To all our customers Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp. The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices. Renesas Technology Corp. Customer Support Dept. April 1, 2003 MITSUBISHI SEMICONDUCTOR TRIAC BCR12PM-14 MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE OUTLINE DRAWING BCR12PM-14 Dimensions in mm 10.5 MAX 2.8 17 8.5 5.0 1.2 5.2 TYPE NAME 3.2 0.2 3.6 1.3 MAX 13.5 MIN 0.8 2.54 2.54 IT (RMS) ...................................................................... 12A VDRM ....................................................................... 700V IFGT !, IRGT!, IRGT # ............................................ 30mA Viso ........................................................................ 2000V UL Recognized: Yellow Card No.E80276(N) File No. E80271 0.5 4.5 VOLTAGE CLASS 2.6 Measurement point of case temperature T1 TERMINAL T2 TERMINAL GATE TERMINAL TO-220F APPLICATION Switching mode power supply, light dimmer, electric flasher unit, hair driver, control of household equipment such as TV sets * stereo * refrigerator * washing machine * infrared kotatsu * carpet, solenoid drivers, small motor control, copying machine, electric tool MAXIMUM RATINGS Symbol Voltage class Parameter Unit 14 VDRM Repetitive peak off-state voltage 1 700 V VDSM Non-repetitive peak off-state voltage 1 840 V Symbol Parameter Conditions Ratings Unit IT (RMS) RMS on-state current Commercial frequency, sine full wave 360 conduction, Tc=74C ITSM Surge on-state current 60Hz sinewave 1 full cycle, peak value, non-repetitive I2t I2t Value corresponding to 1 cycle of half wave 60Hz, surge on-state current PGM Peak gate power dissipation PG (AV) Average gate power dissipation VGM Peak gate voltage 10 V IGM Peak gate current 2 Tj Junction temperature Tstg Storage temperature -- Viso for fusing Weight Typical value Isolation voltage Ta=25C, AC 1 minute, T1 * T2 * G terminal to case 12 A 120 A 60 A2s 5 W 0.5 W A -40 ~ +125 C -40 ~ +125 C 2.0 g 2000 V 1. Gate open. Mar. 2002 MITSUBISHI SEMICONDUCTOR TRIAC BCR12PM-14 MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE ELECTRICAL CHARACTERISTICS Limits Symbol Parameter Test conditions Min. Typ. Max. Unit IDRM Repetitive peak off-state current Tj=125C, VDRM applied -- -- 2.0 mA VTM On-state voltage Tc=25C, ITM=20A, Instantaneous measurement -- -- 1.6 V -- -- 1.5 V -- -- 1.5 V ! VFGT ! VRGT ! Gate trigger voltage 2 @ Tj=25C, VD=6V, RL=6, RG=330 VRGT # # -- -- 1.5 V IFGT ! ! -- -- 30 mA -- -- 30 mA -- -- 30 mA IRGT ! Gate trigger current 2 @ Tj=25C, VD=6V, RL=6, RG=330 # IRGT # VGD Gate non-trigger voltage Tj=125C, VD=1/2VDRM 0.2 -- -- V Rth (j-c) Thermal resistance Junction to case 3 -- -- 3.5 C/ W (dv/dt)c Critical-rate of rise of off-state commutating voltage Tj=125C 10 -- -- V/s 4 2. Measurement using the gate trigger characteristics measurement circuit. 3. The contact thermal resistance Rth (c-f) in case of greasing is 0.5C/W. 4. Test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below. Commutating voltage and current waveforms (inductive load) Test conditions SUPPLY VOLTAGE 1. Junction temperature Tj=125C MAIN CURRENT 2. Rate of decay of on-state commutating current (di/dt)c=-6.0A/ms TIME (di/dt)c TIME MAIN VOLTAGE 3. Peak off-state voltage VD=400V TIME (dv/dt)c VD PERFORMANCE CURVES 101 7 5 3 2 RATED SURGE ON-STATE CURRENT 200 Tj = 125C Tj = 25C 100 7 5 3 2 10-1 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 ON-STATE VOLTAGE (V) SURGE ON-STATE CURRENT (A) ON-STATE CURRENT (A) MAXIMUM ON-STATE CHARACTERISTICS 102 7 5 3 2 180 160 140 120 100 80 60 40 20 0 100 2 3 4 5 7 101 2 3 4 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) Mar. 2002 MITSUBISHI SEMICONDUCTOR TRIAC BCR12PM-14 MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE 100 (%) 102 7 5 3 2 VGM = 10V 101 7 5 3 2 PGM = 5W PG(AV) = 0.5W IGM = 2A VGT = 1.5V 100 7 5 3 2 VGD = 0.2V IRGT I IFGT I, IRGT III 10-1 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 GATE TRIGGER CURRENT (Tj = tC) GATE TRIGGER CURRENT (Tj = 25C) GATE VOLTAGE (V) GATE CHARACTERISTICS 103 7 5 4 3 2 TYPICAL EXAMPLE IRGT I, IRGT III 102 7 5 4 3 2 IFGT I 101 -60 -40 -20 0 20 40 60 80 100 120 140 GATE CURRENT (mA) JUNCTION TEMPERATURE (C) MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE) 103 7 5 4 3 2 TYPICAL EXAMPLE 102 7 5 4 3 2 101 -60 -40 -20 0 20 40 60 80 100 120 140 TRANSIENT THERMAL IMPEDANCE (C/W) GATE TRIGGER VOLTAGE (Tj = tC) GATE TRIGGER VOLTAGE (Tj = 25C) 100 (%) GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE 102 2 3 5 7 103 2 3 5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 10-1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) JUNCTION TEMPERATURE (C) 103 7 5 3 2 NO FINS 102 7 5 3 2 101 7 5 3 2 100 7 5 3 2 10-1 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105 CONDUCTION TIME (CYCLES AT 60Hz) MAXIMUM ON-STATE POWER DISSIPATION ON-STATE POWER DISSIPATION (W) TRANSIENT THERMAL IMPEDANCE (C/W) MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO AMBIENT) 16 14 12 360 CONDUCTION 10 RESISTIVE, INDUCTIVE 8 LOADS 6 4 2 0 0 2 4 6 8 10 12 14 16 RMS ON-STATE CURRENT (A) Mar. 2002 MITSUBISHI SEMICONDUCTOR TRIAC BCR12PM-14 MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE CASE TEMPERATURE (C) 160 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 140 120 100 80 60 360 40 CONDUCTION RESISTIVE, 20 INDUCTIVE LOADS 0 0 2 4 6 8 10 12 14 AMBIENT TEMPERATURE (C) ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 16 ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 ALL FINS ARE BLACK PAINTED ALUMINUM AND GREASED 140 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 120 120 120 t2.3 100 100 100 t2.3 80 60 60 t2.3 60 NO FINS RESISTIVE, 40 INDUCTIVE LOADS 20 NATURAL CONVECTION 0 0 2 4 6 40 20 HOLDING CURRENT (Tj = tC) HOLDING CURRENT (Tj = 25C) 100 (%) 0 103 7 5 4 3 2 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 12 105 7 TYPICAL EXAMPLE 5 3 2 104 7 5 3 2 103 7 5 3 2 102 -60 -40 -20 0 20 40 60 80 100 120 140 RMS ON-STATE CURRENT (A) JUNCTION TEMPERATURE (C) HOLDING CURRENT VS. JUNCTION TEMPERATURE LACHING CURRENT VS. JUNCTION TEMPERATURE TYPICAL EXAMPLE 102 7 5 4 3 2 101 -60 -40 -20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (C) 16 14 REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 100 (%) REPETITIVE PEAK OFF-STATE CURRENT (Tj = tC) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25C) 60 LACHING CURRENT (mA) AMBIENT TEMPERATURE (C) 80 10 RMS ON-STATE CURRENT (A) RMS ON-STATE CURRENT (A) ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 NATURAL CONVECTION NO FINS 140 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 120 RESISTIVE, INDUCTIVE LOADS 100 8 103 7 5 3 2 T2+, G- TYPICAL EXAMPLE DISTRIBUTION 102 7 5 3 2 101 7 5 3 2 T2+, G+ TYPICAL T2- , G- EXAMPLE 100 -40 0 40 80 120 160 JUNCTION TEMPERATURE (C) Mar. 2002 MITSUBISHI SEMICONDUCTOR TRIAC BCR12PM-14 MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE 100 (%) BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE 100 (%) 160 TYPICAL EXAMPLE 160 TYPICAL EXAMPLE Tj = 125C 120 100 80 60 40 20 0 -60 -40 -20 0 20 40 60 80 100120 140 BREAKOVER VOLTAGE (dv/dt = xV/s ) BREAKOVER VOLTAGE (dv/dt = 1V/s ) 140 120 #2 100 III QUADRANT 80 60 #1 40 20 I QUADRANT 0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 RATE OF RISE OF OFF-STATE VOLTAGE (V/s) COMMUTATION CHARACTERISTICS GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH VOLTAGE WAVEFORM 3 TYPICAL 2 EXAMPLE 102 Tj = 125C 7 IT = 4A 5 = 500s 3 VD = 200V 2 f = 3Hz t (dv/dt)C VD CURRENT WAVEFORM (di/dt)C IT t 101 I QUADRANT 7 5 3 MINIMUM 2 CHARACIII QUADRANT 100 TERISTICS 7 VALUE 5 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A/ms) 100 (%) JUNCTION TEMPERATURE (C) GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC) CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/s) BREAKOVER VOLTAGE (Tj = tC) BREAKOVER VOLTAGE (Tj = 25C) 140 BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 103 7 5 4 3 2 TYPICAL EXAMPLE IFGT I IRGT I IRGT III 102 7 5 4 3 2 101 0 10 2 3 4 5 7 101 2 3 4 5 7 102 GATE CURRENT PULSE WIDTH (s) GATE TRIGGER CHARACTERISTICS TEST CIRCUITS 6 6 A 6V A 6V RG V TEST PROCEDURE 1 V RG TEST PROCEDURE 2 6 A 6V V RG TEST PROCEDURE 3 Mar. 2002