Linear Li-Ion Battery Charger with Power
Path and USB Compatibility in LFCSP
Data Sheet ADP5062
Rev. B Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2012–2013 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
4 mm × 4 mm LFCSP package
Fully programmable via I2C
Flexible digital control inputs
Up to 2.1 A current from an ac charger in LDO mode
Operating input voltage from 4.0 V to 6.7 V
Tolerant input voltage from −0.5 V to +20 V (USB VBUS)
Fully compatible with USB 3.0 and USB Battery Charging
Specification 1.2
Built-in current sensing and limiting
As low as 54 mΩ battery isolation FET between battery and
charger output
Thermal regulation prevents overheating
Compliant with JEITA 1 and JEITA 2 Li-Ion battery charging
temperature specifications
SYS_EN flag permits the system to be disabled until battery is at
the minimum required level for guaranteed system start-up
APPLICATIONS
Digital still cameras
Digital video cameras
Single cell Li-Ion portable equipment
PDAs, audio, and GPS devices
Portable medical devices
Mobile phones
GENERAL DESCRIPTION
The ADP5062 charger is fully compliant with USB 3.0 and the
USB Battery Charging Specification 1.2 and enables charging
via the mini USB VBUS pin from a wall charger, car charger, or
USB host port.
The ADP5062 operates from a 4 V to 6.7 V input voltage range
but is tolerant of voltages up to 20 V thereby alleviating concerns
about USB bus spikes during disconnect or connect scenarios.
The ADP5062 features an internal FET between the linear
charger output and the battery. This permits battery isolation
and, hence, system powering under a dead battery or no battery
scenario, which allows for immediate system function on connec-
tion to a USB power supply.
Based on the type of USB source, which is detected by an external
USB detection chip, the ADP5062 can be set to apply the correct
current limit for optimal charging and USB compliance.
The ADP5062 has three factory-programmable digital input/out-
put pins that provide maximum flexibility for different systems.
These digital input/output pins permit combinations of features
such as, input current limits, charging enable and disable, charging
current limits, and a dedicated interrupt output pin.
TYPICAL APPLICATION CIRCUIT
Figure 1.
VIN
VBUS
AC OR
USB
SCL
SDA
DIG_IO1
DIG_IO2
DIG_IO3
AGND
+Li-ion
THR
C3
22µF
C1
10nF
C4
10µF
C2
22µF
ISO_Sx
ISO_Bx
BAT_SNS
ADP5062
SYS_EN
SYSTEM
PROGRAMMABLE
ILED VLED
CBP
CHARGER
CONTROL
BLOCK
10806-001
ADP5062 Data Sheet
Rev. B | Page 2 of 44
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Typical Application Circuit ............................................................. 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Recommended Input and Output Capacitances ...................... 6
I2C-Compatible Interface Timing Specifications ..................... 6
Absolute Maximum Ratings ....................................................... 8
Thermal Resistance ...................................................................... 8
ESD Caution .................................................................................. 8
Pin Configuration and Function Descriptions ............................. 9
Typical Performance Characteristics ........................................... 10
Temperature Characteristics ..................................................... 12
Typical Waveforms ..................................................................... 14
Theory of Operation ...................................................................... 15
Summary of Operation Modes ................................................. 15
Introduction ................................................................................ 16
Charger Modes............................................................................ 18
Thermal Management ............................................................... 21
Battery Isolation FET ................................................................. 21
Battery Detection ....................................................................... 21
Battery Pack Temperature Sensing .......................................... 22
I2C Interface ................................................................................ 26
I2C Register Map ......................................................................... 27
Register Bit Descriptions ........................................................... 28
Applications Information .............................................................. 36
External Components ................................................................ 36
PCB Layout Guidelines.............................................................. 38
Power Dissipation and Thermal Considerations ....................... 39
Charger Power Dissipation ....................................................... 39
Junction Temperature ................................................................ 39
Factory-Programmable Options .................................................. 40
Charger Options ......................................................................... 40
I2C Register Defaults .................................................................. 41
Digital Input and Output Options ........................................... 41
Packaging and Ordering Information ......................................... 43
Outline Dimensions ................................................................... 43
Ordering Guide .......................................................................... 43
REVISION HISTORY
10/13Rev. A to Rev. B
Changes to Table 19 ........................................................................ 28
Changes to Table 26 ........................................................................ 32
Changes to Charger Options Section and Table 41 ................... 40
Changes to Ordering Guide .......................................................... 43
4/13—Rev. 0 to Rev. A
Changes to Figure 3 .......................................................................... 9
9/12Revision 0: Initial Version
Data Sheet ADP5062
Rev. B | Page 3 of 44
SPECIFICATIONS
40°C < TJ < +125°C, VVINx = 5.0 V, RHOT_RISE < RTHR < RCOLD_ FA LL , VBAT_SNS = 3.6 V, V ISO_Bx = VBAT_SNS, CVIN = 10 µF, CISO_S = 22 µF, CISO_B = 22 µF,
CCBP = 10 nF, all registers at default values, unless otherwise noted.
Table 1.
Parameter
Symbol
Min
Typ
Max
Unit
Test Conditions/Comments
GENERAL PARAMETERS
Undervoltage Lockout VUVLO 2.25 2.35 2.5 V Falling threshold, higher of VVINx and VBAT_SNS1
Hysteresis 50 100 150 mV Hysteresis, higher of VVINx and VBAT_SNS rising1
Total Input Current ILIM 74 92 100 mA Nominal USB initialized current level2
114
150
mA
USB super speed
300 mA USB enumerated current level (specification for
China)
425 470 500 mA USB enumerated current level
900 mA Dedicated charger input
1500 mA Dedicated wall charger
VINx Current Consumption IQVIN 2 mA Charging or LDO mode
I
QVIN_DIS
280
450
µA
DIS_IC1 = high, V
ISO_Bx
< VINx < 5.5 V
Battery Current Consumption IQBATT 20 µA LDO mode, VISO_Sx > VBAT_SNS
5
µA
Standby, includes ISO_Sx pin leakage, V
VINx
= 0 V,
TJ = −40°C to +85°C
0.5
0.9
mA
Standby, battery monitor active
CHARGER
Fast Charge Current CC Mode ICHG 700 750 790 mA VISO_Bx = 3.9 V; fast charge current accuracy is
guaranteed at temperatures from TJ = 40°C to the
isothermal regulation limit (typically TJ = +115°C)2, 3
Fast Charge Current Accuracy
8
+7
%
I
CHG
= 400 mA to 1300 mA
33 +29 mA ICHG = 250 mA to 350 mA
45 +40 mA ICHG = 50 mA to 200 mA
Trickle Charge Current2 ITRK_DEAD 16 20 25 mA
Weak Charge Current2, 3 ICHG_WEAK ITRK_DEAD + ICHG mA
Trickle to Weak Charge Threshold
Dead Battery VTRK_DEAD 2.4 2.5 2.6 V VTRK_DEAD < VBAT_SNS < VWEAK2, 4
Hysteresis ΔVTRK_DEAD 100 mV On BAT_SNS2
Weak Battery Threshold
Weak to Fast Charge Threshold
V
WEAK
2.89
3.0
3.11
V
On BAT_SNS
2
,
4
ΔV
WEAK
100
mV
Battery Termination Voltage VTRM 4.200 V
Termination Voltage Accuracy −0.25 +0.25 % On BAT_SNS, TJ = 25°C, IEND = 52.5 mA2
1.04 +0.89 % TJ = 0°C to 115°C2
−1.16 +1.20 % TJ = 40°C to +125°C
Battery Overvoltage Threshold VBATOV VIN − 0.075 V Relative to VINx voltage, BAT_SNS rising
Charge Complete Current IEND 15 52.5 98 mA VBAT_SNS = VTRM
Charging Complete Current Threshold
Accuracy
17
83
mA
IEND = 52.5 mA, TJ = 0°C to 115°C
2
59
123
mA
I
END
= 92.5 mA, T
J
= 0°C to 115°C
Recharge Voltage Differential VRCH 160 260 390 mV Relative to VTRM, BAT_SNS falling2
Battery Node Short Threshold Voltage2 VBAT_SHR 2.2 2.4 2.5 V
Battery Short Detection Current ITRK_SHORT 20 mA ITRK_SHORT = ITRK_DEAD2
Charging Start Voltage Limit VCHG_VLIM 3.6 3.7 3.8 V Voltage limit is not active by default
Charging Soft Start Current ICHG_START 185 260 365 mA VBAT_SNS > VTRK_DEAD
Charging Soft Start Timer tCHG_START 3 ms
ADP5062 Data Sheet
Rev. B | Page 4 of 44
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
BATTERY ISOLATION FET
Pin to Pin Resistance Between ISO_Sx
and ISO_Bx
RDSON_ISO 54 89 On battery supplement mode, VINx = 0 V, VISO_Bx =
4.2 V, IISO_Bx = 500 mA
Regulated System Voltage: VBAT Low VISO_SFC 3.6 3.8 4.0 V VTRM[5:0] programming 4.00 V
3.2 3.4 3.5 V VTRM[5:0] programming < 4.00 V
Battery Supplementary Threshold VTHISO 0 5 12 mV VISO_Sx < VISO_Bx, VSYS rising
LDO AND HIGH VOLTAGE BLOCKING
Regulated System Voltage VISO_STRK 4.214 4.3 4.386 V VSYSTEM[2:0] = 000 (binary) = 4.3 V, IISO_Sx =
100 mA, LDO mode2
Load Regulation 0.56 %/A IISO_Sx = 0 m A to 1500 mA
High Voltage Blocking FET (LDO FET)
On Resistance
RDS(ON)HV 330 485 IVINx = 500 mA
Maximum Output Current 2.1 A VISO_Sx = 4.3 V, LDO mode
VINx Input Voltage, Good Threshold
Rising
VVIN_OK_RISE 3.75 3.9 4.0 V
VINx Falling VVIN_OK_FALL 3.6 3.7 V
VINx Input Overvoltage Threshold
V
VIN_OV
6.7
6.9
7.2
V
Hysteresis ΔVVIN_OV 0.1 V
VINx Transition Timing TVIN_RISE 10 µs Minimum rise time for VINx from 5 V to 20 V
TVIN_FALL 10 µs Minimum fall time for VINx from 4 V to 0 V
THERMAL CONTROL
Isothermal Charging Temperature TLIM 115 °C
Thermal Early Warning Temperature
T
SDL
130
°C
Thermal Shutdown Temperature TSD 140 °C TJ rising
110 °C TJ falling
THERMISTOR CONTROL
Thermistor Current
10,000 NTC INTC_10k 400 μA
100,000 NTC
I
NTC_100k
40
μA
Thermistor Capacitance CNTC 100 pF
Cold Temperature Threshold TNTC_COLD 0 °C No battery charging occurs
Resistance Thresholds
Cool to Cold Resistance RCOLD_FALL 20,500 25,600 30,720 Ω
Cold to Cool Resistance
R
COLD_RISE
24,400
Ω
Hot Temperature Threshold TNTC_HOT 60 °C No battery charging occurs
Resistance Thresholds
Hot to Typical Resistance RHOT_FALL 3700 Ω
Typical to Hot Resistance RHOT_RISE 2750 3350 3950 Ω
JEITA1 Li-ION BATTERY CHARGING
SPECIFICATION DEFAULTS5
JEITA Cold Temperature TJEITA_COLD 0 °C No battery charging occurs
Resistance Thresholds
Cool to Cold Resistance RCOLD_FALL 20,500 25,600 30,720 Ω
Cold to Cool Resistance RCOLD_RISE 24,400 Ω
JEITA Cool Temperature TJEITA_COOL 10 °C Battery charging occurs at 50% of programmed
level
Resistance Thresholds
Typical to Cool Resistance RTYP_FALL 13,200 16,500 19,800 Ω
Cool to Typical Resistance RTYP_RISE 15,900 Ω
JEITA Warm Temperature TJEITA_WARM 45 °C Battery termination voltage (VTRM) is reduced by
100 mV
Resistance Thresholds
Warm to Typical Resistance
R
WARM_FALL
5800
Ω
Typical to Warm Resistance RWARM_RISE 4260 5200 6140 Ω
Data Sheet ADP5062
Rev. B | Page 5 of 44
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
JEITA Hot Temperature TJEITA_HOT 60 °C No battery charging occurs
Resistance Thresholds
Hot to Warm Resistance RHOT_FALL 3700 Ω
Warm to Hot Resistance RHOT_RISE 2750 3350 3950 Ω
JEITA2 Li-ION BATTERY CHARGING
SPECIFICATION DEFAULTS5
JEITA Cold Temperature TJEITA_COLD 0 °C No battery charging occurs
Resistance Thresholds
Cool to Cold Resistance
R
COLD_FALL
20,500
25,600
30,720
Ω
Cold to Cool Resistance RCOLD_RISE 24,400 Ω
JEITA Cool Temperature TJEITA_COOL 10 °C Battery termination voltage (VTRM) is reduced by
100 mV
Resistance Thresholds
Typical to Cool Resistance RTYP_FALL 13,200 16,500 19,800 Ω
Cool to Typical Resistance RTYP_RISE 15,900 Ω
JEITA Warm Temperature
T
JEITA_WARM
45
°C
Battery termination voltage (V
TRM
) is reduced by
100 mV
Resistance Thresholds
Warm to Typical Resistance RWARM_FALL 5800 Ω
Typical to Warm Resistance RWARM_RISE 4260 5200 6140 Ω
JEITA Hot Temperature TJEITA_HOT 60 °C No battery charging occurs
Resistance Thresholds
Hot to Warm Resistance RHOT_FALL 3700 Ω
Warm to Hot Resistance RHOT_RISE 2750 3350 3950 Ω
BATTERY DETECTION
Sink Current ISINK 13 20 34 mA
Source Current ISOURCE 7 10 13 mA
Battery Threshold
Low VBATL 1.8 1.9 2.0 V
High VBATH 3.4 V
Battery Detection Timer
t
BATOK
333
ms
TIMERS
Clock Oscillator Frequency fCLK 2.7 3 3.3 MHz
Start Charging Delay tSTART 1 sec
Trickle Charge
t
TRK
60
min
Fast Charge tCHG 600 min
Charge Complete
t
END
7.5
min
V
BAT_SNS
= V
TRM
, I
CHG
< I
END
Deglitch tDG 31 ms Applies to VTRK_DEAD, VRCH, IEND, VWEAK, VVIN_OK_RISE, and
VVIN_OK_FALL
Watchdog2 tWD 32 sec
Safety tSAFE 36 40 44 min
Battery Short2 tBAT_SHR 30 sec
ILED OUTPUT PINS
Voltage Drop over ILED VILED 200 mV IILED = 20 mA
Maximum Operating Voltage over
ILED
V
MAXILED
5.5
V
SYS_EN OUTPUT PIN
SYS_EN FET On Resistance
R
ON_SYS_EN
10
Ω
I
SYS_EN
= 20 mA
ADP5062 Data Sheet
Rev. B | Page 6 of 44
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
LOGIC INPUT PINS
Maximum Voltage on Digital Inputs VDIN_MAX 5.5 V Applies to SCL, SDA, DIG_IO1, DIG_IO2, DIG_IO3
Maximum Logic Low Input Voltage VIL 0.5 V Applies to SCL, SDA, DIG_IO1, DIG_IO2, DIG_IO3
Minimum Logic High Input Voltage VIH 1.2 V Applies to SCL, SDA, DIG_IO1, DIG_IO2, DIG_IO3
Pull-Down Resistance
215
350
610
Applies to DIG_IO1, DIG_IO2, DIG_IO3
1 Undervoltage lockout generated normally from ISO_Sx or ISO_Bx; in certain transition cases, it can be generated from VINx.
2 These values are programmable via I2C. Values are given with default register values.
3 The output current during charging may be limited by the input current limit or by the isothermal charging mode.
4 During weak charging mode, the charger provides at least 20 mA of charging current via the trickle charge branch to the battery unless trickle charging is disabled.
Any residual current that is not required by the system is also used to charge the battery.
5 Either JEITA1 (default) or JEITA2 can be selected in I2C, or both JEITA functions can be enabled or disabled in I2C.
RECOMMENDED INPUT AND OUTPUT CAPACITANCES
Table 2.
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
CAPACITANCES
VINx CVINx 4 10 μF Effective capacitance
CBP CCBP 6 10 14 nF Effective capacitance
ISO_Sx
C
ISO_Sx
10
22
100
μF
Effective capacitance
ISO_Bx CISO_Bx 10 22 μF Effective capacitance
I2C-COMPATIBLE INTERFACE TIMING SPECIFICATIONS
Table 3.
Parameter1 Symbol Min Typ Max Unit
I2C-COMPATIBLE INTERFACE2
Capacitive Load for Each Bus Line CS 400 pF
SCL Clock Frequency fSCL 400 kHz
SCL High Time tHIGH 0.6 µs
SCL Low Time tLOW 1.3 µs
Data Setup Time tSU, DAT 100 ns
Data Hold Time tHD, DAT 0 0.9 µs
Setup Time for Repeated Start tSU, STA 0.6 µs
Hold Time for Start/Repeated Start tHD, STA 0.6 µs
Bus Free Time Between a Stop and a Start Condition tBUF 1.3 µs
Setup Time for Stop Condition tSU, STO 0.6 µs
Rise Time of SCL/SDA
t
R
20
300
ns
Fall Time of SCL/SDA tF 20 300 ns
Pulse Width of Suppressed Spike tSP 0 50 ns
1 Guaranteed by design.
2 A master device must provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge of SCL (see Figure 2).
Data Sheet ADP5062
Rev. B | Page 7 of 44
Timing Diagram
Figure 2. I2C Timing Diagram
SDA
S = S TART CO NDITION
Sr = REPEATED START CONDITION
P = STOP CONDITIO N
SCL
SSr P S
tLOW tSU, DAT tHD, ST A
tSU, STO
tHD, DAT
tSU, S TA
tHIGH
tRtF
tR
tFtSP tBUF
10806-002
ADP5062 Data Sheet
Rev. B | Page 8 of 44
ABSOLUTE MAXIMUM RATINGS
Table 4. Absolute Maximum Ratings
Parameter Rating
VIN1, VIN2, VIN3 to AGND –0.5 V to +20 V
All Other Pins to AGND –0.3 V to +6 V
Continuous Drain Current, Battery Supple-
mentary Mode, from ISO_Bx to ISO_Sx
2.1 A
Storage Temperature Range –65°C to +150°C
Operating Junction Temperature Range –40°C to +125°C
Soldering Conditions JEDEC J-STD-020
THERMAL RESISTANCE
JA is specified for the worst-case conditions, that is, JA is
specified for a device soldered in a circuit board for surface-
mount packages.
Table 5. Thermal Resistance
Package Type θJA θ
JC Unit
20-Lead LFCSP 35.6 3.65 °C/W
Maximum Power Dissipation
The maximum safe power dissipation in the ADP5062 package
is limited by the associated rise in junction temperature (TJ) on
the die. At a die temperature of approximately 150°C (the glass
transition temperature), the properties of the plastic change.
Even temporarily exceeding this temperature limit may change
the stresses that the package exerts on the die, thereby perma-
nently shifting the parametric performance of the ADP5062.
Exceeding a junction temperature of 175°C for an extended
period can result in changes in the silicon devices, potentially
causing failure.
ESD CAUTION
Stresses abo
v
ethose listedunderAbsoluteMaximumRatings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximumratingconditionsfor extendedperiodsmayaffect
de
v
ice reliability.
Data Sheet ADP5062
Rev. B | Page 9 of 44
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
Figure 3. Pin Configuration
Table 6. Pin Function Descriptions
Pin No. Name Type1 Description
9, 10, 11 ISO_S1, ISO_S2,
ISO_S3
I/O Linear Charger Supply Side Input to Internal Isolation FET/Battery Current Regulation FET. High
current input/output.
6, 7, 8 VIN1, VIN2, VIN3 I/O Power Connections to USB VBUS. These pins are high current inputs when in charging mode.
20 AGND G Analog Ground.
12, 13, 14 ISO_B1, ISO_B2,
ISO_B3
I/O Battery Supply Side Input to Internal Isolation FET/Battery Current Regulation FET.
1 SCL I I2C-Compatible Interface Serial Clock.
17 SDA I/O I2C-Compatible Interface Serial Data.
5 DIG_IO1 GPIO Set Input Current Limit. This pin sets the input current limit directly. When DIG_IO1 = low or
high-Z, the input limit is 100 mA. When DIG_IO1 = high, the input limit is 500 mA.2, 3
3 DIG_IO2 GPIO Disable IC1. The DIG_IO2 pin sets the charger to the low current mode. When DIG_IO2 = low or
high-Z, the charger operates in normal mode. When DIG_IO2 = high, the LDO and the charger are
disabled and VINx current consumption is 280 µA (typical). In addition, when DIG_IO2 is high,
20 V VINx input protection is disabled and the VINx voltage level must fulfill the condition,
VISO_Bx < VVINx < 5.5 V.2, 3
2 DIG_IO3 GPIO Enable Charging. When DIG_IO3 = low or high-Z, charging is disabled. When DIG_IO3 = high,
charging is enabled.2, 3
18 THR I Battery Pack Thermistor Connection. If this pin is not used, connect a dummy 10 kΩ resistor from
THR to GND.
4 BAT_SNS I Battery Voltage Sense Pin.
15 ILED O Open-Drain Output to Indicator LED.
16 SYS_EN O System Enable. This pin is the battery OK flag/open-drain pull-down FET to enable the system
when the battery reaches the VWEAK level.
19 CBP I/O Bypass Capacitor Input.
N/A4 EP N/A4 Exposed Pad. Connection of the exposed pad is not required. The exposed pad can be connected
to analog ground to improve heat dissipation from the package to the board.
1 I is input, O is output, I/O is input/output, G is ground, and GPIO is the factory programmable general-purpose input/output.
2 See the Digital Input and Output Options section for details.
3 The DIG_IOx setting defines the initial state of the ADP5062. If the parameter or the mode that is related to each DIG_IOx pin setting is changed (by programming an
equivalent I2C register bit or bits), the I2C register setting takes precedence over the DIG_IOx pin setting. VINx connection or disconnection resets control to the
DIG_IOx pin.
4 N/A means not applicable.
10806-003
PIN 1
INDICATOR
1
SCL 2DIG_IO3 3DIG_IO2 4BAT_SNS 5
DIG_IO1
13 ISO_B2
14 ISO_B3
15 ILED
12 ISO_B1
11 ISO_S3
6VIN1 7VIN2 8VIN3
10ISO_S2 9ISO_S1 18 THR
19 CBP
20 AGND
17 SDA
16 SYS_EN
TOP VI EW
(No t t o Scal e)
ADP5062
NOTES
1. CONNECT IO N OF THE E X P OSE D P AD IS NO T REQUIRE D. T HE
EXP OSED P AD CAN BE CONNECTED T O ANAL OG GROUND TO
IM P ROVE HE AT DI S S IPAT IO N FRO M THE PACKAGE TO BOARD.
ADP5062 Data Sheet
Rev. B | Page 10 of 44
TYPICAL PERFORMANCE CHARACTERISTICS
VVINx = 5.0 V, C VINx = 10 µF, CISO_Sx = 44 µF, C ISO_Bx = 22 µF, CCBP = 10 nF, all registers at default values, unless otherwise noted.
Figure 4. System Voltage vs. System Output Current, LDO Mode,
VSYSTEM[2:0] = 000 (Binary) = 4.3 V
Figure 5. System Voltage vs. Input Voltage (in Dropout), LDO Mode,
VSYSTEM[2:0] = 000 (Binary) = 4.3 V
Figure 6. Input Current-Limited Charge Current vs. Battery Voltage
Figure 7. System Voltage vs. System Output Current, LDO Mode, VVINx = 6.0 V,
VSYSTEM[2:0] = 111 (Binary) = 5.0 V
Figure 8. System Voltage vs. Input Voltage (in Dropout), LDO Mode,
VSYSTEM[2:0] = 111 (Binary) = 5.0 V
Figure 9. Battery Charge Current vs. Battery Voltage, ICHG[4:0] = 01001
(Binary) = 500 mA, ILIM[3:0] = 1111 (Binary) = 2100 mA
0.01 0.1 1
SYSTEM VOL T AGE (V)
SYS TEM OUT P UT CURRENT ( A)
10806-004
4.20
4.22
4.24
4.26
4.28
4.30
4.32
4.34
4.36
4.38
4.40
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8
SYSTEM VOL T AGE (V)
INPUT VOLTAGE (V)
LOAD = 100mA
LOAD = 500mA
LOAD = 1000mA
10806-005
0
100
200
300
400
500
600
700
800
900
1000
2.7 3.2 3.7 4.2
CHARGE CURRE NT (mA)
BATTERY VOLTAGE (V)
LIMI T = 900mA
LIMI T = 500mA
LIMI T = 100mA
10806-006
0.01 0.1 1
SYSTEM VOL T AGE (V)
SYS TEM OUT P UT CURRENT ( A)
10806-007
4.90
4.92
4.94
4.96
4.98
5.00
5.02
5.04
5.06
5.08
5.10
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8
SYSTEM VOL T AGE (V)
INPUT VOLTAGE (V)
LOAD = 100mA
LOAD = 500mA
LOAD = 1000mA
10806-008
0
100
200
300
400
500
600
700
2.3 2.8 3.3 3.8 4.3
CHARGE CURRE NT (mA)
BATTERY VOLTAGE (V)
WEAK
CHARGE
FAS T CHARGE
TRICKLE CHARGE
10806-009
Data Sheet ADP5062
Rev. B | Page 11 of 44
Figure 10. Ideal Diode RON vs. Battery Voltage, IISO_Sx = 500 mA, VINx Open
Figure 11. VINx Current vs. VINx Voltage, No Battery
Figure 12. Ideal Diode RON vs. Load Current, VISO_Bx = 3.6 V
Figure 13. Charge Profile, ILIM[3:0] = 0110 (Binary) = 500 mA, Battery
Capacity = 925 mAh
40
45
50
55
60
65
70
2.7 3.2 3.7 4.2
ISOLATION FET RESISTANCE (mΩ)
BATTERY VOLTAGE (V)
10806-010
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0 2 468
VI Nx CURRE NT (mA)
VINx VOLTAGE (V)
DEFAULT STARTUP
DIS_LDO = HIGH
DIS_IC1 = HIGH
10806-011
40
70
65
60
55
50
45
00.5 1.0 1.5 2.0
ISOLATION FET RESISTANCE (mΩ)
LOAD CURRENT ( A)
10806-012
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
050 100 150
CHARGE CURRE NT (A)
BATTERY VOLTAGE (A)
CHARGE TIM E ( min )
VBAT_SNS
IISO_Bx
10806-013
ADP5062 Data Sheet
Rev. B | Page 12 of 44
TEMPERATURE CHARACTERISTICS
Figure 14. Battery Leakage Current vs. Ambient Temperature
Figure 15. VINx Quiescent Current vs. Ambient Temperature, DIS_IC1 = High
Figure 16. LDO Mode Voltage vs. Ambient Temperature,
Load = 100 mA, VVINx = 5.5 V
Figure 17. System Voltage vs. Temperature, Trickle Charge Mode,
VISO_Sx = 4.3 V and VINx = 5.0 V, or VISO_Sx = 5.0 V and VINx = 6.0 V
Figure 18. VINx Quiescent Current vs. Ambient Temperature, LDO Mode
Figure 19. Termination Voltage vs. Ambient Temperature
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
–40 –15 10 35 60 85
STANDBY CURRENT (µ A)
AMBIENT TEMPERAT URE ( °C)
V
ISO_Bx
= 3.6V
V
ISO_Bx
= 4.2V
V
ISO_Bx
= 5.5V
10806-014
0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
–40 –25 –10 520 35 50 65 80 95 110 125
VI Nx QUIE S CE NT CURRENT (mA)
AMBIENT TEMPERAT URE ( ° C)
VIN = 4.0V
VIN = 5.0V
VIN = 5.5V
10806-015
–0.5
–0.4
–0.3
–0.2
–0.1
0
0.1
0.2
0.3
0.4
0.5
–40 –25 –10 520 35 50 65 80 95 110 125
SYS TEM V OL TAGE ACCURACY ( %)
AMBI E NT TE M P E RATURE ( °C)
VISO_Sx = 4.3V
VISO_Sx = 5.0V
10806-016
–0.5
–0.4
–0.3
–0.2
–0.1
0
0.1
0.2
0.3
0.4
0.5
–40 –25 –10 520 35 50 65 80 95 110 125
SYSTEM VOLTAGE ACCURACY (%)
AMBIENT TEMPERAT URE ( ° C)
VISO_Sx = 4.3V
VISO_Sx = 5.0V
10806-017
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
–40 –25 –10 520 35 50 65 80 95 110 125
VI Nx QUIE S CE NT CURRENT (mA)
AMBIENT TEMPERAT URE ( °C)
V
IN
= 4.0V
V
IN
= 5.0V
V
IN
= 6.7V
10806-018
–0.5
–0.4
–0.3
–0.2
–0.1
0
0.1
0.2
0.3
0.4
0.5
–40 –25 –10 520 35 50 65 80 95 110 125
VTRM VOLTAGE ACCURACY (%)
AMBIENT TEMPERAT URE ( °C)
VTRM = 3. 8V
VTRM = 4. 2V
VTRM = 4. 5V
10806-019
Data Sheet ADP5062
Rev. B | Page 13 of 44
Figure 20. Fast Charge CC Mode Current vs. Ambient Temperature
Figure 21. VINx Overvoltage Threshold vs. Ambient Temperature
Figure 22. Input Current Limit vs. Ambient Temperature
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
–40 –15 10 35
60 85 110
CHARGE CURRE NT (A)
AMBIENT TEMPERAT URE ( ° C)
ICHG = 750mA
ICHG = 500mA
ICHG = 1300mA
10806-020
AMBIENT TEMPERAT URE ( °C)
6.80
6.85
6.90
6.95
7.00
–40 –25 –10 520 35 50 65 80 95 110 125
VIN OVERVOLTAG E THRESHOL D ( V )
10806-021
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
–40 –25 –10 520 35 50 65 80 95 110 125
INP UT CURRENT LI M IT ( A)
AMBIENT TEMPERAT URE ( °C)
I
LIM
= 1500mA
I
LIM
= 900mA
I
LIM
= 500mA
I
LIM
= 100mA
10806-022
ADP5062 Data Sheet
Rev. B | Page 14 of 44
TYPICAL WAVEFORMS
Figure 23. Charging Startup, VVINx = 5.0 V, ILIM[3:0] = 0110 (Binary) = 500 mA,
ICHG[4:0] = 01110 (Binary) = 750 mA
Figure 24. Load Transient, IISO_Sx Load = 300 mA to 1500 mA to 300 mA
Figure 25. Input Current-Limit Transition from 100 mA to 900 mA,
ISO_Sx Load = 66 Ω, Charging = 750 mA
Figure 26. USB VBUS Disconnect
Figure 27. Load Transient, IISO_Sx Load = 300 mA to 1500 mA to 300 mA,
EN_CHG = High, ILIM[3:0] = 0110 (Binary) = 500 mA
Figure 28. Battery Detection Waveform, VSYSTEM[2:0] = 000 (Binary) = 4.3 V,
No Battery
I
VINx
I
ISO_Bx
V
VINx
V
ISO_Sx
10806-023
CH1 2.00V CH2 200mA
CH3 200mA CH4 2.00V M1.00ms A CH2 120mA
1
2
3
4
T 1.00ms
T
IISO_Sx
VISO_Sx
10806-024
CH1 100mV CH2 500mA M1.00ms A CH2 820mA
1
2
T 3.00ms
T
I
ISO_Bx
V
ISO_Sx
V
VINx
I
VINx
10806-025
CH1 200mV CH2 200mV
CH3 500mA CH4 500mA M40.0µs A CH3 610mA
1
2
3
4
T 0.00s
T
I
VINx
I
ISO_Bx
V
VINx
V
ISO_Sx
10806-026
CH1 2.00V CH2 200mA
CH3 200mA CH4 2.00V M200.0µs A CH2 216mA
1
2
3
4
T 0.00s
T
3
I
ISO_Sx
I
ISO_Bx
V
ISO_Sx
10806-027
CH1 1.00V CH2 500mA
CH3 500mA M1.0ms A CH2 –610mA
1
2
T 3.00ms
T
IISO_Bx
VISO_Bx
10806-028
CH2 2.00V
CH3 10.0mA M200ms A CH3 17. 2mA
2
3
T 0.00s
T
Data Sheet ADP5062
Rev. B | Page 15 of 44
THEORY OF OPERATION
SUMMARY OF OPERATION MODES
Table 7. Summary of the ADP5062 Operation Modes
Mode Name
VINx
Condition Battery Condition
Trickle
Charge
LDO FET
State
Battery
Isolation FET
System Voltage
ISO_Sx Additional Conditions1
IC Off, Standby 0 V Any battery condition Off Off On/Off Battery voltage
or 0 V
Disable IC1
IC Off, Suspend 5 V Any battery condition Off Off On Battery voltage Disable IC1
LDO Mode Off, Isolation
FET On
5 V Any battery condition Off Off On Battery voltage Disable LDO and enable
isolation FET
LDO Mode Off, Isolation
FET Off (System Off)
5 V Any battery condition Off Off Off 0 V Enable battery charging
LDO Mode, Charger Off 5 V Any battery condition Off LDO Off 5.0 V Enable battery charging
Trickle Charge Mode 5 V Battery < VTRK_DEAD On LDO Off 5.0 V Enable battery charging
Weak Charge Mode 5 V VTRK_DEAD ≤ battery < VWEAK On CHG CHG 3.8 V Enable battery charging
Fast Charge Mode 5 V Battery VWEAK Off CHG CHG 3.8 V (minimum) Enable battery charging
Charge Mode, No Battery 5 V Open Off LDO Off 5.0 V Enable battery charging
Charge Mode, Battery
(ISO_Bx) Shorted
5 V Shorted On LDO Off 5.0 V Enable battery charging
1 See Table 8 for details.
Table 8. Operation Mode Controls
Pin Configuration DIG_IOx
Equivalent I2C
Address, Data Bit(s) Description
Enable Battery Charging DIG_IO3 0x07, D0 Low = all charging modes disabled (fast, weak, trickle).
High = all charging modes enabled (fast, weak, trickle).
Disable IC1 DIG_IO2 0x07, D6
Disable IC1
VINx1 Supply
Connected LDO_FET ISO_FET
Low No Off On
Yes CHG CHG
High No2 Off On
Yes Off On
Disable LDO and Enable Isolation FET 0x07, D3, D0 Low = LDO enabled.
High = LDO disabled. In addition, when EN_CHG = low, the
battery isolation FET is on; when EN_CHG = high, the battery
isolation FET is off.
1 When disable IC1 mode is active, the VINx supply must always be connected and the supply voltage level must fulfill the following condition: VISO_Bx < VINx < 5.5 V.
2 When disable IC1 mode is active, the back gate of the LDO FET is not controlled. If the VINx pins are not connected to any voltage supply, the body diode of the LDO
FET can become forward biased and the voltage at VINx is VISO_Bx – VF (VF is the forward voltage of the LDO FET body diode).
ADP5062 Data Sheet
Rev. B | Page 16 of 44
INTRODUCTION
The ADP5062 is a fully-programmable I2C charger for single
cell lithium-ion or lithium-polymer batteries suitable for a wide
range of portable applications.
The linear charger architecture enables up to 2.1 A output
current at 4.3 V to 5.0 V (I2C programmable) on the system
power supply, and up to 1.3 A charge current into the battery
from a dedicated charger.
The ADP5062 operates from an input voltage of 4 V up to 6.7 V
but is tolerant of voltages of up to 20 V. The 20 V voltage tolerance
alleviates the concerns of the USB bus spiking during discon-
nection or connection scenarios.
The ADP5062 features an internal FET between the linear charger
output and the battery. This feature permits battery isolation
and, hence, system powering under a dead battery or no battery
scenario, which allows for immediate system function upon
connection to a USB power supply.
The ADP5062 is fully compliant with USB 3.0 and the USB
Battery Charging Specification 1.2. The ADP5062 is chargeable
via the mini USB VBUS pin from a wall charger, car charger, or
USB host port. Based on the type of USB source, which is detected
by an external USB detection device, the ADP5062 can be set to
apply the correct current limit for optimal charging and USB
compliance. The USB charger permits correct operation under
all USB compliant sources such as wall chargers, host chargers,
hub chargers, and standard host and hubs.
A processor can control the USB charger using the I2C to
program the charging current and numerous other parameters,
including
Trickle charge current level
Trickle charge voltage threshold
Weak charge (constant current) current level
Fast charge (constant current) current level
Fast charge (constant voltage) voltage level at 1% accuracy
Fast charge safety timer period
Watchdog safety timer parameters
Weak battery threshold detection
Charge complete threshold
Recharge threshold
Charge enable/disable
Battery pack temperature detection and automatic charger
shutdown
Data Sheet ADP5062
Rev. B | Page 17 of 44
Figure 29. Block Diagram
6
7
9
10
ISO_S1
ISO_S2
ISO_S3
VIN1
VIN2
11
14
ISO_B2
18
THR
+
0.5V
NTC C URRE NT
CONTROL
COLD
COOL
WARM
HOT
NTC
TRICKLE
CURRENT
SOURCE
19
BATTERY
DETECTION
SINK
4
BAT_SNS
BATTERY DE TECTION
BATTERY:
OPEN
SHORT
TRICKLE
WEAK
CV MO DE
RECHARGE
CHARG E CONTRO L
EOC
TO SYST EM
LOAD
+
6.85V
3.9V
+
+
+
+
+
+
+
+
VIN
OVERVOLTAGE
VIN LIMIT
BATTERY
ISOLATION FET
VIN GOOD
BATTERY O V ERV OL TAGE
1
17
SCL
SDA
T
O US B VBUS
OR WALL
ADAPTER
20
AGND
5
3
2
DIG_IO1
DIG_IO2
DIG_IO3
16
SYS_EN
3MHz O S C
SINGLE
CELL
Li-Ion
TS D 14 C
SYS_EN OUTPUT
LOGIC
THERMAL CONTROL
8
VIN3
CBP
ISO_B3
13
12
15
ILED
ILED OUTPUT
LOGIC
HIG H V O LT AGE
BLOCKING
LDO FET
+
LDO FET
CONTROL
3.4V
I
2
C INTERFACE
AND
CONTRO L L OG I C
VIN – 150mV
ISO_B1
1.9V
WARNING 130 ° C
ISOTHERM AL 115°C
TS D DO WN 110° C
10806-029
ADP5062 Data Sheet
Rev. B | Page 18 of 44
The ADP5062 includes a number of significant features to
optimize charging and functionality including
Thermal regulation for maximum performance.
USB host current limit.
Termination voltage accuracy: ±1%.
Battery thermistor input with automatic charger shutdown
in the event that the battery temperature exceeds limits
(compliant with the JEITA Li-Ion battery charging
temperature specification).
Three external pins (DIG_IO1, DIG_IO2, and DIG_IO3)
that directly control a number of parameters. These pins
are factory programmable for maximum flexibility. They
can be factory programmed for functions such as
Enable/disable charging.
Control of 100 mA or 500 mA input current limit.
Control of 1500 mA input current limit.
Control of the battery charge current.
Interrupt output pin.
See the Digital Input and Output Options section for details.
CHARGER MODES
Input Current Limit
The VINx input current limit is controlled via the internal I2C
ILIM bits. The input current limit can also be controlled via the
DIG_IO1 pin (if factory programmed to do so) as outlined in
Table 9. Any change in the I2C default from 100 mA takes
precedence over the pin setting.
Table 9. DIG_IO1 Operation
DIG_IO1 Function
0 100 mA input current limit or I2C programmed
value
1 500 mA input current limit or I2C programmed
value (or reprogrammed I2C value from 100 mA
default)
USB Compatibility
The ADP5062 features an I2C-programmable input current
limit to ensure compatibility with the requirements listed in
Table 10. The current limit defaults to 100 mA to allow com-
patibility with a USB host or hub that is not configured.
The I2C register default is 100 mA. An I2C write command to
the ILIM register overrides the DIG_IOx pins and the I2C
register default value can be reprogrammed for alternative
requirements.
When the input current-limit feature is used, the available input
current may be too low for the charger to meet the programmed
charging current, ICHG, thereby reducing the rate of charge and
setting the VIN_ILIM flag.
When connecting voltage to VINx without the proper voltage
level on the battery side, the high voltage blocking mechanism
is in a state wherein it draws only the current of <1 mA until
VIN reaches the VIN_OK level.
The ADP5062 charger provides support for the following con-
nections through the single connector VINx pin, as shown in
Table 10.
Table 10. Input Current Compatibility with Standard USB Limits
Mode Standard USB Limit ADP5062 Function
USB (China Only) 100 mA limit for standard USB host or hub 100 mA input current limit or I2C programmed value
300 mA limit for Chinese USB specification 300 mA input current limit or I2C programmed value
USB 2.0 100 mA limit for standard USB host or hub 100 mA input current limit or I2C programmed value
500 mA limit for standard USB host or hub 500 mA input current limit or I2C programmed value
USB 3.0
150 mA limit for superspeed USB 3.0 host or hub
150 mA input current limit or I
2
C programmed value
900 mA limit for superspeed, high speed USB host or hub
charger
900 mA input current limit or I2C programmed value
Dedicated Charger 1500 mA limit for dedicated charger or low/full speed USB host
or hub charger
1500 mA input current limit or I2C programmed value
Data Sheet ADP5062
Rev. B | Page 19 of 44
Trickle Charge Mode
A deeply discharged Li-Ion cell can exhibit a very low cell voltage
making it unsafe to charge the cell at high current rates. The
ADP5062 charger uses a trickle charge mode to reset the battery
pack protection circuit and lift the cell voltage to a safe level for
fast charging. A cell with a voltage below VTRK_DEAD is charged
with the trickle mode current, ITRK_DEAD. During trickle charging
mode, the CHARGER_STATUS bits are set.
During trickle charging, the ISO_Sx node is regulated to VISO_STRK
by the LDO and the battery isolation FET is off, which means
that the battery is isolated from the system power supply.
Trickle Charge Mode Timer
The duration of trickle charge mode is monitored to ensure that
the battery is revived from its deeply discharged state. If trickle
charge mode runs for longer than 60 minutes without the cell
voltage reaching VTRK_DEAD, a fault condition is assumed and
charging stops. The fault condition is asserted on the CHARGER_
STATUS bits, allowing the user to initiate the fault recovery
procedure specified in the Fault Recovery section.
Weak Charge Mode (Constant Current)
When the battery voltage exceeds VTRK_DEAD but is less than
VWEAK, the charger switches to intermediate charge mode.
During the weak charge mode, the battery voltage is too low to
allow the full system to power-up. Because of the low battery
level, the USB transceiver cannot be powered and, therefore,
cannot enumerate for more current from a USB host. Conse-
quently, the USB limit remains at 100 mA.
The system microcontroller may or may not be powered by the
charger output voltage (VISO_SFC), depending upon the amount
of current that the microcontroller and/or the system architecture
requires. When the ISO_Sx pins power the microcontroller, the
battery charge current (ICHG_WEAK) cannot be increased above
20 mA to ensure microcontroller operation (if doing so), nor
can ICHG_WEAK be increased above the 100 mA USB limit. There-
fore, set the battery charging current as follows:
Set the default 20 mA via the linear trickle charger branch (to
ensure that the microprocessor remains alive if powered by
the main charger output, ISO_Sx). Any residual current on
the main charger output, ISO_Sx, is used to charge the
battery.
During weak current mode, other features may prevent the
weak charging current from reaching its full programmed
value. Isothermal charging mode or input current limiting for
USB compatibility can affect the programmed weak charging
current value under certain operating conditions. During
weak charging, the ISO_Sx node is regulated to VISO_SFC by
the battery isolation FET.
Fast Charge Mode (Constant Current)
When the battery voltage exceeds VTRK_DEAD and VWEAK, the
charger switches to fast charge mode, charging the battery with
the constant current, ICHG. During fast charge mode (constant
current), the CHARGER_STATUS bits are set to 010.
During constant current mode, other features may prevent the
current, ICHG, from reaching its full programmed value. Isothermal
charging mode or input current limiting for USB compatibility
can affect the value of ICHG under certain operating conditions.
The voltage on ISO_Sx is regulated to stay at VISO_SFC by the
battery isolation FET when VISO_Bx < VISO_SFC.
Fast Charge Mode (Constant Voltage)
As the battery charges, its voltage rises and approaches the termi-
nation voltage, VTRM. The ADP5062 charger monitors the voltage
on the BAT_SNS pin to determine when charging should end.
However, the internal ESR of the battery pack combined with
the printed circuit board (PCB) and other parasitic series
resistances creates a voltage drop between the sense point at the
BAT_SNS pin and the cell terminal. To compensate for this and to
ensure a fully charged cell, the ADP5062 enters a constant voltage
charging mode when the termination voltage is detected on the
BAT_SNS pin. The ADP5062 reduces charge current gradually as
the cell continues to charge, maintaining a voltage of VTRM on the
BAT_SNS pin. During fast charge mode (constant voltage), the
CHARGER_ STATUS[2:0] bits are set to 011.
Fast Charge Mode Timer
The duration of fast charge mode is monitored to ensure that
the battery is charging correctly. If the fast charge mode runs
for longer than tCHG without the voltage at the BAT_SNS pin
reaching VTRM, a fault condition is assumed and charging stops.
The fault condition is asserted on the CHARGER_STATUS[2:0]
bits, allowing the user to initiate the fault recovery procedure as
specified in the Fault Recovery section.
If the fast charge mode runs for longer than tCHG, and VTRM has
been reached on the BAT_SNS pin but the charge current has
not yet fallen below IEND, charging stops. No fault condition is
asserted in this circumstance and charging resumes as normal if
the recharge threshold is breached.
Watchdog Timer
The ADP5062 charger features a programmable watchdog timer
function to ensure charging is under the control of the processor.
The watchdog timer starts running when the ADP5062 charger
determines that the processor should be operational, that is,
when the processor sets the RESET_WD bit for the first time or
when the battery voltage is greater than the weak battery threshold,
VWEAK. When the watchdog timer has been triggered, it must be
reset regularly within the watchdog timer period, tWD.
While in charger mode, if the watchdog timer expires without
being reset, the ADP5062 charger assumes that there is a software
problem and triggers the safety timer, tSAFE. For more infor-
mation see the Safety Timer section.
ADP5062 Data Sheet
Rev. B | Page 20 of 44
Safety Timer
While in charger mode, if the watchdog timer expires, the
ADP5062 charger initiates the safety timer, tSAFE (see the
Watchdog Timer section). If the processor has programmed
charging parameters by the time the charger initiates the safety
timer, the ILIM is set to the default value. Charging continues for
a period of tSAFE, and then the charger switches off and sets the
CHARGER_STATUS [2:0] bits.
Charge Complete
The ADP5062 charger monitors the charging current while
in constant voltage fast charge mode. If the current falls
below IEND and remains below IEND for tEND, charging stops
and the CHDONE flag is set. If the charging current falls below
IEND for less than tEND and then rises above IEND again, the tEND
timer resets.
Recharge
After the detection of charge complete, and the cessation of
charging, the ADP5062 charger monitors the BAT_SNS pin as
the battery discharges through normal use. If the BAT_SNS pin
voltage falls to VRCH, the charger reactivates charging. Under most
circumstances, triggering the recharge threshold results in the
charger starting directly into fast charge constant voltage mode.
The recharge function can be disabled in the I2C, but a status bit
(Register Address 0x0C, Bit 3) informs the system that a recharge
cycle is required.
IC Enable/Disable
The ADP5062 IC can be disabled by the DIG_IO2 digital input
pin (if factory programmed to do so) or by the I2C registers. All
internal control circuits are disabled when the IC is disabled. Dis-
abling the IC1 option can also control the states of the LDO FET
and the battery isolation FET.
It is critical to note that during the disable IC1 mode, a high
voltage at VINx passes to the internal supply voltage because all
of the internal control circuits are disabled. The VINx supply
voltage must fulfill the following condition:
VISO_Bx < VINx < 5.5 V
Battery Charging Enable/Disable
The ADP5062 charging function can be disabled by setting the
I2C EN_CHG bit to low. The LDO to the system still operates
under this circumstance and can be set in I2C to the default or
I2C programmed system voltage from 4.3 V to 5.0 V (see Table 26
for details).
The ADP5062 charging function can also be controlled via one
of the external DIG_IOx pins (if factory programmed to do so).
Any change in the I2C EN_CHG bit takes precedence over the pin
setting.
Battery Voltage Limit to Prevent Charging
The battery monitor of the ADP5062 charger can be configured
to monitor battery voltage and prevent charging when the battery
voltage is higher than VCHG_VLIM (typically 3.7 V) during charging
start-up (enabled by EN_CHG or DIG_IO3). This function can
prevent unnecessary charging of a half discharged battery and,
as such, can extend the lifetime of the Li-Ion battery cell. Charging
starts automatically when the battery voltage drops below VCHG_VLIM
and continues through full charge cycle until the battery voltage
reaches VTRM (typically 4.2 V).
By default, the charging voltage limit is disabled and it can be
enabled from I2C Register Address 0x08, Bit 5 (EN_CHG_VLIM).
SYS_EN Output
The ADP5062 features a SYS_EN open-drain FET to enable the
system until the battery is at the minimum required level for
guaranteed system start-up. When there are minimum battery
voltage and/or minimum battery charge level requirements, the
operation of SYS_EN can be set by I2C programming. The SYS_EN
operation can be factory programmed to four different operating
conditions as described in Table 11.
Table 11. SYS_EN Mode Descriptions
SYS_EN Mode
Selection
Description
00 SYS_EN is activated when LDO is active and
system voltage is available.
01 SYS_EN is activated by the ISO_Bx voltage, the
battery charging mode.
10 SYS_EN is activated and the isolation FET is
disabled when the battery drops below VWEAK.
This option is active when VINx = 0 V and the
battery monitor is activated from Register 0x07,
Bit 5 (EN_BMON).
11 SYS_EN is active in LDO mode when the
charger is
disabled.
SYS_EN is active in charging mode when VISO_Bx
VWEAK.
Indicator LED Output (ILED)
The ILED is an open-drain output for an indicator LED connec-
tion. Optionally, the ILED output can be used as a status output
for a microcontroller. Indicator LED modes are listed in Table 12.
Table 12. Indicator LED Operation Modes
ADP5062 Mode ILED Mode On/Off Time
IC Off Off
LDO Mode Off Off
LDO Mode On Off
Charge Mode Continuously on
Timer Error (tTRK, tCHG, tSAFE) Blinking 167 ms/833 ms
Overtemperature (TSD) Blinking 1 sec/1 sec
Data Sheet ADP5062
Rev. B | Page 21 of 44
THERMAL MANAGEMENT
Isothermal Charging
The ADP5062 includes a thermal feedback loop that limits the
charge current when the die temperature exceeds TLIM (typically
115°C). As the on-chip power dissipation and die temperature
increase, the charge current is automatically reduced to maintain
the die temperature within the recommended range. As the die
temperature decreases due to lower on-chip power dissipation
or ambient temperature, the charge current returns to the pro-
grammed level. During isothermal charging, the THERM_LIM
I2C flag is set to high.
This thermal feedback control loop allows the user to set the
programmed charge current based on typical rather than worst
case conditions.
The ADP5062 does not include a thermal feedback loop to limit
ISO_Sx load current in LDO mode. If the power dissipated on
chip during LDO mode causes the die temperature to exceed
130°C, an interrupt is generated. If the die temperature continues
to rise beyond 140°C, the device enters thermal shutdown.
Thermal Shutdown and Thermal Early Warning
The ADP5062 charger features a thermal shutdown threshold
detector. If the die temperature exceeds TSD, the ADP5062 charger
is disabled, and the TSD 140°C bit is set. The ADP5062 charger
can be reenabled when the die temperature drops below the TSD
falling limit and the TSD 140°C bit is reset. To reset the TSD
140°C bit, write to the I2C fault register, Register Address 0x0D
(Bit 0) or cycle the power.
Before the die temperature reaches TSD, the early warning bit is
set if TSDL is exceeded. This allows the system to accommodate
power consumption before thermal shutdown occurs.
Fault Recovery
Before performing the following operation, it is important to
ensure that the cause of the fault has been rectified.
To recover from a charger fault (when CHARGER_STATUS[2:0] =
110), cycle power on VINx or write high to reset the I2C fault bits
in the fault register (Register Address 0x0D).
BATTERY ISOLATION FET
The ADP5062 charger features an integrated battery isolation
FET for power path control. The battery isolation FET isolates a
deeply discharged Li-Ion cell from the system power supply in
both trickle and fast charge modes, thereby allowing the system
to be powered at all times.
When VINx is below VVIN_OK_RISE, the battery isolation FET is in
full conducting mode.
The battery isolation FET is off during trickle charge mode.
When the battery voltage exceeds VTRK_DEAD, the battery iso-
lation FET switches to the system voltage regulation mode.
During system voltage regulation mode, the battery isolation
FET maintains the VISO_SFC voltage on the ISO_Sx pins. When
the battery voltage exceeds VISO_SFC, the battery isolation FET is
in full conducting mode.
The battery isolation FET supplements the battery to support
high current functions on the system power supply. When the
voltage on ISO_Sx drops below VISO_Bx, the battery isolation FET
enters into full conducting mode. When voltage on ISO_Sx
rises above VISO_Bx, the isolation FET enters regulating mode or
full conduction mode, depending on the Li-Ion cell voltage and
the linear charger mode.
BATTERY DETECTION
Battery Voltage Level Detection
The ADP5062 charger features a battery detection mechanism to
detect an absent battery. The charger actively sinks and sources
current into the ISO_Bx node, and voltage vs. time is detected.
The sink phase is used to detect a charged battery, whereas the
source phase is used to detect a discharged battery.
The sink phase (see Figure 30) sinks ISINK current from the ISO_Bx
pins for a time period, tBATOK. If ISO_Bx is below VBATL when the
tBATOK timer expires, the charger assumes no battery is present and
starts the source phase. If the ISO_Bx pin exceeds the VBATL voltage
when the tBATOK timer expires, the charger assumes the battery is
present and begins a new charge cycle.
The source phase sources ISOURCE current to the ISO_Bx pins for
a time period, tBATOK. If If ISO_Bx exceeds VBATH before the tBATOK
timer expires, the charger assumes that no battery is present. If
the ISO_Bx pin does not exceed the VBATH voltage when the tBATOK
timer expires, the charger assumes that a battery is present and
begins a new charge cycle.
ADP5062 Data Sheet
Rev. B | Page 22 of 44
Figure 30. Sink Phase
Figure 31. Trickle Charge
Battery (ISO_Bx) Short Detection
A battery short occurs under a damaged battery condition or
when the battery protection circuitry is enabled.
On commencing trickle charging, the ADP5062 charger moni-
tors the battery voltage. If this battery voltage does not exceed
VBAT_SHR within the specified timeout period, tBAT_SHR, a fault is
declared and the charger is stopped by turning the battery
isolation FET off, but the system voltage is maintained at
VISO_STRK by the linear regulator.
After source phase, if the ISO_Bx or BAT_SNS level remains
below VBATH, either the battery voltage is low or the battery node
is shorted. Because the battery voltage is low, trickle charging mode
is initiated (see Figure 31). If the BAT_SNS level remains below
VBAT_SHR after tBAT_SHR has elapsed, the ADP5062 assumes that the
battery node is shorted.
The trickle charge branch is active during the battery short
scenario, and trickle charge current to the battery is main-
tained until the 60-minute trickle charge mode timer expires.
BATTERY PACK TEMPERATURE SENSING
Battery Thermistor Input
The ADP5062 charger features battery pack temperature sensing
that precludes charging when the battery pack temperature is
outside the specified range. The THR pin provides an on and
off switching current source that should be connected directly
to the battery pack thermistor terminal. The activation interval
of the THR current source is 167 ms.
The battery pack temperature sensing can be controlled by
I2C, using the conditions shown in Table 13. Note that the
I2C register default setting for EN_THR (Register Address 0x07)
is 0 = temperature sensing off.
Table 13. THR Input Function
Conditions
THR Function VINx VISO_Bx
Open or VIN = 0 V to 4.0 V <2.5 V Off
Open or VIN = 0 V to 4.0 V >2.5 V Off, controlled by I2C
4.0 V to 6.7 V Don't care Always on
If the battery pack thermistor is not connected directly to the
THR pin, a 10 kΩ (tolerance ±20%) dummy resistor must be
connected between the THR input and GND. Leaving the THR
pin open results in a false detection of the battery temperature
being <0°C and charging is disabled.
The ADP5062 charger monitors the voltage in the THR pin and
suspends charging when the current is outside the range of less
than 0°C or greater than 60°C.
The ADP5062 charger is designed for use with an NTC thermistor
in the battery pack with a nominal room temperature value of
either 10 kΩ at 25°C or 100 kΩ at 25°C, which is selected by
factory programming.
The ADP5062 charger is designed for use with an NTC thermistor
in the battery pack with a temperature coefficient curve (beta).
Factory programming supports eight beta values covering a
range from 3150 to 4400 (see Table 43).
OPEN
ISO_Bx
SINK PHASE
LOGIC
STATUS
OPEN
OR
SHORT
tBAT_OK
VBATL
I
SINK
ISO_Bx
OPEN
OPEN
LOGIC
STATUS
SOUR CE PHASE
tBAT_OK
V
BATH
I
SOURCE
10806-030
I
SOURCE
SHORT
SINK P HAS E SOURC E PHASE TRI CK L E CHARG E
ISO_Bx
SHORT
ISO_Bx
SHORT
ISO_Bx
LOGIC
STATUS
OPEN
OR
SHORT
t
BAT_OK
LOGIC
STATUS
SHORT
OR
LOW
BATTERY
t
BAT_OK
LOGIC
STATUS
SHORT
t
BAT_SHR
V
BATL
V
BATH
V
BAT_SHR
I
TRK_DEAD
I
SINK
10806-031
Data Sheet ADP5062
Rev. B | Page 23 of 44
JEITA Li-Ion Battery Temperature Charging Specification
The ADP5062 is compliant with the JEITA1 and JEITA2 Li-Ion
battery charging temperature specifications as outlined in Table 14
and Table 16, respectively.
JEITA function can be enabled via the I2C interface and, optionally,
the JEITA1 or JEITA2 function can be selected in I2C.
Alternatively, the JEITA1 or JEITA2 can be set as enabled to
default by factory programming.
When the ADP5062 identifies a hot or cold battery condition,
the ADP5062 takes the following actions:
Stops charging the battery.
Connects or enables the battery isolation FET such that the
ADP5062 continues in LDO mode.
Table 14. JEITA1 Specifications
Parameter Symbol Conditions Min Max Unit
JEITA1 Cold Temperature Limits
I
JEITA_COLD
No battery charging occurs.
0
°C
JEITA1 Cool Temperature Limits IJEITA_COOL Battery charging occurs at approximately 50% of the programmed
level. See Table 15 for specific charging current reduction levels.
0 10 °C
JEITA1 Typical Temperature Limits IJEITA_TYP Normal battery charging occurs at the default/programmed levels. 10 45 °C
JEITA1 Warm Temperature Limits IJEITA_WARM Battery termination voltage (VTRM) is reduced by 100 mV from the
programmed value.
45 60 °C
JEITA1 Hot Temperature Limits IJEITA_HOT No battery charging occurs. 60 °C
Table 15. JEITA1 Reduced Charge Current Levels, Battery Cool Temperature
ICHG[4:0] (Default) ICHG JEITA1 ICHG[4:0] (Default) ICHG JEITA1
00000 = 50 mA 50 mA 01100 = 650 mA 300 mA
00001 = 100 mA 50 mA 01101 = 700 mA 350 mA
00010 = 150 mA 50 mA 01110 = 750 mA 350 mA
00011 = 200 mA 100 mA 01111 = 800 mA 400 mA
00100 = 250 mA 100 mA 10000 = 850 mA 400 mA
00101 = 300 mA
150 mA
10001 = 900 mA
450 mA
00110 = 350 mA 150 mA 10010 = 950 mA 450 mA
00111 = 400 mA 200 mA 10011 = 1000 mA 500 mA
01000 = 450 mA 200 mA 10100 = 1050 mA 500 mA
01001 = 500 mA 250 mA 10101 = 1100 mA 550 mA
01010 = 550 mA 250 mA 10110 = 1200 mA 600 mA
01011 = 600 mA 300 mA 10111 = 1300 mA 650 mA
Table 16. JEITA2 Specifications
Parameter Symbol Conditions Min Max Unit
JEITA2 Cold Temperature Limits IJEITA_COLD No battery charging occurs. 0 °C
JEITA2 Cool Temperature Limits IJEITA_COOL Battery termination voltage (VTRM) is reduced by 100 mV from the
programmed value.
0 10 °C
JEITA2 Typical Temperature Limits IJEITA_TYP Normal battery charging occurs at the default/programmed levels. 10 45 °C
JEITA2 Warm Temperature Limits IJEITA_WARM Battery termination voltage (VTRM) is reduced by 100 mV from the
programmed value.
45 60 °C
JEITA2 Hot Temperature Limits IJEITA_HOT No battery charging occurs. 60 °C
ADP5062 Data Sheet
Rev. B | Page 24 of 44
Figure 32. Simplified Battery and VINx Connect Flowchart
RESET ALL
REGISTERS
POWER-ON RESET
VI N_OK =
HIGH
NO
NO
NO
NO
NO
IC OFF
ENABLE
LDO
TO
CHARGING M ODE
ENABLE
CHARGER
LOW
BATTERY
CHG
LDO MODE
SYSTEM
OFF
YES
YES
YES
YES
YES
YES
NO
ENABLE
CHARGER
VBAT_SNS
< VCHG_VLIM
10806-032
Data Sheet ADP5062
Rev. B | Page 25 of 44
Figure 33. Simplified Charging Mode Flowchart
TO CHARGING
MODE
I
VINx
< I
LIM
TEMP < T
LIM
YES
NO
NO
CHARGE
COMPLETE
YES
tWD
EXPIRED YES
NO
TRICKLE
CHARGE
YES
TIMER FAULT
OR
BAD BATTERY
YES
NO
NO
V
BAT_SNS
< V
TRK
YES NO
YES
NO
NO
VI N_OK =
HIGH
VI N_OK =
HIGH
YESYES
tSTART
EXPIRED
POWER-DOWN
NO
NO NO
YES
YES
1
NO
NO
YES
YES
RUN
BATTERY
DETECTION
FAS T CHARGE
NO
YES
TO IC OFF
V
BAT_SNS
=
V
RCH
tWD
EXPIRED
tSAFE
OR
tTRK
EXPIRED
I
OUT
< I
END
V
BAT_SNS
< V
TRK
WATCHDOG
EXPIRED
START
tSAFE
I
BUS
= 100mA
VIN_ILIM = HIGH
I
VINx
= I
LIM
RUN
BATTERY
DETECTION
THERM_LIM = HIGH
TEMP = T
LIM
tSAFE
OR
tCHG
EXPIRED
WATCHDOG
EXPIRED
START
tSAFE
I
BUS
= 100 mA
TIMER FAULT OR
BAD BATTERY
1
SEE TIMER SPECS
V
BAT_SNS
=
V
TRM
CC MO DE
CHARGING
CV MODE
CHARGING
10806-033
ADP5062 Data Sheet
Rev. B | Page 26 of 44
I2C INTERFACE
The ADP5062 includes an I2C-compatible serial interface for
control of the charging and LDO functions, as well as for a
readback of the system status registers. The I2C chip address
is 0x28 in write mode and 0x29 in read mode.
Register values are reset to the default values when the VINx
supply falls below the falling voltage threshold, VVIN_OK_FALL.
The I2C registers also reset when the battery is disconnected and
VIN is 0 V.
The subaddress content selects which of the ADP5062 registers
is written to first. The ADP5062 sends an acknowledgement to
the master after the 8-bit data byte has been written (see Figure 34
for an example of the I2C write sequence to a single register).
The ADP5062 increments the subaddress automatically and
starts receiving a data byte at the next register until the master
sends an I2C stop as shown in Figure 35.
Figure 36 shows the I2C read sequence of a single register.
ADP5062 sends the data from the register denoted by the
subaddress and increments the subaddress automatically,
sending data from the next register until the master sends an
I2C stop condition, as shown in Figure 37.
Figure 34. I2C Single Register Write Sequence
Figure 35. I2C Multiple Register Write Sequence
Figure 36. I2C Single Register Read Sequence
Figure 37. I2C Multiple Register Read Sequence
SUBADDRESSCHIP ADDRES S
ST 0010100 0 0 0
SP
ADP5062 RE CEIV ES
DATA
0 = WRITE
0
MASTER STOP
ADP5062 ACK
ADP5062 ACK
ADP5062 ACK
10806-034
0 = W RI TE
CHIP ADDRESS
ST 0010100 0 0 0SP
ADP5062 RECEIVES
DATA TO REG ISTER N
0
MASTER STOP
0
ADP5062 REC EIV E S
DATA TO REGISTER N + 1
0
ADP5062 RE CE I V E S
DATA TO LAST RE GI S TER
ADP5062 ACK
ADP5062 ACK
ADP5062 ACK
ADP5062 ACK
ADP5062 ACK
SUBADDRESS
REGISTER N
10806-035
STST SP
0 = WRITE
SUBADDR
ESS
CHIP ADDRESS
0010100 0 0 10
MASTER
STOP
CHIP ADDRESS ADP5062 SEND
SDATA
0010100 0
1 = RE AD
10
ADP5062 ACK
ADP5062 ACK
ADP5062 ACK
MASTER ACK
10806-036
STST SP
0 = WRITE MASTER
STOP1 = RE AD
SUBADDRESS
REGISTER N
CHIP ADD RESS
0010100 0 0 0
ADP5062 SENDS
DATA OF REGISTER N
0
MASTER ACK
0
ADP5062 S E NDS
DATA O F REG IS T ER
N + 1
MASTER ACK
1
ADP5062 SENDS
DATA OF LAST
REGISTER
MASTER ACK
CHIP ADDRESS
0010100 010
ADP5062 ACK
ADP5062 ACK
ADP5062 ACK
10806-037
Data Sheet ADP5062
Rev. B | Page 27 of 44
I2C REGISTER MAP
See the Factory-Programmable Options section for programming option details. Note that a blank cell indicates a bit that is not used or is
reserved for future use.
Table 17. I2C Register Map
Register
D7 D6 D5 D4 D3 D2 D1 D0
Addr. Name
0x00 Manufac-
turer and
model ID
MANUF[3:0] Model[3:0]
0x01 Silicon
revision
REV[3:0]
0x02
VINx pin
settings
ILIM[3:0]
1
0x03 Termination
settings VTRM[5:0]1, 2 CHG_VLIM[1:0]1, 2
0x04 Charging
current
settings
ICHG[4:0]1, 2 ITRK_DEAD[1:0]1
0x05 Voltage
thresholds DIS_RCH1, 3 VRCH[1:0]1 VTRK_DEAD[1:0]1, 3 VWEAK[2:0]1
0x06 Timer
settings
EN_TEND1 EN_CHG_TIMER1 CHG_TMR_PERIOD1 EN_WD1, 3 WD_PERIOD1 RESET_WD
0x07
Functional
Settings 1
DIS_IC11 EN_BMON1 EN_THR1 DIS_LDO1 EN_EOC1
EN_CHG1
0x08 Functional
Settings 2
EN_JEITA1, 3 JEITA_SELECT1, 3 EN_CHG_VLIM1, 3 IDEAL_DIODE[1:0]1, 3 VSYSTEM[2:0]1, 3
0x09 Interrupt
enable
EN_THERM_LIM_INT EN_WD_INT EN_TSD_INT EN_THR_INT EN_BAT_INT EN_CHG_INT EN_VIN_INT
0x0A Interrupt
active
THERM_LIM_INT WD_INT TSD_INT THR_INT BAT_INT CHG_INT VIN_INT
0x0B Charger
Status 1
VIN_OV VIN_OK VIN_ILIM THERM_LIM CHDONE CHARGER_STATUS[2:0]
0x0C
Charger
Status 2
THR_STATUS[2:0] RCH_LIM_INFO BATTERY_STATUS[2:0]
0x0D Fault BAT_SHR1 TSD 130°C1 TSD 140°C1
0x10 Battery
short TBAT_SHR[2:0]1 VBAT_SHR[2:0]1
0x11 IEND IEND[2:0]1, 3 C/20 EOC1 C/10 EOC1 C/5 EOC1 SYS_EN_SET[1:0]1, 3
1 These bits reset to default I2C values when VINx is connected or disconnected.
2 The default I2C values of these bits are partially factory programmable.
3 The default I2C values of these bits are fully factory programmable.
ADP5062 Data Sheet
Rev. B | Page 28 of 44
REGISTER BIT DESCRIPTIONS
In Table 18 through Table 33, the following abbreviations are used: R is read only, W is write only, R/W is read/write, and N/A means not
applicable.
Table 18. Manufacturer and Model ID, Register Address 0x00
Bit No. Bit Name Access Default Description
[7:4] MANUF[3:0] R 0001 The 4-bit manufacturer identification bus
[3:0] MODEL[3:0] R 1001 The 4-bit model identification bus
Table 19. Silicon Revision, Register Address 0x01
Bit No. Bit Name Access Default Description
[7:4] Not used R
[3:0] REV[3:0] R 0100/ADP5062ACPZ-1-R7
0111/ADP5062ACPZ-2-R7
The 4-bit silicon revision identification bus
Table 20. VINx Pin Settings, Register Address 0x02
Bit No. Bit Name Access Default Description
[7:5] Not used R
4
RFU
R/W
0
Reserved for future use.
[3:0] ILIM[3:0] R/W 0000 = 100 mA VINx input current-limit programming bus. The current into VINx can
be limited to the following programmed values:
0000 = 100 mA.
0001 = 150 mA.
0010 = 200 mA.
0011 = 250 mA.
0100 = 300 mA.
0101 = 400 mA.
0110 = 500 mA.
0111 = 600 mA.
1000 = 700 mA.
1001 = 800 mA.
1010 = 900 mA.
1011 = 1000 mA.
1100 = 1200 mA.
1101 = 1500 mA.
1110 = 1800 mA.
1111 = 2100 mA.
Data Sheet ADP5062
Rev. B | Page 29 of 44
Table 21. Termination Settings, Register Address 0x03
Bit No. Bit Name Access Default Description
[7:2] VTRM[5:0] R/W 100011 = 4.20 V Termination voltage programming bus. The values of the floating voltage can
be programmed to the following values:
000101 = 3.60 V.
000110 = 3.62 V.
000111 = 3.64 V.
001000 = 3.66 V.
001001 = 3.68 V.
001010 = 3.70 V.
001011 = 3.72 V.
001100 = 3.74 V.
001101 = 3.76 V.
001110 = 3.78 V.
001111 = 3.80 V.
010000 = 3.82 V.
010001 = 3.84 V.
010010 = 3.86 V.
010011 = 3.88 V.
010100 = 3.90 V.
010101 = 3.92 V.
010110 = 3.94 V.
010111 = 3.96 V.
011000 = 3.98 V.
011001 = 4.00 V.
011010 = 4.02 V.
011011 = 4.04 V.
011100 = 4.06 V.
011101 = 4.08 V.
011110 = 4.10 V.
011111 = 4.12 V.
100000 = 4.14 V.
100001 = 4.16 V.
100010 = 4.18 V.
100011 = 4.20 V.
100100 = 4.22 V.
100101 = 4.24 V.
100110 = 4.26 V.
100111 = 4.28 V.
101000 = 4.30 V.
101001 = 4.32 V.
101010 = 4.34 V.
101011 = 4.36 V.
101100 = 4.38 V.
101101 = 4.40 V.
101110 = 4.42 V.
101111 = 4.44 V.
110000 = 4.44 V.
110001 = 4.46 V.
110010 = 4.48 V.
110011 to 111111 = 4.50 V.
[1:0] CHG_VLIM[1:0] R/W 00 = 3.2 V Charging voltage limit programming bus. The values of the charging voltage
limit can be programmed to the following values:
00 = 3.2 V.
01 = 3.4 V.
10 = 3.7 V.
11 = 3.8 V.
ADP5062 Data Sheet
Rev. B | Page 30 of 44
Table 22. Charging Current Settings, Register Address 0x04
Bit No. Bit Name Access Default Description
7 Not used R
[6:2] ICHG[4:0] R/W 01110 = 750 mA Fast charge current programming bus. The values of the constant
current charge can be programmed to the the following values:
00000 = 50 mA.
00001 = 100 mA.
00010 = 150 mA.
00011 = 200 mA.
00100 = 250 mA.
00101 = 300 mA.
00110 = 350 mA.
00111 = 400 mA.
01000 = 450 mA.
01001 = 500 mA.
01010 = 550 mA.
01011 = 600 mA.
01100 = 650 mA.
01101 = 700 mA.
01110 = 750 mA.
01111 = 800 mA.
10000 = 850 mA.
10001 = 900 mA.
10010 = 950 mA.
10011 = 1000 mA.
10100 = 1050 mA.
10101 = 1100 mA.
10110 = 1200 mA.
10111 to 11111 = 1300 mA.
[1:0] ITRK_DEAD[1:0] R/W 10 = 20 mA Trickle and weak charge current programming bus. The values of
the trickle and weak charge currents can be programmed to the
following values:
00 = 5 mA.
01 = 10 mA.
10 = 20 mA.
11 = 80 mA.
Table 23. Voltage Thresholds, Register Address 0x05
Bit No. Bit Name Access Default Description
7 DIS_RCH R/W 0 = recharge
enabled
0 = recharge enabled.
1 = recharge disabled.
[6:5] VRCH[1:0] R/W 11 = 260 mV Recharge voltage programming bus. The values of the recharge
threshold can be programmed to the following values (note that
the recharge cycle can be disabled in I
2
C by using the DIS_RCH bit):
00 = 80 mV.
01 = 140 mV.
10 = 200 mV.
11 = 260 mV.
Data Sheet ADP5062
Rev. B | Page 31 of 44
Bit No. Bit Name Access Default Description
[4:3] VTRK_DEAD[1:0] R/W 01 = 2.5 V Trickle to fast charge dead battery voltage programming bus. The
values of the trickle to fast charge threshold can be programmed to
the following values:
00 = 2.0 V.
01 = 2.5 V.
10 = 2.6 V.
11 = 2.9 V.
[2:0] VWEAK[2:0] R/W 011 = 3.0 V Weak battery voltage rising threshold.
000 = 2.7 V.
001 = 2.8 V.
010 = 2.9 V.
011 = 3.0 V.
100 = 3.1 V.
101 = 3.2 V.
110 = 3.3 V.
111 = 3.4 V.
Table 24. Timer Settings, Register Address 0x06
Bit No. Bit Name Access Default Description
[7:6] Not used
5 EN_TEND R/W 1 0 = charge complete timer, tEND, disabled. A 31 ms deglitch timer
remains on.
1 = charge complete timer enabled.
4 EN_CHG_TIMER R/W 1 0 = trickle/fast charge timer disabled.
1 = trickle/fast charge timer enabled.
3 CHG_TMR_PERIOD R/W 1 Trickle and fast charge timer period.
0 = 30 sec trickle charge timer and 300 minute fast charge timer.
1 = 60 sec trickle charge timer and 600 minute fast charge timer.
2 EN_WD R/W 0 0 = watchdog timer is disabled even when BAT_SNS exceeds VWEAK.
1 = watchdog timer safety timer is enabled.
1
WD_PERIOD
R/W
0
Watchdog safety timer period.
0 = 32 sec watchdog timer and 40 minute safety timer.
1 = 64 sec watchdog timer and 40 minute safety timer.
0 RESET_WD W 0 When RESET_WD is set to logic high by I2C, the watchdog safety
timer is reset.
Table 25. Functional Settings 1, Register Address 0x07
Bit No. Bit Name Access Default Description
7 Not used
6 DIS_IC1 R/W 0 0 = normal operation.
1 = the ADP5062 is disabled; VVINx must be VISO_Bx < VVINx < 5.5 V.
5 EN_BMON R/W 0 0 = when VVINx < VVIN_OK_RISE or VVIN_OK_FALL, the battery monitor is
disabled. When VVINx = 4.0 V to 6.7 V, the battery monitor is enabled
regardless of the EN_BMON state.
1 = the battery monitor is enabled even when the voltage at the
VINx pins is below VVIN_OK.
4 EN_THR R/W 0 0 = when VVINx < VVIN_OK_RISE or VVIN_OK_FALL, the THR current source is
disabled. When VVINx = 4.0 V to 6.7 V, the THR current source is
enabled regardless of the EN_THR state.
1 = THR current source is enabled even when the voltage at the
VINx pins is below VVIN_OK_RISE or VVIN_OK_FALL.
3 DIS_LDO R/W 0 0 = LDO is enabled.
1 = LDO is off. In addition, if EN_CHG = low, the battery isolation
FET is on. If EN_CHG = high, the battery isolation FET is off.
ADP5062 Data Sheet
Rev. B | Page 32 of 44
Bit No. Bit Name Access Default Description
2 EN_EOC R/W 1 0 = end of charge not allowed.
1 = end of charge allowed.
1 Not used
0 EN_CHG R/W 0 0 = battery charging is disabled.
1 = battery charging is enabled.
Table 26. Functional Settings 2, Register Address 0x08
Bit No. Bit Name Access Default Description
7 EN_JEITA R/W 0 = JEITA disabled 0 = JEITA compliance of the Li-Ion temperature battery charging
specifications is disabled.
1 = JEITA compliance enabled.
6 JEITA_SELECT R/W 0 = JEITA1 0 = JEITA1 is selected.
1 = JEITA2 is selected.
5
EN_CHG_VLIM
R/W
0
0 = charging voltage limit disabled.
1 = voltage limit activated. The charger prevents charging until the
battery voltage drops below the VCHG_VLIM threshold.
[4:3] IDEAL_DIODE[1:0] R/W 00 00 = ideal diode operates constantly when VISO_Sx < VISO_Bx.
01 = ideal diode operates when VISO_Sx < VISO_Bx and VBAT_ SNS > VWEAK.
10 = ideal diode is disabled.
11 = ideal diode is disabled.
[2:0] VSYSTEM[2:0] R/W See Table 41 for
model specific
default value.
System
voltage programming bus. The values of the system voltage
can be programmed to the following values:
000 = 4.3 V.
001 = 4.4 V.
010 = 4.5 V.
011 = 4.6 V.
100 = 4.7 V.
101 = 4.8 V.
110 = 4.9 V.
111 = 5.0 V.
Table 27. Interrupt Enable, Register Address 0x09
Bit No. Bit Name Access Default Description
7
Not used
6 EN_THERM_LIM_INT R/W 0 0 = isothermal charging interrupt is disabled.
1 = isothermal charging interrupt is enabled.
5 EN_WD_INT R/W 0 0 = watchdog alarm interrupt is disabled.
1 = watchdog alarm interrupt is enabled.
4 EN_TSD_INT R/W 0 0 = overtemperature interrupt is disabled.
1 = overtemperature interrupt is enabled.
3 EN_THR_INT R/W 0 0 = THR temperature thresholds interrupt is disabled.
1 = THR temperature thresholds interrupt is enabled.
2 EN_BAT_INT R/W 0 0 = battery voltage thresholds interrupt is disabled.
1 = battery voltage thresholds interrupt is enabled.
1 EN_CHG_INT R/W 0 0 = charger mode change interrupt is disabled.
1 = charger mode change interrupt is enabled.
0
EN_VIN_INT
R/W
0
0 = VINx pin voltage thresholds interrupt is disabled.
1 = VINx pin voltage thresholds interrupt is enabled.
Data Sheet ADP5062
Rev. B | Page 33 of 44
Table 28. Interrupt Active, Register Address 0x0A
Bit No. Bit Name Access Default Description
7 Not used
6 THERM_LIM_INT R 0 1 = indicates an interrupt caused by isothermal charging.
5 WD_INT R 0 1 = indicates an interrupt caused by the watchdog alarm. The
watchdog timer expires within 2 sec or 4 sec, depending on the
watch dog period setting of 32 sec or 64 sec, respectively.
4 TSD_INT R 0 1 = indicates an interrupt caused by an overtemperature fault.
3 THR_INT R 0 1 = indicates an interrupt caused by THR temperature thresholds.
2 BAT_INT R 0 1 = indicates an interrupt caused by battery voltage thresholds.
1 CHG_INT R 0 1 = indicates an interrupt caused by a charger mode change.
0 VIN_INT R 0 1 = indicates an interrupt caused by VINx voltage thresholds.
Table 29. Charger Status 1, Register Address 0x0B
Bit No. Bit Name Access Default Description
7 VIN_OV R N/A 1 = the voltage at the VINx pins exceeds VVIN_OV.
6 VIN_OK R N/A 1 = the voltage at the VINx pins exceeds VVIN_OK_RISE, VVIN_OK_FALL.
5
VIN_ILIM
R
N/A
1 = the current into a VINx pin is limited by the high voltage blocking
FET and the charger is not running at the full programmed ICHG.
4 THERM_LIM R N/A 1 = the charger is not running at the full programmed ICHG but is
limited by the die temperature.
3 CHDONE R N/A 1 = the end of a charge cycle has been reached. This bit latches on,
in that it does not reset to low when the VRCH threshold is breached.
[2:0] CHARGER_STATUS[2:0] R N/A Charger status bus.
000 = off.
001 = trickle charge.
010 = fast charge (CC mode).
011 = fast charge (CV mode).
100 = charge complete.
101 = LDO mode.
110 = trickle or fast charge timer expired.
111 = battery detection.
ADP5062 Data Sheet
Rev. B | Page 34 of 44
Table 30. Charger Status 2, Register Address 0x0C
Bit No. Mnemonic Access Default Description
[7:5] THR_STATUS[2:0] R N/A THR pin status.
000 = off.
001 = battery cold.
010 = battery cool.
011 = battery warm.
100 = battery hot.
111 = thermistor OK.
4 Not used
3 RCH_LIM_INFO R N/A The recharge limit information function is activated when DIS_RCH
is logic high and the CHARGER_STATUS[2:0] = 100 (binary). The
status bit informs the system that a recharge cycle is required.
0 = VB AT_S NS > VRCH
1 = VB AT_S NS < VRCH
[2:0] BATTERY_STATUS[2:0] R Battery status bus.
000 = battery monitor off.
001 = no battery.
010 = VBAT_ SNS < VTRK_DEAD.
011 = VTRK_DEAD VBAT_ SNS < VWEAK.
100 = VB AT_S NS ≥ VWEAK.
Table 31. Fault,1 Register Address 0x0D
Bit No. Bit Name Access Default Description
[7:4] Not used
3 BAT_SHR R/W 0 1 = indicates detection of a battery short.
2 Not used R/W
1 TSD 130°C R/W 0 1 = indicates an overtemperature (lower) fault.
0 TSD 140°C R/W 0 1 = indicates an overtemperature fault.
1 To reset the fault bits in the fault register, cycle power on VINx or write high to the corresponding I2C bit.
Table 32. Battery Short, Register Address 0x10
Bit No. Bit Name Access Default Description
[7:5] TBAT_SHR[2:0] R/W 100 = 30 sec Battery short timeout timer.
000 = 1 sec.
001 = 2 sec.
010 = 4 sec.
011 = 10 sec.
100 = 30 sec.
101 = 60 sec.
110 = 120 sec.
111 = 180 sec.
[4:3] Not used
[2:0] VBAT_SHR[2:0] R/W 100 = 2.4 V Battery short voltage threshold level.
000 = 2.0 V.
001 = 2.1 V.
010 = 2.2 V.
011 = 2.3 V.
100 = 2.4 V.
101 = 2.5 V.
110 = 2.6 V.
111 = 2.7 V.
Data Sheet ADP5062
Rev. B | Page 35 of 44
Table 33. IEND, Register Address 0x11
Bit No. Bit Name Access Default Description
[7:5] IEND[2:0] R/W 010 = 52.5 mA Termination current programming bus. The values of the termination current can
be programmed to the following values:
000 = 12.5 mA.
001 = 32.5 mA.
010 = 52.5 mA.
011 = 72.5 mA.
100 = 92.5 mA.
101 = 117.5 mA.
110 = 142.5 mA.
111 = 170.0 mA.
4 C/20 EOC R/W 0 The C/20 EOC bit has priority over the other settings (C/5 EOC, C/10 EOC, and
IEND[2:0]).
1 = the termination current is ICHG[4:0] ÷ 20 with the following limitations:
Minimum value = 12.5 mA.
Maximum value = 170 mA.
3
C/10 EOC
R/W
0
The C/10 EOC bit has priority over the other termination current settings (C/5 EOC
and IEND[2:0]), but does not have priority over the C/20 EOC setting.
1 = the termination current is ICHG[4:0] ÷ 10, unless C/20 EOC is high. The
termination current is limited to the following values:
Minimum value = 12.5 mA.
Maximum value = 170 mA.
2 C/5 EOC R/W 0 The C/5 EOC bit has priority over the other termination current settings (IEND[2:0])
but does not have priority over the C/20 EOC setting or the C/10 EOC setting.
1 = the termination current is ICHG[4:0] ÷ 5, unless the C/20 EOC or the C/10 EOC
bit is high. The termination current is limited to the following values:
Minimum value = 12.5 mA.
Maximum value = 170 mA.
1:0 SYS_EN_SET[1:0] R/W 00 Selects the operation of the system enable pin (SYS_EN).
00 = SYS_EN is activated when LDO is active and the system voltage is available.
01 = SYS_EN is activated by the ISO_Bx voltage, the battery charging mode.
10 = SYS_EN is activated and the isolation FET is disabled when the battery drops
below VWEAK.1
11 = SYS_EN is active in LDO mode when the charger is disabled. SYS_EN is active
in the charging mode when VISO_Bx ≥ VWEAK.
1 This option is active when VINx = 0 V and the battery monitor is activated from Register 0x07, Bit 5 (EN_BMON).
ADP5062 Data Sheet
Rev. B | Page 36 of 44
APPLICATIONS INFORMATION
EXTERNAL COMPONENTS
ISO_Sx (VOUT) Capacitor Selection
To obtain stable operation of the ADP5062 in a safe way, the
combined effective capacitance of the ISO_Sx capacitor and the
system capacitance must not be less than 10 µF and must not
exceed 100 µF at any point during operation.
When choosing the capacitor value, it is also important to account
for the loss of capacitance caused by the output voltage dc bias.
Ceramic capacitors are manufactured with a variety of dielectrics,
each with a different behavior over temperature and applied
voltage. Capacitors must have a dielectric that is adequate to ensure
the minimum capacitance over the necessary temperature range
and dc bias conditions. X5R or X7R dielectrics with a voltage rating
of 6.3 V or higher are recommended for best performance. Y5V
and Z5U dielectrics are not recommended for use with any dc-
to-dc converter because of their poor temperature and dc bias
characteristics.
The worst case capacitance accounting for capacitor variation
over temperature, component tolerance, and voltage is calcu-
lated using the following equation:
CEFF = COUT × (1 − TEMPCO) × (1 − TOL)
where:
CEFF is the effective capacitance at the operating voltage.
TEMPCO is the worst case capacitor temperature coefficient.
TOL is the worst case component tolerance.
In this example, the worst case temperature coefficient (TEMPCO)
over the range of −40°C to +85°C is assumed to be 15% for an
X5R dielectric. The tolerance of the capacitor (TOL) is assumed
to be 10%, and COUT is 16 μF at 4.2 V, as shown in Figure 38.
Figure 38. Murata GRM31CR61A226KE19 Capacitance vs. Bias Voltage
Substituting these values in the equation yields
CEFF = 16 μF × (1 − 0.15) × (1 − 0.1) ≈ 12.24 μF
To guarantee the performance of the charger in various operating
modes, including trickle charge, constant current charge, and
constant voltage charge, it is imperative that the effects of dc
bias, temperature, and tolerances on the behavior of the capaci-
tors be evaluated for each application.
Splitting ISO_Sx Capacitance
In many applications, the total ISO_Sx capacitance consists of a
number of capacitors. The system voltage node (ISO_Sx) usually
supplies a single regulator or a number of ICs and regulators,
each of which requires a capacitor close to its power supply
input (see Figure 39).
The capacitance close to the ADP5062 ISO_Sx output should be
at least 5 µF, as long as the total effective capacitance is at least
10 µF at any point during operation.
Figure 39. Splitting ISO_Sx Capacitance
ISO_Bx and ISO_Sx Capacitor Selection
The ISO_Bx and the ISO_Sx effective capacitance (including
temperature and dc bias effects) must not be less than 10 µF at
any point during operation. Typically, a nominal capacitance of
22 µF is required to fullfill the condition at all points of
operation. Suggestions for ISO_Bx and ISO_Sx capacitors are
listed in Table 34.
CBP Capacitor Selection
The internal supply voltage of the ADP5062 is equipped with a
noise suppressing capacitor at the CBP terminal. Do not allow CBP
capacitance to exceed 14 nF at any point during operation. Do
not connect any external voltage source, any resistive load, or
any other current load to the CBP terminal. Suggestions for a
CBP capacitor are listed in Table 35.
20
25
30
35
40
45
50
55
60
0 1 2 3 4 5
CAPACITANCE (µF)
DC BIAS VOLTAGE (V)
10806-041
ADP5062 IC1
IC2
ISO_Sx VIN1
VIN2
CIN2
CISO_Sx > F
CISO_Bx
≥10µF
SUM OF EFFECTIVE
CAPACITANCES
ON ISO _S x NODE > 10µ F
+
ISO_Bx
CIN1
10806-038
Data Sheet ADP5062
Rev. B | Page 37 of 44
VINx Capacitor Selection
According to the USB 2.0 specification, USB peripherals have a
detectable change in capacitance on VBUS when they are attached
to a USB port. The peripheral device VBUS bypass capacitance
must be at least 1 µF but not larger than 10 µF.
The VINx input of the ADP5062 is tolerant of voltages as high
as 20 V; however, if an application requires exposing the VINx
input to voltages of up to 20 V, the voltage range of the capacitor
must also be above 20 V. Suggestions for a VINx capacitor are
given in Table 36.
When using ceramic capacitors, a higher voltage range is usually
achieved by selecting a component with larger physical dimensions.
In applications where lower than 20 V at VINx input voltages can
be guaranteed, smaller output capacitors can be used accordingly.
Table 34. ISO_Bx and ISO_Sx Capacitor Suggestions
Vendor Part Number Value Voltage Size
Murata GRM31CR61A226KE19 22 μF 10 V 1206
Murata GRM31CR60J226ME19 22 μF 6.3 V 1206
TDK C3216X5R0J226M 22 µF 6.3 V 1206
Taiyo-
Yuden
JMK316ABJ226KL 22 µF 6.3 V 1206
Table 35. CBP Capacitor Suggestions
Vendor Part Number Value Voltage Size
Murata GRM15XR71C103KA86 10 nF 16 V 0402
TDK C1005X7R1C103K 10 nF 16 V 0402
Table 36. VINx Capacitor Suggestions
Vendor Part Number Value Voltage Size
Murata GRM21BR61E106MA73 10 µF 25 V 0805
TDK C2012X5R1E106K 10 µF 25 V 0805
ADP5062 Data Sheet
Rev. B | Page 38 of 44
PCB LAYOUT GUIDELINES
Figure 40. Reference Circuit Diagram
Figure 41. Reference PCB Floor Plan
9
VDDIO
10
11
13
14
19
7
6
1
17
20
5
3
18
VIN1 TO VIN3
CBP
SCL
SDA
ISO_S1 TO ISO_S3
ISO_B1 TO ISO_B3
SYS_EN
AGND
DIG_IO1
DIG_IO2
DIG_IO3
THR
4
BAT_SNS
TO MCU
TO MCU
TO MCU
TO MCU/ NC
TO MCU/ NC
CHARGER
CONTROL
BLOCK
R5 NTC 10kΩ
(OPTIONAL)
CONNECT
CLOSE TO
BATTERY +
8
12
2
TO MCU/ NC
15
ILED
VLED
16
VDDIO
R4
10kΩ
R2
1.5kΩ
R1
1.5kΩ
C4
10µF
GRM21BR6E106MA73
C1
10nF
GRM15XR71C103KA8
VI N = 4V TO 7V
C3
22µF
GRM31CR60J226ME19
C2
22µF
GRM31CR60J22ME19
ADP5062
20-L E AD LFCS P
10806-040
VINx PGND
PGND
CBP
PGND
ISO_Bx
ISO_Sx
C4 – 10µF
25V/X5R
0805 C3 – 22µF
16V/X5R
1206
C2 – 22µF
16V/X5R
1206
C1 – 10nF
16V/X7R
0402
10806-100
Data Sheet ADP5062
Rev. B | Page 39 of 44
POWER DISSIPATION AND THERMAL CONSIDERATIONS
CHARGER POWER DISSIPATION
When the ADP5062 charger operates at high ambient tempera-
tures and at maximum current charging and loading conditions,
the junction temperature can reach the maximum allowable
operating limit of 125°C.
When the junction temperature exceeds 140°C, the ADP5062
turns off, allowing the device to cool down. When the die
temperature falls below 110°C and the TSD 140°C fault bit in
Register 0x0D is cleared by an I2C write, the ADP5062 resumes
normal operation.
This section provides guidelines to calculate the power dissi-
pated in the device to ensure that the ADP5062 operates below
the maximum allowable junction temperature.
To determine the available output current in different operating
modes under various operating conditions, use the following
equations:
PD = PLDOFET + PISOFET (1)
where:
PLDOFET is the power dissipated in the input LDO FET.
PISOFET is the power dissipated in the battery isolation FET.
Calculate the power dissipation in the LDO FET and the battery
isolation FET using Equation 2 and Equation 3.
PLDOFET = (VINVISO_Sx) × (ICHG + ILOAD) (2)
PISOFET = (VISO_Sx VISO_Bx) × ICHG (3)
where:
VIN is the input voltage at the VINx pins.
VISO_Sx is the system voltage at the ISO_Sx pins.
VISO_Bx is the battery voltage at the ISO_Bx pins.
ICHG is the battery charge current.
ILOAD is the system load current from the ISO_Sx pins.
LDO Mode
The system regulation voltage is user-programmable from 4.3 V
to 5.0 V. In LDO mode (charging disabled, EN_CHG = low),
calculation of the total power dissipation is simplified, assuming
that all current is drawn from the VINx pins and the battery is
not shared with ISO_Sx.
PD = (VINVISO_Sx) × ILOAD
Charging Mode
In charging mode, the voltage at the ISO_Sx pins depends on
the battery level. When the battery voltage is lower than VISO_SFC
(typically 3.8 V), the voltage drop over the battery isolation FET
is higher and the power dissipation must be calculated using
Equation 3. When the battery voltage level reaches VISO_SFC, the
power dissipation can be calculated using Equation 4.
PISOFET = RDSON_ISO × ICHG (4)
where:
RDSON_ISO is the on resistance of the battery isolation FET
(typically 110 mΩ during charging).
ICHG is the battery charge current.
The thermal control loop of the ADP5062 automatically limits
the charge current to maintain a die temperature below TLIM
(typically 115°C).
The most intuitive and practical way to calculate the power
dissipation in the ADP5062 device is to measure the power
dissipated at the input and all of the outputs. Perform the
measurements at the worst case conditions (voltages, currents,
and temperature). The difference between input and output
power is the power that is dissipated in the device.
JUNCTION TEMPERATURE
In cases where the board temperature, TA, is known, the
thermal resistance parameter, θJA, can be used to estimate the
junction temperature rise. TJ is calculated from TA and PD using
the formula
TJ = TA + (PD × θJA) (5)
The typical θJA value for the 20-lead LFCSP is 35.6°C/W (see
Table 5). A very important factor to consider is that θJA is based
on a 4-layer, 4 in × 3 in, 2.5 oz. copper board as per JEDEC
standard, and real-world applications may use different sizes
and layers. It is important to maximize the copper to remove the
heat from the device. Copper exposed to air dissipates heat
better than copper used in the inner layers.
If the case temperature can be measured, the junction
temperature is calculated by
TJ = TC + (PD × θJC) (6)
where TC is the case temperature and θJC is the junction-to-case
thermal resistance provided in Table 5.
The reliable operation of the charger can be achieved only if the
estimated die junction temperature of the ADP5062 (Equation 5)
is less than 125°C. Reliability and mean time between failures
(MTBF) are greatly affected by increasing the junction temperature.
Additional information about product reliability can be found in
the ADI Reliability Handbook located at the following URL:
www.analog.com/reliability_handbook.
ADP5062 Data Sheet
Rev. B | Page 40 of 44
FACTORY-PROGRAMMABLE OPTIONS
CHARGER OPTIONS
Table 37 to Table 49 list the factory-programmable options of the ADP5062. In each of these tables, the selection column represents the
default setting of Model ADP5062ACPZ-1-R7 and Model ADP5062ACPZ-2-R7.
Table 37. Default Termination Voltage
Option Selection
000 = 4.20 V 000 = 4.20 V
010 = 3.70 V
011 = 3.80 V
100 = 3.90 V
101 = 4.00 V
110 = 4.10 V
111 = 4.40 V
Table 38. Default Fast Charge Current
Option
Selection
000 = 500 mA
001 = 300 mA
010 = 550 mA
011 = 600 mA
100 = 750 mA 100 = 750 mA
101 = 900 mA
110 = 1300 mA
111 = 1300 mA
Table 39. Default End of Charge Current
Option Selection
000 = 52.5 mA 000 = 52.5 mA
001 = 72.5 mA
010 = 12.5 mA
011 = 32.5 mA
100 = 142.5 mA
101 = 167.5 mA
110 = 92.5 mA
111 = 117.5 mA
Table 40. Default Trickle to Fast Charge Threshold
Option Selection
00 = 2.5 V 00 = 2.5 V
01 = 2.0 V
10 = 2.9 V
11 = 2.6 V
Table 41. Default System Voltage
Option Selection
000 = 4.3 V 000 = 4.3 V/ADP5062ACPZ-2-R7
001 = 4.4 V
010 = 4.5 V
011 = 4.6 V
100 = 4.7 V
101 = 4.8 V
110 = 4.9 V
111 = 5.0 V 111 = 5.0 V/ADP5062ACPZ-1-R7
Table 42. Thermistor Resistance
Option Selection
0 = 10 kΩ 0 = 10 kΩ
1 = 100 kΩ
Table 43. Thermistor Beta Value
Option Selection
0100 = 3150 0100 = 3150
0101 = 3350
0110 = 3500
0111 = 3650
1000 = 3850
1001 = 4000
1010 = 4200
1011 = 4400
Table 44. DIS_IC1 Mode Select
Option Selection
0 = DIC_IC1 mode select, VINx current = 280 µA,
ISO_Bx can float, no leak to ISO_Bx
0
1 = DIC_IC1 mode select, VINx current = 110 µA,
supply switch leaks from VINx to ISO_Bx
Table 45. Trickle or Fast Charge Timer Fault Operation
Option Selection
0 = after timeout LDO off, charging off
1 = after timeout LDO mode active, charging off 1 = LDO
mode
active
Data Sheet ADP5062
Rev. B | Page 41 of 44
I2C REGISTER DEFAULTS
Table 46. I2C Register Default Settings
Bit Name I2C Register Address, Bit Location Option Selection
CHG_VLIM[1:0]
Address 0x03, Bits[1:0]
0 = limit 3.2 V
0 = limit 3.2 V
1 = limit 3.7 V
DIS_RCH
Address 0x05, Bit 7
0 = recharge enabled
0 = recharge enabled
1 = recharge disabled
EN_WD Address 0x06, Bit 2 0 = watchdog disabled 0 = disabled
1 = watchdog enabled
DIS_IC1 Address 0x07, Bit 6 0 = not activated 0 = not activated
1 = activated
EN_CHG Address 0x07, Bit 0 0 = charging disabled 0 = charging disabled
1 = charging enabled
EN_JEITA Address 0x08, Bit 7 0 = JEITA disabled 0 = JEITA disabled
1 = JEITA enabled
JEITA_SELECT Address 0x08, Bit 6 0 = JEITA1 charging 0 = JEITA1 charging
1= JEITA2 charging
EN_CHG_VLIM
Address 0x08, Bit 5
0 = limit disabled
0 = limit disabled
1 = limit enabled
IDEAL_DIODE[1:0] Address 0x08, Bits[4:3] 00 = ideal diode operates when VISO_Sx < VISO_Bx 00 = VISO_Sx < VISO_Bx
01 = ideal diode operates when VISO_Sx < VISO_Bx
and VBAT_SNS > VWEAK
10 = ideal diode is disabled
11 = ideal diode is disabled
DIGITAL INPUT AND OUTPUT OPTIONS
Table 47. I2C Address 0x11, Bits[1:0] SYS_EN Output Default
Option Selection (Default)
00 = SYS_EN is activated when LDO is active and system voltage is available 00
01 = SYS_EN is activated by ISO_Bx voltage; battery charging mode
10 = SYS_EN is activated and the isolation FET is disabled when the battery drops below VWEAK1
11 = SYS_EN is active in LDO mode when the charger is disabled. SYS_EN is active in charging mode when VISO_Bx ≥ VWEAK
1 This option is active when VINx = 0 V and the battery monitor is activated from Register 0x07, Bit D5 (EN_BMON).
ADP5062 Data Sheet
Rev. B | Page 42 of 44
DIG_IO1, DIG_IO2, and DIG_IO3 Options
Table 48. DIG_IO1 Polarity
Table 49. DIG_IOx Options
Option Selection
0 = DIG_IO1 polarity, high active operation 0 = high active
1 = DIG_IO1 polarity, low active operation
Option DIG_IO1 Function DIG_IO2 Function DIG_IO3 Function Selection
0000 IVINx limit Disable IC1 Charging disable/enable 0000
Low = 100 mA Low = not activated Low = charging disable
High = 500 mA High = activated High = charging enabled
0010 IVINx limit IVINx limit Disable IC1
Low = 100 mA N/A Low = not activated
High= 500 mA High = IVINx limit 1500 mA High = activated
0011 IVINx limit IVINx limit Fast charge current
Low = 100 mA N/A Low = ICHG[4:0]
High= 500 mA High = IVINx limit 1500 mA High = ICHG[4:0] ÷ 2
0100 IVINx limit IVINx limit LDO
Low = 100 mA N/A Low = LDO active
High= 500 mA High = IVIN limit 1500 mA High = LDO disabled
0101 IVINx limit IVINx limit Charging
Low = 100 mA N/A Low = charging disabled
High= 500 mA High = IVINx limit 1500 mA High = charging enabled
0110 IVINx limit Recharge Charging
Low = 100 mA
N/A
Low = charging disabled
High= 500 mA High = disable recharge High = charging enabled
0111 Charging Disable IC1 Recharge
Low = charging disabled Low = not activated N/A
High = charging enabled High = activated High = disable recharge
1000 IVINx limit IVINx limit Interrupt output
Low = 100 mA N/A N/A
High= 500 mA High = IVINx limit 1500 mA N/A
1001 IVINx limit Charging Interrupt output
Low = 100 mA Low = charging disabled N/A
High= 500 mA High = charging enabled N/A
1010 IVINx limit Disable IC1 Interrupt output
Low = 100 mA Low = not activated N/A
High= 500 mA High = activated N/A
1011 IVINx limit Recharge Interrupt output
Low = 100 mA N/A N/A
High= 500 mA High = disable recharge N/A
1100
I
VINx
limit
Fast charge current
Interrupt output
Low = 100 mA Low = ICHG N/A
High= 500 mA High = ICHG[4:0] ÷ 2 N/A
1101 IVINx limit LDO Interrupt output
Low = 100 mA Low = LDO active N/A
High= 500 mA
High = LDO disabled
N/A
1110 IVINx limit Charging Interrupt output
N/A Low = charging disabled N/A
High = IVINx limit 1500 mA High = charging enabled N/A
1111 Disable IC1 Charging Interrupt output
Low = not activated Low = charging disabled N/A
High = activated High = charging enabled N/A
Data Sheet ADP5062
Rev. B | Page 43 of 44
PACKAGING AND ORDERING INFORMATION
OUTLINE DIMENSIONS
Figure 42. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
4 mm × 4 mm Body, Very Very Thin Quad
(CP-20-8)
Dimensions shown in millimeters
ORDERING GUIDE
Model1, 2 Temperature Range (Junction) Package Description Package Option
ADP5062ACPZ-1-R7 –40°C to +125°C 20-Lead LFCSP_WQ CP-20-8
ADP5062ACPZ-2-R7 –40°C to +125°C 20-Lead LFCSP_WQ CP-20-8
ADP5062CP-EVALZ ADP5062 Evaluation Board
1 Z = RoHS Compliant Part.
2 For additional factory-programmable options, contact an Analog Devices local sales or distribution representative.
0.50
BSC
0.50
0.40
0.30
0.30
0.25
0.18
COMPLIANT
TO
JEDEC S T ANDARDS M O - 220-WG GD.
020509-B
BOTTOM VIEWTOP VIEW
EXPOSED
PAD
PIN 1
INDICATOR
4.10
4.00 SQ
3.90
SEATING
PLANE
0.80
0.75
0.70 0.05 MAX
0.02 NOM
0.20 REF
0.25 M IN
COPLANARITY
0.08
PIN 1
INDICATOR
2.75
2.60 SQ
2.35
FO R PR O P ER CONNECTI O N O F
THE EXPOSED PAD, REFER TO
THE P IN CONFIG URATI ON AND
FUNCTI ON DES CRIPTI ONS
SECTION OF THIS DATA SHEET.
1
20
6
10
11
1516
5
ADP5062 Data Sheet
Rev. B | Page 44 of 44
NOTES
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).
©2012–2013 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D10806-0-10/13(B)
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Analog Devices Inc.:
ADP5062ACPZ-1-R7 ADP5062CP-EVALZ ADP5062ACPZ-2-R7