APPLICATION MANUAL Negative-input Negative-output Regulator IC TK721xxCS CONTENTS 1 . DESCRIPTION 2 . FEATURES 3 . APPLICATIONS 4 . PIN CONFIGURATION 5 . PACKAGE OUTLINE 5. ORDERING INFORMATION 6 . BLOCK DIAGRAM 7 . ABSOLUTE MAXIMUM RATINGS 8 . ELECTRICAL CHARACTERISTICS 9 . TEST CIRCUIT 10 . TYPICAL CHARACTERISTICS 11 . PIN DESCRIPTION 12 . APPLICATIONS INFORMATION 12-2. ESR Stability 12-3. Operating Region and Power Dissipation 12-4 Application hint 13 . NOTES 14. OFFICES 2 2 2 2 2 3 4 4 5 6 7 22 23 24 25 25 27 28 28 GC3-K020B Page 1 TK721xxCS Negative-input Negative-output Regulator IC TK721xxCS 1. DESCRIPTION 4. PIN CONFIGURATION TK721xxCS series is a negative-input negative-output regulator IC using silicon monolithic bipolar structure which can supply 150mA output current. The output voltage can be set from -2.0 to -9.5V, which is trimmed in high accuracy. TK721xxCS is supplied with ON/OFF terminal and noise reduction terminal. The ON/OFF control can be controlled directly with positive logic or CPU. Moreover, TK721xxCS is provided with short-circuit protection and thermal shutdown. Top View 1 Cont 2 VEE 3 Np Vout 5 GND 4 2. FEATURES ! High Output Voltage Accuracy(2.0% or 60 mV) ! ON/OFF control available (High OFF) ! Built-in short-circuit protection and thermal shutdown. ! Guarantee 150mA output current(200mA peak) ! Ceramic capacitor available for application 5. PACKAGE OUTLINE ! SOT23-5 Mark 0.7 4 1.0 5 ! Battery Powered Systems ! DSC, CCD bias, GaAs bias. 2.4 1.6 0.2 3. APPLICATIONS 3 1 0.95 +0.10 0.95 0.4 -0.05 0.95 0.95 Reference Mount Pad 0.1 M 0.1 GC3-K020B 1.1 0.1 (0.3) 0.15 +0.10 -0.05 0 ~0.1 1.3max 2.9 0.2 2.8 0.2 Page 2 TK721xxCS 5. ORDERING INFORMATION Package SOT23-5 Vout -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 -5.5 -6.0 -6.5 -7.0 -7.5 -8.0 -8.5 -9.0 -9.5 Part Number TK72120CS TK72125CS TK72130CS TK72135CS TK72140CS TK72145CS TK72150CS TK72155CS TK72160CS TK72165CS TK72170CS TK72175CS TK72180CS TK72185CS TK72190CS TK72195CS Marking K20 K25 K30 K35 K40 K45 K50 K55 K60 K65 K70 K75 K80 K85 K90 K95 For other voltages, please contact the TOKO sales office. GC3-K020B Page 3 TK721xxCS 6. BLOCK DIAGRAM Cont 90k Vout Bandgap Reference VEE Over Heat & Over Current Protection Np GND Control:Low Level On 7. ABSOLUTE MAXIMUM RATINGS Ta=25C Parameter Supply Voltage Control pin Voltage Power Dissipation (SOT23-5 Simple substance) Storage Temperature Range Operating Temperature Range Operating Voltage Range Output short-circuit current Symbol Vin Vcont Rating -20 -0.4 ~ +5 Units V V Conditions |Vin|+|Vcont|20V |Vin|+|Vcont|19V PD 500 mW PD must be decreased at the rate of 4mW/C for operation above 25C. Tstg TOP VOP Ishort -55 ~ +150 -40 ~ 85 -19 300 C C V mA |Vin|+|Vcont|19V Over Current Protection Absolute maximum ratings are limits beyond which damage to the device may occur. When the operation exceeds this standard, quality can not be guaranteed. GC3-K020B Page 4 TK721xxCS 8. ELECTRICAL CHARACTERISTICS Vin=VoutTYP-1.5V, Ta=25C Parameter Symbol Vout Line Regulation Vout LinReg Load Regulation LoaReg Dropout Voltage *1 Vdrop Supply Current Standby Current Peak Output Current Control Current Icc Istandby IoutPEAK Icont Control Voltage Vcont Value MIN TYP MAX Refer to TABLE 1 1 5 Refer to TABLE 1 Refer to TABLE 1 Refer to TABLE 1 0.29 0.50 0.48 0.80 0.66 1.10 155 250 20 60 200 280 12 30 0 0.3 1.5 Unit V mV mV mV mV V V V A A mA A V V Condition Iout=5mA Vin=5V Iout=5mA~50mA Iout=5mA~100mA Iout=5mA~150mA Iout=50mA Iout=100mA Iout=150mA Iout=0mA Vout Off State When Vout drops 10% Vcont=+1.8V Vout ON State Vout OFF State *1 For Vout-3.0 no regulations TABLE 1 Vout Part Number TK72120CS TK72125CS TK72130CS TK72135CS TK72140CS TK72145CS TK72150CS TK72155CS TK72160CS TK72165CS TK72170CS TK72175CS TK72180CS TK72185CS TK72190CS TK72195CS MIN -2.060 -2.560 -3.060 -3.570 -4.080 -4.590 -5.100 -5.610 -6.120 -6.630 -7.140 -7.650 -8.160 -8.670 -9.180 -9.690 TYP -2.000 -2.500 -3.000 -3.500 -4.000 -4.500 -5.000 -5.500 -6.000 -6.500 -7.000 -7.500 -8.000 -8.500 -9.000 -9.500 MAX -1.940 -2.440 -2.940 -3.430 -3.920 -4.410 -4.900 -5.390 -5.880 -6.370 -6.860 -7.350 -7.840 -8.330 -8.820 -9.310 Iout=50mA TYP MAX 9 24 9 24 9 24 11 28 12 30 14 34 15 38 17 41 18 45 20 49 21 53 23 56 24 60 26 64 27 68 29 71 GC3-K020B LoaReg Iout=100mA TYP MAX 15 39 15 39 15 39 18 46 20 52 23 59 25 65 28 72 30 78 33 85 35 91 38 98 40 104 43 111 45 117 48 124 Iout=150mA TYP MAX 24 60 24 60 24 60 28 70 32 80 36 90 40 100 44 110 48 120 52 130 56 140 60 150 64 160 68 170 72 180 76 190 Page 5 TK721xxCS 9. TEST CIRCUIT ! DC ! Load Transient 1 Cont 2 VEE Vout 5 Vout Icont A Cin Cout Iout Vin 3 Cont 2 VEE 3 Np Vout 5 Vout 1 1 1 V Np GND Cin 4 Cout Iout V Vin Vcont A Iin Cnp 0.01 GND 4 Cnp ! Line Transient ! ON/OFF Transient 1 Cont 2 VEE Vout 5 Vcont=01.50 Vin=Vouttyp-1.5V Cont 2 VEE Vout 5 Vout Vin Vin=Vouttyp-2.5V 1 Cout Iout Cin Vout Cin 3 3 Np V Vin V GND 4 Np GND Cout Iout 4 Cnp Cnp ! Ripple Rejection ! ESR Stability View point 1 Cont 2 VEE Vout 5 1 Cont 2 VEE 3 Np Vout 5 Vripple=500mVp-p ESR Vout Cout 3 Vin=Vouttyp-2.0V Np GND Cin Iout Iout V Vin 4 GND 4 Cout Cnp Cnp GC3-K020B Page 6 TK721xxCS 10. TYPICAL CHARACTERISTICS 10-1 DC CHARACTERISTICS Unless otherwise specified Vin=VoutTYP-1.5V,Vcont=0V,Cin=1.0uF(MLCC),Cout=1.0uF(MLCC),Cnp=0.01uF Ta=25C 1 Cont 2 VEE 3 Np Vout 5 Vout Icont A Cin Cout Iout V Vin 1 1 GND 4 Vcont A Iin Cnp 0.01 ! Load Regulation 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 Vout=-8.5V Vout (mV) Vout (-V) ! Line Regulation Vout=-5.0V Vout=-2.5V 0 5 10 Vin (-V) 15 20 ! IoutPEAK Vout=-8.5/-5.0/-2.5V 0 50 100 Iout (mA) 150 200 Iout (mA) 400 ! IQ 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 Vout=-8.5V IQ (mA) Vout (-V) 100 90 80 70 60 50 40 30 20 10 0 Vout=-5.0V Vout=-2.5V 0 100 200 Iout (mA) 300 400 GC3-K020B 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 100 300 Page 7 TK721xxCS Unless otherwise specified Vin=VoutTYP-1.5V,Vcont=0V,Cin=1.0uF(MLCC),Cout=1.0uF(MLCC),Cnp=0.01uF Ta=25C ! Dropout Voltage 2000 1800 1600 1400 1200 1000 800 600 400 200 0 Vout=-8.5V Vdrop (V) Iin (uA) ! Iin (Iout=0mA) Vout=-5.0V Vout=-2.5V 0 5 10 Vin (-V) 15 Vout (-V) Vout (-V) Vout=-5.0V Vout=-2.5V 0.5 1.0 Vcont (V) 1.5 2.0 0.0 100 Iout (mA) 150 1.0 2.0 3.0 Vcont (V) 0.5 0.4 0.3 0.2 Iout=0/30/60/90/120/150mA 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.5 0 0.5 VIN (-V) 1 ! Icc Off Mode (Vcont=1.5V,Iout=0mA) Iin (uA) ! Icont VS Vcont (Iout=1mA) 50 40 30 20 10 0 -10 -20 -30 -40 -50 -1.0 50 ! Vout VS VIN Vout=-8.5V 0.0 Icont (uA) 0 20 ! Vout VS Vcont 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 4.0 5.0 100 90 80 70 60 50 40 30 20 10 0 0 GC3-K020B 5 10 Vin (-V) 15 20 Page 8 TK721xxCS 10-2 Temperature characteristic Unless otherwise specified Vin=-VoutTYP-1.5V,Vcont=0V,Cin=1.0uF(MLCC),Cout=1.0uF(MLCC),Cnp=0.01uF 1 Cont 2 VEE 3 Np Vout 5 Icont Vout A Cin Cout Iout V Vin 1 1 GND 4 Vcont A Iin ! TK72185CS Vout 2.500 8.550 2.480 8.530 Vout (-V) Vout (-V) ! TK72125CS Cnp 0.01 2.460 2.440 2.420 8.490 8.450 -40 -20 0 20 40 Ta () 60 80 100 ! TK72185CS IoutPEAK 350 340 330 320 310 300 290 280 270 260 250 -40 -20 -40 -20 Iout_MAX Iout_MAX 8.510 8.470 2.400 ! TK72125CS Vout 0 20 40 Ta () 60 80 100 GC3-K020B 0 20 40 Ta () 60 80 100 IoutPEAK 350 340 330 320 310 300 290 280 270 260 250 -40 -20 0 20 40 Ta () 60 80 100 Page 9 TK721xxCS Unless otherwise specified Vin=-VoutTYP-1.5V,Vcont=0V,Cin=1.0uF(MLCC),Cout=1.0uF(MLCC),Cnp=0.01uF ! TK72185CS LoadReg 160 160 140 140 120 Io=5-150mA 100 LoadReg (mV) LoadReg (mV) ! TK72125CS 80 Io=5-100mA 60 40 100 80 60 40 Io=5-100mA 20 0 -40 -20 ! TK72125CS 0 20 40 Ta () 60 80 ! TK72185CS ON/OFF 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0 -40 -20 100 Vout Off Vcont (V) Vcont (V) Io=5-150mA 120 20 Vout On -40 -20 ! TK72125CS 0 20 40 Ta () 60 80 100 200 190 180 170 160 150 140 130 120 110 100 -40 -20 0 20 40 Ta () 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 60 80 100 60 80 100 Vout On 0 20 40 Ta () 60 80 100 60 80 100 Iin(Iout=0mA) 200 190 180 170 160 150 140 130 120 110 100 -40 -20 GC3-K020B 20 40 Ta () Vout Off ! TK72185CS Iin(Iout=0mA) 0 ON/OFF -40 -20 Icc (uA) Icc (uA) LoadReg 0 20 40 Ta () Page 10 TK721xxCS Unless otherwise specified Vin=-VoutTYP-1.5V,Vcont=0V,Cin=1.0uF(MLCC),Cout=1.0uF(MLCC),Cnp=0.01uF Icont_1.8V (uA) 20 18 16 14 12 10 8 6 4 2 0 -40 -20 ! TK72125CS 0 20 40 Ta () 60 80 -40 -20 ! TK72185CS Icc_OFFMode 50 45 40 35 30 25 20 15 10 5 0 -40 -20 ! TK72125CS 0 20 40 Ta () 60 80 Vdrop Icont 20 18 16 14 12 10 8 6 4 2 0 100 Icc_OffMODE (uA) Icc_OffMODE (uA) ! TK72185CS Icont 100 0 20 40 Ta () 60 80 100 60 80 100 Icc_OFFMode 50 45 40 35 30 25 20 15 10 5 0 -40 -20 ! TK72185CS 0 20 40 Ta () Vdrop 900 800 700 Vdrop (mV) Icont_1.8V (uA) ! TK72125CS For Vout-2.0V, no regulations 600 500 400 300 200 Io=50/100/150mA 100 0 -40 -20 GC3-K020B 0 20 40 Ta () 60 80 100 Page 11 TK721xxCS 10-3 Load Transient Unless otherwise specified Vin=VoutTYP-1.5V,Cin=1.0uF(MLCC),Cnp=0.01uF 1 Cont 2 VEE 3 Np Vout 5 Vout Cin Cout Iout V Vin GND 4 Cnp !TK72125CS !TK72185CS Vout:200mV/div Time:200usec/div Vout:200mV/div Time:200usec/div Cout=1.0uF(MLCC) Cout=1.0uF(MLCC) Vout Vout Cout=2.2uF(MLCC) 5mA Iout Cout=2.2uF(MLCC) 100mA !TK72125CS 100mA !TK72185CS Vout:200mV/div Time:200usec/div Vout:200mV/div Time:200usec/div Cout=1.0uF(Tantalum) Cout=1.0uF(Tantalum) Vout Vout Cout=2.2uF(Tantalum) Iout 5mA Iout 5mA Cout=2.2uF(Tantalum) 100mA Iout GC3-K020B 5mA 100mA Page 12 TK721xxCS Unless otherwise specified Vin=VoutTYP-1.5V,Cin=1.0uF(MLCC),Cnp=0.01uF !TK72125CS !TK72185CS Vout:1V/div Time:10usec/div Vout:2V/div Time:10usec/div Cout=1.0uF(MLCC) Cout=1.0uF(MLCC) Vout Vout Cout=2.2uF(MLCC) Cout=2.2uF(MLCC) 0mA 0mA Iout Iout 100mA !TK72125CS 100mA !TK72185CS Vout:500mV/div Time:4msec/div Vout:500mV/div Time:4msec/div Vout Cout=2.2uF(MLCC) Vout Cout=1.0uF(MLCC) Cout=2.2uF(MLCC) Cout=1.0uF(MLCC) Cout=0.1uF(MLCC) Cout=0.1uF(MLCC) 0mA Iout 100mA 0mA Iout 100mA GC3-K020B Page 13 TK721xxCS Unless otherwise specified Vin=VoutTYP-1.5V,Cin=1.0uF(MLCC),Cnp=0.01uF !TK72125CS !TK72185CS Vout:500mV/div Time:10usec/div Vout:500mV/div Time:10usec/div Cout=1.0uF(Tantalum) Cout=1.0uF(Tantalum) Vout Vout Cout=2.2uF(Tantalum) Cout=2.2uF(Tantalum) 0mA 0mA Iout 100mA !TK72125CS Iout 100mA !TK72185CS Vout:100mV/div Time:4msec/div Vout:100mV/div Time:4msec/div Cout=2.2uF(Tantalum) Cout=2.2uF(Tantalum) Vout Vout Cout=1.0uF(Tantalum) Cout=1.0uF(Tantalum) 0mA Iout 100mA 0mA Iout 100mA GC3-K020B Page 14 TK721xxCS 10-4 ON/OFF Transient Vin=VoutTYP-1.5V,Cin=1.0uF(MLCC),Iout=100mA 1 Cont 2 VEE Vout 5 Vcont=01.50 Cin V Vin Vout 3 Np GND Cout Iout 4 Cnp !TK72125CS Cout=1.0uF(MLCC) !TK72185CS Cout=1.0uF(MLCC) Vout:1V/div Vcont:2V/div Time:400usec/div 0V Vout Vout:2V/div Vcont:2V/div Time:200usec/div 0V Vout Cnp=103 Cnp=103 Cnp=102 Cnp=102 f=1Hz(Cnp Full discharge) Vcont f=1Hz(Cnp Full discharge) Vcont !TK72125CS Cout=1.0uF(MLCC) Vout:1V/div Vcont:2V/div Time:4msec/div Vout 0V !TK72185CS Cout=1.0uF(MLCC) Vout:2V/div Vcont:2V/div Time:2msec/div 0V Vout Cnp=104 Cnp=473 Vcont f=1Hz(Cnp Full discharge) Cnp=473 Vcont GC3-K020B Cnp=104 f=1Hz(Cnp Full discharge) Page 15 TK721xxCS Vin=-VoutTYP-1.5V,Cin=1.0uF(MLCC),Iout=100mA !TK72125CS !TK72185CS Vout:1V/div Vcont:2V/div Time:400usec/div 0V Vout Vout:2V/div Vcont:2V/div Time:400usec/div 0V Vout Cout=1uF/10uF/22uF Cout=1uF/10uF/22uF Cnp=103 CoutType=MLCC Vcont Cnp=103 CoutType=MLCC Vcont f=1Hz(Cnp Full discharge) f=1Hz(Cnp Full discharge) !TK72125CS !TK72185CS Control frequency variable Vout:1V/div Vcont:2V/div Time:200usec/div Control frequency variable Vout:2V/div Vcont:2V/div Time:400usec/div 0V Vout 0V Vout f=100/50/1Hz f=100/50/1Hz Cnp=103 Cout=1.0uF(MLCC) Vout OFF Vcont Vout ON Cnp=103 Cout=1.0uF(MLCC) Vcont Vout OFF Vout ON Rise-time of the output voltage. changes by Cout and Cnp. Moreover, the rise-time changes by the charge situation of Cnp. Standing up from the state that the charge came off completely slows most. GC3-K020B Page 16 TK721xxCS Vin=-VoutTYP-1.5V,Cin=1.0uF(MLCC),Cout=1.0uF(MLCC),Cnp=0.01uF,Iout=100mA !TK72125CS !TK72185CS Vout:2V/div Vcont:1V/div Time:100usec/div Vout 0V Vout:2V/div Vcont:1 V/div Time:400usec/div Vout 0V Iout=10/50/100mA Iout=10/50/100mA OFF Vcont OFF Vcont ON ON !TK72125CS !TK72185CS Vout:2V/div Vcont:1V/div Time:100usec/div Vout 0V Vout:2V/div Vcont:1V/div Time:1msec/div Vout 0V Cout=1.0/4.7/10uF OFF Vcont Cout=1.0/4.7/10uF OFF Vcont ON ON The turn on time will be largely affected by Iout and Cout,but not by Cnp. GC3-K020B Page 17 TK721xxCS 10-5 Line Transient Vin=-VoutTYP-1.5-VoutTYP-2.5V,Cin=1.0uF(MLCC),Cnp=0.01uF,Iout=100mA Vin=Vouttyp-1.5V Cont 2 VEE 3 Np Vout 5 Vout Vin Vin=Vouttyp-2.5V 1 Cout Iout V Cin GND 4 Cnp !TK72125CS !TK72185CS Vout:100mV/div Vin:1V/div Time:100usec/div Vout:100mV/div Vin:1V/div Time:100usec/div Cout=1.0uF(MLCC) Cout=1.0uF(MLCC) Vout Vout Cout=2.2uF(MLCC) Cout=2.2uF(MLCC) VoutTYP-1.5V VoutTYP-1.5V Vin Vin Vin=VoutTYP-2.5V !TK72125CS Vin=VoutTYP-2.5V !TK72185CS Vout:100mV/div Vin:1V/div Time:100usec/div Vout:100mV/div Vin:1V/div Time:100usec/div Cout=1.0uF(Tantalum) Vout Cout=1.0uF(Tantalum) Vout Cout=2.2uF(Tantalum) Cout=2.2uF(Tantalum) VoutTYP-1.5V Vin Vin=VoutTYP-2.5V VoutTYP-1.5V Vin GC3-K020B Vin=VoutTYP-2.5V Page 18 TK721xxCS 10-6 Noise Vin= VoutTYP-1.5(V) Vcont=0V Cin=1.0uF(MLCC) ! Cout=1.0uF(Tantalum) 500 450 400 350 300 250 200 150 100 50 0 1000 TK72185CS Noise (uVrms) Noise (uVrms) ! Cout=1.0uF(MLCC) TK72125CS 10000 Cnp (pF) 100000 ! Cout=1.0uF(MLCC) Cnp=103 200 180 160 140 120 100 80 60 40 20 0 TK72185CS TK72125CS 0 50 500 450 400 350 300 250 200 150 100 50 0 1000 TK72185CS TK72125CS 10000 Cnp (pF) 100000 ! Cout=1.0uF(MLCC) Cnp=103 Iout=100mA Noise (uVrms) Noise (uVrms) BPF400 ~ 80kHz Iout=100mA 100 Iout (mA) 150 GC3-K020B 200 180 160 140 120 100 80 60 40 20 0 2 4 6 Vout (-V) 8 10 Page 19 TK721xxCS 10-7 Ripple Rejection Vin=VoutTYP-2.0(V) Vripple=500mVp-p,Cnp=0.01uF,Iout=10mA View point 1 Cont 2 VEE 3 Np Vout 5 GND 4 Vripple=500mVp-p Cout Vin=Vouttyp-2.0V Iout Cnp !TK72125CS Cout=1.0uF(MLCC) !TK72185CS Cout=1.0uF(MLCC) 0dB 0dB 10dB/div 10dB/div !TK72125CS Cout=2.2uF(MLCC) !TK72185CS Cout=2.2uF(MLCC) 0dB 0dB 10dB/div 10dB/div GC3-K020B Page 20 TK721xxCS Vin=VoutTYP-2.0(V) Vripple=500mVp-p,Cnp=0.01uF,Iout=10mA !TK72125CS Cout=1.0uF(Tantalum) !TK72185CS Cout=1.0uF(Tantalum) 0dB 0dB 10dB/div 10dB/div !TK721xxCS f=1kHz,Vripple=100mVp-p 0 -10 R.R (dB) -20 Io=10mA Io=100mA -30 -40 -50 -60 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Vout-Vin (V) GC3-K020B Page 21 TK721xxCS 11. PIN DESCRIPTION Pin No Pin Description Internal Equivalent Circuit Description Cont 1 52k 1 Cont ON/OFF control terminal Please do not apply -0.4V or less to this pin. The current might flow from GND. 38k GND 2 VEE - Input terminal 3 Np GND 3 Np 27k Vref 4 Noise pass terminal 500k GND 10k - GND terminal GND R1 Output terminal 5 Vout Vout = Vref x R2 Vout R1 + R 2 R1 6 Vref VEE GC3-K020B Page 22 TK721xxCS 12. APPLICATIONS INFORMATION 12-1.Definition of term Relating Protection Circuit Relating Characteristic note Each characteristics will be measured in a short period not to be influenced by joint temperature (Tj). *Output voltage (Vout) The output voltage is specified with Vin= VoutTYP+1V and Iout=5mA *Output current (Iout) Output current, which can be used continuously (It is the range where overheating protection of the IC does not operate.) *Peak output current (IoutPEAK) The rated output current is specified under the condition where the output voltage drops 90% by increasing the output current, compared to the value specified at Vin=VoutTYP-1.5V. *Dropout voltage (Vdrop) It is an I/O voltage difference when the circuit stops the stable operation by decreasing the input voltage. It is measured when the output voltage drops 100mV from its nominal value by decreasing the input voltage gradually. *Over Current Protection It is a function to protect the IC by limiting the output current when excessive current flows to IC, such as the output is connected to GND, etc. *Thermal Protection It protects the IC not to exceed the permissible power consumption of the package in case of large power loss inside the regulator. The output is turned off when the chip reaches around 150C, but it turns on again when the temperature of the chip decreases. *ESD It is tested by connecting charged capacitor to GND pin and Vin pin. MM 200pF 0 200Vmin HBM 100pF 1.5k 2000Vmin *Line Regulation (LinReg) It is the fluctuations of the output voltage value when the input voltage is changed. *Load Regulation (LoaReg) It is the fluctuations of output voltage value when the input voltage is assumed to be VoutTYP -1.5V, and the load current is changed. *Ripple Rejection (R.R) Ripple rejection is the ability of the regulator to attenuate the ripple content of the input voltage at the output. It is measured with the condition of Vin=Vout-2.0V. Ripple rejection is the ratio of the ripple content between the output vs. input and is expressed in dB *Standby current (Istandby) It is an input current which flows to the control terminal, when the IC is turned off. GC3-K020B Page 23 TK721xxCS 12-2. ESR Stability IC does operates with 1.0uF Cout. If it is 1.0uF or larger, the capacitor of any type can be used in all range without considering ESR. But due to the parts are uneven, please enlarge the capacitance as much as possible. With larger capacity, the output noise decreases more. In addition, the response to the load change, etc. can be improved. The IC won't be damaged by enlarging the capacity. The input capacitor is necessary in case the battery voltage drops, the power supply impedance increases, or the distance to the power supply is far. 1 input capacitor might be necessary for each 1 IC or for several ICs. It depends on circuit condition. Please confirm the stability by each circuit. *The output can be seen as oscillated when the overheating protection or the overcurrent protection start operation, or the input voltage is low. In this case, please lower the power consumption, decrease the load current or make the input voltage higher. Selection of Cout Generally, a ceramic capacitor has the temperature characteristic and the voltage characteristic. Please select parts in consideration of the voltage and the temperature used. TOKO recommend B characteristic type. Generally, Multi layer ceramic capacitor (MLCC) has the temperature characteristic and the voltage characteristic. Please select parts in consideration of the voltage and the temperature used. Stability area graph (Vout=-2.0 ~ -9.5V) Condition:Vin=VoutTYP-1.5V Cin=0.1F(MLCC) Cout=1.0uF 100 Unstable area ESR () 10 1 0.1 Stable area 0.01 0 50 100 Iout (mA) 150 GC3-K020B Page 24 TK721xxCS 12-3. Operating Region and Power Dissipation The power dissipation of the device is dependent on the junction temperature. Therefore, the package dissipation is assumed to be an internal limitation. The package itself does not have enough heat radiation characteristic due to the small size. Heat runs away by mounting IC on PCB. This value changes by the material, copper pattern etc. of PCB. The overheating protection operates when there is a lot of loss inside the regulator (Ambient temperature high, heat radiation bad, etc.). The output current and the output voltage will drop when the protection circuit operates. When joint temperature (Tj) reaches the set temperature, IC stops the operation. However, operation begins at once when joint temperature(Tj) decrease. Method of obtaining Pd easily Connect output terminal to GND(short circuited), and measure the input current by increasing the input voltage gradually up to 10V. The input current will reach the maximum output current, but will decrease soon according to the chip temperature rising, and will finally enter the state of thermal equilibrium (natural air cooling) The input current and the input voltage of this state will be used to calculate the Pd. Pd(mW) Vin (V) x Iin (mA) When the device is mounted, mostly achieve 600mW or more. The thermal resistance when mounted on PCB The chip joint temperature during operation is shown by Tj=jaxPd+Ta. Joint part temperature (Tj) of TK721xxCS is limited around 150C with the overheating protection circuit. Pd is the value when the overheating protection circuit starts operation. When you assume the ambient temperature to be 25C, 150=jaxPd(W)+25 jaxPd=125 ja=125/Pd (C /W) Pd(mW) 2 Pd D Pd 5 3 4 0 Example of mounting substrate PCB Material: Two layer glass epoxy substrate (x=30mm,y=30mm,t=1.0mm,Copper pattern thickness 35um) Please do derating with 5.9mW/C at Pd=736mW and 25C or higher. Thermal resistance is (ja=170C /W) 25 50 75 Ta () 100 150 Procedure (When mounted on PCB). 1.Find Pd (VinxIin when the output is short-circuited). 2. Plot Pd against 25C. 3. Connect Pd to the point corresponding to the 150C with a straight line. 4. Pull a vertical line from the maximum operating temperature in your design (e.g., 75C). 5. Read the value of Pd against the point at which the vertical line intersects the derating curve(DPd). 6. DPd / (Vinmax-Vout)=Iout (at 75C) The maximum output current at the highest operating temperature will be Iout DPd / (VinMax- -Vout). Please use the device at low temperature with better radiation. The lower temperature provides better quality. GC3-K020B Page 25 TK721xxCS The operation area graph1 Pd (mW) 1000 ON ON PCB PCB -5.9mW 800 600 PCB Material : Two layer glass epoxy substrate (x=30mm,y=30mm,t=1.0mm,Copper pattern thickness 35um) 400 UnitUnit-4.0mW 200 Pd when mounted on the substrate mentioned above (Ta=25C) SOT23-5=736mW (derating -5.9mW) 0 25 50 The current which can be used continuously with Ta=25C min is calculated by the following. Iout (mA) = 85 125 150 Ta (C) graph2 736 - 5.9 x (Ta - 25) - SOT23-5 Vin - Vout IoutMAX vs IN-OUT VOLTAGE DIFF (SOT23-5) 160 140 The operation area is the part enclosed in the line including the "0" mentioned in graph1 The overheating sensor may operate, or the output voltage may drop outside those area. The heat radiation characteristic changes in various conditions, so please check under your condition. 120 Iout MAX (mA) *Iout<150mA T a= + 2 5 100 T a= + 8 5 80 T a= + 7 0 60 40 T a= + 5 0 20 0 0 GC3-K020B 1 2 3 4 5 6 7 8 9 10 IN-OUT VOLTAGE DIFF (V) Page 26 TK721xxCS 12-4 Application hint *When using together with Positive output regulator Vout Positive REG Load TK721xxC Negative REG Vout When using positive output regulator together with this device, sometimes the voltage may not be outputted. To solve this problem, please connect Schottkey diode between GND and output, or change the timing of On/Off. *When not using ON/OFF function Please connect the Cont terminal to GND. *Notes when evaluating with output terminal is connected to GND(short-circuit) The output terminal becomes plus potential by the resonance of Cout (C element) connected to output and the short-circuit line (L element). When the output terminal becomes positive, parasitism Tr is caused inside the IC. The latch-up phenomenon occurs and in the worst case, IC may be damaged.(f0=1 / 2(L C)) This resonance appears remarkably when using a ceramic capacitor with small ESR, etc. This can be solved by connecting 2 resistance in series. As a result, the latch-up phenomenon in IC can be prevented. Generally, tantalum capacitor has enough ESR value and the influence of the resonance decreases. GC3-K020B Page 27 TK721xxCS 13. NOTES 14. OFFICES ! Please be sure that you carefully discuss your planned purchase with our office if you intend to use the products in this application manual under conditions where particularly extreme standards of reliability are required, or if you intend to use products for applications other than those listed in this application manual. " Power drive products for automobile, ship or aircraft transport systems; steering and navigation systems, emergency signal communications systems, and any system other than those mentioned above which include electronic sensors, measuring, or display devices, and which could cause major damage to life, limb or property if misused or failure to function. " Medical devices for measuring blood pressure, pulse, etc., treatment units such as coronary pacemakers and heat treatment units, and devices such as artificial organs and artificial limb systems which augment physiological functions. " Electrical instruments, equipment or systems used in disaster or crime prevention. ! Semiconductors, by nature, may fail or malfunction in spite of our devotion to improve product quality and reliability. We urge you to take every possible precaution against physical injuries, fire or other damages which may cause failure of our semiconductor products by taking appropriate measures, including a reasonable safety margin, malfunction preventive practices and fire-proofing when designing your products. ! This application manual is effective from Dec. 2004 . Note that the contents are subject to change or discontinuation without notice. When placing orders, please confirm specifications and delivery condition in writing. If you need more information on this product and other TOKO products, please contact us. ! TOKO Inc. Headquarters 1-17, Higashi-yukigaya 2-chome, Ohta-ku, Tokyo, 145-8585, Japan TEL: +81.3.3727.1161 FAX: +81.3.3727.1176 or +81.3.3727.1169 Web site: http://www.toko.co.jp/ ! TOKO America Web site: http://www.toko.com/ ! TOKO Europe Web site: http://www.tokoeurope.com/ ! TOKO Hong Kong Web site: http://www.toko.com.hk/ ! TOKO Taiwan Web site: http://www.tokohc.com.tw/ ! TOKO Singapore Web site: http://www.toko.com.sg/ ! TOKO Seoul Web site: http://www.toko.co.kr/ ! TOKO Manila Web site: http://www.toko.com.ph/ ! TOKO Brazil Web site: http://www.toko.com.br/ ! TOKO is not responsible for any problems nor for any infringement of third party patents or any other intellectual property rights that may arise from the use or method of use of the products listed in this application manual. Moreover, this application manual does not signify that TOKO agrees implicitly or explicitly to license any patent rights or other intellectual property rights which it holds. ! None of the ozone depleting substances(ODS) under the Montreal Protocol are used in our manufacturing process. Semiconductor Division YOUR DISTRIBUTOR GC3-K020B Page 28