1
MRF134MOTOROLA RF DEVICE DATA
The RF MOSFET Line
   
N–Channel Enhancement–Mode
. . . designed for wideband large–signal amplifier and oscillator applications up
to 400 MHz range.
Guaranteed 28 Volt, 150 MHz Performance
Output Power = 5.0 Watts
Minimum Gain = 11 dB
Efficiency — 55% (Typical)
Small–Signal and Large–Signal Characterization
Typical Performance at 400 MHz, 28 Vdc, 5.0 W
Output = 10.6 dB Gain
100% Tested For Load Mismatch At All Phase Angles
With 30:1 VSWR
Low Noise Figure — 2.0 dB (Typ) at 200 mA, 150 MHz
Excellent Thermal Stability, Ideally Suited For Class A
Operation
MAXIMUM RATINGS
Rating Symbol Value Unit
Drain–Source Voltage VDSS 65 Vdc
Drain–Gate Voltage
(RGS = 1.0 M)VDGR 65 Vdc
Gate–Source Voltage VGS ±40 Vdc
Drain Current — Continuous ID0.9 Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°CPD17.5
0.1 Watts
W/°C
Storage Temperature Range Tstg 65 to +150 °C
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance, Junction to Case RθJC 10 °C/W
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
Order this document
by MRF134/D

SEMICONDUCTOR TECHNICAL DATA
5.0 W, to 400 MHz
N–CHANNEL MOS
BROADBAND RF POWER
FET
CASE 211–07, STYLE 2
Motorola, Inc. 1994
D
G
S
REV 6
MRF134
2MOTOROLA RF DEVICE DATA
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS
Drain–Source Breakdown Voltage (VGS = 0, ID = 5.0 mA) V(BR)DSS 65 Vdc
Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) IDSS 1.0 mAdc
Gate–Source Leakage Current (VGS = 20 V, VDS = 0) IGSS 1.0 µAdc
ON CHARACTERISTICS
Gate Threshold Voltage (ID = 10 mA, VDS = 10 V) VGS(th) 1.0 3.5 6.0 Vdc
Forward Transconductance (VDS = 10 V, ID = 100 mA) gfs 80 110 mmhos
DYNAMIC CHARACTERISTICS
Input Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss 7.0 pF
Output Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz) Coss 9.7 pF
Reverse Transfer Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz) Crss 2.3 pF
FUNCTIONAL CHARACTERISTICS
Noise Figure
(VDS = 28 Vdc, ID = 200 mA, f = 150 MHz) NF 2.0 dB
Common Source Power Gain
(VDD = 28 Vdc, Pout = 5.0 W, IDQ = 50 mA)
f = 150 MHz (Fig. 1)
f = 400 MHz (Fig. 14)
Gps
11
14
10.6
dB
Drain Efficiency (Fig. 1)
(VDD = 28 Vdc, Pout = 5.0 W, f = 150 MHz, IDQ = 50 mA) η50 55 %
Electrical Ruggedness (Fig. 1)
(VDD = 28 Vdc, Pout = 5.0 W, f = 150 MHz, IDQ = 50 mA,
VSWR 30:1 at all Phase Angles)
ψNo Degradation in Output Power
Figure 1. 150 MHz Test Circuit
C1, C4 — Arco 406, 15115 pF
C2 — Arco 403, 3.035 pF
C3 — Arco 402, 1.520 pF
C5, C6, C7, C8, C12 — 0.1 µF Erie Redcap
C9 — 10 µF, 50 V
C10, C11 — 680 pF Feedthru
D1 — 1N5925A Motorola Zener
L1 — 3 Turns, 0.310 ID, #18 AWG Enamel, 0.2 Long
L2 — 3–1/2 Turns, 0.310 ID, #18 AWG Enamel, 0.25Long
L3 — 20 Turns, #20 AWG Enamel Wound on R5
L4 — Ferroxcube VK–200 — 19/4B
R1 — 68 , 1.0 W Thin Film
R2 — 10 k, 1/4 W
R3 — 10 Turns, 10 k Beckman Instruments 8108
R4 — 1.8 k, 1/2 W
R5 — 1.0 M, 2.0 W Carbon
Board — G10, 62 mils
R3* R4 L4
L3
L1
L2
D1 C8 C9 C10 C11 C12
C4
C3
C6C5
R2
C2
C1
RF INPUT
RF OUTPUT
+ VDD = 28 V
DUT
R5
+
C7
R1
*Bias Adjust
3
MRF134MOTOROLA RF DEVICE DATA
Figure 2. Output Power versus Input Power Figure 3. Output Power versus Input Power
Figure 4. Output Power versus Supply Voltage Figure 5. Output Power versus Supply Voltage
Figure 6. Output Power versus Supply Voltage Figure 7. Output Power versus Supply Voltage
10
8
6
4
2
010008006004002000 Pin, INPUT POWER (MILLWATTS)
P , OUTPUT POWER (WATTS)
out
5
4
3
2
1
010008006004002000 Pin, INPUT POWER (MILLWATTS)
P , OUTPUT POWER (WATTS)
out
8
6
4
2
01412 VDD, SUPPLY VOLTAGE (VOLTS)
P , OUTPUT POWER (WATTS)
out
16 18 20 22 24 26 28
8
6
4
2
01412 VDD, SUPPLY VOLTAGE (VOLTS)
P , OUTPUT POWER (WATTS)
out
16 18 20 22 24 26 28
8
6
4
2
01412 VDD, SUPPLY VOLTAGE (VOLTS)
P , OUTPUT POWER (WATTS)
out
16 18 20 22 24 26 28
8
6
4
2
01412 VDD, SUPPLY VOLTAGE (VOLTS)
P , OUTPUT POWER (WATTS)
out
16 18 20 22 24 26 28
150
400
225
150
225
400
Pin = 600 mW 300 mW
150 mW
IDQ = 50 mA
f = 100 MHz
Pin = 800 mW
400 mW
200 mW
IDQ = 50 mA
f = 150 MHz
Pin = 800 mW
400 mW
200 mW
IDQ = 50 mA
f = 225 MHz
Pin = 800 mW
IDQ = 50 mA
f = 400 MHz
400 mW
200 mW
f = 100 MHz
f = 100 MHz
VDD = 13.5 V
IDQ = 50 mA
VDD = 28 V
IDQ = 50 mA
MRF134
4MOTOROLA RF DEVICE DATA
Figure 8. Output Power versus Gate Voltage Figure 9. Drain Current versus Gate Voltage
(Transfer Characteristics)
Figure 10. Gate–Source Voltage versus
Case Temperature Figure 11. Maximum Available Gain
versus Frequency
Figure 12. Capacitance versus Voltage Figure 13. Maximum Rated Forward Biased
Safe Operating Area
6
5
4
3
2
02 0
VGS, GATE–SOURCE VOLTAGE (VOLTS)
P , OUTPUT POWER (WATTS)
out
1
1
1 2 3 4 5
ID, DRAIN CURRENT (MILLAMPS)
500
0VGS, GATE–SOURCE VOLTAGE (VOLTS)
1 2 3 4 5
400
300
200
100
6 7 8
1.02
25 TC, CASE TEMPERATURE (
°
C)
0 25 50 75 100 125 150
1
0.98
0.96
0.94
0.92
0.9
VGS, GATE-SOURCE VOLTAGE (NORMALIZED)
GMAX, MAXIMUM AVAILABLE GAIN (dB)
C, CAPACITANCE (pF)
ID, DRAIN CURRENT (AMPS)
50
f, FREQUENCY (MHz)
1 10 100 1000
40
30
20
10
0
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
0
28
24
20
16
12
8
4
04 8 12 16 20 24 28 VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
1
1
2
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.03
0.02
0.01 5 10 20 50 70 100
VDD = 28 V
IDQ = 50 mA
Pin = CONSTANT f = 400 MHz
150 MHz
TYPICAL DEVICE SHOWN,
VGS(th) = 3.5 V
VDS = 10 V
TYPICAL DEVICE SHOWN,
VGS(th) = 3.5 V
VDD = 28 V IDQ = 200 mA
100 mA
50 mA
GMAX = |S21|2
(1 – |S11|2) (1 – |S22|2)
VDS = 28 V
ID = 100 mAdc
VGS = 0 V
f = 1 MHz
Coss
Ciss
Crss
TC = 25
°
C
0
5
MRF134MOTOROLA RF DEVICE DATA
Figure 14. 400 MHz Test Circuit
C1, C6 — 270 pF, ATC 100 mils
C2, C3, C4, C5 — 0–20 pF Johanson
C7, C9, C10, C14 — 0.1 µF Erie Redcap, 50 V
C8 — 0.001 µF
C11 — 10 µF, 50 V
C12, C13 — 680 pF Feedthru
D1 — 1N5925A Motorola Zener
L1 — 6 Turns, 1/4 ID, #20 AWG Enamel
L2 — Ferroxcube VK–200 — 19/4B
R1 — 68 , 1.0 W Thin Film
R2 — 10 k, 1/4 W
R3 — 10 Turns, 10 k Beckman Instruments 8108
R4 — 1.8 k, 1/2 W
Z1 — 1.4 x 0.166 Microstrip
Z2 — 1.1 x 0.166 Microstrip
Z3 — 0.95 x 0.166 Microstrip
Z4 — 2.2 x 0.166 Microstrip
Z5 — 0.85 x 0.166Microstrip
Board — Glass Teflon, 62 mils
Figure 15. Large–Signal Series Equivalent
Input/Output Impedances, Zin, ZOL*
R3* R4
R1
C8
C9
C7
C1
C2 C3 DUT
Z1 Z2 Z3
D1
L1 C10
C11 L2
C12 C13 C14 VDD = 28 V
RF OUTPUT
RF INPUT C4 C5
C6Z4 Z5
*Bias Adjust
R2
+
400
225
150
f = 100 MHz
400
225
150
f = 100 MHz
ZOL*
Zin
{
Zo = 50
VDD = 28 V, IDQ = 50 mA, Pout = 5.0 W
{
68
Shunt Resistor Gate–to–Ground
ZOL* = Conjugate of the optimum load impedance
ZOL* = into which the device output operates at a
ZOL* = given output power, voltage and frequency.
f
MHz Zin
{
Ohms ZOL*
Ohms
100
150
225
400
21.2 – j25.4
14.6 – j22.1
9.1 – j18.8
6.4 – j10.8
20.1 – j46.7
19.2 – j38.2
17.5 – j33.5
16.9 – j26.9
MRF134
6MOTOROLA RF DEVICE DATA
f
(MHz)
S11 S21 S12 S22
f
(MHz)
|S11|±φ|S21|±φ|S12|±φ|S22|±φ
1.0 0.989 1.0 11.27 179 0.0014 89 0.954 1.0
2.0 0.989 2.0 11.27 179 0.0028 89 0.954 2.0
5.0 0.988 5.0 11.26 176 0.0069 86 0.954 4.0
10 0.985 10 11.20 173 0.014 83 0.951 9.0
20 0.977 20 10.99 166 0.027 76 0.938 18
30 0.965 30 10.66 159 0.039 69 0.918 26
40 0.950 39 10.25 153 0.051 63 0.895 34
50 0.931 47 9.777 147 0.060 57 0.867 42
60 0.912 53 9.359 142 0.069 53 0.846 49
70 0.892 58 8.960 138 0.077 49 0.828 56
80 0.874 62 8.583 135 0.085 46 0.815 62
90 0.855 66 8.190 131 0.091 43 0.801 68
100 0.833 70 7.808 128 0.096 40 0.785 74
110 0.827 73 7.661 125 0.101 38 0.784 77
120 0.821 76 7.515 122 0.107 36 0.784 82
130 0.814 79 7.368 119 0.113 34 0.784 85
140 0.808 82 7.222 116 0.119 32 0.783 88
150 0.802 86 7.075 114 0.125 31 0.783 90
160 0.788 89 6.810 112 0.127 30 0.780 92
170 0.774 92 6.540 110 0.128 28 0.774 94
180 0.763 94 6.220 108 0.130 26 0.762 98
190 0.751 97 5.903 106 0.132 24 0.760 100
200 0.740 100 5.784 104 0.134 23 0.758 103
225 0.719 104 5.334 100 0.136 20 0.757 107
250 0.704 108 4.904 97 0.139 19 0.758 110
275 0.687 113 4.551 92 0.141 16 0.757 114
300 0.673 117 4.219 89 0.141 14 0.750 117
325 0.668 120 3.978 86 0.142 12 0.757 120
350 0.669 123 3.737 83 0.142 10 0.766 121
375 0.662 125 3.519 80 0.143 9.0 0.768 123
400 0.654 127 3.325 77 0.142 8.0 0.772 124
425 0.650 129 3.170 75 0.140 7.0 0.772 125
450 0.638 131 3.048 72 0.141 6.0 0.783 125
475 0.614 132 2.898 71 0.136 6.0 0.786 126
500 0.641 133 2.833 68 0.136 5.0 0.795 127
525 0.638 135 2.709 66 0.135 5.0 0.801 127
550 0.633 137 2.574 64 0.133 4.0 0.802 128
575 0.628 138 2.481 62 0.131 5.0 0.805 128
600 0.625 140 2.408 60 0.129 5.0 0.814 128
The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. (continued)
The scattering parameters were measured on the MRF134 device alone with no external components.
Table 1. Common Source Scattering Parameters
VDS = 28 V, ID = 100 mA
7
MRF134MOTOROLA RF DEVICE DATA
f
(MHz)
S11 S21 S12 S22
f
(MHz)
|S11|±φ|S21|±φ|S12|±φ|S22|±φ
625 0.619 142 2.334 58 0.128 5.0 0.818 129
650 0.617 144 2.259 56 0.125 6.0 0.824 130
675 0.618 146 2.192 55 0.123 7.0 0.834 130
700 0.619 147 2.124 53 0.122 8.0 0.851 131
725 0.618 150 2.061 51 0.120 9.0 0.859 132
750 0.614 152 1.983 49 0.118 11 0.857 133
775 0.609 154 1.908 48 0.119 13 0.865 133
800 0.562 155 1.877 49 0.118 15 0.872 133
825 0.587 156 1.869 46 0.119 16 0.869 134
850 0.593 158 1.794 44 0.118 18 0.875 135
875 0.597 160 1.749 43 0.119 18 0.881 135
900 0.598 162 1.700 41 0.118 18 0.889 136
925 0.592 164 1.641 40 0.115 18 0.888 138
950 0.588 166 1.590 39 0.112 20 0.877 138
975 0.586 168 1.572 39 0.108 23 0.864 137
1000 0.590 171 1.551 37 0.107 28 0.863 137
The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. The scattering parameters were
measurd on the MRF134 device alone with no external components.
Table 1. Common Source Scattering Parameters (continued)
VDS = 28 V, ID = 100 mA
MRF134
8MOTOROLA RF DEVICE DATA
Figure 16. S11, Input Reflection Coefficient
versus Frequency
VDS = 28 V ID = 100 mA
Figure 17. S12, Reverse Transmission Coefficient
versus Frequency
VDS = 28 V ID = 100 mA
Figure 18. S21, Forward Transmission Coefficient
versus Frequency
VDS = 28 V ID = 100 mA
Figure 19. S22, Output Reflection Coefficient
versus Frequency
VDS = 28 V ID = 100 mA
10 25 50 100 150 250 500
+j50
+j100
+j150
+j250
+j500
j500
j250
j150
j100
j50
j25
j10
0
+j10
+j25
400
500
300 150 100 50
.20 .18 .16 .14 .12 .10 .08 .06 .04 .02
+90
°
+60
°
+30
°
0
°
30
°
60
°
90
°
–120
°
–150
°
180
°
+150
°
+120
°
500
300
200
150
100
50
+j50
+j100
+j150
+j250
+j500
j500
j250
j150
j100
j50
j25
j10
0
+j10
+j25
+90
°
+60
°
+30
°
0
°
30
°
60
°
90
°
–120
°
–150
°
180
°
+120
°
10 25 50 100 150 250 500
f = 50 MHz
+150
°
100 150 200 300
400
500
1000
S21
.10 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
S12
f = 1000 MHz
500 300 200 150 80
50
100
S22
200
f = 1000 MHz
f = 1000
MHz
9
MRF134MOTOROLA RF DEVICE DATA
DESIGN CONSIDERATIONS
The MRF134 is a RF power N–Channel enhancement
mode field–effect transistor (FET) designed especially for
VHF power amplifier and oscillator applications. Motorola RF
MOS FETs feature a vertical structure with a planar design,
thus avoiding the processing difficulties associated with
V–groove vertical power FETs.
Motorola Application Note AN–211A, FETs in Theory and
Practice, is suggested reading for those not familiar with the
construction and characteristics of FETs.
The major advantages of RF power FETs include high gain,
low noise, simple bias systems, relative immunity from
thermal runaway, and the ability to withstand severely
mismatched loads without suffering damage. Power output
can be varied over a wide range with a low power dc control
signal, thus facilitating manual gain control, ALC and modula-
tion.
DC BIAS
The MRF134 is an enhancement mode FET and, therefore,
does not conduct when drain voltage is applied. Drain current
flows when a positive voltage is applied to the gate. See Figure
9 for a typical plot of drain current versus gate voltage. RF
power FETs require forward bias for optimum performance.
The value of quiescent drain current (IDQ) is not critical for
many applications. The MRF134 was characterized at IDQ =
50 mA, which is the suggested minimum value of IDQ. For
special applications such as linear amplification, IDQ may
have to be selected to optimize the critical parameters.
The gate is a dc open circuit and draws no current.
Therefore, the gate bias circuit may generally be just a simple
resistive divider network. Some special applications may
require a more elaborate bias system.
GAIN CONTROL
Power output of the MRF134 may be controlled from its
rated value down to zero (negative gain) by varying the dc gate
voltage. This feature facilitates the design of manual gain
control, AGC/ALC and modulation systems. (See Figure 8.)
AMPLIFIER DESIGN
Impedance matching networks similar to those used with
bipolar VHF transistors are suitable for MRF134. See
Motorola Application Note AN721, Impedance Matching
Networks Applied to RF Power Transistors. The higher input
impedance of RF MOS FET s helps ease the task of broadband
network design. Both small signal scattering parameters and
large signal impedances are provided. While the s–parame-
ters will not produce an exact design solution for high power
operation, they do yield a good first approximation. This is an
additional advantage of RF MOS power FETs.
RF power FETs are triode devices and, therefore, not
unilateral. This, coupled with the very high gain of the
MRF134, yields a device capable of self oscillation. Stability
may be achieved by techniques such as drain loading, input
shunt resistive loading, or output to input feedback. The
MRF134 was characterized with a 68–ohm input shunt
loading resistor . T wo port parameter stability analysis with the
MRF134 s–parameters provides a useful–tool for selection of
loading or feedback circuitry to assure stable operation. See
Motorola Application Note AN215A for a discussion of two port
network theory and stability.
Input resistive loading is not feasible in low noise applica-
tions. The MRF134 noise figure data was generated in a circuit
with drain loading and a low loss input network.
MRF134
10 MOTOROLA RF DEVICE DATA
PACKAGE DIMENSIONS
CASE 211–07
ISSUE N
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
A
UM
M
Q
RB
1
4
32
D
K
E
SEATING
PLANE
C
J
H
S
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.960 0.990 24.39 25.14
B0.370 0.390 9.40 9.90
C0.229 0.281 5.82 7.13
D0.215 0.235 5.47 5.96
E0.085 0.105 2.16 2.66
H0.150 0.108 3.81 4.57
J0.004 0.006 0.11 0.15
K0.395 0.405 10.04 10.28
M40 50 40 50
Q0.113 0.130 2.88 3.30
R0.245 0.255 6.23 6.47
S0.790 0.810 20.07 20.57
U0.720 0.730 18.29 18.54
_ _ _ _
STYLE 2:
PIN 1. SOURCE
2. GATE
3. SOURCE
4. DRAIN
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability , including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “T ypicals” must be validated for each customer application by customers technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer .
Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center , No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
MRF134/D
*MRF134/D*