1/31
OPE RATIN G FROM Vcc=2 V to 5.5V
STANDBY MODE ACTIVE LOW (TS486) or
HIGH (TS487)
OUTPUT POWE R: 102mW @5V, 38mW
@3.3V in to 16 with 0.1% THD+N max (1kHz)
LOW CURRE NT CONSUMP TI ON: 2.5mA m ax
High Signal-to-Nois e ratio: 103dB(A) at 5V
High Crosstalk immunity: 83dB (F=1kHz)
PSRR: 58 dB (F=1kHz), inputs grounded
ON/OFF click reduction circuitry
Unit y -G a in S table
SHORT CIRCUIT LIMITATION
Available in SO8, MiniSO8 & DFN 3x3mm
DESCRIPTION
The TS486/7 is a dual audio power amplifier capa-
ble of driving, in single-ended mode, either a 16 or
a 32 s tereo heads et.
Capable of d escen ding to lo w voltages, it d elivers
up t o 90mW per channel (into 16 loads) of c on-
tinuous average power with 0.3% THD+N in the
audio bandwitdth from a 5V power supply.
An externally-controlled standby mode reduces
the supply current to 10nA (typ.). The unity gain
stable TS486/7 can be configured by external
gain-setting resistors or used in a fixed gain ver-
sion.
APPLICATIONS
Headphone Am plifier
Mobile phone, PDA, compu ter motherboard
High end TV, portable audio player
ORDER CODE
MiniSO & DFN only available in Tape & Reel with T suffix,
SO is available in Tube (D) and in Tape & Reel (DT)
PIN CONNECTIO NS (top view)
Part
Number Temperature
Range: I Package Gain Marking
DSQ
TS486
-40, +85°C
external TS486I
TS487 external TS487I
TS486 ••
external K86A
TS486-1 tba tba x1/0dB K86B
TS486-2 tba tba x2/6dB K86C
TS486-4 tba tba x4/12dB K86D
TS487 ••
external K87A
TS487-1 tba tba x1/0dB K87B
TS487-2 tba tba x2/6dB K87C
TS487-4 tba tba x4/12dB K87D
TS487IDT: SO8, TS487IST, TS487-1IST,
TS487-2IST, TS487-4IST: MiniSO8
TS486-IQT, TS486-1IQT, TS486-2IQT, TS486-4IQT:
DFN8
1
2
3
45
8
7
6
BYPASS
GND SHUTDOWN
Vcc
OUT (2)
OUT (1)
VIN (2)
VIN (1)
1
2
3
45
8
7
6
BYPASS
GND SHUTDOWN
Vcc
OUT (2)
OUT (1)
VIN (2)
VIN (1)
1
2
3
45
8
7
6
BYPASS
GND SHUTDOWN
Vcc
OUT (2)
OUT (1)
VIN (2)
VIN (1)
1
2
3
45
8
7
6
BYPASS
GND SHUTDOWN
Vcc
OUT (2)
OUT (1)
VIN (2)
VIN (1)
TS487-IQT ,
TS487-1IQT, TS487-2IQT, TS487-4IQT: DFN8
TS486IDT: SO8, TS486IST, TS486-1IST,
TS486-2IST, TS486-4IST: MiniSO8
OUT (1)
4
3
2
1
BYPASS
GND
VCC
OUT (2)
VIN (2)
SHUTDOWN
VIN (1)
5
6
7
8
OUT (1)
4
3
2
1
BYPASS
GND
VCC
OUT (2)
VIN (2)
SHUTDOWN
VIN (1)
5
6
7
8
OUT (1)
4
3
2
1
BYPASS
GND
VCC
OUT (2)
VIN (2)
SHUTDOWN
VIN (1)
5
6
7
8
OUT (1)
4
3
2
1
BYPASS
GND
VCC
OUT (2)
VIN (2)
SHUTDOWN
VIN (1)
5
6
7
8
OUT (1)
4
3
2
1
BYPASS
GND
VCC
OUT (2)
VIN (2)
SHUTDOWN
VIN (1)
5
6
7
8
TS486
TS487
100mW STEREO HEADPHONE AMPLIFIER WITH STANDBY
MODE
June 2003
TS486-TS487
2/31
ABSOLUTE MAXIMUM RATINGS
OPERATING CONDITIONS
Symbol Parameter Value Unit
VCC Supply voltage 1) 6V
V
i
Input Voltage -0.3v to VCC +0.3v V
Tstg Storage Temperature -65 to +150 °C
TjMaximum Junction Temperature 150 °C
Rthja Thermal Resistance Junction to Ambient
SO8
MiniSO8
DFN8
175
215
70
°C/W
Pd Power Dissipation 2)
SO8
MiniSO8
DFN8
0.71
0.58
1.79
W
ESD Human Body Model (pin to pin): TS486, TS4873) 1.5 kV
ESD Machine Model - 220pF - 240pF (pin to pin) 100 V
Latch-up Latch-up Immunity (All pins) 200 mA
Lead Te mpera ture (solde ring, 10sec ) 250 °C
Output Short-Circuit to Vcc or GND continous 4)
1. All voltage values are measured with respect to the ground pin.
2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C.
3. TS487 stands 1.5 KV on all pi ns except standby pin whi ch stan ds 1KV.
4. Attentio n mu st be pai d to cont i nous power dissipati on (VDD x 300mA). Exposure of the IC to a short circuit for an extended time period is
dramatically re ducing product lif e expect ancy.
Symbol Parameter Value Unit
VCC Supply Voltage 2 to 5.5 V
RLLoad Resistor 16
Toper Operating Free Air Temperature Range -40 to + 85 °C
CL
Load Capacitor
RL = 16 to 100
RL > 100400
100 pF
VSTB Standby Voltage Input
TS486 ACTIVE / TS487 in STANDBY
TS486 in STANDBY / TS487 ACTIVE 1.5 VSTB VCC
GND VSTB 0.4 1) V
RTHJA
Thermal Resistance Junction to Ambient
SO8
MiniSO8
DFN82)
150
190
41
°C/W
1. The minimum current consumption (ISTANDBY) is guaranteed at GND (TS486) or VCC ( TS 487) for the whole temperature range.
2 . When m ounted on a 4-layer PCB.
TS486-TS487
3/31
FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERIS TI CS
VCC fro m +5V to +2V, GND = 0V, Tamb = 25° C (unless otherwise specified)
APPLICATION COMPONENTS INFORMATION
TYPICAL APPLICATION SCHEMATICS
Symbol Parameter Min. Typ. Max. Unit
RIN 1,2 Input Resistance 1)
1. See figure 30 to establish the value of Cin vs. -3dB cut off frequency.
20 k
GGain value for Gain TS486/TS487-1
Gain value for Gain TS486/TS487-2
Gain value for Gain TS486/TS487-4
0dB
6dB
12dB dB
Components Functional Description
RIN1,2 Inverting input resistor which sets the closed loop gain in conjunction with RFEED. This resistor also
forms a high pass filter with CIN (fc = 1 / (2 x Pi x RIN x CIN)) . Not needed in fixed gain versions.
CIN1,2 Input coupling capacitor which blocks the DC voltage at the amplifiers input terminal.
RFEED1,2 Feedback resistor which sets the closed loop gain in conjunction with RIN.
AV= Closed Loop Gain= -RFEED/RIN. Not needed in fixed gain versions.
CSSupply Bypass capacitor which provides power supply filtering.
CBBypass capacitor which provides half supply filtering.
COUT1,2 Output coupling capacitor which blocks the DC voltage at the load input terminal.
This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x COUT)).
TS486-TS487
4/31
ELECTRICAL CHARACTERISTICS
VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
ICC Supply Current
No input signal, no load 1.8 2.5 mA
ISTANDBY
Standby Curre nt
No input signal, VSTANDBY=GND for TS486, RL=32
No input signal, VSTANDBY=Vcc for TS487, RL=3210 1000 nA
VIO Input Offset Voltage (VICM = VCC/2) 1mV
I
IB Input Bias Current (VICM = VCC/2) 1)
1. Only fo r external gain versio n.
90 200 nA
PO
Output Power
THD+N = 0.1% Max, F = 1kHz, RL = 32
THD+N = 1% Max, F = 1kHz, RL = 32
THD+N = 0.1% Max, F = 1kHz, RL = 16
THD+N = 1% Max, F = 1kHz, RL = 16
60
95
64
65
102
108
mW
THD + N Total Harmonic Distortion + Noise (Av=-1)
RL = 32Ω, Pout = 60mW, 20Hz F 20kHz
RL = 16Ω, Pout = 90mW, 20Hz F 20kHz 0.3
0.3 %
PSRR Power Supply Rejection Ratio, inputs grounded 2)
(Av=-1), RL>=16, CB=1µF, F = 1kHz, Vripple = 200mVpp
2. Guaranteed by design and evaluation.
53 58 dB
IOMax Output Current
THD +N 1%, RL = 16 connected between out and VCC/2 106 115 mA
VO
Output Swing
VOL : RL = 32
VOH : RL = 32
VOL : RL = 16
VOH : RL = 16
4.45
4.2
0.45
4.52
0.6
4.35
0.5
0.7 V
SNR Signal-to-Noise Ratio (A weighted, Av=-1) 2)
(RL = 32Ω, THD +N < 0.4%, 20Hz F 20kHz) 80 103 dB
Crosstalk
Channel Separation, RL = 32Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
Channel Separation, RL = 16Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
83
79
80
72
dB
CIInput Capacitance 1 pF
GBP Gain Bandwidth Product (RL = 32Ω) 1.1 MHz
SR Slew Rate, Unity Gain Inverting (RL = 16Ω) 0.4 V/µs
TS486-TS487
5/31
ELECTRICAL CHARACTERISTICS
VCC = +3.3V , G ND = 0V, T amb = 25°C (unless ot herwise specifi ed) 1)
1. All electrical values are guaranted with correlation measurements at 2V and 5V.
Symbol Parameter Min. Typ. Max. Unit
ICC Supply Current
No input signal, no load 1.8 2.5 mA
ISTANDBY
Standby Curre nt
No input signal, VSTANDBY=GND for TS486, RL=32
No input signal, VSTANDBY=Vcc for TS487, RL=3210 1000 nA
VIO Input Offset Voltage (VICM = VCC/2) 1mV
I
IB Input Bias Current (VICM = VCC/2) 2)
2. Only for external gain version.
90 200 nA
PO
Output Power
THD+N = 0.1% Max, F = 1kHz, RL = 32
THD+N = 1% Max, F = 1kHz, RL = 32
THD+N = 0.1% Max, F = 1kHz, RL = 16
THD+N = 1% Max, F = 1kHz, RL = 16
23
36
26
28
38
42
mW
THD + N Total Harmonic Distortion + Noise (Av=-1)
RL = 32Ω, Pout = 16mW, 20Hz F 20kHz
RL = 16Ω, Pout = 35mW, 20Hz F 20kHz 0.3
0.3 %
PSRR Power Supply Rejection Ratio, inputs grounded 3)
(Av=-1), RL>=16, CB=1µF, F = 1kHz, Vripple = 200mVpp
3. Guara nt eed by design an d evalu ation.
53 58 dB
IOMax Output Current
THD +N 1%, RL = 16 connected between out and VCC/2 64 75 mA
VO
Output Swing
VOL : RL = 32
VOH : RL = 32
VOL : RL = 16
VOH : RL = 16
2.85
2.68
0.3
3
0.45
2.85
0.38
0.52 V
SNR Signal-to-Noise Ratio (A weighted, Av=-1) 3)
(RL = 32Ω, THD +N < 0.4%, 20Hz F 20kHz) 80 98 dB
Crosstalk
Channel Separation, RL = 32Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
Channel Separation, RL = 16Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
80
76
77
69
dB
CIInput Capacitance 1 pF
GBP Gain Bandwidth Product (RL = 32Ω) 1.1 MHz
SR Slew Rate, Unity Gain Inverting (RL = 16Ω) 0.4 V/µs
TS486-TS487
6/31
ELECTRICAL CHARACTERISTICS
VCC = +2.5V , G ND = 0V, T amb = 25°C (unless ot herwise specifi ed)1)
1. All electrical values are guaranted with correlation measurements at 2V and 5V.
Symbol Parameter Min. Typ. Max. Unit
ICC Supply Current
No input signal, no load 1.7 2.5 mA
ISTANDBY
Standby Curre nt
No input signal, VSTANDBY=GND for TS486, RL=32
No input signal, VSTANDBY=Vcc for TS487, RL=3210 1000 nA
VIO Input Offset Voltage (VICM = VCC/2) 1mV
I
IB Input Bias Current (VICM = VCC/2) 2)
2. Only for external gain version.
90 200 nA
PO
Output Power
THD+N = 0.1% Max, F = 1kHz, RL = 32
THD+N = 1% Max, F = 1kHz, RL = 32
THD+N = 0.1% Max, F = 1kHz, RL = 16
THD+N = 1% Max, F = 1kHz, RL = 16
12.5
17.5
13
14
21
22
mW
THD + N Total Harmonic Distortion + Noise (Av=-1)
RL = 32Ω, Pout = 10mW, 20Hz F 20kHz
RL = 16Ω, Pout = 16mW, 20Hz F 20kHz 0.3
0.3
%
PSRR Power Supply Rejection Ratio, inputs grounded 3)
(Av=-1), RL>=16, CB=1µF, F = 1kHz, Vripple = 200mVpp
3. Guara nt eed by design an d evalu ation.
53 58 dB
IOMax Output Current
THD +N 1%, RL = 16 connected between out and VCC/2 45 56 mA
VO
Output Swing
VOL : RL = 32
VOH : RL = 32
VOL : RL = 16
VOH : RL = 16
2.14
1.97
0.25
2.25
0.35
2.15
0.32
0.45 V
SNR Signal-to-Noise Ratio (A weighted, Av=-1) 3)
(RL = 32Ω, THD +N < 0.4%, 20Hz F 20kHz) 80 95 dB
Crosstalk
Channel Separation, RL = 32Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
Channel Separation, RL = 16Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
80
76
77
69
dB
CIInput Capacitance 1 pF
GBP Gain Bandwidth Product (RL = 32Ω) 1.1 MHz
SR Slew Rate, Unity Gain Inverting (RL = 16Ω) 0.4 V/µs
TS486-TS487
7/31
ELECTRICAL CHARACTERISTICS
VCC = +2V, GND = 0V, Tamb = 25°C (unless ot herwise specified)
Symbol Parameter Min. Typ. Max. Unit
ICC Supply Current
No input signal, no load 1.7 2.5 mA
ISTANDBY
Standby Curre nt
No input signal, VSTANDBY=GND for TS486, RL=32
No input signal, VSTANDBY=Vcc for TS487, RL=3210 1000 nA
VIO Input Offset Voltage (VICM = VCC/2) 1mV
I
IB Input Bias Current (VICM = VCC/2) 1)
1. Only fo r external gain versio n.
90 200 nA
PO
Output Power
THD+N = 0.1% Max, F = 1kHz, RL = 32
THD+N = 1% Max, F = 1kHz, RL = 32
THD+N = 0.3% Max, F = 1kHz, RL = 16
THD+N = 1% Max, F = 1kHz, RL = 16
7
9.5
8
9
12
13
mW
THD + N Total Harmonic Distortion + Noise (Av=-1)
RL = 32Ω, Pout = 6.5mW, 20Hz F 20kHz
RL = 16Ω, Pout = 8mW, 20Hz F 20kHz 0.3
0.3
%
PSRR Power Supply Rejection Ratio, inputs grounded 2)
(Av=-1), RL>=16, CB=1µF, F = 1kHz, Vripple = 200mVpp
2. Guaranteed by design and evaluation.
52 57 dB
IOMax Output Current
THD +N 1%, RL = 16 connected between out and VCC/2 33 41 mA
VO
Output Swing
VOL : RL = 32
VOH : RL = 32
VOL : RL = 16
VOH : RL = 16
1.67
1.53
0.24
1.73
0.33
1.63
0.29
0.41 V
SNR Signal-to-Noise Ratio (A weighted, Av=-1) 2)
(RL = 32Ω, THD +N < 0.4%, 20Hz F 20kHz) 80 93 dB
Crosstalk
Channel Separation, RL = 32Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
Channel Separation, RL = 16Ω, Av=-1
F = 1kHz
F = 20Hz to 20kHz
80
76
77
69
dB
CIInput Capacitance 1 pF
GBP Gain Bandwidth Product (RL = 32Ω) 1.1 MHz
SR Slew Rate, Unity Gain Inverting (RL = 16Ω) 0.4 V/µs
TS486-TS487
8/31
Index of Graphs
Description Figure Page
Common Curves
Open Loop Gain and Phase vs Freque ncy 1 to 10 9 to 10
Current Consumption vs Power Supply Voltage 11 10
Current Consumption vs Standby Voltage 12 to 17 10 to 11
Output Power vs Power Supply Voltage 18 to19 11 to 12
Output Power vs Load Resistor 20 to 23 12
Power Dissipation vs Output Power 24 to 27 12 to 13
Power Derating vs Ambiant Temperature 28 13
Output Voltage Swing vs Supply Voltage 29 13
Low Frequency Cut Off vs Input Capacitor for fixed gain versions 30 13
Curves With 0dB Gain Setting (Av=-1)
THD + N vs Output Power 31 to 39 14 to 15
THD + N vs Frequency 40 to 42 15
Crosstalk vs Frequency 43 to 48 16
Signal to Noise Ratio vs Power Supply Voltage 49 to 50 17
PSRR vs Frequency 51 to 56 17 to 18
Curves With 6dB Gain Setting (Av=-2)
THD + N vs Output Power 57 to 65 19 to 20
THD + N vs Frequency 66 to 68 20
Crosstalk vs Frequency 69 to 72 21
Signal to Noise Ratio vs Power Supply Voltage 73 to 74 21
PSRR vs Frequency 75 to 79 22
Curves With 12dB Gain Setting (Av=-4)
THD + N vs Output Power 80 to 88 22 to 24
THD + N vs Frequency 89 to 91 24
Crosstalk vs Frequency 92 to 95 24
Signal to Noise Ratio vs Power Supply Voltage 96 to 97 25
PSRR vs Frequen cy 98 to 102 26
TS486-TS487
9/31
Fig. 1: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 3: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 5: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 2: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 4: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 6: Ope n Loop Ga in and Phase vs
Frequency
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V
ZL = 16
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V
ZL = 16
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V
ZL = 32
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V
ZL = 16
+400pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V
ZL = 16
+400pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V
ZL = 32
+400pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
TS486-TS487
10/31
Fig. 7: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 9: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 11: Current Consumption vs Power Supply
Voltage
Fig. 8: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 10: Open Lo op Gain and Phas e vs
Freq uen cy
Fig. 12: Current Consumption vs Standby
Vol tage
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V
ZL = 32
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V
RL = 600
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
012345
0.0
0.5
1.0
1.5
2.0
Ta=85
°C
Ta=25°C
No load
Ta=-40°C
Current Consumption (mA)
Power Supply Voltage (V)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V
ZL = 32
+400pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V
RL = 600
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
012345
0.0
0.5
1.0
1.5
2.0
Ta=85
°C
Ta=25°C
TS486
Vcc = 5V
No load
Ta=-40°C
Current Consumption (mA)
Standby Voltage (V)
TS486-TS487
11/31
Fig. 13: Current Consump tion vs Standb y
Vo ltage
Fig. 15: Current Consump tion vs Standb y
Vo ltage
Fig. 17: Current Consump tion vs Standb y
Vol tage
Fig. 14: Current Consumption vs Standby
Vol tage
Fig. 16: Current Consumption vs Standby
Vol tage
Fig . 18: Ou tput P owe r vs Po wer S up pl y
Vo ltage
0123
0.0
0.5
1.0
1.5
2.0
Ta=85
°
C
Ta=25
°
C
TS486
Vcc = 3.3V
No load
Ta=-40
°
C
Current Consumption (mA)
Standby Voltage (V)
012345
0.0
0.5
1.0
1.5
2.0
2.5 Ta=85°CTa=25°C
TS487
Vcc = 5V
No load
Ta=-40°C
Current Consumption (mA)
Standby Voltage (V)
012
0.0
0.5
1.0
1.5
2.0 Ta=85°C
Ta=25°C
TS487
Vcc = 2V
No load
Ta=-40°C
Current Consumption (mA)
Standby Voltage (V)
012
0.0
0.5
1.0
1.5
2.0
Ta=85°C
Ta=25°C
TS486
Vcc = 2V
No load
Ta=-40°C
Current Consumption (mA)
Standby Voltage (V)
0123
0.0
0.5
1.0
1.5
2.0
Ta=85
°
C
Ta=25
°
C
TS487
Vcc = 3.3V
No load
Ta=-40
°
C
Current Consumption (mA)
Standby Voltage (V)
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0
25
50
75
100
125
150
175
200
THD+N=10%
THD+N=0.1%
RL = 16
F = 1kHz
BW < 125kHz
Tamb = 25
°
CTHD+N=1%
Output power (mW)
Vcc (V)
TS486-TS487
12/31
Fig . 19: Ou tput P ower vs Power S up pl y
Vo ltage
Fig. 21: Output P owe r vs Load Resistor
Fig. 23: Output P owe r vs Load Resistor
Fig. 20: Output P owe r vs Load Resistor
Fig. 22: Output P owe r vs Load Resistor
Fig. 24: Power Dissipation vs Output Power
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0
25
50
75
100
THD+N=10%
THD+N=0.1%
RL = 32
F = 1kHz
BW < 125kHz
Tamb = 25
°
CTHD+N=1%
Output power (mW)
Vcc (V)
8 16243240485664
0
10
20
30
40
50
60
70
THD+N=10%
THD+N=0.1%
Vcc = 3.3V
F = 1kHz
BW < 125kHz
Tamb = 25
°
C
THD+N=1%
Output power (mW)
Load Resistance ( )
8 16243240485664
0
5
10
15
20
25
THD+N=10%
THD+N=0.1%
Vcc = 2V
F = 1kHz
BW < 125kHz
Tamb = 25
°
C
THD+N=1%
Output power (mW)
Load Resistance ( )
8 16243240485664
0
20
40
60
80
100
120
140
160
180
200
THD+N=10%
THD+N=0.1%
Vcc = 5V
F = 1kHz
BW < 125kHz
Tamb = 25
°
C
THD+N=1%
Output power (mW)
Load Resistance ( )
8 16243240485664
0
5
10
15
20
25
30
35
40
45
50
THD+N=10%
THD+N=0.1%
Vcc = 2.5V
F = 1kHz
BW < 125kHz
Tamb = 25
°
C
THD+N=1%
Output power (mW)
Load Resistance ( )
0 20406080100
0
20
40
60
80 Vcc=5V
F=1kHz
THD+N<1%
RL=32
RL=16
Power Dissipation (mW)
Output Power (mW)
TS486-TS487
13/31
Fig. 25: Power Dissipation vs Output Power
Fig. 27: Power Dissipation vs Output Power
Fig. 29: Output Voltage Swing vs Power Supply
Vol tage
Fig. 26: Power Dissipation vs Output Power
Fig. 28: Powe r Derating vs Ambiant
Temperature
Fig. 30: Low Freque ncy Cut Off vs Input
Capacitor for fixed gain versions.
0 10203040
0
10
20
30
40 Vcc=3.3V
F=1kHz
THD+N<1%
RL=16
RL=32
Power Dissipation (mW)
Output Power (mW)
024681012
0
5
10
15
RL=16
RL=32
Vcc=2V
F=1kHz
THD+N<1%
Power Dissipation (mW)
Output Power (mW)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
RL=32
RL=16
Tamb=25
°
C
VOH & VOL (V)
Power Supply Voltage (V)
0 5 10 15 20
0
10
20
Vcc=2.5V
F=1kHz
THD+N<1%
RL=16
RL=32
Power Dissipation (mW)
Output Power (mW)
TS486-TS487
14/31
Fig. 31: THD + N vs Output Power
Fig. 33: THD + N vs Output Power
Fig. 35: THD + N vs Output Power
Fig. 32: THD + N vs Output Power
Fig. 34: THD + N vs Output Power
Fig. 36: THD + N vs Output Power
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20Hz
Av = -1
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600
, F = 20Hz
Av = -1, Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Voltage (Vrms)
1 10 100
1E-3
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 1kHz
Av = -1
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20Hz
Av = -1
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 1kHz
Av = -1
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600
, F = 1kHz
Av = -1, Cb = 1
µ
F
BW < 125kHz, Tamb = 25
°
C
THD + N (%)
Output Voltage (Vrms)
TS486-TS487
15/31
Fig. 37: THD + N vs Output Power
Fig. 39: THD + N vs Output Power
Fig. 41: THD + N vs Frequen cy
Fig. 38: THD + N vs Output Power
Fig. 40: THD + N vs Frequen cy
Fig. 42: THD + N vs Frequen cy
1 10 100
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20kHz
Av = -1
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600
, F = 20kHz
Av = -1, Cb = 1
µ
F
BW < 125kHz, Tamb = 25
°
C
THD + N (%)
Output Voltage (Vrms)
100 1000 10000
0.01
0.1
Vcc=2V, Po=6mW
Vcc=5V, Po=55mW
RL=32
Av=-1
Cb = 1
µ
F
Bw < 125kHz
Tamb=25
°
C
20k20
THD + N (%)
Frequency (Hz)
1 10 100
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20kHz
Av = -1
Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
Output Power (mW)
100 1000 10000
0.01
0.1
Vcc=2V, Po=7.5mW
Vcc=5V, Po=85mW
RL=16
Av=-1
Cb = 1
µ
F
Bw < 125kHz
Tamb = 25
°
C
20k20
THD + N (%)
Frequency (Hz)
100 1000 10000
1E-3
0.01
0.1
Vcc=5V, Vo=1.3Vrms
Vcc=2V, Vo=0.5Vrms
RL=600
Av=-1
Cb = 1µF
Bw < 125kHz
Tamb = 25°C
20k20
THD + N (%)
Frequency (Hz)
TS486-TS487
16/31
Fig. 43: Crosstalk vs Frequency
Fig. 45: Crosstalk vs Frequency
Fig. 47: Crosstalk vs Frequency
Fig. 44: Crosstalk vs Frequency
Fig. 46: Crosstalk vs Frequency
Fig. 48: Crosstalk vs Frequency
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=16
Vcc=5V
Pout=85mW
Av=-1
Cb = 1
µ
F
Bw < 125kHz
Tamb=25
°
C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=32
Vcc=5V
Pout=55mW
Av=-1
Cb = 1
µ
F
Bw < 125kHz
Tamb=25
°
C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
Cb = 4.7
µ
F
Cb = 1
µ
F
RL=16
Vcc=5V
Pout=85mW
Av=-1
ChB to ChA
Bw < 125kHz
Tamb=25
°
C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80 ChB to ChA
ChA to ChB
RL=16
Vcc=2V
Pout=7.5mW
Av=-1
Cb = 1
µ
F
Bw < 125kHz
Tamb=25
°
C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=32
Vcc=2V
Pout=6mW
Av=-1
Cb = 1
µ
F
Bw < 125kHz
Tamb=25
°
C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
Cb = 4.7
µ
F
Cb = 1
µ
F
RL=32
Vcc=5V
Pout=55mW
Av=-1
ChB to ChA
Bw < 125kHz
Tamb=25
°
C
20k20
Crosstalk (dB)
Frequency (Hz)
TS486-TS487
17/31
Fig. 49: Signal to Noise Ratio vs Power Supply
Voltage with Unweighted Filter (20Hz to 20kHz)
Fig. 51: PSRR vs Power Supp ly Voltage
Fig. 53: PSRR vs Input Capacitor
Fig. 50: Signal to Noise Ratio vs Power Supply
Vol tage with Weighted Filter Type A
Fig. 52: PSRR vs Bypass Capac itor
Fig. 54: PSRR vs Output Capaci tor
2.0 2.5 3.0 3.5 4.0 4.5 5.0
90
92
94
96
98
100
102
104 Av = -1
Cb = 1
µ
F
THD+N < 0.4%
Tamb = 25
°
C
RL=32
RL=16
RL=600
Signal to Noise Rati o (dB)
Power Supply Voltage (V)
100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp
Av = -1
Input = grounded
Cb = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Cin = 100nF
Cin = 1µF, 220nF
Vripple = 200mVpp
Av = -1, Vcc = 5V
Input = grounded
Cb = 1µF, Rin = 20k
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
90
92
94
96
98
100
102
104 Av = -1
Cb = 1
µ
F
THD+N < 0.4%
Tamb = 25
°
C
RL=32
RL=16
RL=600
Signal to Noise Rati o (dB)
Power Supply Voltage (V)
100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
0
Cb = 4.7µFCb = 2.2µF
Cb = 1µF
Vripple = 200mVpp
Av = -1
Input = grounded
Vcc = 5V
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
0
Cout = 220µF
Cout = 470µF
Vripple = 200mVpp
Av = -1, Vcc = 5V
Input = grounded
Cb = 1µF, RL = 16
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
TS486-TS487
18/31
Fig. 55: PSRR vs Output Capaci tor Fig. 56: PSRR vs Power Supp ly Voltage
100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
0
Cout = 100µF
Cout = 470µF
Vripple = 200mVpp
Av = -1, Vcc = 5V
Input = grounded
Cb = 1µF, RL = 32
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp
Av = -1
Input = floati ng
Cb = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
TS486-TS487
19/31
Fig. 57: THD + N vs Output Power
Fig. 59: THD + N vs Output Power
Fig. 61: THD + N vs Output Power
Fig. 58: THD + N vs Output Power
Fig. 60: THD + N vs Output Power
Fig. 62: THD + N vs Output Power
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20Hz
Av = -2
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600
, F = 20Hz
Av = -2, Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Voltage (Vrms)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 1kHz
Av = -2
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20Hz
Av = -2
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 1kHz
Av = -2
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600
, F = 1kHz
Av = -2, Cb = 1
µ
F
BW < 125kHz, Tamb = 25
°
C
THD + N (%)
Output Voltage (Vrms)
TS486-TS487
20/31
Fig. 63: THD + N vs Output Power
Fig. 65: THD + N vs Output Power
Fig. 67: THD + N vs Frequen cy
Fig. 64: THD + N vs Output Power
Fig. 66: THD + N vs Frequen cy
Fig. 68: THD + N vs Frequen cy
1 10 100
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20kHz
Av = -2
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600
, F = 20kHz
Av = -2, Cb = 1
µ
F
BW < 125kHz, Tamb = 25
°
C
THD + N (%)
Output Voltage (Vrms)
100 1000 10000
0.01
0.1
Vcc=2V, Po=6mW
Vcc=5V, Po=55mW
RL=32
Av=-2
Cb = 1
µ
F
Bw < 125kHz
Tamb=25
°
C
20k20
THD + N (%)
Frequency (Hz)
1 10 100
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20kHz
Av = -2
Cb = 1µF
BW < 125kHz
Tamb = 25°C
THD + N (%)
Output Power (mW)
100 1000 10000
0.01
0.1
Vcc=2V, Po=7.5mW
Vcc=5V, Po=85mW
RL=16
Av=-2
Cb = 1
µ
F
Bw < 125kHz
Tamb = 25
°
C
20k20
THD + N (%)
Frequency (Hz)
100 1000 10000
1E-3
0.01
0.1
Vcc=5V, Vo=1.3Vrms
Vcc=2V, Vo=0.5Vrms
RL=600
Av=-2
Cb = 1
µ
F
Bw < 125kHz
Tamb = 25
°
C
20k20
THD + N (%)
Frequency (Hz)
TS486-TS487
21/31
Fig. 69: Crosstalk vs Frequency
Fig. 71: Crosstalk vs Frequency
Fig. 73: Signal to Noise Ratio vs Power Supply
Voltage with Unweighted Filter (20Hz to 20kHz)
Fig. 70: Crosstalk vs Frequency
Fig. 72: Crosstalk vs Frequency
Fig. 74: Signal to Noise Ratio vs Power Supply
Vol tage with Weighted Filter Type A
100 1000 10000
0
20
40
60
80 ChB to ChA
ChA to ChB RL=16
Vcc=5V
Pout=85mW
Av=-2
Cb = 1
µ
F
Bw < 125kHz
Tamb=25
°
C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=32
Vcc=5V
Pout=55mW
Av=-2
Cb = 1
µ
F
Bw < 125kHz
Tamb=25
°
C
20k20
Crosstalk (dB)
Frequency (Hz)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
82
84
86
88
90
92
94
96
98
100 Av = -2
Cb = 1
µ
F
THD+N < 0.4%
Tamb = 25
°
C
RL=32
RL=16
RL=600
Signal to Noise Rati o (dB)
Power Supply Voltage (V)
100 1000 10000
0
20
40
60
80 ChB to ChA
ChA to ChB
RL=16
Vcc=2V
Pout=7.5mW
Av=-2
Cb = 1
µ
F
Bw < 125kHz
Tamb=25
°
C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=32
Vcc=2V
Pout=6mW
Av=-2
Cb = 1µF
Bw < 125kHz
Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
82
84
86
88
90
92
94
96
98
100
102
104 Av = -2
Cb = 1
µ
F
THD+N < 0.4%
Tamb = 25
°
C
RL=32
RL=16
RL=600
Signal to Noise Rati o (dB)
Power Supply Voltage (V)
TS486-TS487
22/31
Fig. 75: PSRR vs Power Supp ly Voltage
Fig. 77: PSRR vs Input Capacitor
Fig. 79: PSRR vs Output Capaci tor
Fig. 76: PSRR vs Bypass Capac itor
Fig. 78: PSRR vs Output Capaci tor
Fig. 80: THD + N vs Output Power
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp
Av = -2
Input = grounded
Cb = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Cin = 100nF
Cin = 1µF, 220nF
Vripple = 200mVpp
Av = -2, Vcc = 5V
Input = grounded
Cb = 1µF, Rin = 20k
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Cout = 100µF
Cout = 470µF
Vripple = 200mVpp
Av = -2, Vcc = 5V
Input = grounded
Cb = 1µF, RL = 32
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Cb = 4.7µFCb = 2.2µF
Cb = 1µF
Vripple = 200mVpp
Av = -2
Input = grounded
Vcc = 5V
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Cout = 220µF
Cout = 470µF
Vripple = 200mVpp
Av = -2, Vcc = 5V
Input = grounded
Cb = 1µF, RL = 16
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20Hz
Av = -4
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
TS486-TS487
23/31
Fig. 81: THD + N vs Output Power
Fig. 83: THD + N vs Output Power
Fig. 85: THD + N vs Output Power
Fig. 82: THD + N vs Output Power
Fig. 84: THD + N vs Output Power
Fig. 86: THD + N vs Output Power
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20Hz
Av = -4
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 1kHz
Av = -4
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600
, F = 1kHz
Av = -4, Cb = 1
µ
F
BW < 125kHz, Tamb = 25
°
C
THD + N (%)
Output Voltage (Vrms)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600
, F = 20Hz
Av = -4, Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Voltage (Vrms)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 1kHz
Av = -4
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20kHz
Av = -4
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
TS486-TS487
24/31
Fig. 87: THD + N vs Output Power
Fig. 89: THD + N vs Frequen cy
Fig. 91: THD + N vs Frequen cy
Fig. 88: THD + N vs Output Power
Fig. 90: THD + N vs Frequen cy
Fig. 92: Crosstalk vs Frequency
1 10 100
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20kHz
Av = -4
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
100 1000 10000
0.1
Vcc=2V, Po=7.5mW
Vcc=5V, Po=85mW
RL=16
Av=-4
Cb = 1
µ
F
Bw < 125kHz
Tamb = 25
°
C
20k20
THD + N (%)
Frequency (Hz)
100 1000 10000
1E-3
0.01
0.1
Vcc=5V, Vo=1.3Vrms
Vcc=2V, Vo=0.5Vrms
RL=600
Av=-4
Cb = 1
µ
F
Bw < 125kHz
Tamb = 25
°
C
20k20
THD + N (%)
Frequency (Hz)
0.01 0.1 1
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 600
, F = 20kHz
Av = -4, Cb = 1
µ
F
BW < 125kHz, Tamb = 25
°
C
THD + N (%)
Output Voltage (Vrms)
100 1000 10000
0.01
0.1
Vcc=2V, Po=6mW
Vcc=5V, Po=55mW
RL=32
Av=-4
Cb = 1µF
Bw < 125kHz
Tamb=25°C
20k20
THD + N (%)
Frequency (Hz)
100 1000 10000
0
20
40
60
80 ChB to ChA
ChA to ChB
RL=16
Vcc=5V
Pout=85mW
Av=-4
Cb = 1µF
Bw < 125kHz
Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
TS486-TS487
25/31
Fig. 93: Crosstalk vs Frequency
Fig. 95: Crosstalk vs Frequency
Fig. 97: Signal to Noise Ratio vs Power Supply
Vol tage with Weighted Filter Type A
Fig. 94: Crosstalk vs Frequency
Fig. 96: Signal to Noise Ratio vs Power Supply
Voltage with Unweighted Filter (20Hz to 20kHz)
Fig. 98: PSRR vs Power Supp ly Voltage
100 1000 10000
0
20
40
60
80 ChB to ChA
ChA to ChB
RL=16
Vcc=2V
Pout=7.5mW
Av=-4
Cb = 1µF
Bw < 125kHz
Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=32
Vcc=2V
Pout=6mW
Av=-4
Cb = 1µF
Bw < 125kHz
Tamb=25°C
20k20
Crosstalk (dB)
Frequency (Hz)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
80
82
84
86
88
90
92
94
96
98
100 Av = -4
Cb = 1
µ
F
THD+N < 0.4%
Tamb = 25
°
C
RL=32
RL=16
RL=600
Signal to Noise Rati o (dB)
Power Supply Voltage (V)
100 1000 10000
0
20
40
60
80
ChB to ChA
ChA to ChB
RL=32
Vcc=5V
Pout=55mW
Av=-4
Cb = 1
µ
F
Bw < 125kHz
Tamb=25
°
C
20k20
Crosstalk (dB)
Frequency (Hz)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
80
82
84
86
88
90
92
94
96
98
100 Av = -4
Cb = 1
µ
F
THD+N < 0.4%
Tamb = 25
°
C
RL=32
RL=16
RL=600
Signal to Noise Rati o (dB)
Power Supply Voltage (V)
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp
Av = -4
Input = grounded
Cb = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
TS486-TS487
26/31
Fig. 99: PSRR vs Input Capacitor
Fig. 101: PSRR vs Output Capacitor
Fig. 100: PSRR vs Bypass Capa citor
Fig. 102: PSRR vs Outp ut Capacitor
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Cin = 100nF
Cin = 1µF, 220nF
Vripple = 200mVpp
Av = -4, Vcc = 5V
Input = grounded
Cb = 1µF, Rin = 20k
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Cout = 220µF
Cout = 470µF
Vripple = 200mVpp
Av = -4, Vcc = 5V
Input = grounded
Cb = 1µF, RL = 16
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Cb = 4.7µFCb = 2.2µF
Cb = 1µF
Vripple = 200mVpp
Av = -4
Input = grounded
Vcc = 5V
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Cout = 100µF
Cout = 470µF
Vripple = 200mVpp
Av = -4, Vcc = 5V
Input = grounded
Cb = 1µF, RL = 32
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
TS486-TS487
27/31
APPLICATION NOTE:
TS486/ 487 GE NERAL DES CRIPTION
TS486/487 is a family of dual audi o amplifiers able
to drive 16 or 32 headsets. Working in the 2V to
5.5V supply voltage range, they deliver 100mW at
5V and 12mW at 2V in a 16load. An internal
output current limitation, offers protection against
short-circuits at the output over a limited time
period.
Fixed gain versions of the TS486 and TS487
including the feedback resistor and the input
resistors are also proposed to reduce the number
of ex tern al par ts.
The TS486 and TS487 exhibit a low quiescent
current of typically 1.8mA, allowing usage in
portable applications.
The standby mode is selected using the
SHUTDOWN input. For TS486 (respectively
TS487), the device is in sleep mode when PIN 5 is
connecte d at GND (resp. VCC).
GAIN SETTING
The gain of each inverter amplifier of the TS486
and TS487 is set by the resistors RIN and RFEED.
GainLINEAR = -(RFEED/RIN)
GaindB = 20 Log(RFEED/RIN)
Fixed gain versions TS486-n and TS487-n
including RIN and RFEED are proposed to reduce
external parts.
LOW FREQUENCY ROLL-OFF WITH INPUT
CAPACITORS
The low roll-off frequency of the headphone
amplifiers depends on the input capacitors CIN1
and CIN2 and the input resistors RIN1 and RIN2.
The CIN capacitor i n series with the i nput resistor
RIN of the amplifier is equivalent to a first order
high pass filter.
Assum ing that Fmin is the lowest frequency to be
amplified (with a 3dB attenuation), the minimum
value of CIN is :
CIN > 1 / (2*π*Fmin*RIN )
The following curve gives directly the low
frequency roll-off versus the input capacitor CIN
TS486-TS487
28/31
and for various values of th e input resistor RIN .
The input resistance of the fixed gain version is
typicall y 20k.
The f ollowing curve show s the limits of the roll off
frequency depending on the min. and max. values
of Rin:
LOW FREQUENCY ROLL OFF WITH OUTPUT
CAPACITORS
The DC vol tage on the outputs of the TS486/487
is blocked by the output capacitors COUT1 and
COUT2 . Each output capacitor COUT in s er ie s w ith
the resistance of the load RL is equivalent to a first
order high pass filter.
Assum ing that Fmin is the low est frequency to be
amplified (with a 3dB attenuation), the minimum
value of COUT is:
COUT > 1 / (2*π*Fmin*RL)
The following curve gives directly the low roll-off
frequen cy versus the output capacitor COUT in µF
and for the two t ypical 16 and 32 impedances :
DECOUP LING CAPA CITOR CB
The internal bias voltage at Vcc/2 is decoupled
with the external capacitor CB.
The TS486 and TS487 have a specified Power
Supply Rejection Ratio parameter with CB = 1µF.
A higher value of CB improves the PSRR, for
exa mple, a 4.7µF im proves the P S RR by 15dB at
200Hz (please, refer to fig. 76 "PSRR vs Bypass
Capacitor").
POP PRECAUTIONS
Generally headphones are connected using a
connector as a jack. To prevent a pop in the
headphon es when plugged i n the jack, a resistor
should be connected in parallel with each
headphone output. This allows the capacitors
Cout to be charged even when no headphone is
plugged.
A resistor o f 1 kis high enough to be a negligible
load, and low enough to charge the capacitors
Cout in less than one second.
0.01 0.1 1 10
1
10
100
1000
Rin = 100k
Rin = 20k
and
fixed gain versions
Rin = 10k
Rin = 1k
Low roll−off frequency (Hz)
Cin (µF)
10 100 1000 10000
1
10
100
1000
RL = 16
RL = 32
Low roll-off frequency (Hz)
C
OUT
( F)
TS486-TS487
29/31
PACKAGE MECHANICAL DATA
DIM. mm. inch
MIN. TYP MAX. MIN. TYP. MAX.
A 1.35 1.75 0.053 0.069
A1 0.10 0.25 0.04 0.010
A2 1.10 1.65 0.043 0.065
B 0.33 0.51 0.013 0.020
C 0.19 0.25 0.007 0.010
D 4.80 5.00 0.189 0.197
E 3.80 4.00 0.150 0.157
e 1.27 0.050
H 5.80 6.20 0.228 0.244
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
k ˚ (max.)
ddd 0.1 0.04
SO-8 MECHANICAL DATA
0016023/C
8
TS486-TS487
30/31
PACKAGE MECHANICAL DATA
TS486-TS487
31/31
PACKAGE MECHANICAL DATA
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other ri ghts of third parties which may result from
its use. No li cense is granted by implication or otherwise under any patent or pa te nt rights of ST Microelec tronics. Specificati ons
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems withou t express written approv al of STMicroelec tronics.
The ST logo is a registered trademark of STMicroelectronic s
© 2003 STMicroelectronics - All Rights Reserved
STM icro el ectroni cs GROUP O F COM PANIES
Australi a - B razil - China - Finland - F rance - Germany - Hong Kong - Indi a - Italy - Japan - Malaysi a - M alta - Mo rocco
Singapo re - Spai n - Sweden - Switz erland - Uni ted Kin gdom
http://www.st.com