SWITCHMODE Series
NPN Silicon Power Transistors
The MJE13009 is designed for high–voltage, high–speed power
switching inductive circuits where fall time is critical. They are
particularly suited for 115 and 220 V SWITCHMODE applications
such as Switching Regulators, Inverters, Motor Controls,
Solenoid/Relay drivers and Deflection circuits.
SPECIFICATION FEATURES:
VCEO(sus) 400 V and 300 V
Reverse Bias SOA with Inductive Loads @ TC = 100C
Inductive Switching Matrix 3 to 12 Amp, 25 and 100C
tc @ 8 A, 100C is 120 ns (Typ).
700 V Blocking Capability
SOA and Switching Applications Information.
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Rating
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Value
ÎÎÎÎ
ÎÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VCEO(sus)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
400
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VCEV
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
700
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Base Voltage
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VEBO
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
9
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Current Continuous
Peak (1)
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
IC
ICM
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
12
24
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base Current Continuous
Peak (1)
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
IB
IBM
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
6
12
ÎÎÎÎ
ÎÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Current Continuous
Peak (1)
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
IE
IEM
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
18
36
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation @ TA = 25C
Derate above 25C
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
PD
ÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎ
2
16
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Watts
mW/C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation @ TC = 25C
Derate above 25C
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
PD
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
100
800
ÎÎÎÎ
ÎÎÎÎ
Watts
mW/C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Operating and Storage Junction Temperature Range
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
TJ, Tstg
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
–65 to +150
ÎÎÎÎ
ÎÎÎÎ
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
THERMAL CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Max
ÎÎÎÎ
ÎÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, Junction to Ambient
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
RθJA
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
62.5
ÎÎÎÎ
ÎÎÎÎ
C/W
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, Junction to Case
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
RθJC
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
1.25
ÎÎÎÎ
ÎÎÎÎ
C/W
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Maximum Lead Temperature for Soldering Purposes:
1/8 from Case for 5 Seconds
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
TL
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
275
ÎÎÎÎ
ÎÎÎÎ
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.
ON Semiconductor
Semiconductor Components Industries, LLC, 2002
April, 2002 – Rev. 6 1Publication Order Number:
MJE13009/D
MJE13009
12 AMPERE
NPN SILICON
POWER TRANSISTOR
400 VOLTS
100 WATTS
*ON Semiconductor Preferred Device
*
CASE 221A–09
TO–220AB
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
123
4
MJE13009
http://onsemi.com
2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎÎ
ÎÎÎÎ
Min
ÎÎÎ
ÎÎÎ
Typ
ÎÎÎÎ
ÎÎÎÎ
Max
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
*OFF CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Sustaining Voltage
(IC = 10 mA, IB = 0)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCEO(sus)
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
400
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Î
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCEV = Rated Value, VBE(off) = 1.5 Vdc)
(VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 100C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ICEV
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1
5
Î
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Cutoff Current
(VEB = 9 Vdc, IC = 0)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
IEBO
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1
Î
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SECOND BREAKDOWN
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Second Breakdown Collector Current with base forward biased
ÎÎÎÎÎ
ÎÎÎÎÎ
IS/b
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
See Figure 1
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Second
Breakdown
Collector
Current
with
base
forward
biased
Clamped Inductive SOA with Base Reverse Biased
ÎÎÎÎÎ
IS/b
ÎÎÎÎÎÎÎÎÎÎÎ
See
Figure
1
See Figure 2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
*ON CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current Gain
(IC = 5 Adc, VCE = 5 Vdc)
(IC = 8 Adc, VCE = 5 Vdc)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
hFE
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
8
6
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
40
30
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Saturation Voltage
(IC = 5 Adc, IB = 1 Adc)
(IC = 8 Adc, IB = 1.6 Adc)
(IC = 12 Adc, IB = 3 Adc)
(IC = 8 Adc, IB = 1.6 Adc, TC = 100C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCE(sat)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
1
1.5
3
2
Î
Î
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base–Emitter Saturation Voltage
(IC = 5 Adc, IB = 1 Adc)
(IC = 8 Adc, IB = 1.6 Adc)
(IC = 8 Adc, IB = 1.6 Adc, TC = 100C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VBE(sat)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
1.2
1.6
1.5
Î
Î
Î
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DYNAMIC CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Current–Gain — Bandwidth Product
(IC = 500 mAdc, VCE = 10 Vdc, f = 1 MHz)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
fT
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
4
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Î
MHz
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 0.1 MHz)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
Cob
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
180
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Î
pF
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Resistive Load (Table 1)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Delay Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
td
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.06
ÎÎÎÎ
ÎÎÎÎ
0.1
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Rise Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
(VCC = 125 Vdc, IC = 8 A,
IB1 =I
B2 =16A t =25µs
ÎÎÎÎÎ
ÎÎÎÎÎ
tr
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.45
ÎÎÎÎ
ÎÎÎÎ
1
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
IB1 = IB2 = 1.6 A, tp = 25 µs,
Duty Cycle 1%)
ÎÎÎÎÎ
ÎÎÎÎÎ
ts
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
1.3
ÎÎÎÎ
ÎÎÎÎ
3
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Duty
Cycle
1%)
ÎÎÎÎÎ
ÎÎÎÎÎ
tf
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.2
ÎÎÎÎ
ÎÎÎÎ
0.7
µs
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Inductive Load, Clamped (Table 1, Figure 13)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Voltage Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
(IC = 8 A, Vclamp = 300 Vdc,
ÎÎÎÎÎ
ÎÎÎÎÎ
tsv
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.92
ÎÎÎÎ
ÎÎÎÎ
2.3
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Crossover Time
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
(IC
8
A
,
Vclam
300
Vdc
,
IB1 = 1.6 A, VBE(off) = 5 Vdc, TC = 100C)
ÎÎÎÎÎ
ÎÎÎÎÎ
tc
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.12
ÎÎÎÎ
ÎÎÎÎ
0.7
µs
*Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2%.
MJE13009
http://onsemi.com
3
IC, COLLECTOR CURRENT (AMP)
10µ
s
100µ
s
1m
s
dc
100
7
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
0.02
10
20
10
50
0.5
0.1
0.05
30 50 70 100
Figure 1. Forward Bias Safe Operating Area Figure 2. Reverse Bias Switching Safe
Operating Area
0.2
0.01
300 500520
14
0
800
2
100 300
TC 100°C
IB1 = 2.5 A
500 700
VBE(off) = 9 V
0
6
VCEV, COLLECTOR-EMITTER CLAMP VOLTAGE (VOLTS)
10
200 400 600
5 V
2
1
5
TC = 25°C
12
8
4
3 V
1.5
V
IC, COLLECTOR (AMP)
200
THERMAL LIMIT
BONDING WIRE LIMIT
SECOND BREAKDOWN LIM
IT
CURVES APPLY BELOW RATED
VCEO
The Safe Operating Area figures shown in Figures 1 and 2 are specified ratings for these devices under the test conditions shown.
Figure 3. Forward Bias Power Derating
TC, CASE TEMPERATURE (°C)
040 120 160
0.6
POWER DERATING FACTOR
SECOND BREAK
DOWN DERATING
1
0.8
0.4
0.2
60 100 14080
THERMAL
DERATING
20
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC – VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 1 is based on TC = 25C; T J(pk) is
variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC 25C. Second breakdown limitations do
not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 1 may be found at
any case temperature by using the appropriate curve on
Figure 3.
TJ(pk) may be calculated from the data in Figure 4. At high
case temperatures, thermal limitations will reduce the power
that can be handled to values less than the limitations
imposed by second breakdown. Use of reverse biased safe
operating area data (Figure 2) is discussed in the applications
information section.
t, TIME (ms)
1
0.01
0.01
0.7
0.2
0.1
0.05
0.02
r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED)
0.05 1 2 5 10 20 50 100 200 500
ZθJC(t) = r(t) RθJC
RθJC = 1.25°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) - TC = P(pk) ZθJC(t)
P(pk)
t1t2
DUTY CYCLE, D = t1/t2
D = 0.5
0.02
SINGLE PULSE
0.1
0.1 0.50.2 1.0 k
0.5
0.3
0.07
0.03
0.02
Figure 4. Typical Thermal Response [ZθJC(t)]
0.01
0.05
0.2
MJE13009
http://onsemi.com
4
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (AMP)IC, COLLECTOR CURRENT (AMP)
1.2
1.4
0.8
0.4
Figure 5. DC Current Gain
IC, COLLECTOR CURRENT (AMP)
0.5 1 5 7
10
Figure 6. Collector Saturation Region
0.05
IB, BASE CURRENT (AMP)
0.30.07
1.2
0.4
0
50
hFE, DC CURRENT GAIN
0.1 0.2 0.5 5
Figure 7. Base–Emitter Saturation Voltage Figure 8. Collector–Emitter Saturation
Voltage
Figure 9. Collector Cutoff Region
2
0.8
0.1
VBE, BASE-EMITTER VOLTAGE (VOLTS)
0
TJ = 25°C
0.7 3
Figure 10. Capacitance
4K
VR, REVERSE VOLTAGE (VOLTS)
C, CAPACITANCE (pF)
Cib
Cob
0.1
, COLLECTOR CURRENT (A)µIC
-0.4 -0.2
100
80
500
1.6
0.6
IC = 1 A
5
0.2 2
0.3 1 70.7 100.2 0.5 325
30
20
7
600
400
200
40
60
200100510.5
V, VOLTAGE (VOLTS)
V, VOLTAGE (VOLTS)
+0.6
3 A
0.7 1 2
1
0.5
0.7
0.4
0
0.2
0.6
0.3
VCE = 5 V
TJ = 150°C
25°C
-
55°C
20
0.3
+0.4+0.2
1
10
100
1K
10K
800
1K
2K
10 50
REVERSE FORWARD
VCE = 250 V
10 20
5 A 8 A 12 A
3
TJ = -55°C
IC/IB = 3
25°C150°C
0.3 1 70.7 100.2 0.5 325 20
0.1
IC/IB = 3
TJ = 150°C
- 55°C
25°C
TJ = 150°C
125°C
100°C
75°C
50°C
25°C
0.2 2 20
TJ = 25°C
MJE13009
http://onsemi.com
5
t1
REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING RESISTIVE
SWITCHING
OUTPUT WAVEFORMS
TEST CIRCUITS
CIRCUIT
VALUES
TEST WAVEFORMS
NOTE
PW and VCC Adjusted for Desired IC
RB Adjusted for Desired IB1
5 V
PW
DUTY CYCLE 10%
tr, tf 10 ns 68
1
k
0.001 µF
0.02 µF
1N4933
270
+5 V
1 k
2N2905
47
1/2 W
100
-VBE(off)
MJE200
D.U.T.
IB
RB
1N4933
1N4933 33
33
2N2222
1
k
MJE210
VCC
+5 V
L
IC
MR826*
Vclamp
*SELECTED FOR 1 kV
VCE
5.1 k
51
+125 V
RC
SCOPE
-4.0 V
D1
RB
TUT
t1 ADJUSTED TO
OBTAIN IC
t1 Lcoil (ICM)
VCC
t2 Lcoil (ICM)
Vclamp
+10 V 25 µs
0
-8 V
Coil Data:
Ferroxcube Core #6656
Full Bobbin (~16 Turns) #16
GAP for 200 µH/20 A
Lcoil = 200 µHVCC = 20 V
Vclamp = 300 Vdc
VCC = 125 V
RC = 15
D1 = 1N5820 or Equiv.
RB =
Test Equipment
Scope–Tektronics
475 or Equivalent
tr, tf < 10 ns
Duty Cycle = 1.0%
RB and RC adjusted
for desired IB and IC
IC
VCE
TIME
ICM
VCEM
t2
t
tf
tf CLAMPED
tf UNCLAMPED t2
Vclamp
Table 1. Test Conditions for Dynamic Performance
MJE13009
http://onsemi.com
6
APPLICATIONS INFORMATION FOR SWITCHMODE SPECIFICATIONS
INTRODUCTION
The primary considerations when selecting a power
transistor for SWITCHMODE applications are voltage and
current ratings, switching speed, and energy handling
capability. In this section, these specifications will be
discussed and related to the circuit examples illustrated in
Table 2.(1)
VOLTAGE REQUIREMENTS
Both blocking voltage and sustaining voltage are
important in SWITCHMODE applications.
Circuits B and C in Table 2 illustrate applications that
require high blocking voltage capability. In both circuits the
switching transistor is subjected to voltages substantially
higher than VCC after the device is completely off (see load
line diagrams at IC = Ileakage 0 in Table 2). The blocking
capability at this point depends on the base to emitter
conditions and the device junction temperature. Since the
highest device capability occurs when the base to emitter
junction is reverse biased (VCEV), this is the recommended
and specified use condition. Maximum ICEV at rated V CEV
is specified at a relatively low reverse bias (1.5 Volts) both
at 25°C and 100C. Increasing the reverse bias will give
some improvement in device blocking capability.
The sustaining or active region voltage requirements in
switching applications occur during turn–on and turn–off. If
the load contains a significant capacitive component, high
current and voltage can exist simultaneously during turn–on
and the pulsed forward bias SOA curves (Figure 1) are the
proper design limits.
For inductive loads, high voltage and current must be
sustained simultaneously during turn–off, in most cases,
with the base to emitter junction reverse biased. Under these
conditions the collector voltage must be held to a safe level
at or below a specific value of collector current. This can be
accomplished b y several means such as active clamping, RC
snubbing, load line shaping, etc. The safe level for these
devices is specified as a Reverse Bias Safe Operating Area
(Figure 2) which represents voltage–current conditions that
can be sustained during reverse biased turn–off. This rating
is verified under clamped conditions so that the device is
never subjected to an avalanche mode.
In the four application examples (Table 2) load lines are
shown in relation to the pulsed forward and reverse biased
SOA curves.
In circuits A and D, inductive reactance is clamped by the
diodes shown. In circuits B and C the voltage is clamped by
the output rectifiers, however, the voltage induced in the
primary leakage inductance is not clamped by these diodes
and could be large enough to destroy the device. A snubber
network or an additional clamp may be required to keep the
turn–off load line within the Reverse Bias SOA curve.
Load lines that fall within the pulsed forward biased SOA
curve during turn–on and within the reverse bias SOA curve
during turn–off are considered safe, with the following
assumptions:
1. The device thermal limitations are not exceeded.
2. The turn–on time does not exceed 10 µs (see standard
pulsed forward SOA curves in Figure 1).
3. The base drive conditions are within the specified
limits shown on the Reverse Bias SOA curve (Figure
2).
CURRENT REQUIREMENTS
An efficient switching transistor must operate at the
required current level with good fall time, high energy
handling capability and low saturation voltage. On this data
sheet, these parameters have been specified at 8 amperes
which represents typical design conditions for these devices.
The current drive requirements are usually dictated by the
VCE(sat) specification because the maximum saturation
voltage is specified at a forced gain condition which must be
duplicated or exceeded in the application to control the
saturation voltage.
SWITCHING REQUIREMENTS
In many switching applications, a major portion of the
transistor power dissipation occurs during the fall time (tfi).
For this reason considerable effort is usually devoted to
reducing the fall time. The recommended way to accomplish
this is to reverse bias the base–emitter junction during
turn–off. The reverse biased switching characteristics for
inductive loads are discussed in Figure 11 and Table 3 and
resistive loads in Figures 13 and 14. Usually the inductive
load component will be the dominant factor in
SWITCHMODE applications and the inductive switching
data will more closely represent the device performance in
actual application. The inductive switching characteristics
are derived from the same circuit used to specify the reverse
biased SOA curves, (See Table 1) providing correlation
between test procedures and actual use conditions.
(1) For detailed information on specific switching applications, see
ON Semiconductor Application Notes AN–719, AN–767.
MJE13009
http://onsemi.com
7
Figure 11. Turn–On Time
IC, COLLECTOR CURRENT (AMP)
tr
td @ VBE(off) = 5 V
100
50
1K
700
500
IC, COLLECTOR CURRENT (AMP)
0.7 3120.2
VCC = 125 V
IC/IB = 5
TJ = 25°C
0.5
200
300
t, TIME (ns)
0.3
Figure 12. Turn–Off Time
200
100
2K
1K
700 VCC = 125 V
IC/IB = 5
TJ = 25°C
300
500
t, TIME (ns)
70
75 10 20 0.7 1 20.2 0.50.3 751020
ts
tf
Figure 13. Inductive Switching
Measurements
TIME
Figure 14. Typical Inductive Switching Waveforms
(at 300 V and 12 A with IB1 = 2.4 A and VBE(off) = 5 V)
TIME 20 ns/DIV
IC
VCE
IC
VCE
CURRENT 2 A/DIV
VOLTAGE 50 V/DIV
IC
Vclamp
IB90% IB1
10%
VCEM 10%
ICM 2%
IC
Vclamp
90% VCEM 90% IC
tsv trv tfi tti
tc
RESISTIVE SWITCHING PERFORMANCE
MJE13009
http://onsemi.com
8
CIRCUIT LOAD LINE DIAGRAMS TIME DIAGRAMS
SERIES SWITCHING
REGULATOR
RINGING CHOKE
INVERTER
PUSH–PULL
INVERTER/CONVERTER
SOLENOID DRIVER
VCC VO
VCC VO
N
VCC
VO
VCC
SOLENOID
Collector CurrentCollector CurrentCollector CurrentCollector Current
24 A
12 A
TC = 100°C
TURN-
ON TURN-
OFF
VCC 400 V 700 V
COLLECTOR VOLTAGE
350 V
TURN-ON (FORWARD BIAS) SOA
ton 10 ms
DUTY CYCLE 10%
PD = 4000 W
TURN-OFF (REVERSE BIAS)
SOA
1.5 V VBE(off) 9.0 V
DUTY CYCLE 10%
1
2
1
IC
VCE
VCC
TIME
t
t
24 A
TC = 100°C
12 A
TURN-OFF
TURN-ON
VCC 400 V 1
VCC + N(Vo)
350 V
PD = 4000 W 2
TURN-ON (FORWARD BIAS) SOA
TURN-ON ton 10 ms
TURN-ON DUTY CYCLE 10%
TURN-OFF (REVERSE BIAS) SOA
TURN-OFF 1.5 V VBE(off) 9.0 V
TURN-OFF DUTY CYCLE 10%
700 V 1
COLLECTOR VOLTAGE
24 A
12 A
TC = 100°C
TURN-OFF
TURN-ON
VCC 400 V 1700 V 1
2 VCC
350 V
PD = 4000 W 2
TURN-ON (FORWARD BIAS) SOA
TURN-ON ton 10 ms
TURN-ON DUTY CYCLE 10%
TURN-OFF (REVERSE BIAS) SOA
TURN-OFF 1.5 V VBE(off) 9.0 V
TURN-OFF DUTY CYCLE 10%
24 A
12 A
TC = 100°C
TURN-OFF
TURN-ON
VCC 400 V 1700 V 1
COLLECTOR VOLTAGE
COLLECTOR VOLTAGE
TURN-OFF (REVERSE BIAS) SOA
TURN-OFF 1.5 V VBE(off) 9.0 V
TURN-OFF DUTY CYCLE 10%
350 V
PD = 4000 W 2
TURN-ON (FORWARD BIAS) SOA
TURN-ON ton 10 ms
TURN-ON DUTY CYCLE 10%
IC
VCE
VCC
t
t
VCC+
N(Vo)
LEAKAGE
SPIKE
TIME
toff
ton
IC
VCE
ton
toff
t
t
VCC
2 VCC
IC
VCE
ton toff
t
t
VCC
A
B
C
D
Table 2. Applications Examples of Switching Circuits
MJE13009
http://onsemi.com
9
Table 3. Typical Inductive Switching Performance
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
IC
AMP
ÎÎÎ
ÎÎ
Î
ÎÎÎ
TC
C
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
tsv
ns
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
trv
ns
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
tfi
ns
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
tti
ns
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
tc
ns
ÎÎÎÎ
ÎÎÎÎ
3
ÎÎÎ
ÎÎÎ
25
100
ÎÎÎÎ
ÎÎÎÎ
770
1000
ÎÎÎÎ
ÎÎÎÎ
100
230
ÎÎÎÎ
ÎÎÎÎ
150
160
ÎÎÎÎ
ÎÎÎÎ
200
200
ÎÎÎÎ
ÎÎÎÎ
240
320
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
5
ÎÎÎ
ÎÎ
Î
ÎÎÎ
25
100
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
630
820
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
72
100
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
26
55
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
10
30
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
100
180
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
8
ÎÎÎ
ÎÎ
Î
ÎÎÎ
25
100
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
720
920
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
55
70
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
27
50
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
2
8
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
77
120
ÎÎÎÎ
ÎÎÎÎ
12
ÎÎÎ
ÎÎÎ
25
100
ÎÎÎÎ
ÎÎÎÎ
640
800
ÎÎÎÎ
ÎÎÎÎ
20
32
ÎÎÎÎ
ÎÎÎÎ
17
24
ÎÎÎÎ
ÎÎÎÎ
2
4
ÎÎÎÎ
ÎÎÎÎ
41
54
NOTE: All Data recorded In the Inductive Switching Circuit In Table 1.
SWITCHING TIME NOTES
In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However, for inductive
loads which are common to SWITCHMODE power
supplies and hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate
measurements must be made on each waveform to
determine the total switching time. For this reason, the
following new terms have been defined.
tsv = Voltage Storage Time, 90% IB1 to 10% VCEM
trv = Voltage Rise Time, 10–90% VCEM
tfi = Current Fall Time, 90–10% ICM
tti = Current Tail, 10–2% ICM
tc = Crossover Time, 10% VCEM to 10% ICM
An enlarged portion of the turn–off waveforms is shown
in Figure 13 to aid in the visual identity of these terms.
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN–222:
PSWT = 1/2 VCCIC(tc) f
Typical inductive switching waveforms are shown in
Figure 14. In general, trv + tfi tc. However, at lower test
currents this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified a t 2 5C and has become a benchmark
for designers. However, for designers of high frequency
converter circuits, the user oriented specifications which
make this a “SWITCHMODE” transistor are the inductive
switching speeds (tc and tsv) which are guaranteed at 100C.
MJE13009
http://onsemi.com
10
PACKAGE DIMENSIONS
CASE 221A–09
ISSUE AA
TO–220AB
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.570 0.620 14.48 15.75
B0.380 0.405 9.66 10.28
C0.160 0.190 4.07 4.82
D0.025 0.035 0.64 0.88
F0.142 0.147 3.61 3.73
G0.095 0.105 2.42 2.66
H0.110 0.155 2.80 3.93
J0.018 0.025 0.46 0.64
K0.500 0.562 12.70 14.27
L0.045 0.060 1.15 1.52
N0.190 0.210 4.83 5.33
Q0.100 0.120 2.54 3.04
R0.080 0.110 2.04 2.79
S0.045 0.055 1.15 1.39
T0.235 0.255 5.97 6.47
U0.000 0.050 0.00 1.27
V0.045 --- 1.15 ---
Z--- 0.080 --- 2.04
B
Q
H
Z
L
V
G
N
A
K
F
123
4
D
SEATING
PLANE
–T–
C
S
T
U
R
J
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
MJE13009
http://onsemi.com
11
Notes
MJE13009
http://onsemi.com
12
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make
changes without further notice to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. “T ypical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
MJE13009/D
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800–282–9855 Toll Free USA/Canada