Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw1
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
30V, 1.2MHz, White LED Driver
Wide Input Voltage Range from 2.7V to 21V
High Current-Limit up to 3.5A
0.5V Reference Voltage with ±3%
System Accuracy
50m Integrated N-FET
Fixed 1.2MHz Switching Frequency
High Efficiency up to 95%
Open-LED Protection
Under-Voltage Lockout Protection
ALS Control Input Pin
Over-Temperature Protection
Low Shutdown Current: <1µA
3mmx3mm DFN-10 Package
Lead Free and Green Devices Available
(RoHS Compliant)
FeaturesGeneral Description
Applications
Display Backlighting
- Automotive
- LCD Monitors
- Notebook Displays
Portable Displays
Ordering and Marking Information
The APW7128 is the high power and high efficiency boost
converter with an integrated 30V FET ideal for LCD panel
backlighting applications. 30V output voltage allows for 8
high-power LEDs in series, and 3.5A inductor current limit
allows for more LED strings connected in parallel. The
low 0.5V feedback voltage offers higher efficiency in WLED
driver applications. The wide input range from 2.7V to
21V made APW7128 a perfect solution for various appli-
cations such as LCD monitor and portable devices. The
OVP pin monitors the output voltage to protect IC during
open load and FB pin short circuit operations. The
APW7128 provides the ALS pin to simplify the interface to
an ambient light sensor for automatic dimming. The
APW7128 is available in the thermally enhanced DFN-10
lead 3mmx3mm package.
Pin Configuration
8 BP
COMP 2
OVP 3
EN 4
FB 1
PGND 5 6 LX
9 GND
7 VIN
10 ALS
Metal
LX Pad
(Bottom)
APW7128
DFN3x3-10
(Top View)
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines Green to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
APW7128 Package Code
QA : DFN3x3-10
Operating Ambient Temperature Range
I : -40 to 85 oC
Handling Code
TR : Tape & Reel
Assembly Material
G : Halogen and Lead Free Device
Handling Code
Temperature Range
Package Code
APW7128 QA: APW
7128
XXXXX XXXXX - Date Code
Assembly Material
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw2
Absolute Maximum Ratings (Note 1)
Symbol Parameter Rating Unit
VIN VIN pin to GND -0.3 to 30 V
VLX LX pin to PGND -0.3 to 30 V
VOVP OVP pin to GND -0.3 to 30 V
VBP BP pin to GND -0.3 to 6 V
VEN EN pin to GND -0.3 to 30 V
VALS ALS pin to GND -0.3 to 6 V
PGND to GND -0.3 to 0.3 V
TJ Maximum Junction Temperature 150 °C
TSTG Storage Temperature Range -65 to 150 °C
TL Maximum Lead Soldering Temperature, 10 Seconds 260 °C
Symbol Parameter Range Unit
VIN Supply Voltage, (VIN=BP) 2.7 to 5.5 V
VIN VIN Supply Voltage, (BP is open) 3.7 to 21V V
VOUT Output Voltage up to 30 V
TJ Operating Ambient Temperature -40 to 85 °C
TA Operating Junction Temperature -40 to 125 °C
Electrical Characteristics
VIN=6V, TA = -40 to 85°C, unless otherwise specified. Typical values refer to TA =25°C.
APW7128
Symbol Parameter Test Conditions Min. Typ. Max. Unit
INPUT SUPPLY CURRENT AND UVLO
BP Under Voltage Lockout Threshold
VIN rising 2.4 2.5 2.6 V
UVLO Hysteresis - 100 - mV
EN=5V, switching - 9 15 mA
IVIN VIN Supply Current EN=0V - - 1 µA
Symbol Parameter Typical Value Unit
θJA Junction to Ambient Thermal Resistance in Free Air (Note 2) DFN3x3-10
80 °C/W
Thermal Characteristics
Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad
is soldered directly on the PCB.
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Recommended Operating Conditions
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw3
Electrical Characteristics (Cont.)
VIN=6V, TA = -40 to 85°C, unless otherwise specified. Typical values refer to TA =25°C.
APW7128
Symbol Parameter Test Conditions Min.
Typ. Max.
Unit
ERROR AMPLIFIER
gm Error Amplifier Transconductance - 350 - µA/V
ICOMP COMP Output Current sourcing and sinking, VCOMP=1.5V - 50 - µA
VFB FB Voltage 485 500 515 mV
Minimum FB Voltage VALS=0.3V 188 200 212 mV
IFB FB Input Bias Current - - 1 µA
FB Line Regulation VIN=2.7V to 21V - 0.02 0.04 %/V
INTERNAL POWER SWITCH
Power Switch Current-Limit 2.5 3.5 4.5 A
RDS(ON) Power Switch On Resistance - 50 100 m
LX Leakage Current VLX=30V - - 1 µA
FSW Switching Frequency 0.9 1.2 1.5 MHz
DMAX LX Maximum Duty Cycle 92 95 98 %
ALS
ALS Ratio VALS=1V, VALS/VFB 2.9 3 3.1 V/V
ALS Pin Leakage VALS=5V - - 1 µA
OUTPUT OVER-VOLTAGE PROTECTION
Over-Voltage Threshold 30 32 34 V
OVP Hysteresis 2 3 4 V
OVP Leakage Current - - 30 µA
CONTROL LOGIC PIN
EN High-Level Input Voltage 2.4 - - V
EN Low-Level Input Voltage - - 0.4 V
EN Leakage Current VEN=21V - - 1 µA
THERMAL SHUTDOWN
Thermal Shutdown Threshold - 150 - °C
Thermal Shutdown Hysteresis - 50 - °C
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw4
Typical Operating Characteristics
400
500
600
700
800
0 5 10 15 20 25
VIN Supply Voltage (V)
VIN Supply Current (µA)
no switching
VIN Supply Current vs. VIN
Supply Voltage
2.5
3.5
4.5
5.5
6.5
7.5
0 5 10 15 20 25
VIN Supply Voltage (V)
VIN Supply Current (mA)
8.5
9.0
switching
VIN Supply Current vs. VIN
Supply Voltage
60
65
70
75
80
85
90
95
100
00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
VIN=19V
VIN=12V
VIN=6V
Load Current (A)
Efficiency (%)
8LEDs in series
Efficiency vs. Load Current
0.490
0.495
0.500
0.505
0.510
0 5 10 15 20 25
VIN Supply Voltage (V)
FB Voltage (V)
FB Voltage vs. VIN Supply Voltage
2.0
1.0
1.2
1.4
1.6
1.8
VIN Supply Voltage (V)
EN Threshold Voltage (V)
2 6 10 14 18 22
EN High Threshold
EN Low Threshold
EN Threshold Voltage vs. VIN
Supply Voltage
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
ALS Input Voltage (V)
FB Voltage (V)
00.5 11.5 2
FB Voltage vs. ALS Input Voltage
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw5
Typical Operating Characteristics (Cont.)
0
20
40
60
80
100
Junction Temperature (oC)
Power Switch On Resistance (m)
-40 -20 0 20 40 60 80 100 120 140 160
Power Switching On Resistance
vs. Junction Temperature
FB Voltage (V)
0.490
0.492
0.494
0.496
0.498
0.500
0.502
0.504
0.506
0.508
0.510
-40 -20 0 20 40 60 80 100 120 140 160
Junction Temperature (oC)
FB Voltage vs. Junction Temperature
Switching Frequency (MHz)
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
-40 -20 0 20 40 60 80 100 120 140 160
Junction Temperature (oC)
Switching Frequency
vs. Junction Temperature
200
250
300
350
400
450
500
550
600
650
700
750
800
Junction Temperature (oC)
VIN Supply Current (µA)
-20 020 40 60 80 100 120 140 160
-40
no switching
VIN Supply Current
vs. Junction Temperature
1.20
1.25
1.30
1.35
1.40
VIN Supply Voltage (V)
Switching Frequency (MHz)
0 5 10 15 20 25
Switching Frequency vs. VIN
Supply Voltage
70
10
20
30
40
50
60
VIN Supply Voltage (V)
2 6 10 14 18 22
Power Switch On Resistance (m)
Power Switching On Resistance
vs. VIN Supply Voltage
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw6
Operating Waveforms
Refer to the typical application circuit. The test condition is VIN=5V, TA= 25oC unless otherwise specified.
CH1: VEN, 10V/div, DC
CH2: VOUT, 10V/div, DC
CH4: IIN, 500mA/div, DC
TIME: 1ms/div
VIN=12V, L=10µH, CCOMP=0.22µF
Start-up
1
4
2
VOUT
VEN
IIN
CH1: VEN, 10V/div, DC
CH2: VOUT, 10V/div, DC
CH4: IIN, 500mA/div, DC
TIME: 10ms/div
VIN=12V, L=10µH, CCOMP=0.22µF
Shutdown
1
4
2
VOUT
VEN
IIN
CH1: VCOMP, 0.5V/div, DC
CH2: VOUT, 10V/div, DC
CH4: IIN, 100mA/div, DC
TIME: 10ms/div
Output is open
VOUT
VCOMP
IIN
1
4
2
Over-Voltage Protection
1
4
2
3
CH1: VIN, 50mV/div, AC
CH2: VOUT, 200mV/div, AC
CH3: VLX, 20V/div, DC
TIME: 0.5µs/div
CH4: IL, 200mA/div, DC
VIN=12V, L=10µH, CCOMP=160mA
Switching Waveforms
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw7
Pin Description
PIN
NO. NAME FUNCTION
1 FB Regulator Feedback Pin. Connect a current sense resistor to GND to set the LED current.
2 COMP Error Amplifier Output. Connect a 0.22µF capacitor for compensation and soft-
start. When EN is
pulled low, an internal switch will discharge the COMP voltage to 0V.
3 OVP Output Over Voltage Monitor Pin. Tie to VOUT for OVP function.
4 EN
Enable Input Pin. Pull EN above 2.4V to enable the device; pull EN below 0.4V to disable the
device. The EN pin cannot be left floating.
5 PGND Power Ground. Source of the internal N-channel power MOSFET.
6 LX Internal Power MOSFET Drain.
7 VIN Supply Voltage Input.
8 BP Output of The Internal 5V Regulator. Connect a 1µ
F bypass capacitor to GND. Do not apply an
external load to BP.
9 GND Signal Ground.
10 ALS
Ambient Light Sensor Input. Allow the light sensor to control the FB voltage for LED dimming. If the
ALS function is not used, tie the ALS pin to BP pin.
Block Diagram
UVLO
Oscillator
Control Logic
LDO
Σ
0.9V
0.5V
VIN
BP
EN
FB
GND
LX
OVP
COMP
Thermal
Shutdown
ALS
PGND
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw8
Typical Application Circuit
Figure1. Analog Dimming with PWM Voltage
Figure2. Analog Dimming with External ALS Voltage
Designation Supplier Part Number Specification Wedsite
L1 GOTREND GTSD53 10µH, 1.33A www.gotrend.com.tw
C1 Murata GRM31CR61E106K X5R, 25V, 10µF www.murata.com
C2 Murata GRM155R61A105K X5R, 10V, 1µF www.murata.com
C3 Murata GRM155R60J224KE01 X5R, 6.3V. 0.22µF www.murata.com
C5 Murata GRM21BR71H105KA12 X7R, 50V, 1µF www.murata.com
D1 Zowie MSCD104 1.0A, 40V www.zowie.com.tw
VIN
ALS
EN
GND
BP
LX
OVP
FB
COMP
PGND
10
7
4
9
8
5
2
1
3
6
APW7128
Up to 8
LEDs per
String
OFF
ON
10µF1µF
1µF
10µH
R1
C1
C2
C3
C5
L1 D1
0.22µF
Up to 8 Strings
PWM
brightness
control
R2
R3
R4 C4
3.75
VADJ 24k120k
0.1µF
10k
3V
0V
ILED(max)=20mA
ILED(min)=0mA
6V to 21V
VIN
ALS
EN
GND
BP
LX
OVP
FB
COMP
PGND
10
7
4
9
8
5
2
1
3
6
APW7128
Up to 8
LEDs per
String
OFF
ON
10µF1µF
1µF
10µH
ALS
R1
R2
C1
C2
C3
C5
L1 D1
0.22µF
Up to 8 Strings
3.125
6V to 21VVDD
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw9
Function Description
If the FB pin is shortened to the ground or an LED fails
open circuit, output voltage in BOOST mode can increase
to potentially damaging voltages. An optional over-volt-
age protection circuit can be enabled by connection of
the OVP pin to the output voltage. The device will stop
switching if the output voltage exceeds OVP high thresh-
old and re-start when the output voltage falls below OVP
low threshold. During sustained OVP fault conditions,
VOUT will saw-tooth between the upper and lower thresh-
old voltages at a frequency determined by the magnitude
of current available to discharge the output capacitor. Note
that the OVP pin must be connected to output voltage for
OVP function.
Note that the maximum FB voltage is set to 0.5V, and
minimum FB voltage is set to 0.2V. If the divided ALS
voltage is over 0.5V or less 0.2V, the LED current is lim-
ited at:
The APW7128 provides an internal 5V LDO for the control
circuitry, and the output of the internal LDO is BP pin. In
normal operation, connect a 1µF or greater capacitor to
GND is recommended. The internal LDO cannot supply
any more current than is required to operate the APW7128.
Therefore, do not apply any external load to BP pin. In
applications, where the VIN is less than 5.5V, BP should
be tied to VIN through a 10 resistor.
Output Over-Voltage Protection
Ambient Light Sensor Interface
The APW7128 provides the ALS pin to simplify the inter-
face to an ambient light sensor. The ambient light sensor
detects the ambient light and yields a current which is
related to the illuminance. Connect a load resistor from
the current output of ambient light sensor to ground to
provide an output voltage to ALS pin. The ALS voltage will
be divided by an internal divider circuit, and the divided
ALS voltage will replace the internal reference voltage.
The LED current can be calculated by the following
equation:
where R1 is the resistor from FB to GND.
Enable/Disable
Pull the EN above 2V to enable the device and pull EN pin
below 0.4V to disable the device. In shutdown mode, the
internal control circuits are turned off, the quiescent cur-
rent is below 1µA.
Thermal Shutdown
When the junction temperature exceeds 150°C, the inter-
nal thermal sensor circuit will disable the device and al-
low the device to cool down. When the devices junction
temperature cools by 50°C, the internal thermal sense
circuit will enable the device, resulting in a pulsed output
during continuous thermal protection. Thermal protec-
tion is designed to protect the IC in the event of over tem-
perature conditions. For normal operation, the junction
temperature cannot exceed TJ=+125 °C.
Internal 5V LDO
1R
V
3
1
IALS
LED ×=
1RV5.0
I)MAX(LED =1RV2.0
I)MIN(LED =
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw10
Application Information
Connecting More LED Strings
The APW7128 can drive 8 LED strings in parallel and up
to 8 LEDs per string (VF<3.5V). Each string must have the
same number of LEDs. In the applications that have the
same total number of LEDs, more strings and less LEDs
in series are more efficiency than less strings and more
LEDs in series.
Brightness Control
Inductor Selection
A larger value of inductor will reduce the peak inductor
current, resulting in smaller input ripple current, higher
efficiency and reducing stress on the internal MOSFET.
However, the larger value of inductor has a large
dimension, lower saturation current, and higher series
resistance.
A good rule for determining the inductance is to allow the
peak-to-peak ripple current to be approximately 30% to
50% of the maximum input current. Calculate the required
inductance value by the equation:
The method for dimming the LEDs is to apply a PWM
voltage through an RC filter into the FB pin.
The RC filter is used to convert the PWM voltage into an
analog voltage. The values of the R and C depend upon
the frequency of the PWM voltage and the amount of al-
lowable ripple voltage on FB pin. The LED current is pro-
portional to the PWM duty cycle. 0 % duty delivers maxi-
mum LED current and 100% duty delivers minimum LED
current. The values of R1 and R2 are calculated by the
following equations:
(max)LEDFB(min)LED)low(ADJ(min)LEDFB(max)LED)high(ADJ
)high(ADJ(min)LED)low(ADJ(max)LEDFB
IVIVIVIV)V3RIV3RI(V
2R×××+× ×+××
=
(max)LED
low(ADJFB
I)V
3R2R
)
3R2R
1(V
1R×+×
=
where:
ILED(max) is the maximum LED current
ILED(min) is the minimum LED current
VADJ(high) is the maximum PWM voltage level
VADJ(low) is the minimum PWM voltage level
VFB is the FB pin Voltage
OUTSWL
ININOUT VFIV)VV(
L××
×
=
INLI)(I%50%30
×
=
η×
×
=IN
LOADOUT
VIV
IIN
Figure 3. Dimming with the PWM Voltage
It is necessary to choose an inductor that ensures the
inductor saturation current rating to exceed the peak
inductor current for the application.
To make sure that the peak inductor current is below the
current-limit 2.5A. Calculating the peak inductor current
by the following equation:
LINPEAK I5.0II ×+=
OUTSW
ININOUT
IN
LOADOUT
PEAK VFL2 V)VV(
VIV
I××× ×
+
η×
×
=
where
η is the efficiency
Schottky Diode Selection
A fast recovery time and low forward voltage Schottky di-
ode is necessary for optimum efficiency. Ensure that the
diodes average and peak current rating exceed the aver-
age output current and peak inductor current. In addition,
the diodes reverse voltage must exceed output voltage.
Capacitor Selection
An input capacitor is required to supply the ripple current
to the inductor and stabilize the input voltage. Larger
input capacitor values and lower ESR provide smaller
input voltage ripple and noise. The typical value for input
capacitor is 2.2µF to 10µF.
FB 1
APW7128
R1
PWM
Voltage
R2
R3
R4 C4
VADJ(high)
VADJ(low)
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw11
Application Information (Cont.)
Layout Consideration
The correct PCB layout is important for all switching
converters. If the layout is not carefully done, the regulator
could show stability problems as well as EMI problems.
Figure. 4 illustrates the layout guidelines; the bold lines
indicate these traces that must be short and wide. The
capacitors, the diode, and the inductor should be as close
to the IC as possible. Keep traces short, direct, and wide.
Keep the LX node away from FB and COMP pins. The
trace from diode to the LEDs may be longer. The ground
return of input capacitor and output capacitor should be
tied close to PGND. Use the different ground planes for
signal ground and power ground to minimize the effects
of ground noise. Connect these ground nodes at any place
close to one of the ground pins of the IC. The resistor
from FB to GND should be close to the FB pin as possible.
The metal plate of the bottom must be soldered to the
PCB and connected to LX node and the LX plane on the
backside through several thermal vias to improve heat
dissipation.
Capacitor Selection (Cont.)
The output capacitor with typical value 1µF to 10µF is re-
quired to maintain the output voltage. The COMP capaci-
tor with typical value 0.22µF to 1µF stabilizes the con-
verter and controls the soft-start.
To ensure the voltage rating of input and output capaci-
tors is greater than the maximum input and output voltage.
It is recommended using the ceramic capacitors with X5R,
X7R, or better dielectrics for stable operation over the
entire operating temperature range.
Figure 4. Layouy Guidelines
VIN
GN
D
BP
LX
FB
COMP
PGN
D
R1
C1
C2
C3
C4
L1 D1
VIN
BOTTOM
SIDE PAD
Short wires
Via connection to LX plane
Short and wide wires
Via connection to GND plane
Via connection to PGND plane
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw12
Package Information
DFN3x3-10
Note : 1. Followed from JEDEC MO-229 VEED-5.
S
Y
M
B
O
LMIN. MAX.
1.00
0.00
0.18 0.30
2.20 2.70
0.05
1.40
A
A1
b
D
D2
E
E2
e
L
MILLIMETERS
A3 0.20 REF
DFN3x3-10
0.30 0.50
1.75
0.008 REF
MIN. MAX.
INCHES
0.039
0.000
0.007 0.012
0.087 0.106
0.055
0.012 0.020
0.80
0.069
0.031
0.002
0.50 BSC 0.020 BSC
0.20 0.008
K
2.90 3.10 0.114 0.122
2.90 3.10 0.114 0.122
e
LK E2
Pin 1 Corner
D2 A1
A3
A
Pin 1
E
D
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw13
Carrier Tape & Reel Dimensions
Application
A H T1 C d D W E1 F
330±2.00
50 MIN.
12.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
12.0±0.30
1.75±0.10
5.5±0.05
P0 P1 P2 D0 D1 T A0 B0 K0
DFN3x3-10
4.0±0.10
8.0±0.10
2.0±0.05
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.40
3.30±0.20
3.30±0.20
1.30±0.20
(mm)
H
T1
A
d
A
E1
A
B
W
F
T
P0
OD0
BA0
P2
K0
B0
SECTION B-B
SECTION A-A
OD1
P1
Package Type Unit Quantity
DFN3x3-10 Tape & Reel 3000
Devices Per Unit
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw14
Taping Direction Information
Classification Profile
DFN3x3-10
USER DIRECTION OF FEED
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw15
Classification Reflow Profiles
Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
Average ramp-up rate
(Tsmax to TP) 3 °C/second max. 3°C/second max.
Liquidous temperature (TL)
Time at liquidous (tL) 183 °C
60-150 seconds 217 °C
60-150 seconds
Peak package body Temperature
(Tp)* See Classification Temp in table 1 See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc) 20** seconds 30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max. 6 °C/second max.
Time 25°C to peak temperature 6 minutes max. 8 minutes max.
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Table 2. Pb-free Process Classification Temperatures (Tc)
Package
Thickness Volume mm3
<350 Volume mm3
350-2000 Volume mm3
>2000
<1.6 mm 260 °C 260 °C 260 °C
1.6 mm 2.5 mm 260 °C 250 °C 245 °C
2.5 mm 250 °C 245 °C 245 °C
Table 1. SnPb Eutectic Process Classification Temperatures (Tc)
Package
Thickness Volume mm3
<350 Volume mm3
350
<2.5 mm 235 °C 220 °C
2.5 mm 220 °C 220 °C
Reliability Test Program
Test item Method Description
SOLDERABILITY JESD-22, B102 5 Sec, 245°C
HOLT JESD-22, A108 1000 Hrs, Bias @ Tj=125°C
PCT JESD-22, A102 168 Hrs, 100%RH, 2atm, 121°C
TCT JESD-22, A104 500 Cycles, -65°C~150°C
HBM MIL-STD-883-3015.7 VHBM2KV
MM JESD-22, A115 VMM200V
Latch-Up JESD 78 10ms, 1tr100mA
Copyright ANPEC Electronics Corp.
Rev. A.2 - Aug., 2010
APW7128
www.anpec.com.tw16
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838