED
STATE_DHCP_REREQUEST
STATE_DHCP_RELEASE
type==DHCP_OFFER Broadcast DHCP_REQUEST
send_DHCP_REQUEST()
dhcp_state =
STATE_DHCP_REQUEST
Check timeout
check_DHCP_Timeout() END
lease_time == finite
&&
lease_time/2 < dhcp_time
type = 0
OLD_SIP = GET_SIP
DHCP_XID++
Broadcast DHCP_REQUEST
send_DHCP_REQUEST()
dhcp_state =
STATE_DHCP_REREQUEST
Reset timeout & retry_count
reset_DHCP_time()
END
type==DHCP_ACK
type==DHCP_NAK
Reset timeout & retry_count
reset_DHCP_time() Check IP Conflict
check_leasedIP()
IP Conflict ?
dhcp_state =
STATE_DHCP_DISCOVER
Reset timeout & retry_count
reset_DHCP_time()
END
type==DHCP_ACK
type==DHCP_NAK
OLD_SIP != GET_SIP
Update the Network Information
set_DHCP_network()
dhcp_state =
STATE_DHCP_LEASED
Reset timeout & retry_count
reset_DHCP_time()
dhcp_state =
STATE_DHCP_DISCOVER
Reset timeout & retry_count
reset_DHCP_time()
Check timeout
check_DHCP_Timeout() END
END
Y
N
Y
N
Y
N
Y
N
N
Y
Y
N
Y
N
Y
N
Y Y
Y
N
N
N
N
Y
len = getSn_RX_RSR(s)
Update the Network Information
set_DHCP_network()
dhcp_state =
STATE_DHCP_LEASED
Check timeout
check_DHCP_Timeout()
Y
N
<Fig 3.31: check_DHCP_state()>
check_DHCP_state() processes correspondingly with DHCP client state through the series of processes
shown in <Fig 3.31>. If we take a look at DHCP_STATE_LEASED state at check_DHCP_state(), the Lease
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
74
Time received from DHCP server is finite, in case that half of the Lease Time passed, it sends
DHCP_REQEUST Message to DHCP Server and changes it as DHCP_STATE_REREQUEST after it backs
up the source IP. As it continuously transmits DHCP_REQUEST to the server, network information is
maintained.
<Fig 3.32: parse_DHCPMSG() & check_DHCP_Timeout()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
75
parseDHCPMSG() receives DHCP message from DHCP server, categorizes Type of DHCP Message, and
saves network information. When performing check_DHCP_state(), check_DHCP_Timeout() is called in case
that DHCP message is not received during the DHCP_WAIT_TIME or received DHCP message from DHCP
server is not expected, to retransmit DHCP message to DHCP server. If the retransmission of DHCP
message is repeated as much as MAX_DHCP_RETRY, it transmits DHCP_DISCOVER message to DHCP
server after it initializes all the variables to start the connection of DHCP server and DHCP message.
<Table 3-36: Reference Functions in DHCP Client>
Function Name
Description
Location
void init_dhcp_client(SOCKET s,
void (*ip_update)(void),
void (*ip_conflict)(void))
Initializes DHCP Client
inet/dhcp.c
u_int getIP_DHCPS(void)
Obtains network information from
the server
inet/dhcp.c
void check_DHCP_state(SOCKET s)
Manages network information
obtained from DHCP Server
inet/dhcp.c
void set_DHCP_network(void)
Applies network information
obtained from DHCP server to
W3150A+.
inet/dhcp.c
char parseDHCPMSG
(SOCKET s, u_int length)
Analyzes and processes DHCP
message
inet/dhcp.c
void check_DHCP_Timeout(void)
Retransmits the DHCP message
when DHCP connection Timeout
occurs
inet/dhcp.c
char check_leasedIP(void)
Check if the IP obtained from DHCP
server is faced with collision.
inet/dhcp.c
void reset_DHCP_time(void)
Initializes DHCP Timer related
variables.
inet/dhcp.c
void DHCP_timer_handler(void)
DHCP Timer Handler
inet/dhcp.c
void send_DHCP_DISCOVER
(SOCKET s)
Transmits DHCP_DISCOVER
message to DHCP server.
inet/dhcp.c
void send_DHCP_REQUEST
(SOCKET s)
Transmits DHCP_REQUEST
message to DHCP server.
inet/dhcp.c
void
send_DHCP_RELEASE_DECLINE
(SOCKET s,char msgtype)
Transmits
DHCP_DISCOVER/DHCP_DECLIN
E message to DHCP server
inet/dhcp.c
u_int init_dhcpc_ch(SOCKET s)
Creates DHCP client socket.
inet/dhcp.c
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
76
uint8 getSn_SR(SOCKET s)
Informs status of socket
iinChip/w5100.c
uint16 getSn_RX_RSR(SOCKET s)
size of data transmittable, and
received data
iinChip/w5100.c
u_char socket(SOCKET s,
u_char protocol, u_int port, u_char
flag)
Creates sockets as TCP/UDP/IP
iinChip/socket.c
u_int sendto(SOCKET s, const
u_char * buf, u_int len, u_char * addr,
u_int port)
Transmits data through specific port
of specific Destination
iinChip/socket.c
u_int recvfrom(SOCKET s, u_char *
buf,
u_int len, u_char * addr, u_int * port)
Receives data through any port of
any destination.
iinChip/socket.c
void close(SOCKET s)
Closes the Socket
iinChip/socket.c
3.2.6.6. DNS Client
Let‟s take a brief look at the DNS(Domain Name System) before DNS Client setup is introduced.
DNS is a system that transforms Internet Domain Name to Internet IP Address or Internet IP Address to
Internet Domain Name. DNS is composed of Name Server that contains mapping table between IP Address
and Domain Name, and DNS resolver that receives query results by transmitting query to Name Server.
DNS resolver queries IP address or Domain Name to be transformed to local Name Server. Local Name
Server which received the Query searches its DB and answers back to the Resolver. If Resolver cannot find
the information it looks up, Local Name Server sends the received query to Name Server at higher layer and
the received answer can be sent to the Resolver.
<Fig 3.33: Domain Name System Structure & DNS Message Flow>
As seen in <Fig 3.33>, DNS Query and DNS Answer Message transmittable between DNS Resolver and
Name Server are composed of 5 Sections in <Fig 3.34>.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
77
<Fig 3.34: DNS Message Format>
Header Section has fixed 12 Bytes length and the other 4 sections have variable lengths. Answer, Authority,
Additional Section other than Header and Question Section are called Resource Records(RRs). Each of
Header, Question, and RRs has different format.
<Fig 3.35: Header Section Format>
<Fig 3.36: Question Section Format>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
78
<Fig 3.37: Recode Resources Format>
Header Section of DNS Message holds type of Message, DNS Query type, and count information on
variable length section.
In <Fig 3.35: Header Section Format>, QR field gets 0 when DNS Message is a request from Resolver to
Name Server and gets 1 when it‟s from Name Server to Resolver. Opcode Field gets 0 when it queries
Domain Name as IP Address and gets 2 when it queries Name Server status.
QDCOUNT, ANCOUNT, NSCOUNT, and ARCOUNT Field, count information for variable length, represent
Block Count that is composed of Question, Answer, Authority, and additional section. Question section is
made of blocks shown in <Fig 3.36: Question Section Format>. Answer, Authority, and Additional Sections
are composed of blocks shown in <Fig 3.37>.
For example, if QDCOUNT is 1, ANCOUNT is 10, NSCOUNT is 10, and ARCOUNT is 10 then Question
Section is composed of block 1 of <Fig 3.36: Question Section Format>. Answer, Authority, and Additional
Section are composed of 10 blocks shown in <Fig 3.37>.
NAME of <Fig 3.37>, QNAME Filed of <Fig 3.36> and RDDATA Field also get variable lengths. QNAME and
NAME are variable length fields which are composed of <Fig 3.36> Format and they process each field.
RDDATA, variable length field, processes using the data length of RDLENGTH Field.
For further details, refer to RFC1034 and RFC1035
DNS Message is operated by Data Type defined in <Table 3-38>. Refer to “inet/dns.h”
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
79
<Table 3-37: DNS Message Data Type>
/* Header Section */
typedef struct _DHDR
{
u_int id; /* Identification */
u_char flag0;
u_char flag1;
u_int qdcount; /* Question count */
u_int ancount; /* Answer count */
u_int nscount; /* Authority (name server) count */
u_int arcount; /* Additional record count */
}DHDR;
/* Question Section */
typedef struct _QUESTION
{
// char* qname; // Variable length data
u_int qtype;
u_int qclass;
}DQST;
/* Resource Records */
typedef struct _RESOURCE_RECORD
{
// char* _name; // Variable length data
u_int _type;
u_int _class;
u_long _ttl;
u_int _rdlen;
// char* _rdata; // Variable length data
}DRR;
DNS Resolver works based on gethostbyaddr() and gethostbyname(). gethostbyaddr() transforms Internet IP
Address to Internet Domain Name and gethostbyname() transforms Internet Domain Name to Internet IP
Address. gethostbyaddr() and gethostbyname() test the setup of DNS Name Server IP Address and search
free channels of W5100 needed for connection with DNS Name Server. If a free channel of W5100 exists,
gethostbyaddr() and gethostbyname() call dns_query() with „BYNAME‟ or „BYIP‟ as the elements.
For examples of gethostbyaddr() and gethostbyname(), refer to Chapter 3.2.5.3 Ping Request Program.
Actual connection with DNS Name Server is performed through dns_query(), and gethostbyaddr() and
gethostbyname() are reporting only the result of dns_query().
<Table 3-38: Query Type Definition at dns_query()>
typedef enum _QUERYDATA{BYNAME,BYIP}QUERYDATA; /* Query type */
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
80
gethostbyaddr()
NetConf.dns == 0
||
NetConf.dns == 0xFFFFFFFF
Declare Local Variables
SOCKET s
Get the network information of EVB
get_netconf(&NetConf)
N
YDNS Server IP
Addess is not
Configued
Find a Free channel
getSocket(SOCK_CLOSED)
Found? Not found a
Free Socket
Communicate with the DNS Server
dns_query(s,&hostip,BYIP)
RETURN 1
Success? Fail to
communicate
with the Server
RETURN 0
RETURN 0
Y
N
Y
N
gethostbyname()
NetConf.dns == 0
||
NetConf.dns == 0xFFFFFFFF
Declare Local Variables
SOCKET s
Get the network information of EVB
get_netconf(&NetConf)
N
YDNS Server IP
Addess is not
Configued
Find a Free channel
getSocket(SOCK_CLOSED)
Found? Not found a Free
Socket
Communicate with the DNS Server
dns_query(s,&hostip,BYNAME)
RETURN 1
Success? Fail to
communicate
with the Server
RETURN 0
RETURN 0
Y
N
Y
N
<Fig 3.38: gethostbyaddr() & gethostbyname()>
dns_query() initializes the buffer that is needed for DNS inter-working and creates QNAME of Question
Section based on Query Type „BYNAME‟, and „BYIP.‟ If the Query Type is „BYNAME,‟ that is, when querying
the Domain Name with IP Address, Domain Name can be used as QNAME without transformation.
When Query Type is „BYIP,‟ that is, when querying the Domain Name with IP Address, change IP Address to
IP Address String and QNAME is used after adding in-addr.arpa” to the changed IP Address String. After
the creation of QNAME, UDP Socket is created for DNS inter-working and DNS Request Message is created
by calling dns_make_query(). If DNS Request Message is created successfully DNS Request Message is
sent to DNS Name Server through UDP Socket. After sending DNS Request Message it receives DNS
Response Message or waits until the waiting time is expired.
If DNS response message is received from DNS name server during the waiting time, it analyzes received
DNS response message using dns_parse_response(). dns_query() returns IP Address or Domain Name
depending on Query Type.
<Fig 3.39> is dns_query()‟s process map
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
81
<Fig 3.39: dns_query()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
82
<Fig 3.40: dns_makequery()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
83
dns_makequery() creates DNS Request message to be sent to DNS Name Server. Since DNS Request
Message can query only with Header, Question Section, RRs Sections is not needed to be created. If you
examine the header section creation at dns_makequery(), first, it sets ID Field values as any value in DNS
Message inter-working. On here, ID is set with 0x1122, and for further inter-working, the value is incremented
by 1. QR, Opcode, AA, TC, RD Field are set as QR_QUERY, OP_QUERY/OP_IQUERY, 0, 0, 1 respectively
through MAKE_FLAG0(), and RA, Z, RCODE Field are set as 0, 0, 0 respectively through MAKE_FLAG1().
<Table 3-39: Constants and MACRO used in Header Section>
#define QR_QUERY 0
#define QR_RESPONSE 1
#define OP_QUERY 0 /* a standard query (QUERY) */
#define OP_IQUREY 1 /* an inverse query (IQUERY) */
#define OP_STATUS 2 /*a server status request (STATUS)*/
#define MAKE_FLAG0(qr, op, aa, tc, rd)
( ((qr & 0x01) << 7) + ((op & 0x0F) << 3) + ((aa & 0x01) << 2) + ((tc & 0x01) << 1) + (rd & 0x01) )
#define MAKE_FLAG1(ra, z, rcode)
( ((ra & 0x01) << 7) + ((z & 0x07) << 4) + (rcode & 0x0F) )
Since the count fields, QDCOUNT, ANCOUNT, NSCOUNT, and ARCOUNT, have only one question, each is
set as 1, 0, 0, 0 respectively.
Let‟s look at Question Section. QNAME Field is the field that sets IP Address string. Domain Name and IP
Address string are composed of label length of 1 byte and label of MAX 63 Byte. The end of QNAME is
always set with 0 to find out the variable length of QNAME. <Fig 3.41> is actual example of transformation of
Domain Name “www.wiznet.co.kr” in QNAME field.
<Fig 3.41: Example of QNAME Field transformation of Question Section >
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
84
QTYPE Field of Question Section is set „TYPE_PTR‟, when it holds Domain Name as QNAME. When it‟s IP
address, it‟s set as „TYPE_A, and QCLASS field is set as „CLASS_IN‟ since it is included in Internet.
Table 3-41 is definition of constants that are used in QTYPE & QCLASS Fields.
<Table 3-40 : Constants Definition at QTYPE & QCLASS Field>
Definition
Description
#define TYPE_A 1
#define TYPE_NS 2
#define TYPE_MD 3
#define TYPE_MF 4
#define TYPE_CNAME 5
#define TYPE_SOA 6
#define TYPE_MB 7
#define TYPE_MG 8
#define TYPE_MR 9
#define TYPE_NULL 10
#define TYPE_WKS 11
#define TYPE_PTR 12
#define TYPE_HINFO 13
#define TYPE_MINFO 14
#define TYPE_MX 15
#define TYPE_TXT 16
#define QTYPE_AXFR 252
#define QTYPE_MAILB 253
#define QTYPE_MAILA 254
#define QTYPE_TYPE_ALL 255
The ARPA Internet
an authoritative name server
a mail destination (Obsolete - use MX)
a mail forwarder (Obsolete - use MX)
the canonical name for an alias
marks the start of a zone of authority
a mailbox domain name
a mail group member
a mail rename domain name
a null RR
a well known service description
a domain name pointer
host information
mailbox or mail list information
mail exchange
text strings
A request for a transfer of an entire zone
A request for mailbox-related records
A request for mail agent RRs
A request for all records
#define CLASS_IN 1
#define CLASS_CS 2
#define CLASS_CH 3
#define CLASS_HS 4
#define QCLASS_ANY 255
Internet
CSNET class
CHAOS class
Hesiod [Dyer 87]
Any class
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
85
<Fig 3.42: dns_parse_response()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
86
dns_parse_response() of <Fig 3.42> analyzes Response Message received by DNS Name Server.
dns_parse_response() checks if it‟s same as Request Message ID that was sent to DNS Name Server and it
also checks if the message received is a response message by checking QR Field of Header Section. If the
received message is response from DNS Name Server, the success of change is decided by checking the
RCODE Field value of Header Section.
<Table 3-42> is definition of constants that are used in RCODE Field.
<Table 3-41 : Constant Definition at Header Sections RCODE Field>
Definition
Description
#define RC_NO_ERROR 0
No error condition
#define RC_FORMAT_ERROR 1
Format error - The name server was unable to interpret
the query
#define RC_SERVER_FAIL 2
Server failure - The name server was unable to process
this query due to a problem with the name server
#define RC_NAME_ERROR 3
Name Error - Meaningful only for responses from an
authoritative name server, this code signifies that the
domain name referenced in the query does not exist.
#define RC_NOT_IMPL 4
Not Implemented - The name server does not support
the requested kind of query.
#define RC_REFUSED 5
Refused - The name server refuses to perform the
specified operation for policy reasons.
If the RCODE is RC_NO_ERROR, variable length sections such as Question, Answer, Authority, and
Additional Section are analyzed. Since the necessary information is set in Answer Section, its analyzed and
processed, and other section analysis and process are not performed. If you need information on Authority
and Additional Section, you can get them easily on your own.
Question Section is processed as many as QDCOUNT of Header Section by calling dns_parse_question().
Answer Section is processed as many as ANCOUNT of Header Section by calling dns_parse_question().
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
87
<Fig 3.43: dns_parse_question() & dns_answer()>
dns_parse_question() analyses and processes Question Section. There is no information that actually used
in the Question Section of DNS Request Message, but it must be processed to get the starting position of
Answer Section. Since QNAME Field of Question Section gets variable length, parse_name() processes
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
88
QNAME Field to process the variable length processes and QTYPE, and QCLASS Field are skipped.
dns_answer() analyzes and processes Answer Section. Answer Section is a section where transformation
actually takes effects and it performs appropriate process to TYPE Field of Answer Section.
TYPE of Answer Section has one of values from <Table 3-41 : Constants Definition at QTYPE & QCLASS
Field> and the value comes from either TYPE_A or TYPE_PTR. In case that the Domain Name is changed
to IP Address, it can get the changed IP Address from TYPE_A and if the IP Address is changed to Domain
Name, Domain Name can be obtained from TYPE_PTR. Changed Domain Name or IP Address are also
processed and extracted by parse_name().
<Fig 3.44: parse_name()>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
89
parse_name() processes QNAME Field of Question Section or NAME, RDDATA Field of RRs Section.
QNAME, NAME, RDDATA Field are mostly composed as in <Fig 3.41: Example of QNAME Field
transformation of Question Section >. However, it can be compressed to reduce DNS Message Size.
Compression scheme is expressed in 2 Byte. If the first byte - the upper 2 bits are ‟11,‟ it means the Label is
compressed. It has the offset that is composed of 1ST Byte excluding upper 2 bits and 2nd Byte
This offset is Offset of DNS Message and means the actual value of Label is located by the offset from the
starting point of DNS message. When Compress Scheme tries to reuse Domain Name that was already
used in DNS Message, relevant Domain Name sets the offset that is located in DNS Message as Indirect so
that it can reduce the size of DNS Message. <Fig 3.45> is an example of Compress Scheme of DNS
Message and its application.
<Fig 3.45: DNS Message Compression Scheme>
The example of Compression Scheme of <Fig 3.45> shows DNS Message in case of “F.ISI.ARPA”,
“FOO.F.ISI.ARPA”, “ARPA”, and ROOT. “F.ISI.ARPA” is processed in the format of <Fig 3.41: Example of
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
90
QNAME Field transformation of Question Section > with Offset 20 of DNS Message without compression.
In “FOO.F.ISI.ARPA,” since the rest except for FOO” is same as Name which is previously processed,
“FOO” is processed with <Fig 3.41: Example of QNAME Field transformation of Question Section > Format
without compression and the rest of names is processed by Offset 26. ROOT is the highest Domain and it‟s
processed with Label Length Field of 0.
parse_name(), before analysis of Name, checks if upper 2 bits of Label Length Byte are 11, if it‟s „11‟ the
related Label analyzes the Label at the offset of DNS Message where the Label is located. If its no „11‟ then
the Label is analyzed and processed like as <Fig 3.41: Example of QNAME Field transformation of Question
Section >.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
91
<Table 3-42 : Reference Functions in DNS Client >
Function Name
Description
Location
int gethostbyaddr
(u_long ipaddr,char* domain)
Changes IP Address to Domain Name
inet/dns.c
u_long gethostbyname
(char* hostname)
Changes Domain Name to IP Address
inet/dns.c
u_char dns_query
(SOCKET s, u_long dnsip,
u_char * domain_name,
u_long* domain_ip,
QUERYDATA querydata,
u_int elapse)
DNS Message Processing
inet/dns.c
int dns_make_query
(u_char op,char * qname)
Creates DNS Request Message
inet/dns.c
Int dns_parse_reponse(void)
Analyzes DNS Response Message
inet/dns.c
u_char * dns_parse_question
(u_char * cp)
Analyzes Question Section of DNS
Response Message
inet/dns.c
u_char * dns_answer
(u_char *cp)
Answer Section of DNS Response
Message
inet/dns.c
int parse_name(char* cp,char*
qname, u_int qname_maxlen)
Analyzes NAME Field of Question,
RRs Section
inet/dns.c
uint16 getSn_RX_RSR(SOCKET
s)
size of data transmittable, and
received data
iinChip/w5100.c
u_char socket(SOCKET s, u_char
protocol, u_int port, u_char flag)
Creates sockets as TCP/UDP/IP
iinChip/socket.c
u_int sendto(SOCKET s,
const u_char * buf, u_int len,
u_char * addr, u_int port)
Transmits data through specific port of
specific Destination
iinChip/socket.c
u_int recvfrom(SOCKET s,
u_char * buf, u_int len, u_char *
addr, u_int * port)
Receives data through any port of any
destination.
iinChip/socket.c
void close(SOCKET s)
Closes the related Socket
iinChip/socket.c
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
92
4. Hardware Designer‟s Guide
4.1. Block Diagram
<Fig 4.1: EVB B/D Block Diagram>
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
93
4.2. Block Description
EVB B/D is composed of W5100E01-AVR(EVB Base Board) and PM-A1(AVR MODULE).
Following 9 blocks are components of EVB B/D.
- PM-A1
- LCD
- PAL
- SRAM
- RS232 Port
- Expanded Board Interface
- Power Regulator
- 3.3V Power On System Reset
4.2.1. PM-A1
PM-A1(AVR MODULE) is composed of Atmega128 Processor, 74HC573 for address latch, 8MHz external
crystal and header for interfacing to Base board(JP4,JP5), and ISP(JP3) & JTAG(JP1) Interface.
<Fig 4.2: PM-A1 MODULE Dimension>
For easy development using EVB Board, all the port pin except for /ALE(PG2) are connected to MB-EVB-X2
through module Interface(JP4,JP5). Pin description of Interface is shown in <Table 4-1: PM-A1 MODULE Pin
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
94
Description>.
<Table 4-1: PM-A1 MODULE Pin Description>
PM-A1
MODULE
Header #
Pin #
Pin Name
Dir.
Description
JP4
25
~
32
D0(PA0)
~
D7(PA7)
I/O
Databus[0:7] or PA[0:7]
JP5
26
~
33
PB0
~
PB7
I/O
PB[0:7]
JP4
3
~
10
A0
~
A7
I/O
Address bus[0:7]
JP4
11
~
18
A8(PC0)
~
A15(PC7)
I/O
Address bus[8:15] / PC[0:7]
JP5
JP5
JP4
JP4
JP5
JP5
JP5
JP5
42
43
47
45
34
35
36
37
PD0/SCL
PD1/SDA
PD2/RXD1
PD3/TXD1
PD4
PD5
PD6
PD7
I/O
PD[0:7]
JP4
JP4
JP5
JP5
JP5
JP5
JP5
JP5
48
46
38
44
23
46
6
8
RXD0
PE1/TXD0
PE2
PE3
PE4/I2CHIP_IRQ
PE5
PE6
PE7
I/O
RXD0 is connected with PE0
through 1K ohm resistor.
PE[1:7]
JP5
13
~
20
PF0
~
PF7
I/O
PF[0:7]
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
95
JP4
JP4
JP5
JP5
41
42
40
41
/WR(PG0)
/RD(PG1)
PG3/LED_0
PG4/LED_1
I/O
PG[0:4] without ALE(PG2)
JP5
4
CPU_RESET
I
Reset Signal Input process generated
by EVB B/D‟s Reset Switch(SW3).
JP5
1,2
3.3V
I
3.3V Power Input.
JP4
1,2
5V
I
5V Power Input Not Used.
JP5
JP5
JP5
JP4
10,12,21,
22,45,47,
48,49,50
23,24,49,50
GND
Signal Ground
JP5
JP4
3,5,7,9,11,
19,20,21,22
33,34,35,36,
37,38,39,40,
43,44
RES0
~
RES18
RESERVED LINE
JP5
24
25
39
NC
NC
NC
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
96
AVR ISP (JP3) Pin Mapping
<Table 4-2: ISP Pin Description>
SIGNAL
Pin Number
I/O
Description
VCC
2
-
Power is delivered to the AVRISP
GND
3,4,6,8,10
-
Ground
PDO
1
Input
Commands and data from AVRISP to EVB B/D
PDI
9
Output
Data from EVB B/D to AVRISP
SCK
7
Input
Serial Clock, Controlled by AVRISP
CPU_RESET
5
Input
Reset. Controlled by AVRISP
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
97
4.2.2. LCD
LCD is used for debugging and system status display.
Pin Description of LCD Interface (JP3) is as follows.
<Table 4-3: LCD PIN Description>
PIN#
EVB B/D PIN NAME/
LCD PIN NAME
DIR.
Description
1
GND/VSS
Signal Ground
2
5V/VDD
I
LCD Power Supply
3
V0/V0
I
Voltage for LCD drive
4
A1/RS
I
Data/Instruction register select
5
A0/RW
I
Read/Write
6
LDC_E/E
I
Enable signal,start data read/write
7
~
14
D0/DB0
~
D7/DB7
I/O
Data Bus Line
15
NC1/LED A
O
LED Anode, power supply+
16
NC2/LED K
O
LED Cathode,ground 0V
It uses minimum -0.3V and maximum 13V of VDD-V0 at Specification Document of LC1624. To fit the data,
R6(5V Pull Up maximum 10K) and R7(Gnd Pull Down 820R) are used and, in real application, LCD Display
became clear when R6 was adjusted. For details on LC1624, refer to “LC1624 Specificationsdocument.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
98
4.2.3. PAL
PAL is used to make enable signal of various chip or module that are used for EVB B/D. The PAL element
that is used in the product is ATF16V8B-15PL from ATMEL co. It uses 10 input pins and 8 I/O Pins.
It makes Chip Select or Enable Signal about SRAM(/CS_RAM), LCD(LCD_E), and W5100(/CS_IINCHIP).
The output, PAL_OUT_0~PAL_OUT_4, are set aside for expansion through Expanded Interface.
4.2.4. SRAM
SRAM, with the size of 32Kbytes, is used as external data memory of Atmega128.
4.2.5. RS232 Port
It‟s a interface for Dual Serial USARTs that is supported by Atmega128.
EVB B/D uses 9Pin DSUB male Type(P1,P2) connector.
4.2.6. Expanded Board Interface
Expanded board interface is designed to be developed easily using EVB B/D. Most of the port pin of
Atmega128, output sinal of PAL (PAL_OUT_0~PAL_OUT_4), power and many reserved pin are connected to
Expanded Board Interface.
The Signals of Atmega128 that are not connected to Expanded Board Interface are 7 RXD1(PD2),
TXD1(PD3), RXD0(PE0), TXD0(PE1), LED0(PG3), LED1(PG4), /I2CHIP_IRQ(PE4).
<Table 4-4: Expanded Board Interface Pin Description>
Pin #
Pin Name
Dir.
Description
Bus Interface
66,34,67,35,
68,36,69,37,
70,38,71,39,
73,40,74,41
A0, A1, A2, A3,
A4, A5, A6, A7,
A8, A9, A10,A11
A12,A13,A14,A15
O
Parallel Address Bus[0:15]
77,45,78,46
79,47,80,48
D0, D1, D2, D3,
D4, D5, D6, D7
I/O
Parallel Data Bus[0:7]
53
86
/RD
/WR
O
Parallel Bus Read Strobe
Parallel Bus Write Strobe
25
~
29
PAL_OUT_0
~
PAL_OUT_4
O
Reserved Parallel Bus Chip Select / Enable
18
SDA/PD0
I/O
I2C Bus Data Line/ Port D0
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
99
19
SCL/PD1
O
I2C Bus Clock Line/Port D1
Atmega128 Port Interface
20
21
56
57
58
59
60
61
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
I/O
Port B[0:7]
92
93
89
90
PD4
PD5
PD6
PD7
I/O
Port D[4:7]
91
22
23
3
5
PE2
PE3
PE5
PE6
PE7
I/O
Port E[2:3],
Port E[5:7]
1,2,4,6,
7,75,42,76
43,81,49,83,
50,84,51,85,
52,54,87
RES0~RES3
RES4~RES7
RES8~RES11
RES12~RES15
RES16~RES18
Not Available
Power Interface
31,32
5V
O
5V Power Supply
63,64
3.3V
O
3.3V Power Supply
8,9,24,30,44,
55,62,65,72,
82,88,94
GND
Ground
No. 8 Pin and GND became Short in AVR
Module.
Expanded Board Interface Connector, which is “PCN10BK-96S-2.54DS” of Hirose co., is a Din Connector
96Pin Female Rightangle Type. Connector of Male Type that is mated here is “PCN10-96P-2.54DS.”
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
100
4.2.7. Power Regulator
EVB B/D gets 5V DC power through power adaptor. The powers used inside the board are 5V and 3.3 V. The
regulator is LT1963EST-3.3(U1). To shut down the regulator, Toggle Switch(SW1) is used.
4.2.8. 3.3V Power On System Reset
Manual reset and Power On Reset is implemented using RC analog circuit.
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
101
4.3. Schematic
4.3.1. W5100E01-AVR
Please refer to “W5100E01-AVR.DSN” in the official website of WIZnet (www.wiznet.co.kr).
4.3.2. PM-A1
Please refer to “PM-A1.DSN” in the official website of WIZnet (www.wiznet.co.kr).
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
102
4.4. PAL
In EVB B/D, PAL creates Chip Select (Module Enable).
The address map of EVB B/D is same as <Fig 3.1: EVB B/D Memory Map>.
The EVB B/D supports 3 enable signal(Chip Select) as shown in the address map of EVB B/D.
EVB B/D provides VHDL Code. For developer who uses PAL element, CUPL is recommended since it is a
freeware PAL Compiler. WINCUPL of ATMEL co. can be used after simple registration.
Use it with “AWINCUPL.EXE” that is downloadable from ATMEL Homepage.
Refer to “AVR Tool Guide.pdf” for usage.
4.4.1. IO Define
The following is VHDL Source code.
The following is CUPL Source code.
entity evb_pal is
port(
Addr : in std_logic_vector(15 downto 10);
nRD : in std_logic;
nWR : in std_logic;
nRAMCS : out std_logic;
nCS_IINCHIP : out std_logic;
LCDCS : out std_logic
);
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
103
4.4.2. External SRAM Area
External SRAM area is ranged from 0x0000 to 0x7fff.
The following is a VHDL Source Code that makes SRAM CS.
The following is a CUPL Source Code that makes SRAM CS.
4.4.3. LCD Area
LCD is ranged 0x9000 ~ 0x9400.
WR and RD Signal are used together to control the timing.
--nRAMCS (0x0000 - 0x7fff) :
process(Addr)
begin
if (Addr < "100000") then
nRAMCS <= '0';
else
nRAMCS <= '1';
end if;
end process;
/* < 0x8000 */
!nCS_RAM = !A15;
/* *************** INPUT PINS *********************/
PIN [1..6] = [A10..15]; /* address upper 6bits */
PIN 7 = nRD; /* read signal */
PIN 8 = nWR; /* write signal */
/* *************** OUTPUT PINS *********************/
PIN 12 = nCS_RAM; /* External SRAM CS */
PIN 13 = LCD_E; /* LCD CS */
PIN 14 = nCS_IINCHIP; /* iinChip CS */
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
104
LCD is High Active Enable Signal.
4.4.4. W5100 Area
In case of W5100, the address is divided into 2 parts about same Chip.
For more details, refer to “W5100 Datasheet
--LCDCS (0x9000 - 0x93ff)
process(Addr, nRD, nWR)
begin
if (((Addr >= "100100") and (Addr < "100101")) and (nRD = '0' or nWR = '0')) then
LCDCS <= '1';
else
LCDCS <= '0';
end if;
end process;
/* 0x9000 <= < 0x9400 */
LCD_E = (A15 & !A14 & !A13 & A12 & !A11 & !A10) & (!nRD # !nWR);
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
105
For VHDL Source Code, refer to “EVB_PAL.VHDin the official website of WIZnet (www.wiznet.co.kr).
For CUPL Source Code, refer to “EVB_PAL.PLDin the official website of WIZnet (www.wiznet.co.kr).
Please refer to “AVR Tool Guide.pdf” for compiling.
-- IINCHIP (0x8000 - 0x8800, 0xC000 - 0xFFFF)
process(Addr)
begin
if (((Addr >= "100000") and (Addr < "100010")) or (Addr >= "110000")) then
nCS_IINCHIP <= '0';
else
nCS_IINCHIP <= '1';
end if;
end process;
/* 0x8000 <= < 0x8800 OR > 0xC000 */
!nCS_IINCHIP = (A15 & !A14 & !A13 & !A12 & !A11) # (A15 & A14);
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
106
4.5. Parts List
4.5.1. W5100E01-AVR Parts List
Please refer to “W5100E01-AVR_PARTLIST.PDFin the official website of WIZnet (www.wiznet.co.kr).
4.5.2. PM-A1 Parts List
Please refer to “PM-A1_PARTLIST.PDFin the official website of WIZnet (www.wiznet.co.kr).
© Copyright 2007 WIZnet Co., Ltd. All rights reserved.
W
W5
51
10
00
0E
E0
01
1-
-A
AV
VR
R
U
Us
se
er
r
s
s
M
Ma
an
nu
ua
al
l
107
4.6. Physical Specification
4.6.1. Power Consumption
Power consumption of each component of EVB B/D is as in the following table.
< Table 4-5 EVB B/D Power Consumption >
Power Level
MIN
TYP
MAX
UNIT
5V
-
243
-
mA
3.3V
-
198
-
mA
Total Power consumption is 243mA X 5V = 1215mW.