RICOH

R5432V SERIES

3 to 5 Cells Li-ion Battery Protector IC

NO.EA-263-1600711

OUTLINE

The R5432V is a high voltage CMOS-based protection IC for overcharge /discharge of rechargeable three-cell / four-cell / five-cell Lithium-ion / Lithium- polymer battery, further include a short circuit and the protection circuits against the excess discharge current and excess charge current.

Each of these ICs is composed of eighteen voltage detectors (fourteen for 3cell protection type, sixteen for 4cell protection type), a reference circuit, a delay circuit, a short detector circuit, an oscillator, a counter and a logic circuit.

The output of COUT is P-channel open-drain type, and DOUT is CMOS type.

If the overcharge voltage or overcharge current is detected by the R5432V, after the preset output delay time, the output of COUT becomes Hi-Z.

While the overdischarge voltage or current is detected, after the preset output delay time, the output of DOUT becomes "L". After detecting overcharge voltage, when the cell voltage returns lower than the overcharge released voltage, then overcharge is released and the output of COUT becomes "H". After detecting overcharge current, by disconnecting a charger and connecting a load, then overcharge current is released and the output of COUT becomes "H".

After detecting overdischarge voltage, when the cell voltage becomes the released voltage from overdischarge or more,

then overdischarge is released and the output of DOUT becomes "H". After detecting overdischarge current and short circuit, by disconnecting the load, the function of the output of DRAIN pin, the external NMOSFET turns on, and VMP pin voltage is pulled down by the resistance connected to GND and released overdischarge current or short and the output of DOUT becomes "H".

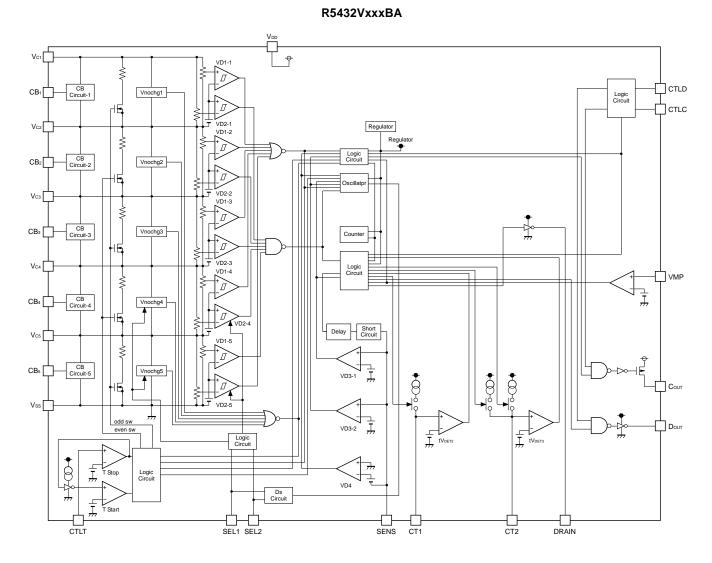
By forcing a certain voltage to SEL1 and SEL2 pins, the testing time of protection circuits can be short. Specifically, overcharge, discharge, over current delay time can be shortening into approximately 1/80.

The R5432V can protect 6-cell or more by connecting 2 pieces of the R5432V in cascade. High side IC's COUT and DOUT must connect to CTLC and CTLD respectively of the low side IC. As a result, the signal of the high side of COUT and DOUT is transmit to the lower side IC, and control FETs for charge and discharge.

The R5432V has cell-balance function to solve the unbalance condition of serially connected cells. If cell voltage is beyond the cell balance detector threshold, by the output of the cell balance control pin, the external NMOSFET turns on, and a current path is made, and during charge, charge current is bypassed, otherwise, cell is discharged until the cell voltage becomes the released voltage from cell-balance operation.

If the connection between a cell and a protection board is broken, the open-wire condition is detected by the R5432V, and the output of COUT becomes Hi-Z. After detecting the open-wire, when the cell and the protection board is connected again, the open-wire detector is released and the output of COUT becomes "H".

FEATURES


Absolute Maximum Rating	30V
Supply Current	Тур. 12.0μА
Detector thresholds range and accuracy	
Overcharge detector threshold	
Overdischarge detector threshold	
Excess discharge current threshold 1	0.1V to 0.3V (10mVstep) (±20mV) for BA/BB/BC ver.
	0.1V to 0.2V (10mV step) (±20mV) for AD/BD ver.
Excess discharge current threshold 2	0.45V/0.60V for BA ver.
	0.25V to 0.40V for BB/BC ver.
	0.25V/0.3V(Vdet3-1+0.1V or more) for AD/BD ver.

NO.EA-263-160711

Short detector threshold	1.00V for BA ver.
	0.75V for BB/BC ver.
	Vdet3-2 x 1.67 for AD/BD ver.
Excess charge current threshold	0.05V (±30mV), -0.1V (±30mV), -0.2V (±30mV), -0.4V (±40mV)
Overcharge released voltage	VDET1n-0.1V to 0.4V (50mV steps) (n=1, 2, 3, 4, 5)
Overdischarge released voltage	
	up to 3.4V
Cell-balance detector threshold	
Cell-balance released voltage	CBDETN-0.0V to 0.4V (50mV steps) (n=1, 2, 3, 4, 5)
Output delay time	
Overcharge detector Output Delay	1.0s
Overdischarge detector Output Delay	Settable by Ext.Capacitance1
 Excess discharge current detector Output Delay 1/2 	Settable by Ext.Capacitance2
Excess charge current detector Output Delay	8ms
Short detector Output Delay	300µs
Functions	
OV-battery charger	acceptable/unacceptable options
Cascade connection	Available. Refer to the typical application.
3/4/5 cell protection	Selectable
Output Delay Time Shortening Function	By forcing a certain voltage to SEL pin, overcharge,
	discharge voltage and current is reduced approximately 1/80.
	Overcharge delay time can be shorten into around 4ms for
	testing.
Cell-balance function	Available
Cell-unbalance condition	If either of cells detects overcharge and either of cells detects
overdischarge, the output of COUT becomes "Hi-Z", the o	putput of DOUT becomes "L".
Overcharge/Overdischarge released condition	
Output of COUT/DOUT	COUT: VDD source P-channel open drain output. Normal
	state "H"(VDD), Detected state "Hi-Z".
	DOUT: 12V regulator source CMOS output. Normal state
	"H"(12V), Detected state "L".
Open-wire detection	
	supervised.
Small Package	•
0	

NO.EA-263-160711

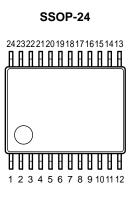
BLOCK DIAGRAMS

NO.EA-263-160711

SELECTION GUIDE

FI	oduct Name		Packag	e Qi	uantity p	er Ree	Pb Fre	e	Halogen Free	
5432	2Vxxx\$*		SSOP-24		3000)	Yes			Yes
	overdischarge	ige, Cell- e released	balance d voltage	threshold, C e, overdischa	ell-balan	ce rele	as overcharge ased voltage, overcharge cu	overdise	charge thre	eshold,
\$,		horao		ordioaborgo		roborgo	Short
	Overcharge Delay time (s)	Overdis Delay (m:	time	Overdisc Current Del (ms	ay time1		erdischarge nt Delay time2 (ms)	Current	rcharge Delay time (ms)	
A	1.0	3.64×C	ст1 (nF)	3.05×Cc	r2 (nF)	tV	DET 31/ 100	8		300
E	3 1.0	3.88×C	ст1 (nF)	3.26×Cc	r2 (nF)	ť	Vdet31/ 6		8	300
*capacitor for CT1: C _{CT1} , capacitor for CT2:C _{CT2} .										
*	: Designation	of Outpu	it delay o	option.						
*	Övercha	arge	Over	discharge	0V bat	-	Short detecto		en-wire	Cascade
*		arge	Over Release	discharge ed condition		-	Short detecto Threshold		en-wire ection	Cascade connection
*	Övercha Released co	arge ondition	Over Release	discharge		ge		det		
	Övercha Released co Auto Rel	arge ondition ease	Over Release Auto	discharge ed condition	Char	ge able	Threshold	det Ava	ection	connection
A	Övercha Released co A Auto Rel B Auto Rel	arge ondition ease ease	Overo Release Auto Auto	discharge ed condition Release	Char Accept	ge able ptable	Threshold 1.0V	det Ava Ava	ection ailable	connection Available

NO.EA-263-160711


1) Product Code List

	VDET1n	VREL1n	VCBDn	VCBRn	VDET2n	VREL2n	VDET31	VDET32	VSHORT	VDET4
Code	(V) *1	(V)	(V)	(V)	(V)					
R5432V402BA	4.350	4.050	4.200	4.200	2.400	2.700	0.200	0.600	1.000	-0.100
R5432V403BA	3.900	3.800	3.500	3.500	2.500	3.000	0.100	0.600	1.000	-0.100
R5432V404BA	4.250	4.100	4.200	4.200	2.500	3.000	0.200	0.600	1.000	-0.200
R5432V405BA	3.900	3.800	3.650	3.650	2.000	2.300	0.100	0.600	1.000	-0.200
R5432V406BA	3.650	3.550	3.500	3.500	2.500	3.000	0.300	0.600	1.000	-0.200
R5432V407BA	4.200	4.000	3.900	3.900	2.700	2.850	0.200	0.450	1.000	-0.200
R5432V408BA	3.800	3.600	3.450	3.450	2.000	2.300	0.200	0.450	1.000	-0.100
R5432V409BA	4.100	4.000	3.900	3.900	3.000	3.100	0.200	0.600	1.000	-0.200
R5432V410BC	4.200	4.000	4.150	4.150	2.750	2.950	0.100	0.250	0.750	-0.050
R5432V412BA	4.300	4.050	4.200	4.200	2.700	3.000	0.200	0.600	1.000	-0.100
R5432V413BA	4.250	4.100	4.200	4.200	2.500	3.000	0.100	0.600	1.000	-0.100
R5432V416BA	4.200	4.100	4.170	4.170	2.500	3.000	0.200	0.450	1.000	-0.100
R5432V417BC	4.200	4.100	4.180	4.180	2.500	3.000	0.100	0.400	0.750	-0.050
R5432V418BC	4.180	4.080	4.180	4.180	2.500	3.000	0.100	0.400	0.750	-0.050
R5432V419BD	3.900	3.800	3.500	3.500	2.500	3.000	0.100	0.300	0.500	-0.100
R5432V420BD	4.350	4.050	4.200	4.200	2.400	2.700	0.100	0.250	0.418	-0.100
R5432V501BA	3.900	3.700	3.800	3.600	2.000	2.300	0.200	0.600	1.000	-0.200
R5432V502BA	4.250	4.100	4.200	4.190	2.800	3.000	0.100	0.450	1.000	-0.050
R5432V503BB	4.250	4.150	4.150	4.140	2.700	3.000	0.150	0.300	0.750	-0.050
R5432V504BD	4.250	4.100	4.200	4.190	2.800	3.000	0.100	0.250	0.418	-0.050
R5432V505BD	4.250	4.100	4.200	4.190	2.500	3.000	0.100	0.250	0.418	-0.050
R5432V506BD	3.900	3.800	3.650	3.640	2.000	2.300	0.100	0.250	0.418	-0.050
R5432V507BD	4.215	4.100	4.200	4.180	2.800	3.000	0.100	0.250	0.418	-0.100
R5432V508BA	3.800	3.700	3.600	3.580	2.800	2.900	0.200	0.600	1.000	-0.100
R5432V509BD	3.900	3.800	3.650	3.640	2.000	2.300	0.100	0.250	0.418	-0.100
R5432V510BD	3.900	3.800	3.475	3.465	2.000	2.300	0.100	0.250	0.418	-0.100

*1:n=1,2,3,4,5

NO.EA-263-160711

PIN DESCRIPTIONS

Pin No	Symbol	Pin Description
1	CTLC	Cout control pin
2	CTLD	Dout control pin
3	Соит	Output pin of overcharge detection, Pch OPEN DRAIN output
4	VMP	Pin for charger negative input
5	DRAIN	Release from Excess discharge-current threshold Pin
6	Dout	Output pin of overdischarge detection, CMOS output
7	SENS	Current sense pin
8	CTLT	Disconnection detection movement interval setting capacitance pin
9	Vss	Vss pin. Ground pin for the IC
10	CT1	tVDET2 setting capacitance connection pin
11	CT2	tVDET3 setting capacitance connection pin
12	SEL1	3cell/4cell/5cell alternative pin1
13	SEL2	3cell/4cell/5cell alternative pin2
14	CB5	CELL5 Cell balance Control pin
15	Vc5	Positive terminal pin for Cell5
16	CB4	CELL4 Cell balance Control pin
17	Vc4	Positive terminal pin for Cell4
18	CB3	CELL3 Cell balance Control pin
19	V _{C3}	Positive terminal pin for Cell3
20	CB2	CELL2 Cell balance Control pin
21	Vc2	Positive terminal pin for Cell2
22	CB1	CELL1 Cell balance Control pin
23	Vc1	Positive terminal pin for Cell1
24	Vdd	V _{DD} pin

NO.EA-263-160711

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit	
Vdd	Supply voltage	-0.3 to 30	V	
Input voltage				
Vc1	Positive input pin for Cell1	Vc2-0.3 to Vc2+6.5	V	
Vc2	Positive input pin for Cell2	Vc3-0.3 to Vc3+6.5	V	
Vc3	Positive input pin for Cell3	Vc4-0.3 to Vc4+6.5	V	
Vc4	Positive input pin for Cell4	Vc5-0.3 to Vc5+6.5	V	
Vc5	Positive input pin for Cell5	-0.3 to 6.5	V	
VMP	Charger negative terminal input pin	-0.3 to 30.0	V	
VSEL1	3Cell/4Cell/5Cell alternative pin1	-0.3 to V _{DD} +0.3	V	
VSEL2	3Cell/4Cell/5Cell alternative pin2	-0.3 to VDD+0.3	V	
Vctlc	Cout control pin	-0.3 to VDD+25	V	
VOILO		-0.3 to Vpp+25 -0.3 to 48 -0.3 to Vpp+25 -0.3 to 48 -0.3 to Vpp+0.3 -0.3 to 3.5	v	
Vctld	Dout control pin		V	
VSENSE	Current sense pin		V	
Vct1	Delay time setting pin1	-0.3 to 3.5	V	
Vct2	Delay time setting pin2	-0.3 to 3.5	V	
VCTLT	Disconnection detection movement interval setting capacitance pin	-0.3 to 3.5	V	
Output voltage				
Vcout	Output pin of overcharge detection, CMOS output	VDD-30 to VDD+0.3	V	
Vdout	Output pin of overdischarge detection, CMOS output	-0.3 to Vон2+0.3	V	
Vdrain	Release from Excess discharge-current threshold Pin	-0.3 to Vонз+0.3	V	
VCB1	Cell balance Control pin for Cell1	Vc2-0.3 to Vc2+6.5	V	
VCB2	Cell balance Control pin for Cell2	Vc3-0.3 to Vc3+6.5	V	
Vсвз	Cell balance Control pin for Cell3	Vc4-0.3 to Vc4+6.5	V	
VCB4	Cell balance Control pin for Cell4	Vc5-0.3 to Vc5+6.5	V	
VCB5	Cell balance Control pin for Cell5	-0.3 to 6.5	V	
PD	Power dissipation ⁽¹⁾	770	mW	
Та	Operating temperature range	-40 to 85	°C	
Tstg	Storage temperature range	-55 to 125	°C	

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operations at or over these absolute maximum ratings are not assured.

NO.EA-263-160711

ELECTRICAL CHARACTERISTICS

• R5432VxxxBA

Unless otherwise specified, Ta= $25^{\circ}C$

Symbol	Items	Conditions	Min.	Тур.	Max.	Unit	Circuit
Vdd1	Operating input voltage	Vdd-Vss	2		25	V	-
Vdet1n	CELLn Overcharge threshold (n=1,2,3,4,5)	Detect rising edge of supply voltage	Vdet1n -0.025	Vdet1n	Vdet1n +0.025	V	А
Vrel1n	CELLn Overcharge released Voltage (n=1,2,3,4,5)	Detect falling edge of supply voltage	VREL1N -0.050	Vrel1n	V _{REL1} n +0.050	V	А
tVdet1	Output delay of overcharge	VDD=VC1,VCELLN=3.5V (n=2,3,4,5), VCELL1=3.5V→4.5V	0.7	1.0	1.3	s	В
tV _{REL1}	Output delay of release from overcharge	Vdd=Vc1, Vcelln=3.5V (n=2,3,4,5), Vcell1=4.5V→3.5V	11	16	21	ms	В
VсвDn	CELLn balance threshold (n=1,2,3,4,5)	Detect rising edge of supply voltage	Vсвдл -0.025	Vcbdn	Vсвол +0.025	V	С
Vcbrn	CELLn balance released threshold (n=1,2,3,4,5)	Detect falling edge of supply voltage	Vcbrn -0.050	Vcbrn	Lower of VCBRN +0.050 or VCBDN +0.025	v	с
Vdet2n	CELLn Overdischarge threshold (n=1,2,3,4,5)	Detect falling edge of supply voltage	Vdet2n ×0.975	Vdet2n	V _{DET2} n ×1.025	V	D
Vrel2n	CELLn Overdischarge released Voltage (n=1,2,3,4,5)	Detect rising edge of supply voltage	VREL2N ×0.975	VREL2N	V _{REL2} n ×1.025	V	D
ICT1	CT1 charge Current	VDD=VC1, VCELLN=3.5V (n=2, 3, 4, 5), VCELL1=3.5V→1.5V	350	500	650	nA	E
VDCT1	CT1 detector voltage	Vdd=Vc1, Vcelln=3.5V (n=2, 3, 4, 5), Vcell1=1.5V	1.48	1.85	2.22	V	F
tVdet2	Output delay of overdischarge	tVDET2=CCT1×VDCT1/ICT1 CCT1=33nF	89	128	167	ms	-
tVREL2	Output delay of release from overdischarge	V _{DD} =V _{C1} , V _{CELL} n=3.5V (n=1,2,3,4,5), VMP=4.0V V _{CELL1} =1.5V→3.5V	0.7	1.2	1.7	ms	G
Vdet31	Excess discharge-current threshold1	V _{DD} =V _{C1} , V _{CELL} n=3.5V (n=1,2,3,4,5), VMP=4.0V Detect rising edge of supply voltage	Vdet31 -0.020	Vdet31	Vdet31 +0.020	V	н
Vdet32	Excess discharge-current Threshold2	VDD=VC1, VCELLN=3.5V (n=1,2,3,4,5), VMP=4.0V Detect rising edge of supply voltage	0.500	0.600	0.700	V	I
Vrel3	Output delay of release from Excess discharge-current threshold	V _{DD} =V _{C1} , V _{CELL} n=3.5V (n=1,2,3,4,5), SENSE=0V Detect falling edge of supply voltage	Vdet31 ×0.50	Vdet31 ×0.75	Vdet31 ×1.00	V	Н
Іст231	CT2 Charge Current1	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=1,2,3,4,5) SENSE=Vss→0.4V	350	500	650	nA	I
Іст232	CT2 Charge Current2	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=1,2,3,4,5) SENSE=Vss→0.7V	2.0	3.0	4.0	μA	I
VDCT2	CT2 Charge voltage	VDD=Vc1, Vcelln =3.5V (n=2,3,4,5) SENSE=0.4V, VMP=4.0V	1.23	1.55	1.87	V	J
tVdet31	Output delay of Excess discharge-current threshold1	tvdet31=Cct2×Vdct2/lct231 Cct2=3.3nF	7.3	10.8	14.7	ms	-
tVdet32	Output delay of Excess discharge-current Threshold2	tvdet32=Cct2×Vdct2/lct232 Cct2=3.3nF	1.25	1.8	2.4	ms	-
tVrel3	Output delay of release from Excess discharge-current Threshold	V _{DD} =V _{C1} , V _{CELL} n=3.5V (n=1,2,3,4,5) SENS=0.4V, VMP= 4.0V	0.7	1.2	1.7	ms	н

NO.EA-263-160711

Symbol	Items	Conditions	Min.	Тур.	Max.	Unit	Circuit
Vshort	Short protection voltage	VDD=Vc1, VCELLn=3.5V (n=1,2,3,4,5), VMP=4.0V Detect rising of supply voltage	0.7	1.0	1.7	V	к
tshort	Output Delay of Short protection	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=1,2,3,4,5) SENS=0.0V→2.0V, VMP=4.0V	180	300	550	μS	к
Vdet4	Excess charge-current threshold	V _{DD} =V _{C1} , V _{CELL} n=3.5V (n=1,2,3,4,5), VMP=-1.0V Detect falling edge of supply voltage	Vdet4 -0.030	Vdet4	Vdet4 +0.030	V	L
tVdet4	Output delay of Excess charge-current threshold	V _{DD} =V _{C1} , VCELLn =3.5V (n=1,2,3,4,5) SENS=0.0V→-1.0V	5	8	11	ms	L
tV _{rel4}	Output delay of release from Excess charge-current threshold	V _{DD} =Vc1, V _{CELL} n =3.5V (n=1,2,3,4,5) SENS=Vss,VMP=-1.0V→1.0V	0.7	1.2	1.7	ms	L
VIH1	SEL1 pin "H" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd -0.3		Vdd +0.3	V	М
VIM1	SEL1 pin "M" input voltage	VDD=Vc1, VCELLN =3.2V (n=1,2,3,4,5)	4.0		V _{DD} /2 -0.5V	V	М
VIL1	SEL1 pin "L" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +1.0	V	М
VIH2	SEL2 pin "H" input voltage	VDD=Vc1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd -0.3		Vdd +0.3	V	N
Vim2	SEL2 pin "M" input voltage	V _{DD} =V _{C1} , V _{CELL} n =3.2V (n=1,2,3,4,5)	4.0		Vdd/2 -0.5V	V	N
VIL2	SEL2 pin "L" input voltage	V _{DD} =V _C , VCELLn =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +0.3	V	N
Стьс1н	C⊤∟c pin "H1" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd +2.0			V	0
Стьс2н	C⊤∟c pin "H2" input voltage	Vdd=Vc1, VCELLn =3.2V (n=1,2,3,4,5)	Vdd -0.3		Vdd +0.3	V	0
CTLC1L	C⊤∟c pin "L" input voltage	V _{DD} =V _{C1} , V _{CELL} n =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +0.3	V	0
Ctld1h	CTLD pin "H1" input voltage	VDD=Vc1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd +2.0			V	Р
Ctld2h	C⊤∟⊳ pin "H2" input voltage	Vdd=Vc1, Vcelln =3.2V (n=1,2,3,4,5)	Vdd -0.3		V _{DD} +0.3	V	Р
Ctld1l	C⊤∟⊳ pin "L" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +0.3	V	Р
Vol2	Dout Nch ON voltage	IOL=50µA, VDD=Vc1, CTLD=VDD VCELLN =3.2V (n=1,2,3,4,5)		0.1	0.5	V	Q
Vol3	DRAIN Nch ON voltage	IOL=50μA, VDD=Vc1, VCELLn =3.2V (n=1,2,3,4,5)		0.1	0.5	V	R
Vol4	CB1 Nch ON voltage	IOL=50µA, VDD=VC1, VCELLN=3.2V (n=1,2,3,4,5)		Vc2 +0.2	Vc2 +0.5	V	s
Vol5	CB2 Nch ON voltage	IOL=50µA, Vdd=Vc1, Vcelln=3.2V (n=1,2,3,4,5)		Vc₃ +0.2	Vс₃ +0.5	V	S
Vol6	CB3 Nch ON voltage	IOL=50µA, Vdd=Vc1, VCELLn=3.2V (n=1,2,3,4,5)		Vc4 +0.2	Vc4 +0.5	V	s
Vol7	CB4 Nch ON voltage	IOL=50µA, VDD=Vc1, VCELLN=3.2V (n=1,2,3,4,5)		Vc5 +0.2	Vc5 +0.5	V	s
Vol8	CB5 Nch ON voltage	IOL=50µA, VDD=VC1, VCELLn=3.2V (n=1,2,3,4,5)		0.2	0.5	V	s

NO.EA-263-160711

Symbol	Items	Conditions	Min.	Тур.	Max.	Unit	Circuit
Vон1	Cout Pch ON voltage	IOH=-50μA, Vdd=Vc1, VCELLn =3.2V (n=1,2,3,4,5) Ctlc=Vss	Vdd -0.5	V _{DD} -0.1		V	т
Vvr12	VR 12V output voltage (*1)	IOH=-5μA, VDD=VC1, CTLD=VSS, VCELL=3.2V (n=1, 2, 3, 4, 5) Measured to draw the current through Dout	10	12	14	v	U
Vон2	Dout Pch ON voltage (*1)	IOH=-50μA, VDD=Vc1, VCELLn =3.2V (n=1,2,3,4,5) CTLD= Vss	Vvr12 -0.5V	Vvr12 -0.1V		V	U
Vонз	DRAIN Pch ON voltage (*1)	IOH=-50μA, VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5) SENS =VMP =4.0V	Vvr12 -0.5V	Vvr12 -0.1V		V	V
Vон4	CB1 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=2, 3, 4, 5)	Vc1 -0.5	Vc1 -0.3		V	W
Voh5	CB2 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 3, 4, 5)	Vc2 -0.5	Vc2 -0.3		V	W
Vон6	CB3 Pch ON voltage	Іон=-50µA, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 2, 4, 5)	Vсз -0.5	Vc₃ -0.3		V	W
Vон7	CB4 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 2, 3, 5)	Vc4 -0.5	Vc4 -0.3		v	W
Vон8	CB5 Pch ON voltage	Ioh=-50μA, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 2, 3, 4)	Vc₅ -0.5	Vc₅ -0.3		V	W
ILCOUT	Cout pin off leak current	VDD=VC1, VCELLN=3.2V (n=1, 2, 3, 4, 5) CTLC=VDD, COUT=-14V	-0.1			μA	х
Істіт	C⊤∟⊤ Charge Current	VDD=VC1, VCELLN=3.2V (n=1, 2, 3, 4, 5)	145	205	264	nA	Y
Vdtlt	CTLT detector threshold	V _{DD} =V _{C1} , V _{CELL} n=3.2V (n=1, 2, 4, 5) V _{C3} =V _{D1} +0.2V	1.58	2.00	2.42	V	Z
Vrtlt	CTLT released voltage	Vdd=Vc1, Vcelln=3.2V (n=1, 2, 3, 4, 5)	0.07	0.13	0.19	V	Z
tLT	Disconnection detection Test Interval	$\begin{array}{l} C_{CTLT}\times (V_{DTLT}-V_{RTLT})/I_{CTLT}\\ C_{CTLT}=3.3 \mu F \end{array}$	21	30	39	s	-
Iss1	Supply Currnt1	VDD=VC1,COUT=OPEN VCELLN=VDET1N-0.4V (n=1, 2, 3, 4, 5)		12	30	μA	а
lss2	Supply Currnt2	VDD=Vc1,Cout=OPEN Vcelln=1.5V (n=1, 2, 3, 4, 5)		10	25	μA	а

* VCELLn=CELLn voltage n=1, 2, 3, 4, 5

(*1) If VDD pin voltage becomes lower than the output of the regulator, the output voltage becomes almost equal to VDD.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. The semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

NO.EA-263-160711

• R5432VxxxBB/BC

Unless otherwise specified, Ta=25°C

Symbol	Items	Conditions	Min.	Тур.	Max.	Unit	Circuit
VDD1	Operating input voltage	VDD-Vss	2	Typ.	25	V	-
VDET1 N	CELLn Overcharge threshold (n=1,2,3,4,5)	Detect rising edge of supply voltage	VDET1N -0.025	Vdet1n	VDET1N +0.025	V	А
Vrel1n	CELLn Overcharge released Voltage (n=1,2,3,4,5)	Detect falling edge of supply voltage	Vrel1n -0.050	Vrel1n	V _{REL1} n +0.050	V	А
tVdet1	Output delay of overcharge	V _{DD} =V _{C1} ,V _{CELL} n=3.5V (n=2,3,4,5), V _{CELL} 1=3.5V→4.5V	0.7	1.0	1.3	S	В
tVREL1	Output delay of release from overcharge	Vdd=Vc1, Vcelln=3.5V (n=2,3,4,5), Vcell1=4.5V→3.5V	11	16	21	ms	В
Vcbdn	CELLn balance threshold (n=1,2,3,4,5)	Detect rising edge of supply voltage	Vсво n -0.025	Vсвdn	Vсвол +0.025	V	С
Vcbrn	CELLn balance released threshold (n=1,2,3,4,5)	Detect falling edge of supply voltage	Vсвrn -0.050	Vcbrn	Lower of VcBRN +0.050 or VcBDN +0.025	V	С
Vdet2n	CELLn Overdischarge threshold (n=1,2,3,4,5)	Detect falling edge of supply voltage	Vdet2n ×0.975	Vdet2n	Vdet2n ×1.025	V	D
Vrel2n	CELLn Overdischarge released Voltage (n=1,2,3,4,5)	Detect rising edge of supply voltage	Vrel2n ×0.975	Vrel2n	Vrel2n ×1.025	V	D
ICT1	CT1 charge Current	Vdd=Vc1, Vcelln=3.5V (n=2, 3, 4, 5), Vcell1=3.5V→1.5V	350	500	650	nA	E
VDCT1	CT1 detector voltage	Vdd=Vc1, Vcelln=3.5V (n=2, 3, 4, 5), Vcell1=1.5V	1.48	1.85	2.22	V	F
tVdet2	Output delay of overdischarge	tVDET2=CCT1×VDCT1/ICT1 CCT1=33nF	89	128	167	ms	-
tVrel2	Output delay of release from overdischarge	V _{DD} =V _{C1} , V _{CELL} n=3.5V (n=1,2,3,4,5), VMP=4.0V V _{CELL1} =1.5V→3.5V	0.7	1.2	1.7	ms	G
Vdet31	Excess discharge-current threshold1	V _{DD} =V _{C1} , V _{CELL} n=3.5V (n=1,2,3,4,5), VMP=4.0V Detect rising edge of supply voltage	Vdet31 -0.020	Vdet31	Vdet31 +0.020	V	Н
Vdet32	Excess discharge-current Threshold2	VDD=Vc1, VCELLN=3.5V (n=1,2,3,4,5), VMP=4.0V Detect rising edge of supply voltage	Vdet32 -0.070	Vdet32	Vdet32 +0.070	V	I
Vrel3	Output delay of release from Excess discharge-current threshold	V _{DD} =V _{C1} , V _{CELL} n=3.5V (n=1,2,3,4,5), SENSE=0V Detect falling edge of supply voltage	Vdet31 ×0.50	Vdet31 ×0.75	Vdet31 ×1.00	V	Н
Іст231	CT2 Charge Current1	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=1,2,3,4,5) SENSE=Vss→0.4V	350	500	650	nA	I
Іст232	CT2 Charge Current2	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=1,2,3,4,5) SENSE=Vss→0.7V	2.0	3.0	4.0	μA	I
VDCT2	CT2 Charge voltage	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=2,3,4,5) SENSE=0.4V, VMP=4.0V	1.23	1.55	1.87	V	J
tVdet31	Output delay of Excess discharge-current threshold1	tvdet31=Cct2×Vdct2/Ict231 Cct2=3.3nF	7.3	10.8	14.7	ms	-
tVdet32	Output delay of Excess discharge-current Threshold2	tvdet32=Cct2×Vdct2/Ict232 Cct2=3.3nF	1.25	1.80	2.40	ms	-
tVREL3	Output delay of release from Excess discharge-current Threshold	V _{DD} =V _{C1} , VCELLn=3.5V (n=1,2,3,4,5) SENS=0.4V, VMP= 4.0V	0.7	1.2	1.7	ms	Н

NO.EA-263-160711

Symbol	Items	Conditions	Min.	Тур.	Max.	Unit	Circuit
Vshort	Short protection voltage	VDD=Vc1, VCELLn=3.5V (n=1,2,3,4,5), VMP=4.0V Detect rising of supply voltage	0.7	1.0	1.7	V	К
tshort	Output Delay of Short protection	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=1,2,3,4,5) SENS=0.0V→2.0V,VMP=4.0V	180	300	550	μs	к
Vdet4	Excess charge-current threshold	VDD=VC1, VCELLN=3.5V (n=1,2,3,4,5), VMP=-1.0V Detect falling edge of supply voltage	Vdet4 -0.030	Vdet4	Vdet4 +0.030	V	L
tVdet4	Output delay of Excess charge-current threshold	V _{DD} =V _{C1} , VCELLn =3.5V (n=1,2,3,4,5) SENS=0.0V→-1.0V	5	8	11	ms	L
tV _{rel4}	Output delay of release from Excess charge-current threshold	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=1,2,3,4,5) SENS=Vss,VMP=-1.0V→1.0V	0.7	1.2	1.7	ms	L
VIH1	SEL1 pin "H" input voltage	Vdd=Vc1, Vcelln =3.2V (n=1,2,3,4,5)	Vdd -0.3		V _{DD} +0.3	V	М
VIM1	SEL1 pin "M" input voltage	VDD=Vc1, VCELLN =3.2V (n=1,2,3,4,5)	4.0		Vdd/2 -0.5V	V	М
VIL1	SEL1 pin "L" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +1.0	V	М
VIH2	SEL2 pin "H" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd -0.3		Vdd +0.3	V	N
VIM2	SEL2 pin "M" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	4.0		Vdd/2 -0.5V	V	N
VIL2	SEL2 pin "L" input voltage	V _{DD} =V _C , VCELLn =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +0.3	V	Ν
CTLC1H	C⊤∟c pin "H1" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	VDD +2.0			V	0
Ctlc2h	C⊤∟c pin "H2" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd -0.3		Vdd +0.3	V	0
CTLC1L	C⊤∟c pin "L" input voltage	V _{DD} =V _{C1} , V _{CELL} n =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +0.3	V	0
Ctld1h	CTLD pin "H1" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	VDD +2.0			V	Р
Ctld2h	Стьр pin "H2" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd -0.3		V _{DD} +0.3	V	Р
Ctld1l	Стьр pin "L" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +0.3	V	Р
Vol2	Dout Nch ON voltage	IOL=50µA, Vdd=Vc1, Ctld=Vdd Vcelln =3.2V (n=1,2,3,4,5)		0.1	0.5	V	Q
Vol3	DRAIN Nch ON voltage	IOL=50µA, Vdd=Vc1, Vcelln =3.2V (n=1,2,3,4,5)		0.1	0.5	V	R
Vol4	CB1 Nch ON voltage	IOL=50µA, Vdd=Vc1, VCELLn=3.2V (n=1,2,3,4,5)		Vc2 +0.2	Vc2 +0.5	V	S
Vol5	CB2 Nch ON voltage	IOL=50µA, Vdd=Vc1, VCelln=3.2V (n=1,2,3,4,5)		Vсз +0.2	Vc₃ +0.5	V	S
Vol6	CB3 Nch ON voltage	IOL=50µA, Vdd=Vc1, VCELLn=3.2V (n=1,2,3,4,5)		Vc4 +0.2	Vc4 +0.5	V	S
Vol7	CB4 Nch ON voltage	IOL=50µA, Vdd=Vc1, Vcelln=3.2V (n=1,2,3,4,5)		Vc₅ +0.2	Vc₅ +0.5	V	S
Vol8	CB5 Nch ON voltage	IOL=50μA, Vdd=Vc1, VCelln=3.2V (n=1,2,3,4,5)		0.2	0.5	V	S
Vон1	Cout Pch ON voltage	IOH=-50μA, Vdd=Vc1, VCELLN =3.2V (n=1,2,3,4,5) CTLC=Vss	Vdd-0.5	Vdd-0.1		V	Т

NO.EA-263-160711

Symbol	Items	Conditions	Min.	Тур.	Max.	Unit	Circuit
Vvr12	VR 12V output voltage(*1)	IOH=-5µA, VDD=VC1, CTLD=Vss, VCELL=3.2V (n=1, 2, 3, 4, 5) Measured to draw the current through Dout	10	12	14	v	U
Vон2	Dout Pch ON voltage(*1)	IOH=-50µA, Vdd=Vc1, VCELLN =3.2V (n=1,2,3,4,5) CTLD= Vss	Vvr12 -0.5V	Vvr12 -0.1V		V	U
Vонз	DRAIN Pch ON voltage(*1)	IOH=-50µA, VDD=Vc1, VCELLN =3.2V (n=1,2,3,4,5) SENS =VMP =4.0V	Vvr12 -0.5V	Vvr12 -0.1V		V	V
Vон4	CB1 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=2, 3, 4, 5)	Vc1 -0.5	Vc1 -0.3		v	W
Voh5	CB2 Pch ON voltage	IOH=-50μA, VDD=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 3, 4, 5)	Vc2 -0.5	Vc2 -0.3		V	W
Vон6	CB3 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 2, 4, 5)	Vc₃ -0.5	Vсз -0.3		v	W
Vон7	CB4 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 2, 3, 5)	Vc4 -0.5	Vc4 -0.3		V	W
Vон8	CB5 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 2, 3, 4)	Vc₅ -0.5	Vc₅ -0.3		v	w
Ιιςουτ	Cout pin off leak current	VDD=VC1, VCELLN=3.2V (n=1, 2, 3, 4, 5) CTLC=VDD, COUT=-14V	-0.1			μA	х
ICTLT	C⊤∟⊤ Charge Current	VDD=Vc1, VCELLN=3.2V (n=1, 2, 3, 4, 5)	145	205	264	nA	Y
Vdtlt	CTLT detector threshold	VDD=VC1, VCELLN=3.2V (n=1, 2, 4, 5) VC3=VD1+0.2V	1.58	2.00	2.42	v	Z
Vrtlt	CTLT released voltage	VDD=VC1, VCELLN=3.2V (n=1, 2, 3, 4, 5)	0.07	0.13	0.19	V	Z
tLT	Disconnection detection Test Interval	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	21	30	39	s	-
Vnochgn	CELLn charge inhibit maximum voltage (n=1,2,3,4,5)-for R5432V4xxxB	VDD=VC1			1.100	v	A
Iss1	Supply Currnt1	VDD=VC1,COUT=OPEN VCELLN=VDET1N-0.4V (n=1, 2, 3, 4, 5)		12	30	μΑ	а
Iss2	Supply Currnt2	Vdd=Vc1,Cout=OPEN Vcelln=1.5V (n=1, 2, 3, 4, 5)		10	25	μΑ	а

* VCELLN=CELLn voltage n=1, 2, 3, 4, 5

(*1) If VDD pin voltage becomes lower than the output of the regulator, the output voltage becomes almost equal to VDD.

NO.EA-263-160711

• R5432VxxxBD

Unless otherwise specified, Ta=25°C

					moc opcom		
Symbol	Items	Conditions	Min.	Тур.	Max.	Unit	Circuit
VDD1	Operating input voltage	Vdd-Vss	2		25	V	-
Vdet1n	CELLn Overcharge threshold (n=1,2,3,4,5)	Detect rising edge of supply voltage	Vdet1n -0.025	Vdet1n	Vdet1n +0.025	V	А
Vrel1n	CELLn Overcharge released Voltage (n=1,2,3,4,5)	Detect falling edge of supply voltage	Vrel1n -0.050	Vrel1n	V _{REL1} n +0.050	V	А
tVdet1	Output delay of overcharge	Vdd=Vc1,Vcelln=3.5V (n=2,3,4,5), Vcell1=3.5V→4.5V	0.7	1.0	1.3	s	В
tVREL1	Output delay of release from overcharge	Vdd=Vc1, Vcelln=3.5V (n=2,3,4,5), Vcell1=4.5V→3.5V	11	16	21	ms	В
Vcbdn	CELLn balance threshold (n=1,2,3,4,5)	Detect rising edge of supply voltage	Vсвdn -0.025	Vcbdn	Vсвол +0.025	V	С
Vcbrn	CELLn balance released threshold (n=1,2,3,4,5)	Detect falling edge of supply voltage	Vcbrn -0.050	Vcbrn	Lower of V _{CBR} n +0.050 or V _{CBD} n +0.025	V	с
Vdet2n	CELLn Overdischarge threshold (n=1,2,3,4,5)	Detect falling edge of supply voltage	Vdet2n ×0.975	Vdet2n	Vdet2n ×1.025	V	D
VREL2N	CELLn Overdischarge released Voltage (n=1,2,3,4,5)	Detect rising edge of supply voltage	VREL2n ×0.975	VREL2N	V _{REL2} n ×1.025	V	D
ICT1	CT1 charge Current	Vdd=Vc1, Vcelln=3.5V (n=2, 3, 4, 5), Vcell1=3.5V→1.5V	350	500	650	nA	E
VDCT1	CT1 detector voltage	Vdd=Vc1, Vcelln=3.5V (n=2, 3, 4, 5), Vcell1=1.5V	1.48	1.85	2.22	V	F
tVdet2	Output delay of overdischarge	tVdet2=Cct1×Vdct1/lct1 Cct1=33nF	89	128	167	ms	-
tVREL2	Output delay of release from overdischarge	VDD=Vc1, Vcelln=3.5V (n=1,2,3,4,5), VMP=4.0V Vcell1=1.5V→3.5V	0.7	1.2	1.7	ms	G
Vdet31	Excess discharge-current threshold1	V _{DD} =V _{C1} , V _{CELL} n=3.5V (n=1,2,3,4,5), VMP=4.0V Detect rising edge of supply voltage	Vdet31 -0.020	Vdet31	Vdet31 +0.020	V	Н
Vdet32	Excess discharge-current Threshold2	VDD=Vc1, VcELLn=3.5V (n=1,2,3,4,5), VMP=4.0V Detect rising edge of supply voltage	Vdet32 -0.055	Vdet32	Vdet32 +0.055	V	I
Vrel3	Output delay of release from Excess discharge-current threshold	V _{DD} =V _{C1} , V _{CELL} n=3.5V (n=1,2,3,4,5), SENSE=0V Detect falling edge of supply voltage	Vdet31 ×0.50	Vdet31 ×0.75	Vdet31 ×1.00	V	Н
Іст231	CT2 Charge Current1	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=1,2,3,4,5) SENSE=Vss→0.4V	350	500	650	nA	I
Іст232	CT2 Charge Current2	V _{DD} =Vc1, VceLLn =3.5V (n=1,2,3,4,5) SENSE=Vss→0.7V	2.0	3.0	4.0	μA	I
VDCT2	CT2 Charge voltage	VDD=Vc1, Vcelln =3.5V (n=2,3,4,5) SENSE=0.4V, VMP=4.0V	1.23	1.55	1.87	V	J
tVdet31	Output delay of Excess discharge-current threshold1	tvdet31=Cct2×Vdct2/Ict231 Cct2=3.3nF	7.3	10.8	14.7	ms	-
tVdet32	Output delay of Excess discharge-current Threshold2	tvdet32=Cct2×Vdct2/Ict232 Cct2=3.3nF	1.25	1.80	2.40	ms	-
tVREL3	Output delay of release from Excess discharge-current Threshold	V _{DD} =V _{C1} , V _{CELL} n=3.5V (n=1,2,3,4,5) SENS=0.4V, VMP= 4.0V	0.7	1.2	1.7	ms	Н

NO.EA-263-160711

Symbol	Items	Conditions	Min.	Тур.	Max.	Unit	Circuit
Vshort	Short protection voltage	VDD=Vc1, VCELLn=3.5V (n=1,2,3,4,5), VMP=4.0V Detect rising of supply voltage	Vshort -0.12	Vdet32 x1.67	Vshort +0.17	V	к
tshort	Output Delay of Short protection	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=1,2,3,4,5) SENS=0.0V→2.0V, VMP=4.0V	180	300	550	μs	к
Vdet4	Excess charge-current threshold	VDD=VC1, VCELLN=3.5V (n=1,2,3,4,5), VMP=-1.0V Detect falling edge of supply voltage	Vdet4 -0.030	Vdet4	Vdet4 +0.030	V	L
tVdet4	Output delay of Excess charge-current threshold	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=1,2,3,4,5) SENS=0.0V→-1.0V	5	8	11	ms	L
tV _{rel4}	Output delay of release from Excess charge-current threshold	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=1,2,3,4,5) SENS=Vss,VMP=-1.0V→1.0V	0.7	1.2	1.7	ms	L
VIH1	SEL1 pin "H" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd -0.3		V _{DD} +0.3	V	М
VIM1	SEL1 pin "M" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	4.0		V _{DD} /2 -0.5V	V	М
VIL1	SEL1 pin "L" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +1.0	V	М
VIH2	SEL2 pin "H" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd -0.3		V _{DD} +0.3	V	N
Vim2	SEL2 pin "M" input voltage	V _{DD} =V _{C1} , VCELLn =3.2V (n=1,2,3,4,5)	4.0		V _{DD} /2 -0.5V	V	N
VIL2	SEL2 pin "L" input voltage	V _{DD} =V _C , VCELLn =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +0.3	V	N
CTLC1H	C⊤∟c pin "H1" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	V _{DD} +2.0			V	0
Ctlc2h	C⊤∟c pin "H2" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd -0.3		V _{DD} +0.3	V	0
C TLC1L	C⊤∟c pin "L" input voltage	$V_{DD}=V_{C1}, V_{CELLN} = 3.2V$ (n=1,2,3,4,5)	Vss -0.3		Vss +0.3	V	0
C tld1h	C⊤∟⊳ pin "H1" input voltage	V _{DD} =V _{C1} , VCELLn =3.2V (n=1,2,3,4,5)	Vdd +2.0			V	Р
Ctld2h	C⊤∟o pin "H2" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd -0.3		V _{DD} +0.3	V	Р
Ctld1l	C⊤∟⊳ pin "L" input voltage	VDD=Vc1, VCELLN =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +0.3	V	Р
Vol2	Dout Nch ON voltage	IOL=50μA, VDD=Vc1, CTLD=VDD VCELLN =3.2V (n=1,2,3,4,5)		0.1	0.5	V	Q
Vol3	DRAIN Nch ON voltage	IOL=50μA, Vdd=Vc1, Vcelln =3.2V (n=1,2,3,4,5)		0.1	0.5	V	R
Vol4	CB1 Nch ON voltage	IOL=50µA, Vdd=Vc1, Vcelln=3.2V (n=1,2,3,4,5)		Vc2 +0.2	Vc2 +0.5	V	S
Vol5	CB2 Nch ON voltage	IOL=50μA, Vdd=Vc1, Vcelln=3.2V (n=1,2,3,4,5)		Vc3 +0.2	Vc ₃ +0.5	v	S
Vol6	CB3 Nch ON voltage	IOL=50μA, Vdd=Vc1, Vcelln=3.2V (n=1,2,3,4,5)		Vc4 +0.2	Vc4 +0.5	V	S
Vol7	CB4 Nch ON voltage	IOL=50µA, Vdd=Vc1, Vcelln=3.2V (n=1,2,3,4,5)		Vc5 +0.2	Vc5 +0.5	V	S
Vol8	CB5 Nch ON voltage	IOL=50µA, VDD=Vc1, VCELLn=3.2V (n=1,2,3,4,5)		0.2	0.5	V	S
Vон1	Cout Pch ON voltage	IOH=-50µA, VDD=Vc1, VCELLn =3.2V (n=1,2,3,4,5) СтLc=Vss	Vdd -0.5	Vdd -0.1		v	т

NO.EA-263-160711

Symbol	Items	Conditions	Min.	Тур.	Max.	Unit	Circuit
Vvr12	VR 12V output voltage(*1)	IoH=-5μA, VDD=Vc1, CTLD=Vss, VCELL=3.2V (n=1, 2, 3, 4, 5) Measured to draw the current through Dout	10	12	14	V	U
Vон2	Dou⊤ Pch ON voltage(*1)	IOH=-50μA, Vdd=Vc1, VCELLn =3.2V (n=1,2,3,4,5) Ctld= Vss	Vvr12 -0.5V	Vvr12 -0.1V		V	U
Vонз	DRAIN Pch ON voltage(*1)	IOH=-50μA, VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5) SENS =VMP =4.0V	Vvr12 -0.5V	Vvr12 -0.1V		V	V
Vон4	CB1 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=2, 3, 4, 5)	Vc1 -0.5	Vc1 -0.3		V	W
Voh5	CB2 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 3, 4, 5)	Vc2 -0.5	Vc2 -0.3		V	W
Vон6	CB3 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 2, 4, 5)	Vс₃ -0.5	Vc₃ -0.3		v	W
Vон7	CB4 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 2, 3, 5)	V _{C4} -0.5	Vc4 -0.3		V	W
Vон8	CB5 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 2, 3, 4)	Vc₅ -0.5	Vc₅ -0.3		v	w
Ilcout	Cout pin off leak current	VDD=VC1, VCELLN=3.2V (n=1, 2, 3, 4, 5) CTLC=VDD, COUT=-14V	-0.1			μA	x
Істіт	C⊤∟⊤ Charge Current	V _{DD} =V _{C1} , V _{CELL} n=3.2V (n=1, 2, 3, 4, 5)	145	205	264	nA	Y
Vdtlt	CTLT detector threshold	VDD=VC1, VCELLN=3.2V (n=1, 2, 4, 5) VC3=VD1+0.2V	1.58	2.00	2.42	V	Z
Vrtlt	CTLT released voltage	Vdd=Vc1, Vcelln=3.2V (n=1, 2, 3, 4, 5)	0.07	0.13	0.19	V	Z
tLT	Disconnection detection Test Interval	Cctlt×(Vdtlt-Vrtlt)/Ictlt Cctlt =3.3µF	21	30	39	s	-
Iss1	Supply Currnt1	VDD=VC1,COUT=OPEN VCELLN=VDET1N-0.4V (n=1, 2, 3, 4, 5)		12	30	μA	а
Iss2	Supply Currnt2	VDD=VC1,COUT=OPEN VCELLN=1.5V (n=1, 2, 3, 4, 5)		10	25	μA	а

* VCELLn=CELLn voltage n=1, 2, 3, 4, 5

(*1) If VDD pin voltage becomes lower than the output of the regulator, the output voltage becomes almost equal to VDD.

NO.EA-263-160711

• R5432VxxxAD

Unless otherwise specified, Ta=25°C

Symbol	Items	Conditions	Min.	Тур.	Max.	Unit	Circuit
Vdd1	Operating input voltage	Vdd-Vss	2		25	V	-
Vdet1 n	CELLn Overcharge threshold (n=1,2,3,4,5)	Detect rising edge of supply voltage	Vdet1n -0.025	Vdet1n	Vdet1n +0.025	V	А
Vrel1n	CELLn Overcharge released Voltage (n=1,2,3,4,5)	Detect falling edge of supply voltage	VREL1N -0.050	Vrel1n	V _{REL1} n +0.050	V	А
tVdet1	Output delay of overcharge	Vdd=Vc1,Vcelln=3.5V (n=2,3,4,5), Vcell1=3.5V→4.5V	0.7	1.0	1.3	S	В
tVREL1	Output delay of release from overcharge	V _{DD} =Vc1, Vcelln=3.5V (n=2,3,4,5), Vcell1=4.5V→3.5V	11	16	21	ms	В
Vcbd n	CELLn balance threshold (n=1,2,3,4,5)	Detect rising edge of supply voltage	VсвDn -0.025	Vсвdn	Vсвол +0.025	V	С
Vcbrn	CELLn balance released threshold (n=1,2,3,4,5)	Detect falling edge of supply voltage	Vcbrn -0.050	Vcbrn	Lower of V _{CBR} n +0.050 or V _{CBD} n +0.025	V	с
Vdet2n	CELLn Overdischarge threshold (n=1,2,3,4,5)	Detect falling edge of supply voltage	Vdet2n ×0.975	Vdet2n	V _{DET2} n ×1.025	V	D
VREL2N	CELLn Overdischarge released Voltage (n=1,2,3,4,5)	Detect rising edge of supply voltage	VREL2n ×0.975	VREL2N	V _{REL2} n ×1.025	V	D
Іст1	CT1 charge Current	Vdd=Vc1, Vcelln=3.5V (n=2, 3, 4, 5), Vcell1=3.5V→1.5V	350	500	650	nA	E
VDCT1	CT1 detector voltage	Vdd=Vc1, Vcelln=3.5V (n=2, 3, 4, 5), Vcell1=1.5V	1.48	1.85	2.22	V	F
tVdet2	Output delay of overdischarge	tVdet2=Cct1×Vdct1/lct1 Cct1=330nF	840	1200	1560	ms	-
tVREL2	Output delay of release from overdischarge	V _{DD} =V _{C1} , V _{CELL} n=3.5V (n=1,2,3,4,5), VMP=4.0V V _{CELL1} =1.5V→3.5V	0.7	1.2	1.7	ms	G
Vdet31	Excess discharge-current threshold1	V _{DD} =V _{C1} , V _{CELL} n=3.5V (n=1,2,3,4,5), VMP=4.0V Detect rising edge of supply voltage	Vdet31 -0.020	Vdet31	Vdet31 +0.020	V	Н
Vdet32	Excess discharge-current Threshold2	VDD=Vc1, VCELLN=3.5V (n=1,2,3,4,5), VMP=4.0V Detect rising edge of supply voltage	Vdet32 -0.055	Vdet32	Vdet32 +0.055	V	I
Vrel3	Output delay of release from Excess discharge-current threshold	VDD=Vc1, VCELLN=3.5V (n=1,2,3,4,5), SENSE=0V Detect falling edge of supply voltage	Vdet31 ×0.50	Vdet31 ×0.75	Vdet31 ×1.00	V	Н
Іст231	CT2 Charge Current1	Vpd=Vc1, Vcelln =3.5V (n=1,2,3,4,5) SENSE=Vss→0.4V	350	500	650	nA	I
Іст232	CT2 Charge Current2	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=1,2,3,4,5) SENSE=Vss→0.7V	3.5	5.0	6.5	μΑ	I
VDCT2	CT2 Charge voltage	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=2,3,4,5) SENSE=0.4V, VMP=4.0V	1.23	1.55	1.87	V	J
tVdet31	Output delay of Excess discharge-current threshold1	tvdet31=Cct2×Vdct2/Ict231 Cct2=330nF	700	1000	1300	ms	-
tVdet32	Output delay of Excess discharge-current Threshold2	tvdet32=Cct2×Vdct2/Ict232 Cct2=330nF	7	10	13	ms	-
tVrel3	Output delay of release from Excess discharge-current Threshold	V _{DD} =V _{C1} , V _{CELL} n=3.5V (n=1,2,3,4,5) SENS=0.4V, VMP= 4.0V	0.7	1.2	1.7	ms	н

NO.EA-263-160711

Symbol	Items	Conditions	Min.	Тур.	Max.	Unit	Circuit
Vshort	Short protection voltage	VDD=Vc1, VCELLn=3.5V (n=1,2,3,4,5), VMP=4.0V Detect rising of supply voltage	Vshort -0.12	Vdet32 x1.67	Vshort +0.17	V	к
tshort	Output Delay of Short protection	V _{DD} =V _{C1} , V _{CELL} n =3.5V (n=1,2,3,4,5) SENS=0.0V→2.0V, VMP=4.0V	(n=1,2,3,4,5) SENS=0.0V→2.0V, 180 300 VMP=4.0V		550	μs	к
Vdet4	Excess charge-current threshold	VDD=Vc1, VCELLN=3.5V (n=1,2,3,4,5), VMP=-1.0V Detect falling edge of supply voltage	Vdet4 -0.030	Vdet4	Vdet4 +0.030	V	L
tVdet4	Output delay of Excess charge-current threshold	V _{DD} =V _{C1} , VCELLn =3.5V (n=1,2,3,4,5) SENS=0.0V→-1.0V	5	8	11	ms	L
tVrel4	Output delay of release from Excess charge- current threshold	V _{DD} =Vc1, VceLLn =3.5V (n=1,2,3,4,5) SENS=Vss,VMP=-1.0V→1.0V	0.7	1.2	1.7	ms	L
VIH1	SEL1 pin "H" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd -0.3		V _{DD} +0.3	V	М
VIM1	SEL1 pin "M" input voltage	Vdd=Vc1, Vcelln =3.2V (n=1,2,3,4,5)	4.0		Vdd/2 -0.5V	V	М
VIL1	SEL1 pin "L" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +0.3	V	М
VIH2	SEL2 pin "H" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd -0.3		V _{DD} +0.3	V	N
VIM2	SEL2 pin "M" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	4.0		Vdd/2 -0.5V	V	Ν
VIL2	SEL2 pin "L" input voltage	VDD=Vc, VCELLn =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +0.3	V	N
Ctlc1h	C⊤∟c pin "H1" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	V _{DD} +2.0			V	0
CTLC2H	CTLC pin "H2" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd -0.3		VDD +0.3	V	0
CTLC1L	C⊤∟c pin "L" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +0.3	V	0
Ctld1h	C⊤∟D pin "H1" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd +2.0			V	Р
Ctld2h	C⊤∟⊃ pin "H2" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vdd -0.3		VDD +0.3	V	Р
CTLD1L	C⊤∟⊳ pin "L" input voltage	VDD=VC1, VCELLN =3.2V (n=1,2,3,4,5)	Vss -0.3		Vss +0.3	V	Р
Vol2	DOUT Nch ON voltage	IOL=50µA, Vdd=Vc1, Ctld=Vdd Vcelln =3.2V (n=1,2,3,4,5)		0.1	0.5	V	Q
Vol3	DRAIN Nch ON voltage	IOL=50µA, Vdd=Vc1, VCELLN =3.2V (n=1,2,3,4,5)		0.1	0.5	V	R
Vol4	CB1 Nch ON voltage	IOL=50µA, Vdd=Vc1, VCELLn=3.2V (n=1,2,3,4,5)		Vc2 +0.2	Vc2 +0.5	V	s
Vol5	CB2 Nch ON voltage	IOL=50μA, V _{DD} =V _{C1} , VCELLn=3.2V (n=1,2,3,4,5)		Vc3 +0.2	Vc3 +0.5	V	s
Vol6	CB3 Nch ON voltage	IOL=50µA, Vdd=Vc1, Vcelln=3.2V (n=1,2,3,4,5)		Vc4 +0.2	Vc4 +0.5	v	S
Vol7	CB4 Nch ON voltage	IOL=50µA, Vdd=Vc1, Vcelln=3.2V (n=1,2,3,4,5)		Vc5 +0.2	Vc5 +0.5	V	s
Vol8	CB5 Nch ON voltage	IOL=50μA, VDD=Vc1, VCELLn=3.2V (n=1,2,3,4,5)		0.2	0.5	V	s
Vон1	Cout Pch ON voltage	IOH=-50μA, VDD=Vc1, VCELLN =3.2V (n=1,2,3,4,5) CTLC=Vss	Vdd -0.5	Vdd -0.1		v	т

NO.EA-263-160711

Symbol	ltems	Conditions	Min.	Тур.	Max.	Unit	Circuit
Vvr12	VR 12V output voltage(*1)	IOH=-5μA, VDD=VC1, CTLD=VSS, VCELL=3.2V (n=1, 2, 3, 4, 5) Measured to draw the current through Dout	10	12	14	v	U
Vон2	Dout Pch ON voltage(*1)	IOH=-50µA, Vdd=Vc1, Vcelln =3.2V (n=1,2,3,4,5) Ctld= Vss	Vvr12 -0.5V	Vvr12 -0.1V		V	U
Vонз	DRAIN Pch ON voltage(*1)	IOH=-50µA, V _{DD} =V _{C1} , V _{CELL} n =3.2V (n=1,2,3,4,5) SENS =VMP =4.0V	Vvr12 -0.5V	Vvr12 -0.1V		V	V
Vон4	CB1 Pch ON voltage	Іон=-50µA, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=2, 3, 4, 5)	Vc1 -0.5	Vc1 -0.3		V	W
Vон5	CB2 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 3, 4, 5)	Vc2 -0.5	Vc2 -0.3		V	W
Vон6	CB3 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 2, 4, 5)	Vсз -0.5	Vc₃ -0.3		V	W
Vон7	CB4 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 2, 3, 5)	Vc4 -0.5	Vc4 -0.3		V	W
Vон8	CB5 Pch ON voltage	Іон=-50µА, Vdd=Vc1, Vc1=4.5V, Vcelln=3.2V (n=1, 2, 3, 4)	Vc₅ -0.5	Vc5 -0.3		v	w
ILCOUT	Cout pin off leak current	VDD=VC1, VCELLN=3.2V (n=1, 2, 3, 4, 5) CTLC=VDD, COUT=-14V	-0.1			μA	x
ICTLT	CTLT Charge Current	Vdd=Vc1, Vcelln=3.2V (n=1, 2, 3, 4, 5)	145	205	264	nA	Y
Vdtlt	C⊤∟⊤ detector threshold	VDD=VC1, VCELLN=3.2V (n=1, 2, 4, 5) VC3=VD1+0.2V	1.58	2.00	2.42	V	Z
Vrtlt	CTLT released voltage	VDD=Vc1, VCELLN=3.2V (n=1, 2, 3, 4, 5)	0.07	0.13	0.19	V	Z
tLT	Disconnection detection Test Interval	$\begin{array}{l} C_{\text{CTLT}\times}(\text{Vdtlt-Vrtlt})/\text{Ictlt}\\ C_{\text{CTLT}}=3.3\mu\text{F} \end{array}$	21	30	39	s	-
Iss1	Supply Currnt1	VDD=VC1,COUT=OPEN VCELLN=VDET1N-0.4V (n=1, 2, 3, 4, 5)		12	30	μA	а
Iss2	Supply Currnt2	VDD=Vc1,COUT=OPEN Vcelln=1.5V (n=1, 2, 3, 4, 5)		10	25	μΑ	а

* VCELLn=CELLn voltage n=1, 2, 3, 4, 5

(*1) If VDD pin voltage becomes lower than the output of the regulator, the output voltage becomes almost equal to VDD.

NO.EA-263-160711

OPERATION

• VDET1n / Overcharge Detectors (n=1, 2, 3, 4, 5)

While the cell is charged, the voltage between V_{C1} pin and V_{C2} pin (voltage of the Cell-1), the voltage between V_{C2} pin and V_{C3} pin (voltage of the Cell-2), the voltage between V_{C3} pin and V_{C4} pin (voltage of the Cell-3), the voltage of V_{C4} pin and V_{C5} pin (voltage of Cell-4), and the voltage between V_{C5} pin and V_{S5} pin (voltage of the Cell-5) are supervised. If at least one of the cells' voltage becomes equal or more than the overcharge detector threshold, the overcharge is detected, and Cour pin connected to an external pull down resistance outputs "Hi-Z", and by turning off the external N-channel MOSFET by the pull-down resister, charge cycle stops.

BA/BB/BC ver.:

To reset the overcharge and make the Cout pin level to "H" again after detecting overcharge, in such condition that a time when all the cells' voltages become lower than the overcharge released voltage. Then, the output voltage of Cout pin becomes "H", and it makes an external N-channel MOSFET turn on, and charge cycle is available. The overcharge detectors have hysteresis.

AD/BD ver.:

To reset the overcharge, when all the cell voltage become lower than the released voltage from overcharge, COUT pin becomes "H", charge is acceptable. After detecting overcharge, by connecting a load, and when all the cell voltage becomes lower than the overcharge voltage detector threshold, COUT voltage becomes "H" and charge will be possible.

Internal fixed output delay times for overcharge detection and release from overcharge exist. Even if one of cells' voltage keeps its level more than the overcharge detector threshold, and the output delay time passes, overcharge voltage is detected. Even if the voltage of each cell becomes equal or higher than V_{DET1} if these voltages would be back to be lower than the overcharge detector threshold within the output delay time, the overcharge is not detected. Besides, after detecting overcharge, each cell voltage is lower than the overcharge detector released voltage, even if just one of cells' voltage becomes equal or more than the overcharge released voltage within the released output delay time, overcharge is not released.

The output type of the Cour pin is P-channel open drain and "H" level of Cour pin is VDD pin voltage.

• VDET2n / Overdischarge Detectors (n=1, 2, 3, 4, 5)

While the cells are discharged, the voltage between Vc1 pin and Vc2 pin (the voltage of Cell-1), the voltage between VC2 pin and Vc3 pin (Cell-2 voltage), the voltage between Vc3 pin and Vc4 pin (Cell-3 voltage), the voltage between VC4 pin and Vc5 pin (Cell-4 voltage), and the voltage between Vc5 pin and Vss pin (Cell-5 voltage) are supervised. If at least one of the cells' voltage becomes equal or less than the overdischarge detector threshold, the overdischarge is detected and discharge stops by the external discharge control N-channel MOSFET turning off with the Dout pin being at "L".

The condition to release overdischarge voltage detector is that after detecting overdischarge voltage, all the cells' voltage becomes higher than the overdischarge released voltage, Dout pin becomes "H" level, and by turning on the external N-channel MOSFET, discharge becomes possible. The overdischarge detectors have hysteresis.

The output delay time for overdischarge detect is set with an external capacitor C_{CT1} connected to CT1 pin. If at least one of the cells' voltage becomes down to equal or lower than the overdischarge detector threshold, and the voltage of each cell would be back to higher than the overdischarge detector threshold within the output delay time, the overdischarge is not detected. The output delay time for release from overdischarge is also set internally.

After detecting overdischarge, supply current would be reduced and be into standby by halting unnecessary circuits and consumption current of the IC itself is made as small as possible.

When a cell voltage equals to zero, if the voltage of each cell is lower than the charge inhibit maximum voltage, charge is not acceptable. All the cell voltages are higher than the charge inhibit maximum voltage, Cour pin becomes "H" and the IC allows the system to charge.

The output type of Dout pin is CMOS having "H" level around 12V of the internal regulator and "L" level of Vss.

NO.EA-263-160711

• VDET3-n (n=1, 2) /Excess discharge-current Detector, Short Circuit Protector

When the charge and discharge is acceptable, SENS pin voltage is supervised, if the load is short and SENS pin voltage becomes equal or more than excess discharge current threshold, and equal or less than the short detector threshold, the status becomes excess discharge current detected condition. If SENS pin voltage becomes equal or more than the short circuit detector threshold, the status becomes short circuit detected, then DOUT pin outputs "L" and by turning off the external MOSFET, the IC prevents the circuit from flowing large current. The excess discharge current detector has two thresholds, and each threshold has the output delay time. In terms of the output delay times, the delay time for the excess discharge current detector 2 is set shorter than the excess discharge current 1.

The output delay times for the excess discharge-current detectors are set by an external capacitor C_{CT2} connected to CT2 pin. A quick recovery of SENS pin level from a value between the excess discharge current detector and the short circuit detector threshold within the delay time, may keep the status as before excess discharge current detected. Output delay time for the release from excess discharge-current detection is also set internally.

When the short circuit protector is enabled, the delay time exists as well as other protection circuits.

Between the drain of the external FET connected to DRAIN pin, and the drain of an external FET connected to Cout and Dout, an external resistor should be mounted to release from overdischarge.

After an excess discharge-current or short circuit protection is detected, an external FET connected to DRAIN pin turns on and the resistance of release from the excess-discharge current is connected to Vss. After detecting the excess discharge current or short circuit, load is removed and opened, VMP pin level is connected to the Vss pin level, through the pulled down resistor for release from excess discharge, and when the VMP pin becomes equal or less than VREL3, the circuit is released from excess discharge or short automatically. When the excess-discharge current is released, the external FET connected to DRAIN pin turns off and resisters for the release from excess-discharge current status is separated from Vss.

• VDET4/ Excess charge-current detector

When the battery pack is chargeable and discharge is also possible, VDET4 senses SENS pin voltage. For example, in case that a battery pack is charged by an inappropriate charger, excess current flows, then the voltage of SENS pin becomes equal or less than the excess charge-current detector threshold, then the output of COUT pin becomes "Hi-Z", and by turning off the external N-channel MOSFET with the pull-down resister, flowing excess current in the circuit is prevented.

Output delay of the excess charge current is internally fixed. Even the voltage level of SENS pin becomes equal or lower than the excess charge-current detector threshold, if the voltage becomes higher than the excess charge current threshold within the delay time, the excess charge current is not detected. Output delay for the release from excess charge current exists as well as other protection circuits.

VDET4 can be released by disconnecting a charger and connecting a load and when the VMP pin voltage becomes equal or more than VREL3.

• Operation against cell unbalance

If one of the cells detects overcharge and either of the cells detects overdischarge, both outputs of Cout and Dout become "L".

• CTLC/CTLD pin

If the ICs are stacked and function with two chips, by connecting Cout and CTLC, and connecting Dout and CTLD shown as in the example circuit (10-cell protection), overcharge, overdischarge, open-wire state can be transferred. If stacked connection is unnecessary, CTLC/CTLD pins must be set at Vss voltage level.

If CTLC/CTLD pins are in the range of Vss \pm 0.3V, or larger than VDD+2.0V, the IC operates in normal way.

By forcing VDD voltage level (between VDD-0.3V and VDD+0.3V) to CTLC pin, the output of COUT connected an external pulldown resister can be forcibly set to "L". However, if short circuit is detected, the output of COUT cannot be made "L".

By forcing VDD voltage level (between VDD-1.0V and VDD+3.0V) to CTLD pin, the output of DOUT can be forcibly set to "L".

NO.EA-263-160711

If the voltage in the range from Vss+0.3V to VDD-0.3V is forced to the CTLC/CTLD pin, the operation may change by the voltage between VDD and Vss.

The voltage in the range from Vss + 0.3V to Vpp-0.3V should not be forced to CTLC/CTLD continuously.

CTE plit input and outputs of COOT and DOOT				
CTLC/CTLD pin input	Cout/Dout external FET			
equal or more than VDD+2.0	Normal Operation			
VDD-0.3V to VDD+0.3V	Forced off			
Vss-0.3 to Vss+0.3	Normal Operation			
Open, other than the above	Indefinite			

CTL pin input and outputs of COUT and DOUT

• SEL1, SEL2 pin

SEL1 and SEL2 pins are used as switch over 3-cell protector, 4-cell protector and 5-cell protector. If 4-cell protection is selected, by forcing VSS voltage level to SEL1 pin and forcing VDD voltage

level to SEL2 pin, the operation of 5th cell's protection circuit, the signal is shut down, therefore, even if the VC5 is shortened to GND, overdischarge is not detected and operates as a 4-cell protector IC.

To select 3-cell protection mode, by forcing V_{DD} voltage level to SEL1 pin, V_{SS} voltage level to SEL2 pin, the operation of 5th cell and 4th cell stop, and the signal is cut off. Therefore, if V_{C4}, V_{C5} and V_{SS} are shorted, overdischarge is not detected and operates as a 3-cell protector IC.

SELn pins must be set as VDD voltage or VSS voltage level.

Depending on the combination of SEL1 pin and SEL2 pin input, delay time shortening function mode 1 (down to 1/100 delay) or delay time shortening function mode 2 (overcharge detector threshold delay time is shortened into 4ms) is realized. Middle voltage of the table below means in the range from 4.0V to $V_{DD}/2$ -0.5V.

SEL1 pin input	SEL2 pin input	Operation Mode
High	High	5-cell protector
Low	High	4-cell protector
High	Low	3-cell protector
Low	Low	Delay shortening mode 1 for 5-cell protector
Low	Middle	Delay shortening mode 1 for 4-cell protector
Middle	Low	Delay shortening mode 1 for 3-cell protector
Middle	Middle	Delay shortening mode 2 for 5-cell protector
Middle	High	Delay shortening mode 2 for 4-cell protector
High	Middle	Delay shortening mode 2 for 3-cell protector

SEL1 and SEL2 pin input combination, and the operation mode

• CT1, CT2 pin

CT1 and CT2 pins are used for setting the output delay time of overdischarge (tVDET2), the excess discharge current 1 (tVDET31), and the excess discharge current 2 (tVDET32) by connecting external capacitors CCT1 and CCT2. tVDET2 can be set with CT1 pin. tVDET31 and tVDET32 can be set with CT2 pin.

(1) tV_{DET2} external capacitor C_{CT1} setting

tVDET2 can be set as in the next formula.

Delay time code : A	$tV_{DET2}(msec) = 3.64 \times C_{CT1}(nF)$
Delay time code : B	$tV_{DET2}(msec) = 3.88 \times C_{CT1}(nF)$

(2) tV_{DET31} and tV_{DET32} external capacitor C_{CT2} setting

tVDET31 and tVDET32 can be	set as in the next formulas.
Delay time code : A	$tV_{DET31}(msec) = 3.05 \times C_{CT2}(nF)$
	tVDET32(msec) = tVDET31/100
Delay time code : B	tVDET31(msec) = 3.26 × Сст2(nF) tVDET32(msec) = tVDET31/6

• Cell balance function CB circuit-n (n=1,2,3,4,5)

While a battery is being charged, and the cell voltage is beyond the cell balance voltage

 V_{CBDn} (n=1,2,3,4,5), against the cell which becomes equal or more than the cell balance voltage V_{CBDn} , the output of CBn pin (n=1,2,3,4,5) becomes "H" and an external N-channel transistor for cell balance turns on, and discharge path is connected in parallel with the cell and charge current is reduced. When the cell voltage becomes equal or less than the cell balance released voltage V_{CBRn} (n=1,2,3,4,5), then cell balance function is released and the output of CBn pin (n=1,2,3,4,5) becomes "L". The resister used for the discharge path, absolute ratings must be cared.

If the cell balance function is unnecessary, CBn pin must be left open.

Open-wire Detector Function

Open-wire detect of VDD (Vc1) and Vss for 5-cell protector

If V_{DD} line is cut, the voltage between V_{C1} and V_{C2} is less than 0V.

If Vss line is cut, the voltage between $Vc_{\rm 5}$ and Vss is less than 0V.

The voltage is detected by the 0V-detector circuit.

If open-wire is detected, the P-channel open drain of the Court turns off.

• Open-wire detector for Vc2, Vc3, Vc4, Vc5 for 5-cell protection

When using the 5-cell protection, the voltage of VDD (= VC1) becomes lower than VC2 voltage if the connection between the battery and VDD (= VC1) is open. And, the voltage of VSS becomes higher than VC5 voltage if the connection between the battery and VSS is open. The voltage variation is detected as "Open-wire". When the open-wire is detected, the P-channel open drain of the COUT turns off.

In case of the 3.3µF capacitor is attached to the CTLT pin, open-wire detector operates every 30 seconds. The built in switch of VC1, VC3, VC5 cell, and the switch attached to the VC2 and VC4 turn on alternatively by the even_sw and the odd_sw signal.

The internal impedance of the cell whose switch turns on becomes low for about 1.2 seconds by the low resistance connected to the switch. If the wire is not broken, the capacitor of the CTLT is discharged and the next cycle starts for checking.

While the wire is broken, the difference of the internal impedance of the IC generated by the switch's tuning on makes VC shift and detected by the comparator for V_{DET1}. If the open-wire is detected and the condition continues for about 4ms, then even_sw and odd_sw turn off and the capacitor of CTLT is discharged and the P-channel open drain of the Cout turns off. While the overdischarge voltage is detected, the open-wire of Vc2, Vc3, Vc4 and Vc5 does not operate.

• Open-wire detector for V_{DD} (V_{C1}) and V_{SS} for 10-cell protection

If the ICs are connected in cascade, the VDD of the high side IC and Vss (Vss2) of the low side IC, the open-wire detector is able to work as well as 5-cell protection type.

As for the Vss (Vss1) of high side IC and Vbb (Vbb2) of low side IC, if they are connected with common one wire from the battery, and if the wire is broken, two lines, Vss1 and Vbb2's wire are broken, as a result, open-wire may not be able to be detected correctly.

As for the Vss1 and VDD2, connect with two wires so that either Vss1 or VDD2 is connected to the battery, and by the pull-down

NO.EA-263-160711

resistance of Cout of high side is connected to the VDD2 of the low side IC, if either of VSS1 or VDD2 breaks the wire, the openwire detector is able to operate.

Refer to the typical application circuit. (10-cell, cell-balance, open-wire detector are in use.)

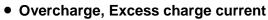
*Limitation of the open-wire detector for V_{C2} , V_{C3} , V_{C4} , V_{C5} . If the open-wire detecting function is necessary, confirm the limitations below; External components must be

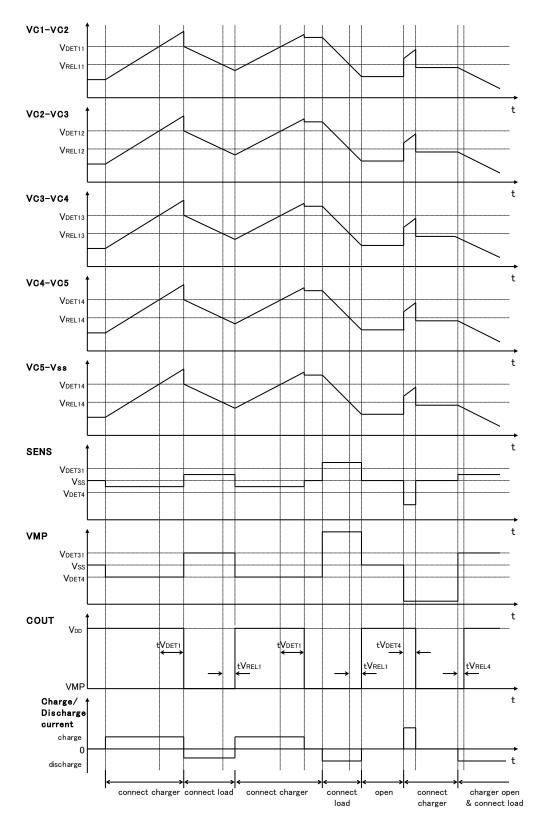
 $C_{CTLT}{=}3.3\mu F$ $C_{CT1} \text{ range: from } 0.47\mu F \text{ to } 1.0\mu F$ $C_{VCX}{=}0.1\mu F$

Even if the protection IC does not detect overdischarge, if the cell voltage is low, depending on the distribution of the ICs, cell balance state, the operating environment, the characteristics of the external components, open-wire function may not operate correctly.

During the delay time of the overcharge voltage, if the open-wire is detected, the overcharge detect operation is once cancelled, and the open-wire operation will be dominant. During the open-wire detection, even if the cell voltage becomes equal or more than the overcharge detector threshold, overcharge is not detected. In this case, after detecting open-wire operation, if the cell voltage is still equal or more than the overcharge detector threshold, overcharge detector threshold, overcharge detector operation starts again. For this reason, overcharge detector output delay time may longer than 1s. (Refer to the timing chart.)

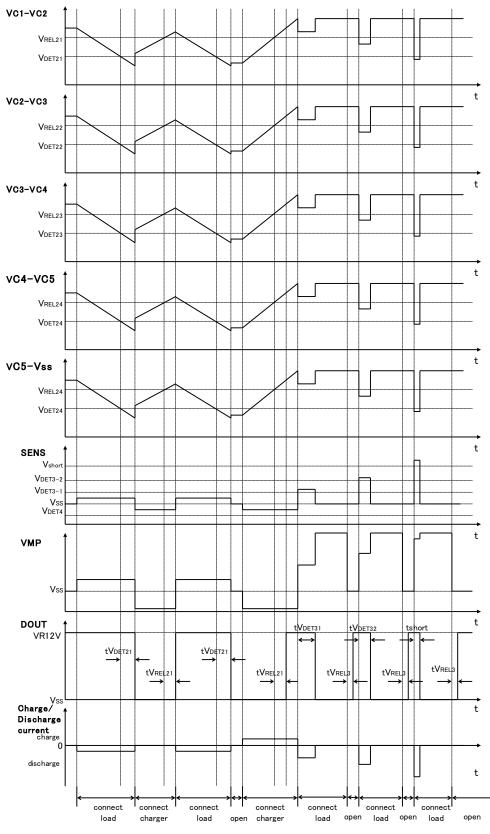
During the overdischarge delay time, if the open-wire detector's operation starts, the overdischarge detector's operation is once cancelled and the open-wire operation will be dominant. During the open-wire, detector's operation is active, even if the cell voltage becomes equal or less than the overdischarge detector threshold, the overdischarge detector does not start. In this case, after detecting open-wire operation, if the cell voltage is still equal or less than the overdischarge detector threshold, overdischarge detector operation starts again. For this reason, the output delay time of overdischarge detector may be longer than the preset value. (Refer to the timing chart.)


Charge Inhibit Detector Circuit Vnochg-n (n-1,2,3,4,5)

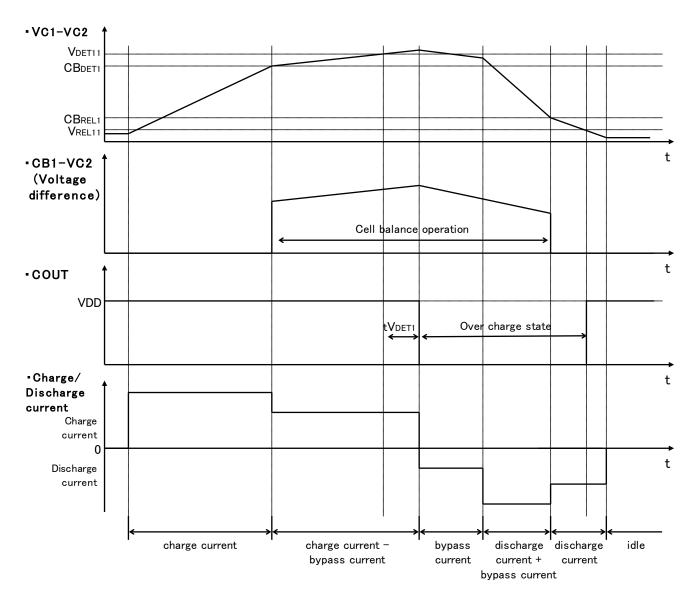

In the R5432VxxxBB, for each cell, charge inhibit detector is built-in. If either of cells' voltage is lower than the charge inhibit voltage, when a charger is connected to the battery pack, charge inhibit is detected and COUT with external pull-down becomes "Hi-Z" and an external MOSFET turns off by the pull-down resistance and charge stops.

When the charge inhibit is detected, the cell voltage which is inhibit charge is equal or lower than the overdischarge detector threshold, therefore the output of COUT becomes "Hi-Z", and the output of DOUT becomes "L", and both external FETs turn off.

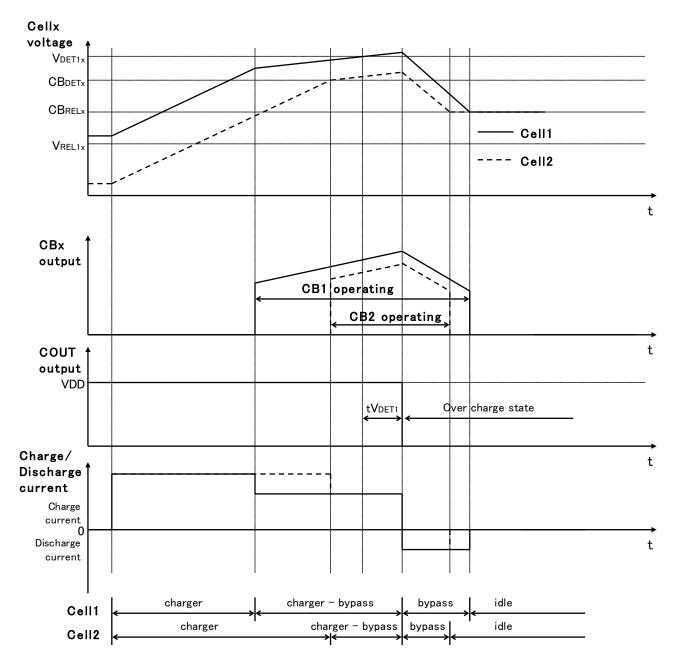
NO.EA-263-160711


TIMING CHART

NO.EA-263-160711


• Overdischarge, Excess discharge current1/2, Short detector

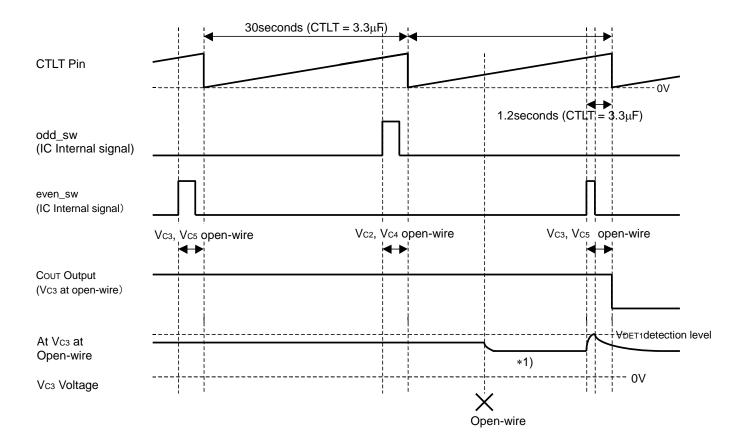
NO.EA-263-160711


CELL BALANCE OPERATION

In the case that CELL1 operates CELL balance

NO.EA-263-160711

Balance operation with CELL1 and CELL2


Open-wire Detection

Open-wire detector's operation of VC2, VC3, VC4, and VC5 for 5-cell protector

In case of the 3.3μ F capacitor is attached to the CTLT pin, open-wire detection operates every 30 seconds. The built in switch of VC1, VC3, VC5 cell, and the switch attached to the VC2 and VC4 turn on alternatively by the even_sw and the odd_sw signal.

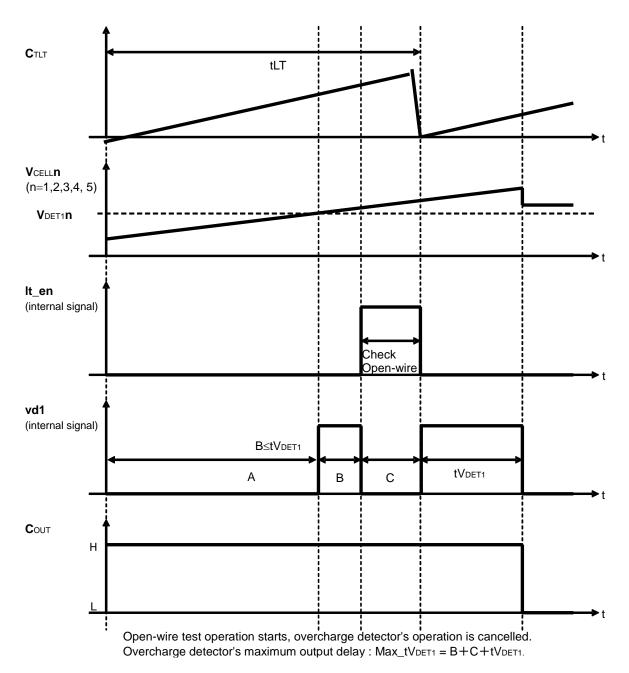
The internal impedance of the cell whose switch turns on becomes low for about 1.2 seconds by the low resistance connected to the switch in serial. If the wire is not open, the capacitor of the CTLT is discharged and the next cycle starts for checking.

While the wire is open, the difference of the internal impedance of the IC generated by the switch's tuning on makes VC shift and detected by the comparator for VDET1. If the open-wire is detected and the condition continues for about 4ms, then even_sw and odd_sw turn off and the capacitor of CTLT is discharged and the P-channel open drain of the COUT turns off. While the overdischarge voltage is detected, the open-wire of VC2, VC3, VC4 and VC5 does not operate.

The timing chart of open-wire of Vc2, Vc3, Vc4, Vc5 is shown below:

*1) The change of Vc is not always increasing. Depending on the cell balance or the internal impedance, the Vc increases or decreases.

NO.EA-263-160711


• Overcharge detector operation and Open-wire detector operation

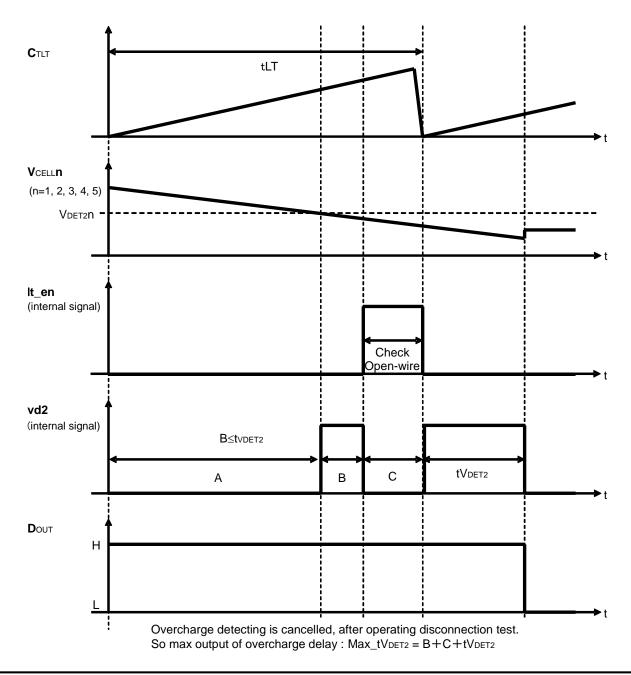
The output delay time of overcharge is normally set at 1s, however, the effect of the open-wire detector, the output delay time may be longer than 1s.

Case 1: During the operation of detecting overcharge, if the open-wire is detected, once the operation of the overcharge detector is cancelled, and after detecting the open-wire, the operation of the overcharge detector starts again.

Case 2: During the operation of the open-wire detector, if the cell voltage becomes more than the overcharge detector threshold, after detecting the open-wire, the operation of the overcharge detector starts.

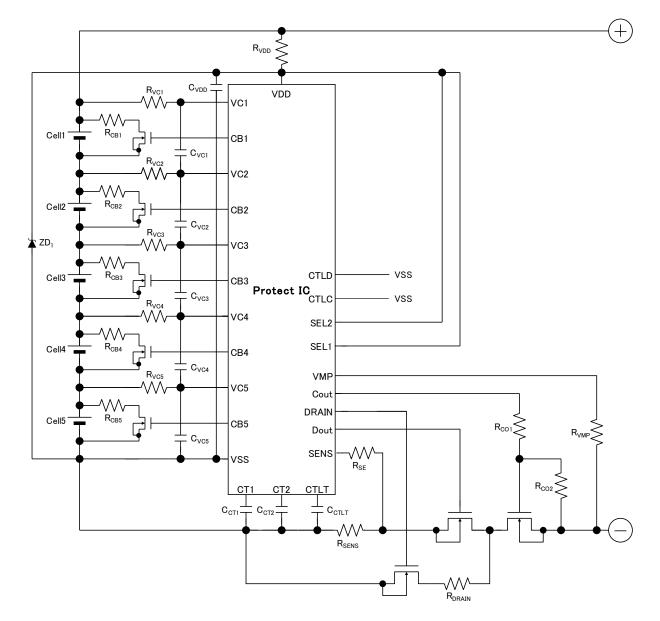
The timing chart shown below is for the operation of the case 1. When the overcharge is detected, internal node "vd1" becomes "H", then, if the open-wire is detected, the internal node "lt_en" becomes "H", then "vd1" signal returns to "L". After the open-wire detector is released, then "lt_en" returns to "L", then the "vd1" becomes "H", and overcharge detector's function restar.

NO.EA-263-160711


• Overdischarge operation and disconnection detector operation

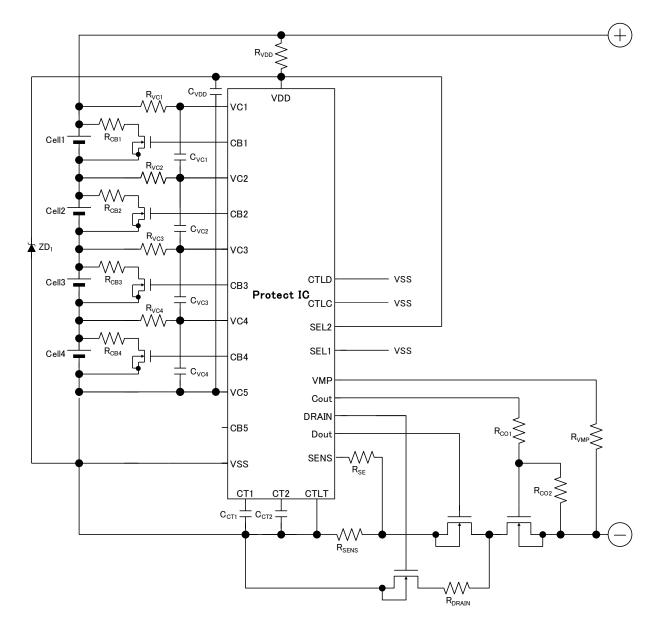
The output delay time of the overcharge detector can be set by an external capacitor, but the delay time might be longer than the present value due to the open-wire detector's operation.

- 1. During the operation of detecting overdischarge, if the open-wire is detected, once the operation of the over discharge detector is cancelled, and after detecting the open-wire is detected, once the operation of the
- 2. Overdischarge can not be detected during disconnection detection. It can operate after disconnection detect.


The timing chart which start to detect disconnect during overdischarge is displayed as follows.

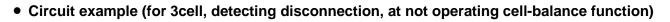
The internal signal "vd1" become "H" after it is equal or less than overdischarge threshold. It comes back "L" after which is the detecting disconnection internal signal become "H". "vd1" become "H" after "It_en" comes back "L". Overdischarge can be detected.

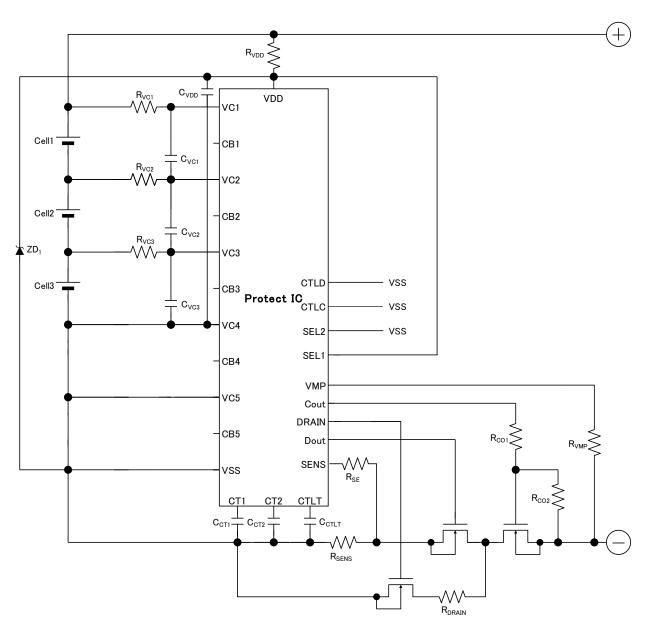
NO.EA-263-160711


TYPICAL APPLICATION AND TECHNICAL NOTES (R5432VxxxBA)

• Circuit example (for -5cell protection, detecting disconnection, at operating cell-balance function)

When the FET connected to Cout is OFF and the load is connected between Pack+ and Pack-, the discharge current flows through the parasitic diode of that FET, and when the FET connected to Dout is OFF and the charger is connected between Pack+ and Pack-, the charge current flows through the parasitic diode of that FET. Choose the FETs which can flow those current enough.

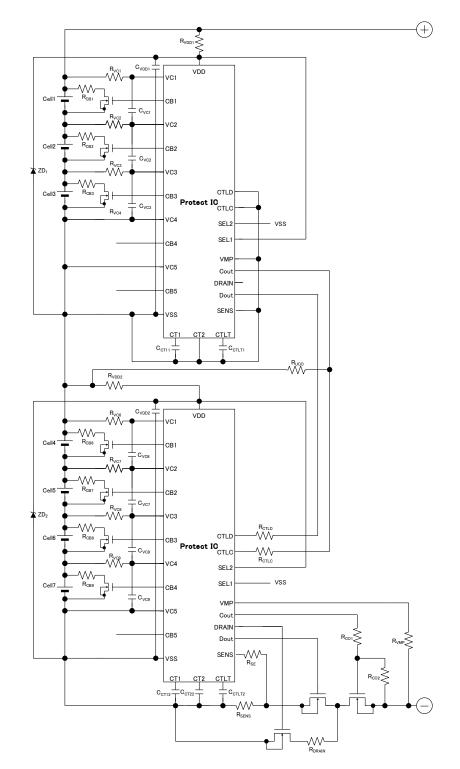

NO.EA-263-160711



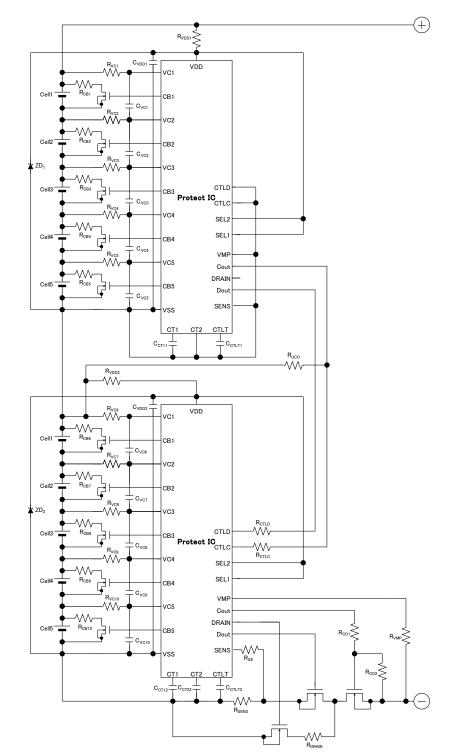
• Circuit example (for 4cell protection, detecting disconnection, at not operating cell-balance function)

When the FET connected to Cout is OFF and the load is connected between Pack+ and Pack-, the discharge current flows through the parasitic diode of that FET, and when the FET connected to Dout is OFF and the charger is connected between Pack+ and Pack-, the charge current flows through the parasitic diode of that FET. Choose the FETs which can flow those current enough.

NO.EA-263-160711



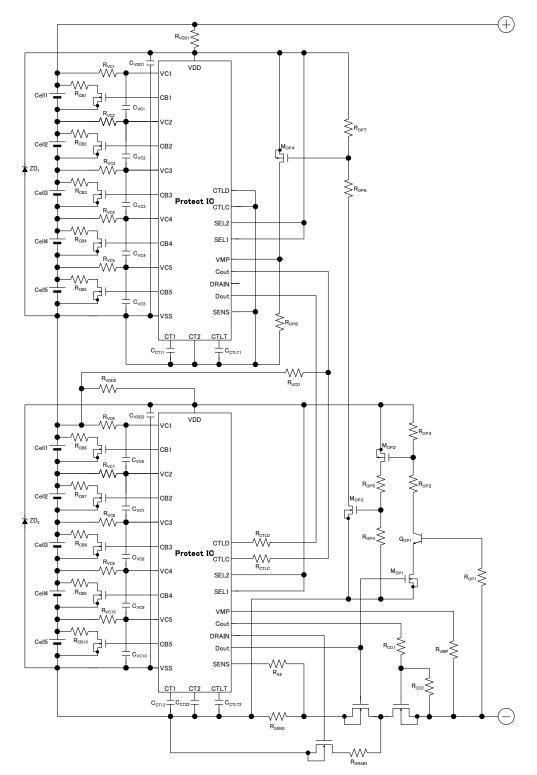
When the FET connected to Cout is OFF and the load is connected between Pack+ and Pack-, the discharge current flows through the parasitic diode of that FET, and when the FET connected to Dout is OFF and the charger is connected between Pack+ and Pack-, the charge current flows through the parasitic diode of that FET. Choose the FETs which can flow those current enough.


NO.EA-263-160711

• Circuit example (for 7cell, detecting disconnection, at operating cell-balance function)

If the open-wire detector is used, for Vss of the high side IC or VDD of the low side IC, these two lines must be separated. If they are common, the both pins' open-wire cannot be detected. Refer to the operation explanation. When the FET connected to Cout is OFF and the load is connected between Pack+ and Pack-, the discharge current flows through the parasitic diode of that FET, and when the FET connected to Dout is OFF and the charger is connected between Pack+ and Pack-, the charge current flows through the parasitic diode of that FET. Choose the FETs which can flow those current enough.

NO.EA-263-160711



Circuit example (for 10cell, detecting open-wire, with cell-balance function)

If the open-wire detector is used, for Vss of the high side IC or VDD of the low side IC, these two lines must be separated. If they are common, the both pins' open-wire cannot be detected. Refer to the operation explanation.

When the FET connected to Cout is OFF and the load is connected between Pack+ and Pack-, the discharge current flows through the parasitic diode of that FET, and when the FET connected to Dout is OFF and the charger is connected between Pack+ and Pack-, the charge current flows through the parasitic diode of that FET. Choose the FETs which can flow those current enough.

NO.EA-263-160711

• Circuit example (for 10-cell protection with cell-balance, open-wire, overcharge hysteresis cancellation: AD/BD ver.)

If the open-wire detector is used, for Vss of the high side IC or VDD of the low side IC, these two lines must be separated. If they are common, the both pins' open-wire cannot be detected. Refer to the operation explanation.

NO.EA-263-160711

• External parts ratings

Symbol	Тур.	Unit	Range	Remarks
Rvdd	330	Ω	330 to 1000	*1
Rvc1	330	Ω	330 to 1000	*2
Rvc2	330	Ω	330 to 1000	*2
Rvcз	330	Ω	330 to 1000	*2
Rvc4	330	Ω	330 to 1000	*2
Rvc5	330	Ω	330 to 1000	*2
Rсв1	100	Ω	40 or more	*3
Rcb2	100	Ω	40 or more	*3
Rсвз	100	Ω	40 or more	*3
R св4	100	Ω	40 or more	*3
Rсв5	100	Ω	40 or more	*3
RSENS	100	mΩ	1.0 or more	It is determined by the value of over current
Rse	10	kΩ	1 to 10	*4
Rdrain	*5	MΩ	*5	*5 R _{DRAIN} <v<sub>DET31x(R_{C01}+R_{C02})/50</v<sub>
Rco1	1	MΩ	*5	*5
Rco ₂	2	MΩ	*5	*5
RVMP	10	MΩ	0.01 to 10	*6
RCTLC	1	kΩ	1 to 10	
RCTLD	1	kΩ	1 to 10	
Ruco	3	MΩ	0.1 to 10	*7
CVDD	1	μF	0.1 to 1	*1
C _{VC1}	0.1	μF	0.1	*2
CVC2	0.1	μF	0.1	*2
Сусз	0.1	μF	0.1	*2
C_{VC4}	0.1	μF	0.1	*2
C _{VC5}	0.1	μF	0.1	*2
C _{CT1}	0.47	μF	0.01 to 1.0	*8
C _{CT2}	0.0033	μF	0.0022 or more	*9
CCTLT	3.3	μF	3.3	*10
ZD ₁	30	V	30 or less	*11
R _{OP1}	10	kΩ	10 or more	Input resistance of Q _{OP1}
R _{OP2}	10	MΩ	5 or more	·
R _{OP3}	10	MΩ	5 or more	
R _{OP4}	10	MΩ	5 or more	
R _{OP5}	10	MΩ	5 or more	
R _{OP6}	20	MΩ	10 or more	
R _{OP7}	10	MΩ	5 or more	
M _{OP1}				Consider the Voltage rating of V_{GS} and V_{DS}
MOP2				Consider the Voltage rating of V _{GS} and V _{DS}
Морз				Consider the Voltage rating of V _{GS} and V _{DS}
Mop4				Consider the Voltage rating of V _{GS} and V _{DS}
Q _{OP1}				Consider the Voltage rating of V _{GS} and V _{DS}

Please refer to the external circuits of next page for "*" of remarks Please confirm "Precautions before Use".

Technical Notes on External Circuits and Components

*1) The voltage fluctuation is stabilized with R_{VDD} and C_{VDD} . If a small R_{VDD} is set, in the case of the large transient may happen to the cell voltage, by the flowing current, the IC may be unstable. If a large R_{VDD} is set, by the consumption current of the IC itself, the voltage difference between V_{DD} pin and V_{C1} pin is generated, and unexpected operation may result. Therefore, the appropriate value range of R_{VDD} is from 330 Ω to 1k Ω . To make a stable operation of the IC, the appropriate value range of C_{VDD} is from 0.1 μ F to 1.0 μ F.

*2) R_{VC1} to R_{VC10} , C_{VC1} to C_{VC10} stabilize the voltage fluctuation. If large R_{VC1} to R_{VC10} is set, the detector threshold will be high because of the internal conduction current of the IC. The operation error of open-wire detector function may happen easily by the distribution of the ICs or environment. If small R_{VC1} to R_{VC10} is set, the effect by noise will be large. Therefore the appropriate value range of R_{VC1} to R_{VC10} is from 330 Ω to 1k Ω . To make stable operation, use 0.1 μ F as C_{VC1} to C_{VC10} .

*3) When the cell balance function is necessary, RCB1 to RCB10 must be chosen carefully with considering the bypass current, and consumption power by the bypass current, and the external MOSFET. Especially, if a small resistance (to set the large bypass current) is set, fully evaluation is necessary. If a large resistance (to set the small bypass current) is set, the time for cell balance will be long.

*4) When the cascade connection is used, if short circuit is happened, by the short current and the RSENS enlarges the voltage, and as a result, if the voltage of SENS pin becomes larger than the VDD of the IC, during the short circuit output delay time, the current flows into SENS pin. Therefore, if a small RSE is set, a large current may flow into SENS pin. If a large RSE is set, the overcurrent detector threshold may shift. Therefore the appropriate value is around 10k Ω .

*5) Choose appropriate values for RDRAIN, RC01, and RC02 to satisfy the next formula, otherwise, the release from excess discharge current and short may be impossible.

RDRAIN<VDET31X(RCO1+RCO2)/50

If small R_{CO1} or R_{CO2} is set, when the output of C_{OUT} is "H", the consumption current of protection circuit board increases. If large R_{CO1} or R_{CO2} is set, when the output of C_{OUT} is "Hi-Z", the speed for pull-down the gate of the charge FET becomes slow and turning off the FET will be slow. Not only that, by dividing between the "Hi-Z" output and the resistance, turning off the charge FET may be difficult.

If a small R_{DRAIN} is set, when the excess discharge current and short circuit is detected, the large current may flow until the load is removed.

*6) In terms of R_{VMP} , when the cascade connection is made, if D_{OUT} turns off, VMP pin is pulled up via R_{VMP} to the top cell. In this case, the current flows via R_{VMP} and the internal diode, therefore, appropriate value must be chosen. If the cascade connection is not used, around $10k\Omega$ is acceptable.

*7) Set R_{UCO} to satisfy R_{UCO}=R_{CO1}+R_{CO2}. If a extremely large resistance is set, when the output of C_{OUT} is "Hi-Z", by the dividing resistance, CTLC pin may not be pulled down. If a small resistance is used, when the output of C_{OUT} is "H", the consumption current via R_{UCO} increases.

*8) If the open-wire detector function of V_{C2} to V_{C5} is used, use 0.47μ F to 1μ F as C_{CT1}. If the open-wire detector function is unnecessary, use a capacitor of 0.01μ F or more.

*9) If a too small C_{CT2} is set, excess discharge current detector output delay time 2 becomes shorter than the short circuit output delay time. Therefore, use a capacitor with 0.0022μ F or more.

NO.EA-263-160711

*10) If the open-wire detector of Vc₂ to Vc₅ is used, use 3.3μ F as C_{CTLT}. If the open-wire detector of Vc₂ to Vc₅ is not necessary, pull down to Vss.

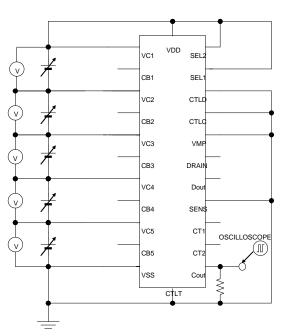
*11) Considering the break down of the resistors and capacitors to stabilize the fluctuation of the voltage, to avoid that the high voltage is directly forced to the IC, adding a zener diode is our recommendation. Connect the zener diode between VDD pin of the IC and VSS pin directly. (Refer to the typical application circuits.)

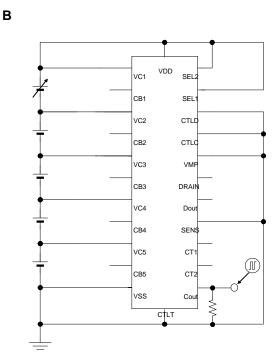
To set the number of connecting cells, SEL1/SEL2 pin must be connected to VDD level. In these cases, connect the pin inside the filter for stabilizing VDD pin voltage. If SEL1/SEL2 is connected outside the filter, during the operation, the voltage difference between SEL1/SEL2 and VDD may be generated, and unstable operation or excess current flow may result.

The typical application circuit diagrams are just examples. This circuit performance largely depends on the PCB layout and external components. In the actual application, fully evaluation is necessary.

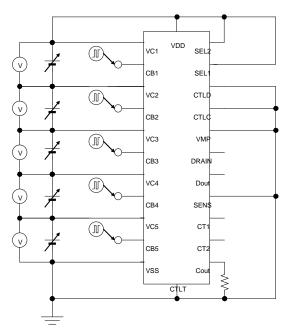
Overvoltage and the over current beyond the absolute maximum rating should not be forced to the protection IC and external components. Especially, if the pack+ and Pack- are short, although the short protection circuit is built-in the IC, but during the output delay time, large current may flow through the FET. By the current during the output delay, in order not to destruct the FET, choose the FET with enough current rating.

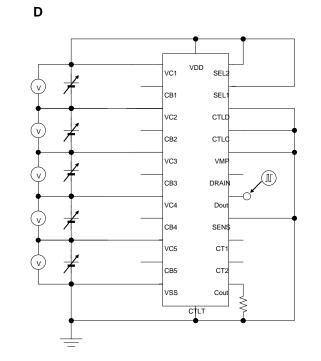
Ricoh cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Ricoh product. If technical notes are not complied with the circuit which is used Ricoh product, Ricoh is not responsible for any damages and any accidents.

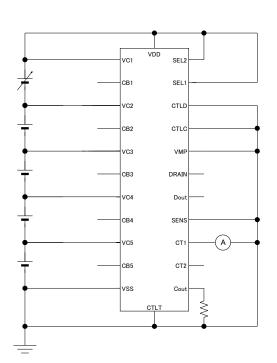

To connect the protection IC and cells, connect Vss pin first. If the connect order is wrong, by flowing unexpected current, the IC may be damaged.

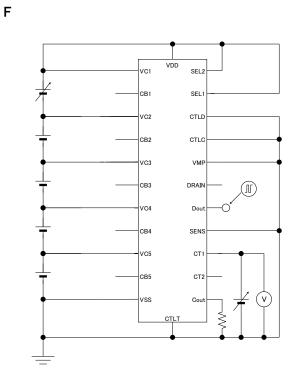

If charge control FET and discharge control FET are connected in serial, if the control FET for charge turns off and discharge big current, or when the FET for discharge turns off and if charge with big current is done without discharge control FET turning off, big current flows through the parasitic diode of the FET, the FET may be burnt. To avoid this, separate the charge and discharge current path and when the FET turns off, in order not to flow large current through parasitic diode, choose an FET with large current capacity.

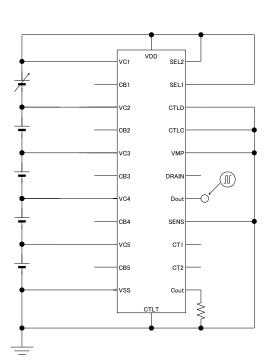
NO.EA-263-160711


TEST CIRCUITS

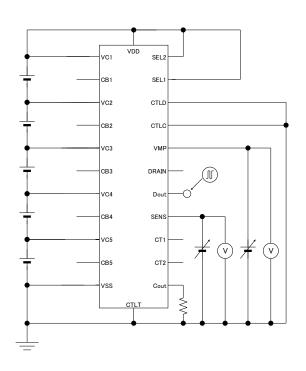

Α



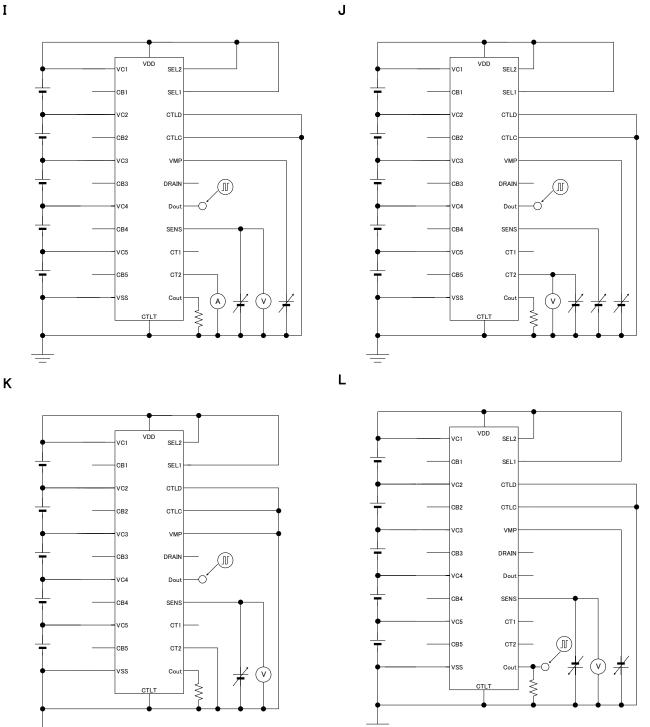



NO.EA-263-160711

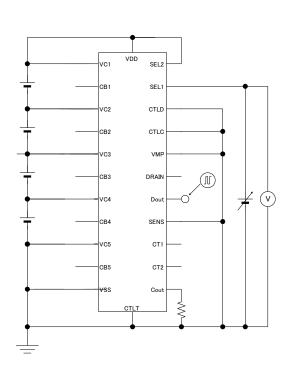
Е

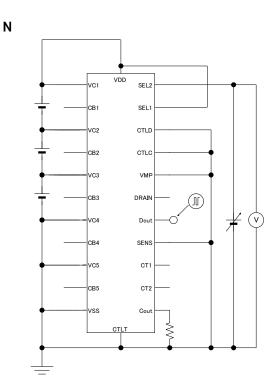


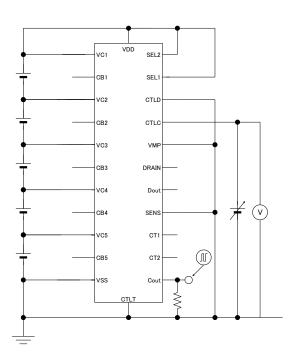
G

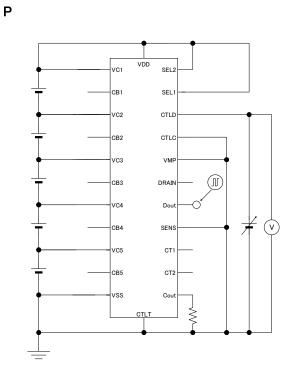


н

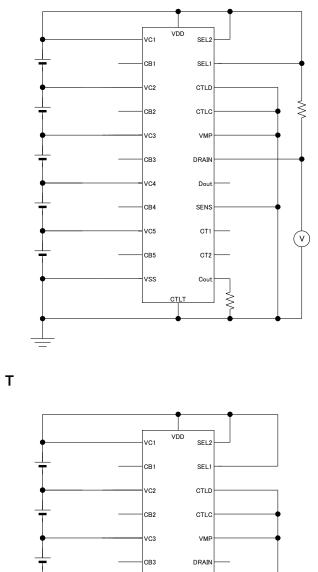



NO.EA-263-160711




NO.EA-263-160711

0



NO.EA-263-160711

VDD SEL2 VC1 SEL1 CB1 CTLD VC2 CB2 CTLC VC3 VMP ≥ CB3 DRAIN VC4 Dout СВ4 SENS VC5 CT1 (v) CB5 CT2 vss Cout ≶ CTL

R

VC4

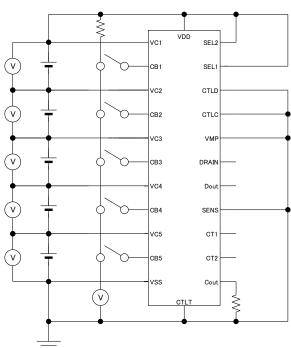
CB4

VC5

CB5 VSS Dout

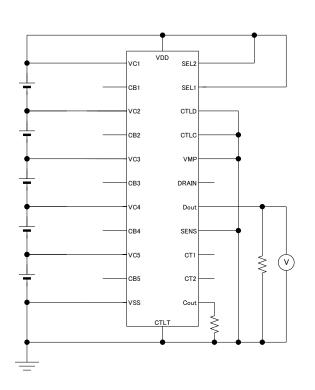
SENS

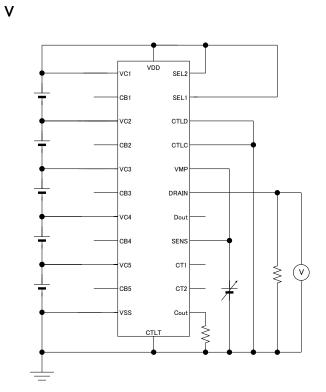
CT1


CT2

Cou

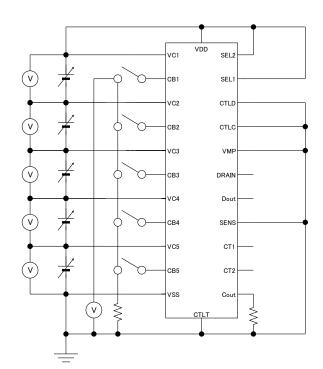
CTLI

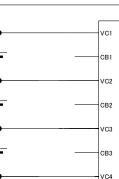

≶ (v



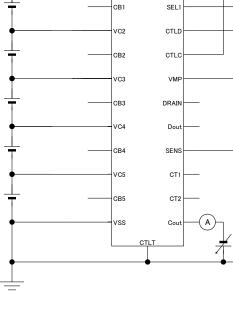
NO.EA-263-160711

U

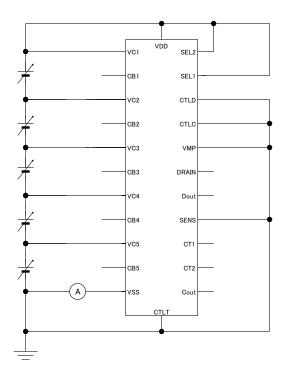


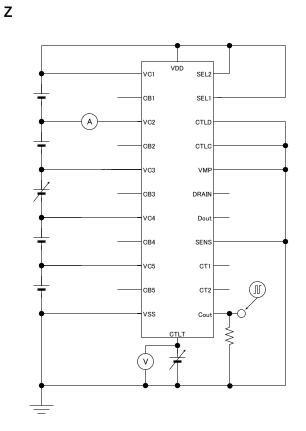


VDD


SEL2

W

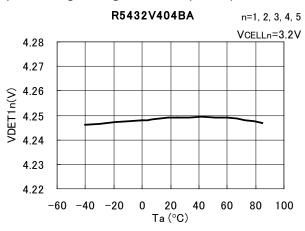

Х



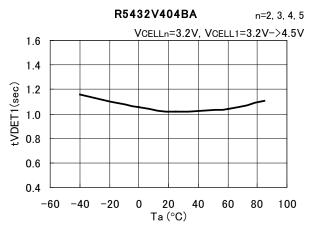
NO.EA-263-160711

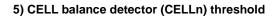
VDD VC1 SEL2 CB1 SEL1 VC2 CTLD CB2 CTLC VC3 VMP СВЗ DRAIN VC4 Dout CB4 SENS VC5 CT1 CB5 CT2 vss Cout ≶ CTLT (A)

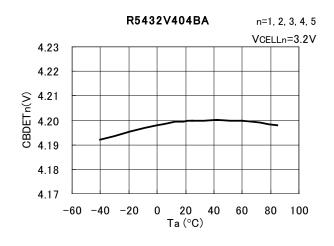
а

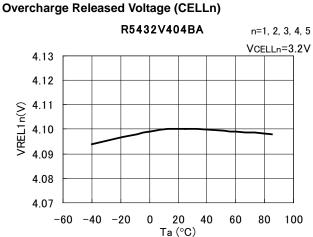


NO.EA-263-160711

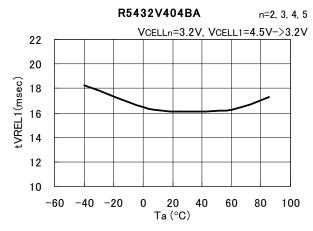

TYPICAL CHRACTERSTICS

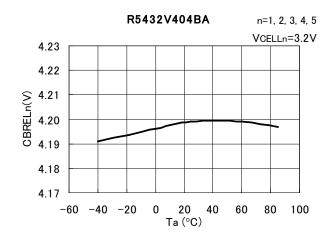

Part1. Temperature Characteristics


1) Overcharge voltage threshold (CELLn)

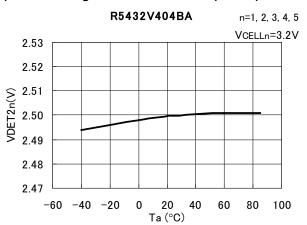


3) Overcharge Detector Delay

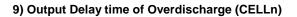


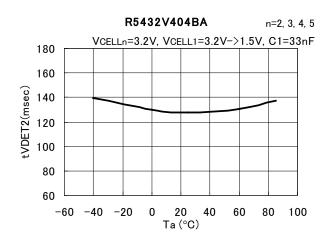


4) Released from Overcharged Delay time Temperature

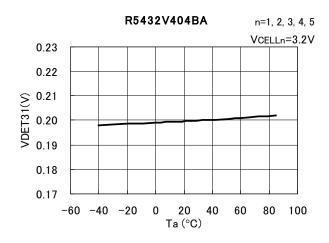


6) CELL balance released Voltage (CELLn)

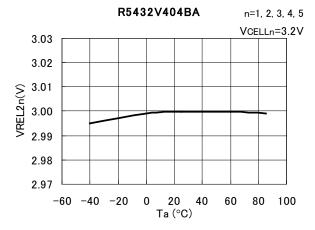


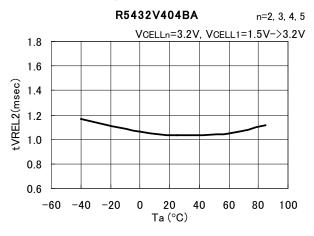

2) Overcharge Released Voltage (CELLn)

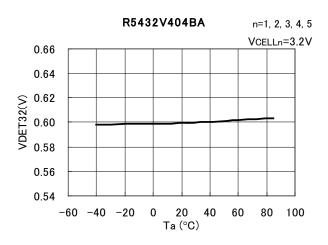
NO.EA-263-160711



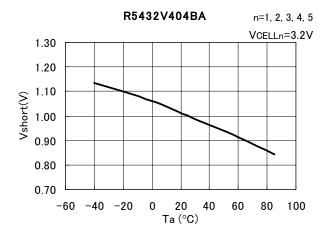
7) Overdischarge Detector Threshold (CELLn)

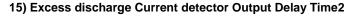


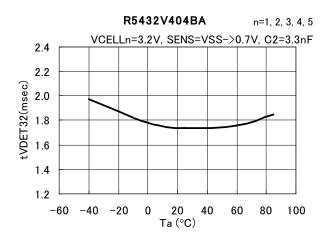

11) Excess Discharge Current Detector Thershold1


8) Released Voltage from overdischarge (CELLn)

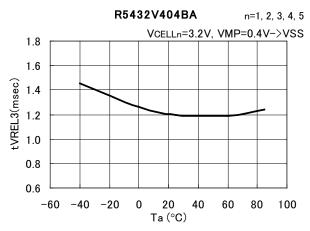
10) Output Delay Time of Released from Overdischarge (CELLn)

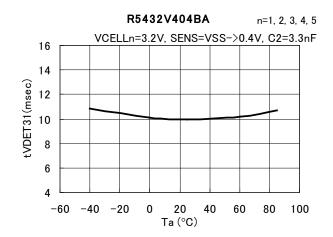


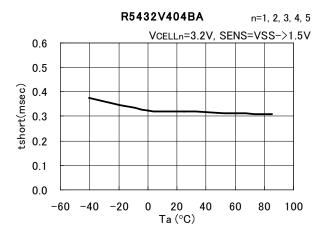


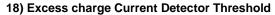

RICOH

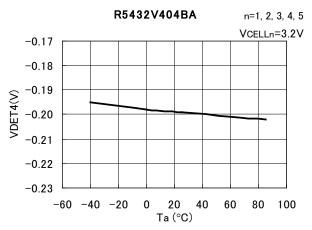
NO.EA-263-160711


13) Short Detector Threshold

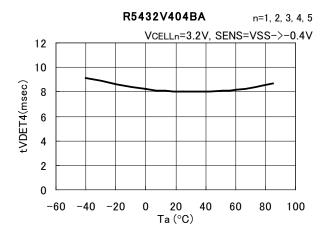


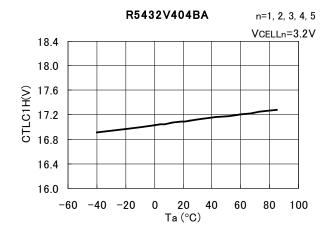

17) Excess discharge Current released delay time



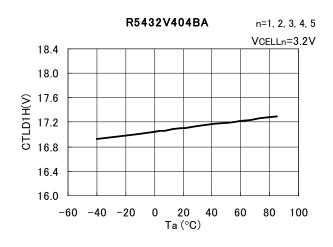

14) Excess discharge Current Detector Output Delay Time 1

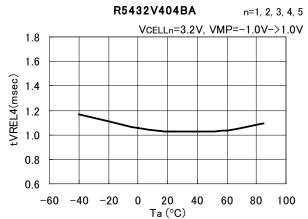
16) Short Detector Output Delay Time

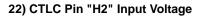


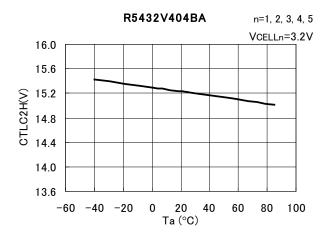


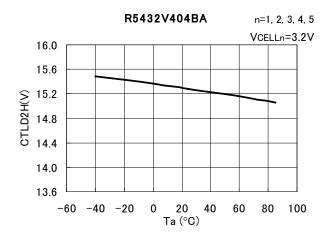
NO.EA-263-160711

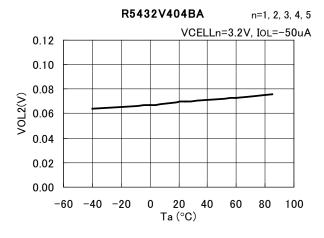

19) Excess Charge Current Output Delay Time

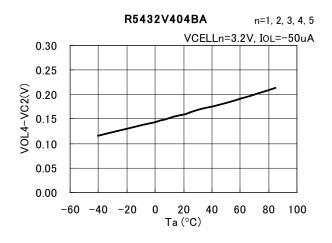


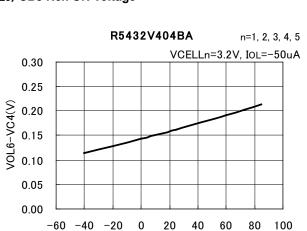

21) CTLC Pin "H" Input Voltage



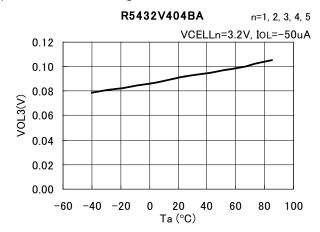


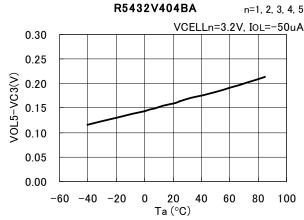

24) CTLD Pin "H2" Input Voltage

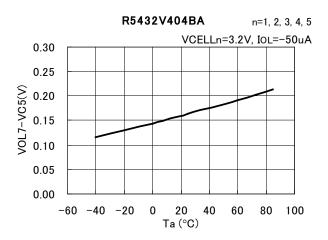

20) Excess Charge Current Delay Time of Released


NO.EA-263-160711

25) DOUT Nch ON Voltage

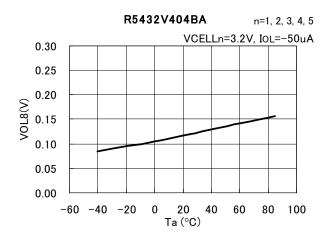

27) CB1 Nch ON Voltage



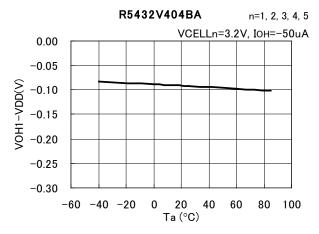

Ta (°C)

26) DRAIN Nch ON Voltage

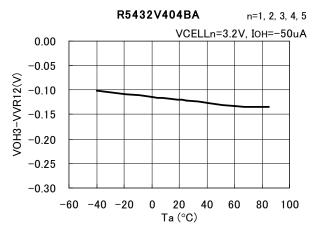
28) CB2 Nch ON Voltage

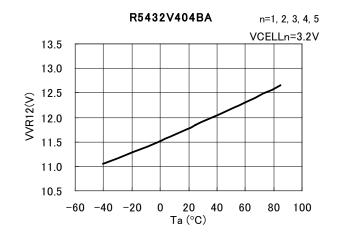


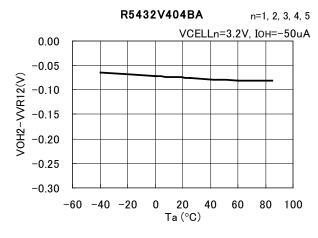
29) CB3 Nch ON Voltage

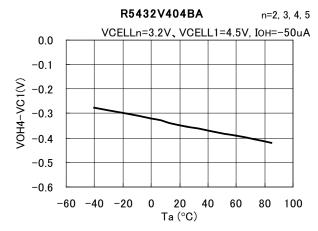

30) CB4 Nch ON Voltage

NO.EA-263-160711

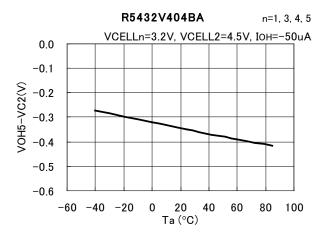

31) CB5 Nch ON Voltage


33) COUT Pch ON Voltage

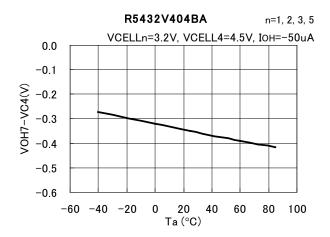

35) DRAIN Pch ON Voltage


32) VR12V Output Voltage

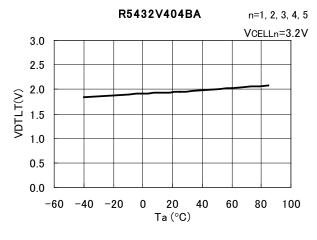
34) DOUT Pch ON Voltage

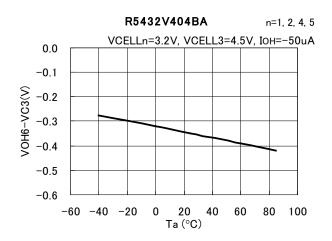


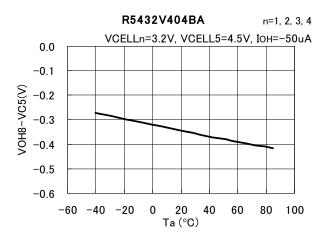
36) CB1 Pch ON Voltage

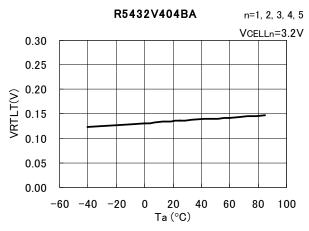


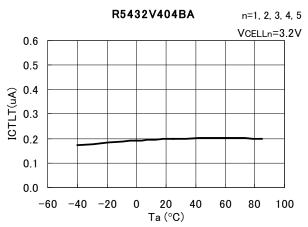
NO.EA-263-160711


37) CB2 Pch ON Voltage

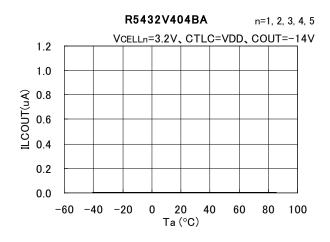

39) CB4 Pch ON Voltage


41) CTLT Detector threshold

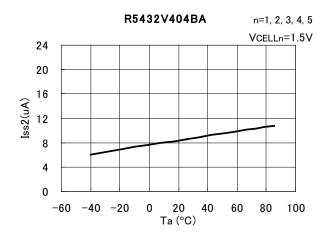

38) CB3 Pch ON Voltage


40) CB4 Pch ON Voltage

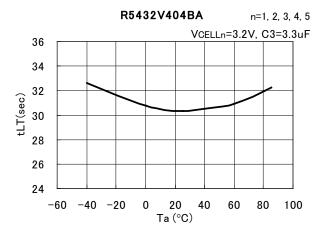
42) CTLT release Voltage

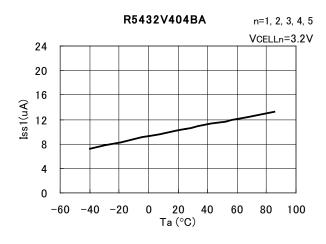


NO.EA-263-160711

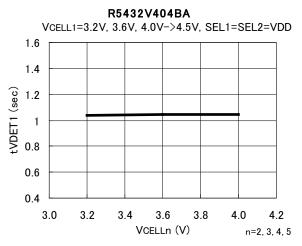


43) CTLT Excess charge Current

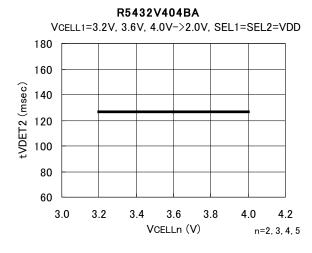

45) COUT Off leak current


47) Supply Current2

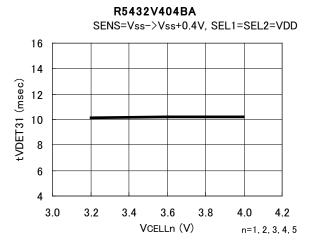
44) Open-wire test interval time

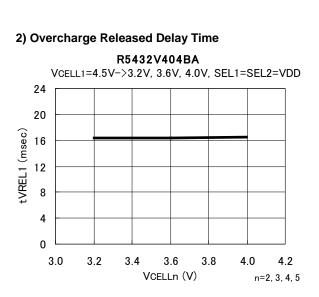


46) Supply Current1

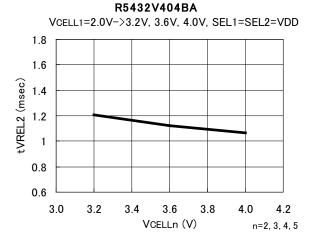


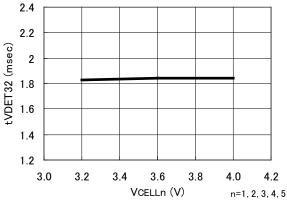
NO.EA-263-160711


Part2.Output Delay Time VDD dependence 1) Overcharge detector output Delay Time

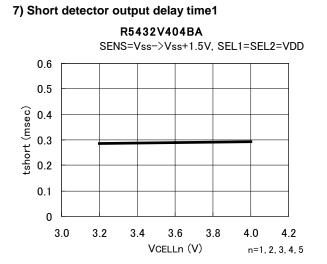


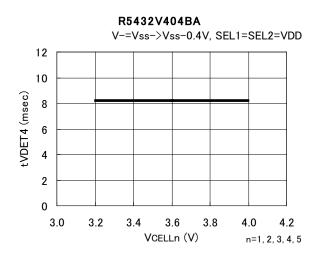
3) Overdischarge detector output Delay Time



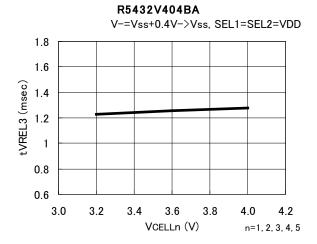


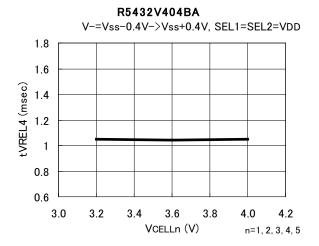
4) Overdischarge Released Delay Time


6) Excess discharge current detector Delay Time 2

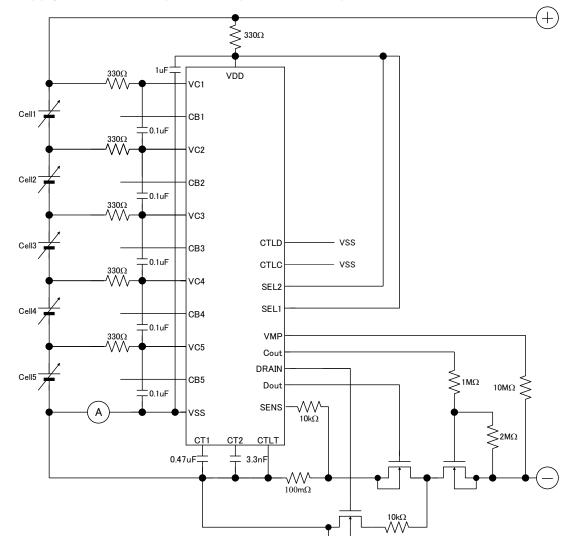


RICOH

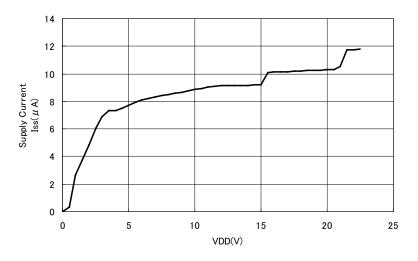

NO.EA-263-160711


9) Excess charge current detector output Delay Time

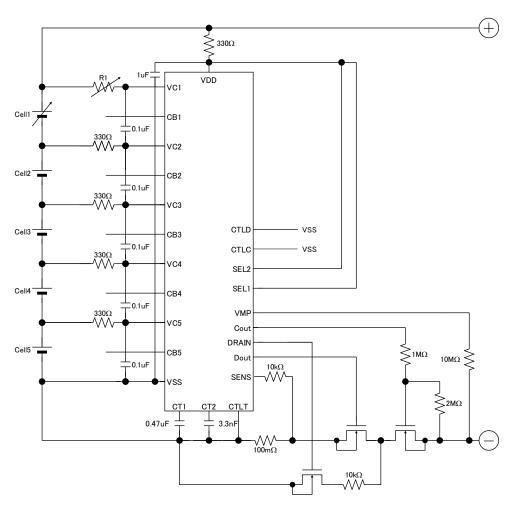
8) Excess discharge current released delay time2



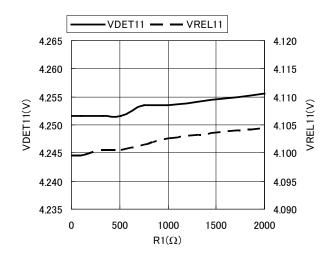
10) Excess charge current released delay time


RICOH

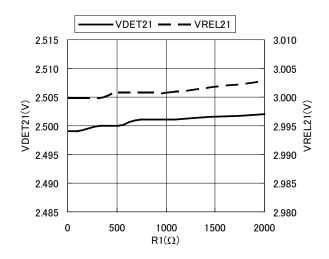
NO.EA-263-160711


• Part3. Supply Current VDD dependence (R5432V404BA)

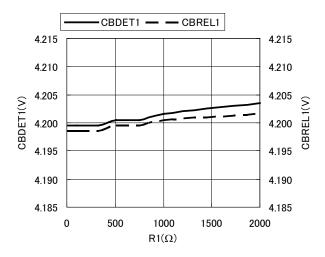
Supply Current for 5-cell protection



NO.EA-263-160711


Part4. External resistance dependence (R5432V404BA)

Overcharge Detector/Released Voltage from Overcharge vs. R1 (CELL1)



Overdischarge Detector/Released Voltage from Overdischarge vs. R1 (CELL1)

NO.EA-263-160711

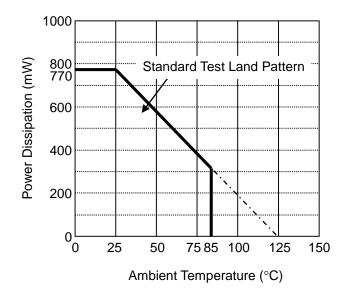
CELL balance detector / Released Voltage from CELL balance vs. R1 (CELL1)

POWER DISSIPATION

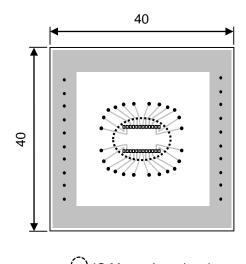
SSOP-24

Ver. A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.


Measurement Conditions

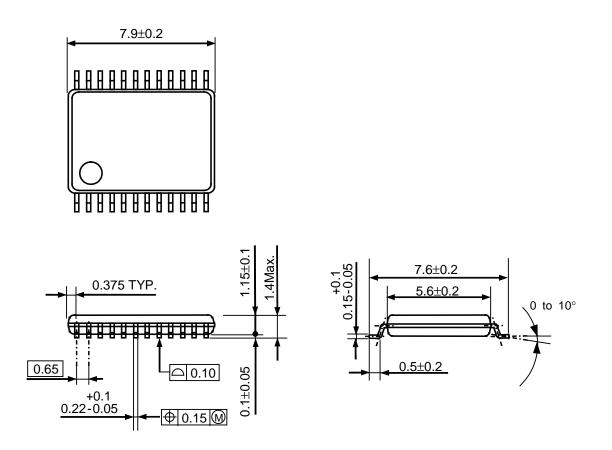
	Standard Test Land Pattern
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Double-Sided Board)
Board Dimensions	40 mm × 40 mm × 1.6 mm
Copper Ratio	Top Side: Approx. 50% Bottom Side: Approx. 50%
Through-holes	f 0.5 mm × 44 pcs


Measurement Result

(Ta = 25°C, Tjmax = 125°C)

	Standard Test Land Pattern
Power Dissipation	770 mW
Thermal Resistance	qja = (125 − 25°C) / 0.770 W = 130°C/W

Power Dissipation vs. Ambient Temperature



 \bigcirc IC Mount Area (mm)

Measurement Board Pattern

SSOP-24

Ver. A

SSOP-24 Package Dimensions (Unit: mm)

RICOH

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

Ricoh Electronic Devices Co., Ltd.

Shin-Yokohama Office (International Sales) 2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074

Ricoh Americas Holdings, Inc way, Suite 200 Campbell, CA 95008, U.S.A. 675 Campbell Technology Parl Phone: +1-408-610-3105

Ricoh Europe (Netherlands) B.V. Semiconductor Support Centre

Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309

Ricoh International B.V. - German Branch Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany Phone: +49-211-6546-0

Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

Ricoh Electronic Devices Shanghai Co., Ltd. Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China

Phone: +86-21-5027-3200 Fax: +86-21-5027-3299 Ricoh Electronic Devices Shanghai Co., Ltd.

Shenzhen Branch 1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District, Shenzhen, China Phone: +86-755-8348-7600 Ext 225

Ricoh Electronic Devices Co., Ltd.

 Taipei office

 Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)

 Phone: +886-2-2313-1621/1622

 Fax: +886-2-2313-1621/1622