4-172
File Number 1574.4
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
1-888-INTERSIL or 321-724-7143 |Copyright © Intersil Corporation 1999
IRF520
9.2A, 100V, 0.270 Ohm, N-Channel
Power MOSFET
This N-Channel enhancement mode silicon gate power field
effect transistor is an advanced power MOSFET designed,
tested, and guaranteed to withstand a specified level of
energy in the breakdown avalanche mode of operation. All of
these power MOSFETs are designed for applications such
as switching regulators, switching convertors, motor drivers,
relay drivers, and drivers for high power bipolar switching
transistors requiring high speed and low gate drive power.
These types can be operated directly from integrated
circuits.
Formerly developmental type TA09594.
Features
9.2A, 100V
•r
DS(ON) = 0.270
SOA is Power Dissipation Limited
Single Pulse Avalanche Energy Rated
Nanosecond Switching Speeds
Linear Transfer Characteristics
High Input Impedance
Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
Packaging
JEDEC TO-220AB
Ordering Information
PART NUMBER PACKAGE BRAND
IRF520 TO-220AB IRF520
NOTE: When ordering, use the entire part number. G
D
S
SOURCE
DRAIN (FLANGE)
DRAIN
GATE
Data Sheet November 1999
4-173
Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified
IRF520 UNITS
Drain to Source Breakdown Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDS 100 V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 100 V
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
TC= 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
D9.2
6.5 A
A
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 37 A
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS ±20 V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD60 W
Dissipation Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.4 W/oC
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS 36 mJ
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, TSTG -55 to 175 oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 10) 100 - - V
Gate to Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA 2.0 - 4.0 V
Zero Gate Voltage Drain Current IDSS VDS = 95V, VGS = 0V - - 250 µA
VDS = 0.8 x Rated BVDSS, VGS = 0V, TJ= 150oC - - 1000 µA
On-State Drain Current (Note 2) ID(ON) VDS > ID(ON) x rDS(ON)MAX, VGS = 10V (Figure 7) 9.2 - - A
Gate to Source Leakage Current IGSS VGS = ±20V - - ±100 nA
Drain to Source On Resistance (Note 2) rDS(ON) ID = 5.6A, VGS = 10V (Figure 8, 9) - 0.25 0.27
Forward Transconductance (Note 2) gfs VDS 50V, ID = 5.6A (Figure 12) 2.7 4.1 - S
Turn-On Delay Time td(ON) VDD = 50V, ID 9.2A, RG = 18, RL = 5.5
MOSFET Switching Times are Essentially
Independent of Operating
Temperature
- 9 13 ns
Rise Time tr-3063ns
Turn-Off Delay Time td(OFF) -1870ns
Fall Time tf-2059ns
Total Gate Charge
(Gate to Source + Gate to Drain) Qg(TOT) VGS = 10V, ID = 9.2A, VDS = 0.8 x Rated BVDSS,
Ig(REF) = 1.5mA (Figure 14) Gate Charge is
Essentially Independent of Operating
Temperature
-1030nC
Gate to Source Charge Qgs - 2.5 - nC
Gate to Drain “Miller” Charge Qgd - 2.5 - nC
Input Capacitance CISS VDS = 25V, VGS = 0V, f = 1MHz
(Figure 11) - 350 - pF
Output Capacitance COSS - 130 - pF
Reverse Transfer Capacitance CRSS -25- pF
Internal Drain Inductance LDMeasured From the Contact
Screw On Tab To Center of
Die
Modified MOSFET
Symbol Showing the
Internal Devices
Inductances
- 3.5 - nH
Measured From the Drain
Lead, 6mm (0.25in) From
Package to Center of Die
- 4.5 - nH
Internal Source Inductance LSMeasured From the Source
Lead, 6mm (0.25in) From
Header to Source Bonding
Pad
- 7.5 - nH
Thermal Resistance Junction to Case RθJC - - 2.5 oC/W
Thermal Resistance Junction to Ambient RθJA Free Air Operation - - 80 oC/W
LD
LS
D
S
G
IRF520
4-174
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Continuous Source to Drain Current ISD Modified MOSFET Symbol
Showing the Integral
Reverse P-N Junction Diode
- - 9.2 A
Pulse Source to Drain Current (Note 3) ISDM - - 37 A
Source to Drain Diode Voltage (Note 2) VSD TJ = 25oC, ISD = 9.2A, VGS = 0V (Figure 13) - - 2.5 V
Reverse Recovery Time trr TJ = 25oC, ISD = 9.2A, dISD/dt = 100A/µs 5.5 100 240 ns
Reverse Recovered Charge QRR TJ = 25oC, ISD = 9.2A, dISD/dt = 100A/µs 0.17 0.5 1.1 µC
NOTES:
2. Pulse test: pulse width 300µs, duty cycle 2%.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD = 25V, starting TJ = 25oC, L = 640mH, RG = 25Ω, peak IAS = 9.2A.
Typical Performance Curves Unless Otherwise Specified
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE
G
D
S
TC, CASE TEMPERATURE (oC)
25 50 75 100 125 150 175
0
POWER DISSIPATION MULTIPLIER
0
0.2
0.4
0.6
0.8
1.0
1.2
TC, CASE TEMPERATURE (oC)
50 75 100 17525
10
8
6
0
4
ID, DRAIN CURRENT (A)
2
125 150
ZθJC, TRANSIENT
1
0.1
0.01 10-2
10-5 10-4 10-3 0.1 1 10
t1, RECTANGULAR PULSE DURATION (s)
PDM
t1t2
10
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ= PDM x ZθJC + TC
SINGLE PULSE
0.5
0.02
0.05
0.2
0.01
0.1
THERMAL IMPEDANCE (oC/W)
IRF520
4-175
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICS
FIGURE 6. SATURATION CHARACTERISTICS FIGURE 7. TRANSFER CHARACTERISTICS
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
Typical Performance Curves Unless Otherwise Specified (Continued)
100
10
1
10001 10 100
0.1
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
TC = 25oC
TJ= MAX RATED
SINGLE PULSE
10µs
100µs
1ms
10ms
OPERATION IN THIS
AREA IS LIMITED
BY rDS(ON)
10V
VDS, DRAIN TO SOURCE VOLTAGE (V)
20050
15
12
9
0
6
ID, DRAIN CURRENT (A)
VGS = 7V
3
30
VGS = 6V
VGS = 8V PULSE DURATION = 80µs
10 40
VGS = 5V
VGS = 4V
DUTY CYCLE = 0.5% MAX
15
12
9
0
6
123405
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
3
VGS = 6V
VGS = 5V
VGS = 4V
VGS = 7V
VGS = 8V
VGS = 10V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
102
0.1 24680
ID(ON), ON-STATE DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
1
10
10
175oC25oC
VDS 50V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
ID, DRAIN CURRENT (A)
16 32040
2.5
2.0
1.5
0
1.0
rDS(ON), DRAIN TO SOURCE ON RESISTANCE
PULSE DURATION = 80µs
824
0.5
VGS = 10V
VGS = 20V
DUTY CYCLE = 0.5% MAX
3.0
1.8
0.6
060-60 TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED ON RESISTANCE
2.4
1.2
0-40 -20 20 40 80 100 140120 160 180
ID = 9.2A, VGS = 10V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
IRF520
4-176
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
Typical Performance Curves Unless Otherwise Specified (Continued)
1.25
1.05
0.85
0 180
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
1.15
0.95
0.75-60
BREAKDOWN VOLTAGE
60 120
ID = 250µA
VDS, DRAIN TO SOURCE VOLTAGE (V)
C, CAPACITANCE (pF)
1000
800
600
400
200
0
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS CDS + CGD
110 102
CISS
COSS
CRSS
ID, DRAIN CURRENT (A)
36912015
5
4
3
0
2
gfs, TRANSCONDUCTANCE (S)
1
TJ = 175oC
TJ = 25oC
PULSE DURATION = 80µs
VDS 50
DUTY CYCLE = 0.5% MAX
TJ = 175oC
ISD, SOURCE TO DRAIN CURRENT (A)
VSD, SOURCE TO DRAIN VOLTAGE (V)
100
10
0.1 0 0.4 1.2 1.6 2.00.8
TJ = 25oC
1
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
Qg, GATE CHARGE (nC)
36912015
20
8
0
VGS, GATE TO SOURCE VOLTAGE (V)
4
ID = 9.2A
16
12
VDS = 20V
VDS = 50V
VDS = 80V
IRF520
4-177
Test Circuits and Waveforms
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
FIGURE 17. SWITCHING TIME TEST CIRCUIT FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
VGS
RL
RG
DUT
+
-VDD
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
0.3µF
12V
BATTERY 50k
VDS
S
DUT
D
G
Ig(REF)
0
(ISOLATED
VDS
0.2µF
CURRENT
REGULATOR
ID CURRENT
SAMPLING
IG CURRENT
SAMPLING
SUPPLY)
RESISTOR RESISTOR
SAME TYPE
AS DUT Qg(TOT)
Qgd
Qgs
VDS
0
VGS
VDD
IG(REF)
0
IRF520
4-178
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see w eb site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029
IRF520