7929237 O028b25 O mm 1-33-12 = sc -THOMSON AY, SGS-THOMSON x G S-THOMSON BUT11/FI BUT11A/AFI JGE D HIGH VOLTAGE SWITCH DESCRIPTION The BUT11/A and BUT11FI/AFI are silicon miltiepi- taxial mesa NPN transistors respectively in Jedec TO-220 plastic package and ISOWATT220 fully iso- lated package, particularly intended for switching application. ABSOLUTE MAXIMUM RATINGS TO-220 ISOWATT220 INTERNAL SCHEMATIC DIAGRAM c NPN S- onUy Symbol Parameter Value Unit BUT11/FI BUT11A/AFI Voces Collector-emitter Voltage (Vgc = 0) 850 7000 v VcEo Collector-emitter Voltage (ls = 0) 400 450 Vv VeBo Emitter-base Voltage (Ic = 0) 9 Vv le Collector Current 5 A lou Collector Peak Current 10 A IB Base Current A lest Base Peak Current A TO-220 ISOWATT-220 Prot Total Power Dissipation at T, < 25C 83 35 WwW Tstg Storage Temperature 65 to 150 C Tj Max. Operating Junction Temperature 150 C December 1988 1/5 379BUTI1/FI-BUTI1A/AFl =m 7929237 O026beb 2 THERMAL DATA SG S-THOMSON _ JOE D TO-220 ISOWATT220 Rh J-case | Thermal Resistance Junction-case Max 15... J 3.57 C/W T~33-13 yO ELECTRICAL CHARACTERISTICS (Tease = 25C unless otherwise specified) Symbol Parameter Test Conditions Min. | Typ. | Max. | Unit ; Ices Collector Cutoff Current Voce = rated Vces , 1 mA : (Veg = 0) at Tease = 125C 2 mA leno _| Emitter Cutoff Ic = 0 Ver = OV io | mA . Vceo | Collector-emitter Sustaining | Ip (om = 0 Io = 100mA Voltage for BUT11/FI 400 Vv for BUT11A/AFI 450 Vv Veesat) | Collector-emitter Saturation lo = 3A lp = 0.64 15 Vv Voltage for BUT11/Fl Io = 2.5A Ip = 0.5A 15 Vv for BUT11A/AFI Vagisaty | Base-emitter Saturation Io = 3A Ip = 0.6A 13) V Voltage for BUT11/Fl - Io = 2.5A Ip = 0.5A 1.3 Vv : for BUT11A/AFI ton Turn on Time Io = 2.5A Voc = 250V 1 is ts Storage Time - Ip = Ing = 0.5A 4 us ; t Fall Time 0.8 | us Safe Operating Area. Reverse Biased Safe Operating Area. IclAD ict) 08 ISOWATT220 6 BUTIA/TIAFI ; BUTII/FI 107? oe 7 Sgt TO Ege? Voth 0 200 400 = 600-800 = 1000 VrefVI 2/6 {57 SGS-THOMSON 7 imonosectRen-ss 380MM 7929237 O0eSbe? 4 oo BUT11/FI-BUT11A/AFI 7 T-33-13 } DC Current Gain. Collector-emitter Saturation Voltage. aan hee Vee(sat) (v) 1 z e 6 8 2 a 6 4 16! 1 Te (A) o 0.5 1 15 1g{A) Collector-emitter Saturation Voltage. Base-emitter Saturation Voltage. 0 16! a 1e(A) 9 10" 1 1g (A) Switching Times Inductive Load Switching Times Percentage Variation vs. Tease. (test circuit fig. 2). t {ps ANTISATURATION 9 1 2 3 4 5 6 IctA 25 50 75 400 Tease(*C) SG S-THOMSON a _ 30E D. = 3/5 381BUT11/FI-BUT11A/AFI ba ---~-- Me 7929237 O0ePb6bes a 1233-13 Saturated Switching Characteristics Switching Time Percentage Variation vs. Tcase (test circuit fig. 1). Resistive Load. GS 741 t he (us) iD 180 160 140 120 100 10" 2 soe ey ; Atm 2s 50 78 100 Teasel*) . TEST CIRCUITS S G S-THOMSON SOE 3D Figure 1. Figure 2. -6 15mH 2.2% ~Voc O 16Y S-7019 I $-7020 4/5 . . oN 382BUT11/FI-BUT11A/AFI [San nT T-33-13 _W@@ 7929237 0028629 6 me ISOWATT220 PACKAGE CHARACTERISTICS AND APPLICATION ISOWATT220 is fully isolated to 2000V de. Its ther- mal impedance, given in the data sheet, is optimi- sed to give efficient thermal conduction together with excellent electrical isolation. The structure of the case ensures optimum dis- tances between the pins and heatsink. The ISO- WATT220 package eliminates the need for external ~ isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink capacitance. ISOWATT220 thermal performance is equivalent to that of the standard part, mounted with a 0.1mm mi- ca washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISO- WATT220 packages is determined by : Tj _ Te Po = Rth THERMAL IMPEDANCE OF ISOWATT220 PACKAGE Fig. 3 iliustrates the elements contributing to the thermal resistance of a transistor heatsink assem- bly, using ISOWATT220 package. The total thermal resistance Rinttty is the sum of each of these elements. The transient thermal impedance, Ztn for different 3 - for long power pulses of the order of 500ms or greater : Zth = Rtn-c + Rtnc-Hs + Rthys-amb It is often possible to discern these areas on tran- sient thermal impedance curves. pulse durations can be estimated as follows : Figure 3. 1 - for a short duration power pulse less than 1ms : Rinw-c Rthc-4s RthHs-amb Zth < Tthu-c 2 - for an intermediate power pulse of 5ms to 50ms : 2th = TihJ-c S G S-THOMSON 30E D Gy SGS-THOMSoN 5/8 Tf teccronscrscmes 383