This is information on a product in full production.
August 2016 DocID029660 Rev 1 1/31
STWBC-WA
Digital controller for wireless battery charger transmitters for
wearable and smartwatch applications
Datasheet - production data
Features
Digital controller for wireless battery charger
transmitters
Optimized for < 3 W ap plications
Smartwatches and healthcare
Internet of Things (IoT) battery-powered
smart devices
Remote controllers
Cost effective ha lf- b r idg e to po lo gy with
integrated drivers
Optional full-bridge configuration for 3 W
applications
VIN range: 3 V to 5.5 V
Supports USB VIN
Active presence detector
Parametric custo m izat ion via g r ap hic al
interface
2 firmware options:
Turnkey solution for quick design
APIs available for application customization
Peripherals available via APIs
ADC, with 10-bit precision
–UART
–I
2C master fast/slow speed rate
–GPIOs
Memory
Flash and EEPROM with read-while-write
(RWW) an d Error Correction Code (ECC)
Program memory: 32 Kbytes Flash; data
retention:15 years at 85 °C a fter 10 kcycles
at 25 °C
Data memor y: 1 Kbyte true data EEPROM;
data retention: 15 years at 85 °C after 100
kcycles at 85 °C
RAM: 6 Kbytes
Transmitte r re fe re nc e d e sig n:
Evaluation bo ar d orde r co de :
STEVAL-ISB038V1T
2-layer PCBs
Active object detection
Graphical user interface for application
monitoring
Interoperable with receiver:
STEVAL-ISB038V1R
Operating temperature
-40 °C up to 105 °C
Package
–VFQFPN32
:
VFQFPN32
Table 1. Ordering information
Order co de Type
STWBC-WA Controller (tube)
STWBC-WATR Controller (tape and reel)
STEVAL-ISB038V1T Transmitter evaluation board
STEVAL-ISB038V1R Receiver evaluation board
STEVAL-ISB038V1 T ransmitter and receiver
evaluation kit
www.st.com
Contents STWBC-WA
2/31 DocID029660 Rev 1
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 STWBC-WA system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Firmware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 STWBC-WA pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.4 Typical current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.5 Loading capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.6 Pin output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.1 VOUT external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.2 Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 13
4.3.3 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.4 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.5 Typical output level curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.6 Fast pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.7 Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.8 I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.9 10-bit SAR ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.1 Electrostatic discharge (ESD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.2 Static latch-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1 VFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DocID029660 Rev 1 3/31
STWBC-WA Contents
31
7 STWBC-WA development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Description STWBC-WA
4/31 DocID029660 Rev 1
1 Description
The STWBC-WA is STMicroelectronics’ wireless battery charger transmitter application
optimized for wearable usage.
Thanks to its 5 V native supply, the STWBC-WA device is ideal to operate with USB power
supplies.
Wireless battery charging systems replace the traditional power supply cable by means of
electromagnetic induction be tween a transmitting p ad or dongle (TX) and a battery-powered
unit (RX), such as a smartwatch or sports gear.
The power transmitter unit is responsible for controlling the transmitting coil and generating
the correct amount of power requested by th e receiver unit. The receiver unit continuously
provides the transmitter the correct power level requested, by modulating the transmitter
carrier through controlled resistive or capacitive insertion. Generating the correct amou nt of
power guarantees the hig hest level of end-to- end ef ficiency due to r educed energy waste. It
also helps to maintain a lower operational temp erature.
The digital wireless battery transmitter can adapt to the amount of ener gy transferred by the
coil by modulating the frequency, duty cycles or coil input voltage.
Figure 1. Wireless charging architecture
The STWBC-WA firmware sits o n the top of th e har dwar e to mon ito r and con trol the co rr ect
wireless charging operations.
DocID029660 Rev 1 5/31
STWBC-WA STWBC-WA system architect ure
31
2 STWBC-WA system architecture
Figure 2 illustrates the overall system blocks implemented in the STWBC-WA architecture.
The STWBC-WA is a flexible controller which can be configured to support both half-bridge
topologies for < 1 W power levels as well as full-bridge systems for driving < 3 W wear able
devices. The integrated drivers require no external components between the STWBC-WA
and the power MOSFETs application.
Figure 2. STWBC-WA device architecture
Firmware
The STWBC-WA firmware is available in two separate software packages:
Turnkey: the firmware is distributed as a binary file.
API customizable: the firmware is designed as a library, and external functions as well
as peripherals can be added by means of APIs.
The STWBC-WA provides a set of APIs which allows the user to customize the application
and tailor the system architecture to his needs. The UART and I2C communication
interfaces, ADC and GPIOs can be controlled by the custom firmware via convenient APIs.
The software APIs allow a great deal of freedom to customize applications. The STWBC-
WA device and the API library can be accessed by programming the internal controller via
standard programming tools such as the IAR™ Workbench® Studio.
STWBC-WA pinout and pin description STWBC-WA
6/31 DocID029660 Rev 1
3 STWBC-WA pinout and pin description
This section illustrates the pinout used by the STWBC-WA device.
Figure 3. STWBC-WA pin configuration
Table 2. Pinout description
Pin number Pin name Pin type Turnkey firmware description
1UART_RX
(1) DI UART RX link
2PWM_AUX/GPIO_2
(1) DO Not used, must not be connected to any potential
3 I2C_SDA/DIGIN[4](1) - Inactive (internal pull-up)
4 I2C_SCL/DIGIN[5](1) - Inactive (internal pull-up)
5 DRIVEOUT[3](1) DO Output driver for full-bridge configuration (optional)
6 GPIO_0(1) DO Digital output for the green light indicator
7 GPIO_1(1) DO Digital output for the red light indicator
8 CPP_INT_3 AI Connected to GND
9 CPP_INT_2 AI Connected to GND
10 CPP_REF AI External reference for CPP_INT_3 (if not used,
must be tied to GND)
11 CPP_INT_1 AI Connected to GND
12 CPP_INT_0 AI WAVE_SNS signal for symbol detection
13 VDDA PS Analog power supply
DocID029660 Rev 1 7/31
STWBC-WA STWBC-WA pinout and pin description
31
Note: All analog inputs are VDD compliant but can be used only between 0 and 1.2 V.
14 VSSA PS Analog ground
15 RESERVED AI Reserved
16 RESERVED - Reserved
17 SPARE_ADC(1) - Connected to the USB_ID signal
18 NTC_TEMP AI NTC temperature measurement
19 ISENSE AI LC tank current measurement
20 VMAIN AI Vmain monitor
21 DRIVEOUT[0] DO Output driver for the low-side branch
22 DIGIN[0](1) - Inactive (internal pull-up)
23 DIGIN[1](1) - Inactive (internal pull-up)
24 DRIVEOUT[1] DO Output driver for the high-side branch
25 DRIVEOUT[2] DO Output driver for full-bridge configuration (optional)
26 DIGIN[2](1) - Not connected
27 SWIM DIO Debug interface
28 NRST DI Reset
29 VDD PS Digital and I/O power supply
30 VSS PS Digital and I/O ground
31 VOUT Supply Internal LDO output
32 UART_TX(1) DO UART TX link
1. API configurable.
Table 2. Pinout description (continued)
Pin number Pin name Pin type Turnkey firmware description
Electrical characteristics STWBC-WA
8/31 DocID029660 Rev 1
4 Electrical characteristics
4.1 Parameter conditions
Unless otherwise specified, all voltages are referred to VSS. VDDA and VDD must be
connected to the same voltage value. VSS and VSSA must be connected together with the
shortest wire loop.
4.1.1 Minimum and maximum values
Unless otherwise specified, the minim um and maximum va lues are gu arantee d in the worst
conditions of the ambient temperature, supply voltage and frequencies by tests in
production on 100% of the devices with an ambient temperature at TA = 25 °C and
TA = TA max. (given by the selected temperature range).
Data base d on chara cte rization re su lts, design simulation a nd/or techno log y characteristics
are indicated in Ta ble 3, Table 4 and in the footnotes of Table 6 on page 12 to Table 18 on
page 24, and are not tested in production.
4.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD and VDDA = 3.3 V.
They are given only as design guidelines and are not tested. Typical ADC accuracy values
are determin ed by cha r act er iza tio n of a batc h of sa mp le s fro m a standard diffusion lot over
the full temperature range.
4.1.3 Typical curves
Unless otherwise specified, all typical curves are given as design guidelines only and are
not tested.
4.1.4 Typical current consumption
For typical current consumption measurements, VDD and VDDA are connected together as
shown in Figure 4.
DocID029660 Rev 1 9/31
STWBC-WA Electrical characteristics
31
Figure 4. Supply current measurement conditions
4.1.5 Loading capacitors
The loading conditions used for the pin parameter measurement are shown in Figure 5:
Figure 5. Pin loading conditions
Electrical characteristics STWBC-WA
10/31 DocID029660 Rev 1
4.1.6 Pin output voltage
The input voltage measurement on a pin is described in Figure 6.
Figure 6. Pin input voltage
4.2 Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and the functional operation of the device under
these conditions is not implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.
Table 3. Voltage characteris tic s
Symbol Ratings Min. Max. Unit
VDDX - VSSX Supply voltage(1)
1. All power VDDX (VDD, VDDA) and ground VSSX (VSS, VSSA) pins must always be connected to the external
power supply.
-0.3 6.5 V
VIN Input voltage on any other pin(2)
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS.
VSS -0.3 VDD +0.3
VDD - VDDA Variation between different power pins - 50 mV
VSS - VSSA Variation between all the different ground pins(3)
3. VSS and VSSA signals must be interconnected together with a short wire loop.
-50
VESD Electrostatic discharge voltag e Refer to absolute maximum ratings
(electrical sensitivity) in
Section 4.4.1 on page 26.
DocID029660 Rev 1 11/31
STWBC-WA Electrical characteristics
31
Table 4. Current characteristics
Symbol Ratings Max.(1)
1. Data based on characterization results, not tested in production
Unit
IVDDX Total current into VDDX power lines(2)
2. All power VDDX (VDD, VDDA) and ground VSSX (VSS, VSSA) pins must always be connected to the external
power supply.
100
mA
IVSSX Total current out of VSSX power lines(2) 100
IIO Output current sunk by any I/Os and control pin Ref. to Table 12
on page 16
Output current source by any I/Os and control pin -
IINJ(PIN)(3), (4)
3. The IINJ(PIN) must never be exceeded. This is implicitly insured if the VIN maximum is respected. If the VIN
maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value.
A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS.
4. The negative injection disturbs the analog performance of the device.
Injected current on any pin ±4
IINJ(TOT)(3), (4), (5)
5. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values). These results are based on
characterization with the IINJ(PIN) maximum current injection on four I/O port pins of the device.
Sum of injected currents ±20
Table 5. Thermal characteristics
Symbol Ratings Max. Unit
TSTG Storage temperature range -65 to 150 ºC
TJMaximum junction temperature 150 ºC
Electrical characteristics STWBC-WA
12/31 DocID029660 Rev 1
4.3 Operating conditions
The device must be used in operating conditions that respect the parameters in Table 6. In
addition, a full account must be taken for all physical ca pacitor characteristics and
tolerances.
Table 6. General operating conditions
Symbol Parameter Conditions Min. Typ. Max. Unit
VDD1, VDDA1 Operating voltages - 3(1)
1. The external power supply can be within the range from 3 V up to 5.5 V.
-5.5
(1)
VVDD, VDDA Nominal operating voltages - 3.3(1) -5
(1)
VOUT
Core digital power supply - - 1.8(2)
2. Internal core power supply voltage.
-
CVOUT: capacitance of external
capacitor(3)
3. Care should be taken when the capacitor is selected due to its tolerance, dependency on temperature, DC
bias and frequency.
at 1 MHz
470 - 3300 nF
ESR of external capacitor (2) 0.05 - 0.2
ESL of external capacitor(2) ----
JA(4)
4. To calculate PDmax (TA), use the formula PDmax = (TJmax - TA)/JA.
FR4 multilayer PCB VFQFPN32 - 26 - °C/W
TAAmbi ent temper ature Pd = 100 mW -40 - 105 °C
Table 7. Operating conditions at power-up/power-down
Symbol Parameter Conditions Min.(1)
1. Guaranteed by design, not tested in production.
Typ. Max.(2)
2. The power supply ramp must be monotone.
Unit
tTEMP Reset release delay VDD rising - 3 - ms
VIT+ Power-on reset threshold - 2.65 2.8 2.98 V
VIT- Brownout re set thre sh o ld - 2.58 2.73 2.88
DocID029660 Rev 1 13/31
STWBC-WA Electrical characteristics
31
4.3.1 VOUT external capacitor
The stabilization of the main regulator is achieved by connecting an external capacitor
CVOUT(a) to the VOUT pin. The CVOUT is specified in Section 4.3: Operating conditions.
Care should be taken to limit the series inductance to less than 15 nH.
Figure 7. External capacitor CVOUT
4.3.2 Internal clock sources and timing characteristics
HSI RC oscillator
The HSI RC oscillator parameters are specified under general operating conditions for VDD
and TA.
a. ESR is the equivalent series resistance and ESL is the equivalent inductance.
Table 8. HSI RC oscillator
Symbol Parameter Conditions Min.(1)
1. Data based on characterization results, not tested in production.
Typ. Max.(1) Unit
fHSI Frequency - - 16 - MHz
ACCHSI
Accuracy of the HSI
oscillator (factory
calibrated)(1), (2)
2. Variation referred to fHSI nominal value.
VDD = 3.3 V
TA= 25 ºC -1% - +1%
%
VDD = 3.3 V
-40 ºC TA 105 ºC -4% - +4%
VDD = 5 V
-40 ºC TA 105 ºC -4% - +4%
tSU(HSI) HSI oscillator wakeup time
including calibration --1-µs
Electrical characteristics STWBC-WA
14/31 DocID029660 Rev 1
LSI RC oscillator
The LSI RC oscillator parameters are specified under general operating conditions for VDD
and TA.
PLL internal source clock
Table 9. LSI RC oscillator
Symbol Parameter Conditions Min.(1)
1. Guaranteed by design, not tested in production.
Typ. Max.(1) Unit
fLSI Frequency - - 153.6 - kHz
ACCLSI Accuracy of LSI oscillator 3.3 V VDD 5 V
-40 ºC TA 105 ºC -10% - 10% %
tSU(LSI) LSI oscillator wakeup time - - 7 - µs
Table 10. PLL internal source clock
Symbol Parameter Conditions Min Typ. Max.(1)
1. Data based on characterization results, not tested in production.
Unit
fIN Input frequency(2)
2. PLL maximum input frequency 16 MHz.
3.3 V VDD 5 V
-40 ºC TA 105 ºC
-16-
MHz
fOUT Output frequency - 96 -
tlock PLL lock time - - 200 µs
DocID029660 Rev 1 15/31
STWBC-WA Electrical characteristics
31
4.3.3 Memory characteristics
Flash program and memory/data EEPROM memory
General conditions: TA = -40 °C to 105 °C.
Table 11. Flash program memory/data EEPROM memory
Symbol Parameter Conditions Min.(1) Typ.(1) Max.(1) Unit
tPROG
Standard programmin g time (including erase)
for the byte/word/block (1 byte/4 bytes/128
bytes) --66.6ms
Fast programming time for 1 block (128 bytes) - - 3 3.3 ms
tERASE Erase time for 1 block (128 bytes) - - 3 3.3 ms
NWE
Erase/write cycles(2) (program memory) TA = 25 °C 10 K - -
Cycles
Erase/write cycles(2) (data memory) TA = 85 °C 100 K - -
TA = 105 °C 35 K - -
tRET
Data retention (program memory) after 10 K
erase/write cycles at TA= 25 °C TRET = 85 °C 15 - -
Years
Data retention (program memory) after 10 K
erase/write cycles at TA= 25 °C TRET = 105 °C 11 - -
Data retention (data memory) after 100 K
erase/write cycles at TA= 85 °C TRET = 85 °C 15 - -
Data retention (data memory) after 35 K
erase/write cycles at TA= 105 °C TRET = 105 °C 6 - -
IDDPRG Supply current during program and erase
cycles -40 ºC TA 105 ºC 2 - mA
1. Data based on characterization results, not tested in production.
2. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation
addresses a single byte.
Electrical characteristics STWBC-WA
16/31 DocID029660 Rev 1
4.3.4 I/O port pin characteristics
The I/O port pin p arameters are specified under general operating cond itions for VDD and TA
unless otherwise specified. Unused input pins should not be left floating.
Table 12. Voltage DC characteristics
Symbol Description Min.(1) Typ. Max.(1) Unit
VIL Input low voltage -0.3 - 0.3 * VDD
V
VIH Input high voltage(2) 0.7 * VDD -V
DD
VOL1 Output low volt ag e at 3. 3 V(3) --0.4
(4)
VOL2 Output low voltage at 5 V(3) --0.5
VOL3 Output low voltage high sink at 3.3 V / 5 V(2),(5), (6) -0.6
(4) -
VOH1 Output high voltage at 3.3 V(3) VDD - 0.4(4) --
VOH2 Output high voltage at 5 V(3) VDD - 0.5 - -
VOH3 Output high voltage high sink at 3.3 V / 5 V(2), (5), (6) VDD - 0.6(4) --
HVS Hysteresis input voltage(7) 0.1 * VDD --
RPU Pull-up resistor 30 45 60 k
1. Data based on characterization result, not tested in production.
2. All signals are not 5 V tolerant (input signals cannot exceed VDDX (VDDX = VDD, VDDA).
3. Parameter applicable to signals: GPIO_[0:2], DRIVEOUT[0:3], PWM_AUX.
4. Electrical threshold voltage not yet characterized at -40 ºC.
5. The parameter applicable to the signal: SWIM.
6. The parameter applicable to the signal: DIGIN [0].
7. Applicable to any digital inputs.
DocID029660 Rev 1 17/31
STWBC-WA Electrical characteristics
31
Table 13. Current DC characteristics
Symbol Description Min. Typ. Max.(1) Unit
IOL1 St andard output low level current at 3.3 V and VOL1(2) --1.5
mA
IOL2 St andard output low level current at 5 V and VOL 2(2) --3
IOLhs1 High sink output low level current at 3.3 V and VOL3 (3),(4) --5
IOLhs2 High sink output low level current at 5 V and VOL(3),(4) - - 7.75
IOH1 St andard output high level current at 3.3 V and VOH1(2) --1.5
IOH2 Standard output high level current at 5 V and VOLH2(2) --3
IOHhs1 High sink output low level current at 3.3 V and VOH3(3), (4) --5
IOHhs2 High sink output low level current at 5 V and VOH3(3), (4) - - 7.75
ILKg Input leakage current digital - analog VSS VIN VDD(5) --± 1A
I_lnj Injection current(6), (7) --±4
mA
I_lnj Total injection current (sum of all I/O and control pins)(6) --± 20
1. Data based on characterization result, not tested in production.
2. The parameter applicable to signals: GPIO_[0:2], DRIVEOUT[0:3], PWM_AUX.
3. The parameter applicable to the signal: SWIM.
4. The parameter applicable to the signal: DIGIN [0].
5. Applicable to any digital inputs.
6. The maximum value must never be exceeded.
7. The negative injection current on the ADCIN [7:0] signals (product depending) => SP ARE_ADC signals have to be avoided
since they impact ADC conversion accuracy.
Electrical characteristics STWBC-WA
18/31 DocID029660 Rev 1
4.3.5 Typical output level curves
This section shows the typical output voltage level curves measured on a single output pin
for the two-pad family present in the STWBC-WA device.
Standard pad
This pad is associated to the following signals: DIGIN [0:1], SWIM and GPIO_[0:2] when
available.
Figure 8. VOH standard pad at 3.3 V
Figure 9. VOL standard pad at 3.3 V
DocID029660 Rev 1 19/31
STWBC-WA Electrical characteristics
31
Figure 10. VOH standard pad at 5 V
Figure 11. VOL standard pad at 5 V
Electrical characteristics STWBC-WA
20/31 DocID029660 Rev 1
4.3.6 Fast pad
This pad is associated to the DRIVEOUT[0:3], PWM_AUX signals if the external pin is
available.
Figure 12. VOH fast pad at 3.3 V
Figure 13. VOL fast pad at 3.3 V
DocID029660 Rev 1 21/31
STWBC-WA Electrical characteristics
31
Figure 14. VOH fast pad at 5 V
Figure 15. VOL fast pad at 5 V
Electrical characteristics STWBC-WA
22/31 DocID029660 Rev 1
4.3.7 Reset pin characteristics
The reset pin parameters are specified under general operating conditions for VDD and TA
unless otherwise specified.
4.3.8 I2C interface characteristics
Table 14. NRST pin characteristics
Symbol Parameter Conditions Min.(1) Typ. Max.(1) Unit
VIL(NRST) NRST input low level voltage(1) - -0 .3 - 0.3 x VDD
VVIH(NRST) NRST input high level voltage(1) - 0.7 x VDD -V
DD + 0.3
VOL(NRST) NRST output low level voltage(1) IOL = 2 mA - - 0.5
RPU(NRST) NRST pull-up resistor(2) -304060k
tIFP(NRST) NRST input filtered pulse(3) ---75
ns
tINFP(NRST) NRST not input filtered pulse(3) -500--
tOP(NRST) NRST output filtered pulse(3) -15--µs
1. Data based on characterization results, not tested in production.
2. The RPU pull-up equivalent resistor is based on a resistive transistor.
3. Data guaranteed by design, not tested in production.
Table 15. I2C interfa ce characteristics
Symbol Parameter Standard mode Fast mode Unit
Min.(1) Max.(1) Min.(1) Max.(1)
tw(SCLL) SCL clock low time 4.7 - 1.3 - µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time 0(2) -0
(2) 900(2)
tr(SDA) tr(SCL) SDA and SCL rise time (VDD = 3.3 to 5 V)(3) - 1000 - 300
tf(SDA) tf(SCL) SDA and SCL fall time (VDD = 3.3 to 5 V)(3) - 300 - 300
th(STA) START condition ho l d time 4.0 - 0.6 - µs
tsu(STA) Repeated START condition setup time 4.7 - 0.6 -
tsu(STO) STOP co nd i tion setup time 4.0 - 0.6 - µs
tw(STO:STA) STOP to START condition time (bus free) 4.7 - 1.3 - µs
CbCapacitive load for each bus line(4) -50-50pF
1. Data based on the standard I2C protocol requirement, not tested in production.
2. The maximum hold time of the start condition need only be met if the interface does not stretch the low time.
3. I2C multifunction signals require the high sink pad configuration and the interconnection of 1 K pull-up resistances.
4. 50 pF is the maximum load capacitance value to meet the I2C std. timing specifications.
DocID029660 Rev 1 23/31
STWBC-WA Electrical characteristics
31
4.3.9 10-bit SAR ADC characteristics
The 10-bit SAR ADC oscillator parameters are specified under general operating conditions
for VDDA and TA unless otherwise specified.
ADC accuracy characteristics at VDD/VDDA 3.3 V
Table 16. ADC characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
N Resolution - - 10 - bit
RADCIN ADC input impedance - 1 - - M
VIN1 Conversion voltage range
for the gain x1 -0-1.25
(1), (2)
1. The maximum input analog voltage cannot exceed VDDA.
2. Exceeding the maximum voltage on the SPARE_ADC signals for the related conversion scale must be
avoided since the ADC conversion accuracy can be impacted.
V
Vref ADC main reference
voltage(3)
3. The ADC reference voltage at TA = 25 °C.
--1.250-V
Table 17. ADC accuracy characteristics at VDD/VDDA 3.3 V
Symbol Parameter Typ.(1)
1. Temperature operating: TA = 25 °C.
Min.(2)
2. Data based on characterization results, not tested in production.
Max.(2) Unit
|ET| Total unadjusted error(3), (4), (5)
3. ADC accuracy vs. the negative injection current. The injecting negative current on any of the analog input
pins should be avoided as this reduces the accuracy of the conversion being performed on another analog
input. It is recommended a Schottky diode (pin to ground) to be added to standard analog pins which may
potentially inject the negative current. Any positive injection current within the limits specified for IINJ(PIN)
and INJ(PIN) in the I/O port pin characteristic section does not affect the ADC accuracy. The ADC accuracy
parameters may be also impacted exceeding the ADC maximum input voltage VIN1 or VIN2.
4. Results in the manufacturing test mode.
5. Data aligned with trimming voltage parameters.
2.8 - -
LSB
|EO| Offset error(3), (4), (5) 0.3 - -
|EG| Gain error (3), (4), (5), (6)
6. Gain error evaluation with the two point method.
0.4 - -
EO+G Offset + gain error(6), (7)
7. Temperature operating range: 0 ºC TA 85 ºC.
--8.59.3
EO+G Offset + gain error(6), (8)
8. Temperature operating range: -25 ºC TA 105 ºC.
--1111
EO+G Offset + gain error(6), (9)
9. Temperature operating range: -40 ºC TA 105 ºC.
- -14.3 11.3
|ED| Differential linearity error(1), (2), (3) 0.5 - -
|EL| Integral linearity error(3), (4), (5) 1.4 - -
Electrical characteristics STWBC-WA
24/31 DocID029660 Rev 1
ADC accuracy characteristics at VDD/VDDA 5 V
Table 18. ADC accuracy characteristics at VDD/VDDA 5 V
Symbol Parameter Typ.(1)
1. Operating temperature: TA = 25 °C.
Min.(2)
2. Data based on characterization results, not tested in production.
Max.(2) Unit
|ET| Total unadjusted error(3) (4), (5)
3. ADC accuracy vs. the negative injection current. The injecting negative current on any of the analog input
pins should be avoided as this reduces the accuracy of the conversion being performed on another analog
input. It is recommended that a Schottky diode (pin to ground) be to added to standard analog pins which
may potentially inject the negative current. Any positive injection current within the limits specified for
IINJ(PIN) and IINJ(PIN) in the I/O port pin characteristic section does not affect the ADC accuracy. The ADC
accuracy parameters may be also impacted exceeding the ADC maximum input voltage VIN1 or VIN2.
4. Results in the manufacturing test mode.
5. Data aligned with trimming voltage parameters.
TBD - -
LSB
|EO| Offset error(3), (4), (5) 0.5 - -
|EG| Gain error(3), (4), (5), (6)
6. Gain error evaluation with the two point method.
0.4 - -
EO+G Offset + gain error(6), (7)
7. Operating temperature range: 0 ºC TA 85 ºC.
--8.38.9
EO+G Offset + gain error(6), (8)
8. Operating temperature range: -25 ºC TA 105 ºC.
- -10.9 10.9
EO+G Offset + gain error(6), (9)
9. Operating temperature range: -40 ºC TA 105 ºC.
- -13.8 10.9
|ED| Differential linearity error(1), (2), (3) 0.8 - -
|EL| Integral linearity error(3), (4), (5) 2.0 - -
DocID029660 Rev 1 25/31
STWBC-WA Electrical characteristics
31
ADC conversion accuracy
Figure 16. ADC co n ve r si on ac cu ra cy
ADC accuracy parameter definitions:
ET = total unadjusted error: the m a xim u m devia tio n be tw ee n th e actual and the ideal
transfer curves.
EO = offset er ror: the deviation between the fi rst actual transitio n and the first ideal on e.
EOG = offset + gain error (1-point gain): the deviation between the last ideal transition
and the last actual one.
EG = gain error (2-point gain): defined so that EOG = EO + EG (parameter correlated to
the deviation of the characteristic slope).
ED = differential linearity error: the maximum deviation between actual steps and the
ideal one.
EL = integral linearity error: the maximum deviation between any actual transition and
the end point correlation line.
Electrical characteristics STWBC-WA
26/31 DocID029660 Rev 1
4.4 EMC characteristics
4.4.1 Electrostatic discharge (ESD)
Electrostatic discharges (3 positive and then 3 nega tive pulses sepa rated by 1 second ) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts * (n + 1) supply pin).
Data based on characterization resu lts, not tested in production.
4.4.2 Static latch-up
Two com p lem e ntary static tests are required on 10 parts to assess the latch-up
performance.
A supply overvoltage (applied to each power supply pin) and a current injection (applied to
the each input, output and configurable I/O pin) are performed on each sample. This test
conforms to the EIA/JESD 78 IC latch-up standard.
Table 19. ESD absolute maximum ratings
Symbol Ratings Conditions Maximum
value Unit
VESD(HBM) Electrostatic discharge voltage
(human body model) TA = 25 °C, conforming to
JEDEC/JESD22-A114E 2000
VVESD(CDM) Electrostatic discharge voltage
(charge device model) TA = 25 °C, conforming to
ANSI/ESD STM 5.3.1 ESDA 500
VESD(MM) Electrostatic discharge voltage
(machin e model) TA = 25 °C, conforming to
JEDEC/JESD-A115-A 200
Table 20. Electrical sensitivity
Symbol Parameter Conditions Level
LU Static latch-up class T A = 105 °C A
DocID029660 Rev 1 27/31
STWBC-WA Thermal characteristics
31
5 Thermal characteristics
The STWBC-W A functionality cann ot be guaranteed when the devi ce, in operation, exceeds
the maximum chip junction temperature (TJmax).
TJmax, in °C, may be calculated using equation:
TJmax = TAmax + (PDmax x JA)
where:
TAmax is the maximum ambient temperature in °C
JA is the package junction-to-ambient thermal resistance in °C/W
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)
PINTmax is the product of IDD and VDD, expressed in watts. This is the maximum chip inte rnal
power.
PI/Omax represen ts the maxim u m po we r di ssipation on output pins where:
PI/Omax = (VOL * IOL) + [(VDD - VOH) * IOH],
taking into account the actual VOL/IOL and VOH/IOH of the I/Os at the low and high level.
Table 21. Pac ka g e th e rmal ch a r ac te ris tic s
Symbol Parameter Value Unit
JA VFQFPN32 - thermal resistance junction to ambient(1)
1. Thermal resistance is based on the JEDEC JESD51-2 with a 4-layer PCB in a natural convection
environment.
26 °C/W
Package information STWBC-WA
28/31 DocID029660 Rev 1
6 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
6.1 VFQFPN32 package information
Figure 17. VFQFPN32 package outline

DocID029660 Rev 1 29/31
STWBC-WA Package information
31
Note: 1. VFQFPN stands for “Thermally Enhanced Very thin Fine pitch Quad Flat Package No
lead”.
2. Very thin profile: 0.80 < A 1.00 mm.
3. Pin 1 can be identified via a package mold or marking option on the top surface.
4. Package outline exclusive of any mold flash dimensions and metal burrs.
Table 22. VFQFPN32 package mechanical data
Symbol Dimensions (mm)
Min. Typ. Max.
A 0.80 0.90 1.00
A1 0 0.02 0.05
A3 - 0.20 -
b 0.18 0.25 0.30
D 4.85 5.00 5.15
D2 3.40 3.45 3.50
E 4.85 5.00 5.15
E2 3.40 3.45 3.50
e - 0.50 0.55
L 0.30 0.40 0.50
ddd - - 0.08
STWBC-WA development tools STWBC-WA
30/31 DocID029660 Rev 1
7 STWBC-WA development tools
The development tool for the STWBC-WA controller is provided by the IAR with the
C compiler, which provides start-to-finish control of application development including code
editing, compilation, optimization and debugging.
The hardware tool includes the ST-LINK/V2 in-circuit debugger/programmer (USB/SWIM).
8 Order codes
9 Revision history
Table 23. Silicon product order codes
Order code Package Packaging
STWBC-WA VFQFPN32 Tube
STWBC-WATR Tape and reel
Table 24. Document revision history
Date Revision Changes
30-Aug-2016 1 Initial releas e.
DocID029660 Rev 1 31/31
STWBC-WA
31
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelec tronics NV and its subsidiaries (“ST ”) reserve the right to make cha nges, correcti ons, enhancem ents, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provis ions different from the informati on set forth herein shall void any warranty granted by ST fo r such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previousl y supplied in a ny prior versions of this document.
© 2016 STMicroelectronics – All rights reserved