TM
249241, Revision 12.0
Cortina Systems® LXT9785 and LXT9785E
Advanced 8-Port 10/100 Mbps PHY
Transceivers
Datasheet
The Cortina Systems® LXT9785 and LXT9785E are 8-port Fast Ethernet PHY Transceivers supporting
IEEE 802.3 physical layer applications at 10 Mbps and 100 Mbps. These devices provide Serial/Source
Synchronous Serial Media Independent Interfaces (SMII/SS-SMII) and Reduced Media Independent
Interface (RMII) for switching and other independent port applications. The LXT9785 and LXT9785E are
identical except for the IP telephony features included in the LXT9785E transceiver. The LXT9785E is an
enhanced version of the LXT9785 that detects Data Terminal Equipment (DTE) requiring power from the
switch over a CAT5 cable. The system uses the information collected by the LXT9785E to apply power if
the DTE at the far end requires power over the cable, such as an IP telephone.
Each network port can provide a twisted-pair (TP) or Low-Voltage Positive Emitter Coupled Logic
(LVPECL) interface. The twisted-pair interface supports 10 Mbps and 100 Mbps (10BASE-T and
100BASE-TX) Ethernet over twisted-pair. The LVPECL interface supports 100 Mbps (100BASE-FX)
Ethernet over fiber-optic media.
The LXT9785/LXT9785E provides three discrete LED driver outputs for each port. The devices support
both half-duplex and full-duplex operation at 10 Mbps and 100 Mbps and require only a single 2.5 V power
supply.
Applications
Product Features
Enterprise switches
IP telephony switches
Storage Area Networks
Multi-port Network Interface Cards (NICs)
Eight IEEE 802.3-compliant 10BASE-T or
100BASE-TX ports with integrated filters.
100BASE-FX fiber-optic capability on all ports.
2.5 V operation.
Low power consumption; 250 mW per port
typical.
Multiple RMII or SMII/SS-SMII ports for
independent PHY port operation.
Auto MDI/MDIX crossover capability.
Proprietary Optimal Signal Processing™
architecture improves SNR by 3 dB over ideal
analog filters.
Optimized for dual-high stacked RJ-45
applications.
MDIO sectionalization into 2x4 or 1x8
configurations.
Supports both auto-negotiation systems and
legacy systems without auto-negotiation
capability.
Robust baseline wander correction.
Configurable through the MDIO port or external
control pins.
JTAG boundary scan.
208-pin PQFP: LXT9785HC, LXT9785EHC,
LXT9785HE.
241-ball BGA: LXT9785BC, LXT9785EBC.
196-ball BGA: LXT9785MBC (includes DTE
detection similar to the LXT9785E)
DTE detection for remote powering applications
(LXT9785E and LXT9785MBC only).
Extended temperature operation of -40 oC to
+85 oC (LXT9785E only).
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Legal Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH CORTINA SYSTEMS®PRODUCTS.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN CORTINA’S TERMS AND CONDITIONS OF SALE OF SUCH PRODUCTS, CORTINA ASSUMES NO
LIABILITY WHATSOEVER, AND CORTINA DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE
AND/OR USE OF CORTINA PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.
Cortina products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility
applications.
CORTINA SYSTEMS®, CORTINA™, and the Cortina Earth Logo are trademarks or registered trademarks of Cortina Systems, Inc. or
its subsidiaries in the US and other countries. Any other product and company names are the trademarks of their respective owners.
Copyright © 2001—2011 Cortina Systems, Inc. All rights reserved.
Page 2Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
Page 3Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Contents
Contents
1.0 Introduction.................................................................................................................................. 19
1.1 What You Will Find in This Document ................................................................................ 19
1.2 Related Documents ............................................................................................................19
2.0 Block Diagram ............................................................................................................................. 20
3.0 Pin/Ball Assignments and Signal Descriptions........................................................................ 21
3.1 PQFP Pin Assignments ...................................................................................................... 21
3.1.1 PQFP Pin Assignments – RMII Configuration ....................................................... 22
3.1.2 PQFP Pin Assignments – SMII Configuration ....................................................... 29
3.1.3 PQFP Pin Assignments – SS-SMII Configuration ................................................. 36
3.2 PQFP Signal Descriptions .................................................................................................. 43
3.2.1 Signal Name Conventions ..................................................................................... 43
3.2.2 PQFP Signal Descriptions – RMII, SMII, and SS-SMII Configurations.................. 43
3.3 BGA23 Ball Assignments.................................................................................................... 58
3.3.1 RMII BGA23 Ball List ............................................................................................. 58
3.3.2 SMII BGA23 Ball List ............................................................................................. 74
3.3.3 SS-SMII BGA23 Ball List ....................................................................................... 89
3.4 BGA23 Signal Descriptions .............................................................................................. 104
3.4.1 Signal Name Conventions ................................................................................... 104
3.4.2 Signal Descriptions – RMII, SMII, and SS-SMII Configurations .......................... 105
3.5 BGA15 Ball Assignments.................................................................................................. 120
3.5.1 BGA15 Ball List.................................................................................................... 120
3.6 BGA15 Signal Descriptions .............................................................................................. 132
3.6.1 Signal Name Conventions ................................................................................... 132
3.6.2 Signal Descriptions – SMII and SS-SMII Configurations ..................................... 132
4.0 Functional Description.............................................................................................................. 139
4.1 Introduction ....................................................................................................................... 139
4.1.1 OSP™ Architecture ............................................................................................. 139
4.1.2 Comprehensive Functionality .............................................................................. 140
4.1.2.1 Sectionalization.................................................................................... 140
4.2 Interface Descriptions .......................................................................................................140
4.2.1 10/100 Network Interface..................................................................................... 140
4.2.1.1 Twisted-Pair Interface .......................................................................... 141
4.2.1.2 MDI Crossover (MDIX)......................................................................... 142
4.2.1.3 Fiber Interface...................................................................................... 142
4.3 Media Independent Interface (MII) Interfaces................................................................... 142
4.3.1 Global MII Mode Select ....................................................................................... 142
4.3.2 Internal Loopback ................................................................................................ 143
4.3.3 RMII Data Interface.............................................................................................. 143
4.3.4 Serial Media Independent Interface (SMII) and Source Synchronous- Serial Media In-
dependent Interface (SS-SMII) ............................................................................ 144
4.3.4.1 SMII Interface....................................................................................... 144
4.3.4.2 Source Synchronous-Serial Media Independent Interface .................. 144
4.3.5 Configuration Management Interface .................................................................. 144
4.3.6 MII Isolate ............................................................................................................ 144
4.3.7 MDIO Management Interface .............................................................................. 144
4.3.8 MII Sectionalization.............................................................................................. 146
4.3.9 MII Interrupts........................................................................................................ 146
Page 4Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Contents
4.3.10 Global Hardware Control Interface ...................................................................... 147
4.3.11 FIFO Initial Fill Values.......................................................................................... 147
4.4 Operating Requirements................................................................................................... 148
4.4.1 Power Requirements ........................................................................................... 148
4.4.2 Clock/SYNC Requirements ................................................................................. 148
4.4.2.1 Reference Clock .................................................................................. 148
4.4.2.2 TxCLK Signal (SS-SMII only)............................................................... 148
4.4.2.3 TxSYNC Signal (SMII/SS-SMII)........................................................... 148
4.4.2.4 RxSYNC Signal (SS-SMII only) ........................................................... 148
4.4.2.5 RxCLK Signal (SS-SMII Only) ............................................................. 149
4.5 Initialization ....................................................................................................................... 149
4.5.1 MDIO Control Mode............................................................................................. 149
4.5.2 Hardware Control Mode....................................................................................... 149
4.5.3 Power-Down Mode .............................................................................................. 150
4.5.3.1 Global (Hardware) Power Down .......................................................... 151
4.5.3.2 Port (Software) Power Down ............................................................... 151
4.5.4 Reset ................................................................................................................... 151
4.5.5 Hardware Configuration Settings......................................................................... 151
4.6 Link Establishment............................................................................................................ 152
4.6.1 Auto-Negotiation .................................................................................................. 152
4.6.1.1 Base Page Exchange .......................................................................... 152
4.6.1.2 Manual Next Page Exchange .............................................................. 152
4.6.1.3 Controlling Auto-Negotiation ................................................................ 153
4.6.1.4 Link Criteria.......................................................................................... 153
4.6.1.5 Parallel Detection................................................................................. 153
4.6.1.6 Reliable Link Establishment While Auto MDI/MDIX is Enabled in Forced
Speed Mode......................................................................................... 154
4.7 Serial MII Operation.......................................................................................................... 154
4.7.1 SMII Reference Clock.......................................................................................... 157
4.7.2 TxSYNC Pulse (SMII/SS-SMII)............................................................................ 157
4.7.3 Transmit Data Stream.......................................................................................... 157
4.7.3.1 Transmit Enable................................................................................... 157
4.7.3.2 Transmit Error ...................................................................................... 157
4.7.4 Receive Data Stream........................................................................................... 158
4.7.4.1 Carrier Sense....................................................................................... 158
4.7.4.2 Receive Data Valid .............................................................................. 158
4.7.4.3 Receive Error ....................................................................................... 158
4.7.4.4 Receive Status Encoding..................................................................... 158
4.7.5 Collision ............................................................................................................... 158
4.7.6 Source Synchronous-Serial Media Independent Interface .................................. 159
4.8 RMII Operation ................................................................................................................. 162
4.8.1 RMII Reference Clock.......................................................................................... 162
4.8.2 Transmit Enable................................................................................................... 163
4.8.3 Carrier Sense & Data Valid.................................................................................. 163
4.8.4 Receive Error....................................................................................................... 163
4.8.5 Out-of-Band Signaling ......................................................................................... 163
4.9 100 Mbps Operation ......................................................................................................... 166
4.9.1 100BASE-X Network Operations......................................................................... 166
4.9.2 100BASE-X Protocol Sublayer Operations.......................................................... 166
4.9.2.1 PCS Sublayer ...................................................................................... 166
4.9.3 PMA Sublayer...................................................................................................... 167
4.9.3.1 Link ...................................................................................................... 168
Page 5Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Contents
4.9.3.2 Link Failure Override............................................................................ 169
4.9.3.3 Carrier Sense/Data Valid (RMII) .......................................................... 169
4.9.3.4 Carrier Sense (SMII) ............................................................................ 169
4.9.3.5 Receive Data Valid (SMII).................................................................... 169
4.9.3.6 Twisted-Pair PMD Sublayer................................................................. 169
4.9.3.7 Fiber PMD Sublayer............................................................................. 170
4.10 10 Mbps Operation ...........................................................................................................171
4.10.1 Preamble Handling .............................................................................................. 171
4.10.2 Dribble Bits .......................................................................................................... 171
4.10.3 Link Test .............................................................................................................. 171
4.10.3.1 Link Failure .......................................................................................... 172
4.10.4 Jabber.................................................................................................................. 172
4.11 DTE Discovery Process.................................................................................................... 172
4.11.1 Definitions ............................................................................................................ 172
4.11.2 Interaction between Processor, MAC, and PHY.................................................. 173
4.11.3 Management Interface and Control ..................................................................... 174
4.11.4 DTE Discovery Process Flow .............................................................................. 175
4.11.5 DTE Discovery Behavior...................................................................................... 176
4.12 Monitoring Operations ...................................................................................................... 177
4.12.1 Monitoring Auto-Negotiation ................................................................................ 177
4.12.2 Per-Port LED Driver Functions ............................................................................ 178
4.12.3 Out-of-Band Signaling ......................................................................................... 179
4.12.4 Boundary Scan Interface ..................................................................................... 180
4.12.5 State Machine...................................................................................................... 180
4.12.6 Instruction Register.............................................................................................. 180
4.12.7 Boundary Scan Register...................................................................................... 180
4.13 Cable Diagnostics Overview............................................................................................. 181
4.13.1 Features............................................................................................................... 181
4.13.2 Operation ............................................................................................................. 181
4.13.2.1 Short and Long Cable Testing Requirements...................................... 181
4.13.2.2 Precision .............................................................................................. 181
4.13.3 Implementation Considerations ........................................................................... 182
4.13.4 Basic Implementation .......................................................................................... 182
4.14 Link Hold-Off Overview..................................................................................................... 183
4.14.1 Features............................................................................................................... 183
4.14.2 Operation ............................................................................................................. 184
5.0 Application Information ............................................................................................................ 185
5.1 Design Recommendations................................................................................................ 185
5.2 General Design Guidelines............................................................................................... 185
5.2.1 Power Supply Filtering......................................................................................... 185
5.2.2 Power and Ground Plane Layout Considerations................................................ 186
5.2.2.1 Chassis Ground ................................................................................... 186
5.2.3 MII Terminations .................................................................................................. 186
5.2.4 Twisted-Pair Interface.......................................................................................... 186
5.2.4.1 Magnetic Requirements ....................................................................... 187
5.2.5 The Fiber Interface .............................................................................................. 187
5.2.6 LED Circuit........................................................................................................... 188
5.3 Typical Application Circuits............................................................................................... 188
6.0 Test Specifications.................................................................................................................... 194
7.0 Register Definitions................................................................................................................... 214
Page 6Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Contents
8.0 Package Specifications............................................................................................................. 234
8.1 Top Label Markings .......................................................................................................... 240
9.0 Ordering Information................................................................................................................. 242
Page 7Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Figures
Figures
1 Block Diagram ............................................................................................................................... 20
2 RMII 208-Pin PQFP Assignments ................................................................................................. 22
3 SMII 208-Pin PQFP Assignments ................................................................................................. 29
4 SS-SMII 208-Pin PQFP Assignments ........................................................................................... 36
5 241-Ball BGA23 Assignments (Top View)..................................................................................... 58
6 196-Ball BGA15 Assignments (Top View)................................................................................... 120
7 Interface Signals.......................................................................................................................... 141
8 Internal Loopback ........................................................................................................................ 143
9 Management Interface Read Frame Structure ............................................................................ 145
10 Management Interface Write Frame Structure ............................................................................ 145
11 Port Address Scheme.................................................................................................................. 146
12 Interrupt Logic.............................................................................................................................. 147
13 Initialization Sequence................................................................................................................. 150
14 Auto-Negotiation Operation......................................................................................................... 154
15 Typical SMII Interface.................................................................................................................. 155
16 Typical SMII Quad Sectionalization............................................................................................. 156
17 100 Mbps Serial MII Data Flow ................................................................................................... 157
18 Serial MII Transmit Synchronization............................................................................................ 157
19 Serial MII Receive Synchronization............................................................................................. 158
20 Typical SS-SMII Interface............................................................................................................ 160
21 Typical SS-SMII Quad Sectionalization....................................................................................... 161
22 SS-SMII Transmit Timing ............................................................................................................ 162
23 SS-SMII Receive Timing ............................................................................................................. 162
24 RMII Data Flow............................................................................................................................ 163
25 Typical RMII Interface.................................................................................................................. 164
26 Typical RMII Quad Sectionalization............................................................................................. 165
27 100BASE-X Frame Format.......................................................................................................... 166
28 Protocol Sublayers ...................................................................................................................... 167
29 Typical IP Telephone System Connection................................................................................... 172
30 Cortina Systems® LXT9785E Negotiation Flow Chart................................................................. 177
31 LED Pulse Stretching .................................................................................................................. 179
32 RMII Programmable Out-of-Band Signaling ................................................................................ 179
33 LED Circuit .................................................................................................................................. 188
34 Power and Ground Supply Connections ..................................................................................... 189
35 Typical Twisted-Pair Interface ..................................................................................................... 190
36 Recommended LXT9785/LXT9785E-to-3.3 V Fiber Transceiver Interface Circuitry................... 191
37 Recommended LXT9785/LXT9785E-to-5 V Fiber Transceiver Interface Circuitry...................... 192
38 ON Semiconductor Triple PECL-to-LVPECL Translator ............................................................. 193
39 SMII - 100BASE-TX Receive Timing........................................................................................... 198
40 SMII - 100BASE-TX Transmit Timing.......................................................................................... 199
41 SMII - 100BASE-FX Receive Timing........................................................................................... 200
42 SMII - 100BASE-FX Transmit Timing.......................................................................................... 200
43 SMII - 10BASE-T Receive Timing ............................................................................................... 201
44 SMII - 10BASE-T Transmit Timing .............................................................................................. 202
45 SS-SMII - 100BASE-TX Receive Timing..................................................................................... 203
46 SS-SMII - 100BASE-TX Transmit Timing.................................................................................... 203
47 SS-SMII - 100BASE-FX Receive Timing..................................................................................... 204
48 SS-SMII - 100BASE-FX Transmit Timing.................................................................................... 205
49 SS-SMII - 10BASE-T Receive Timing ......................................................................................... 205
50 SS-SMII - 10BASE-T Transmit Timing ........................................................................................ 206
Page 8Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Figures
51 RMII - 100BASE-TX Receive Timing........................................................................................... 207
52 RMII - 100BASE-TX Transmit Timing.......................................................................................... 207
53 RMII - 100BASE-FX Receive Timing........................................................................................... 208
54 RMII - 100BASE-FX Transmit Timing.......................................................................................... 209
55 RMII - 10BASE-T Receive Timing ............................................................................................... 209
56 RMII - 10BASE-T Transmit Timing .............................................................................................. 210
57 Auto-Negotiation and Fast Link Pulse Timing ............................................................................. 211
58 Fast Link Pulse Timing ................................................................................................................ 211
59 MDIO Write Timing (MDIO Sourced by MAC)............................................................................. 212
60 MDIO Read Timing (MDIO Sourced by PHY) ............................................................................. 212
61 Power-Up Timing......................................................................................................................... 213
62 RESET_L Recovery Timing......................................................................................................... 213
63 PHY Identifier Bit Mapping .......................................................................................................... 218
64 208-Pin PQFP Plastic Package Specification ............................................................................. 235
65 241-Ball BGA23 Package Specifications - Top/Side Views (LXT9785BC) ................................. 236
66 241-Ball BGA23 Package Specifications - Bottom View (LXT9785BC) ...................................... 237
67 196-Ball BGA15 Package Specs - Top/Side Views (LXT9785MBC)........................................... 238
68 196-Ball BGA15 Package – Bottom View (LXT9785MBC).......................................................... 239
69 Example of Top Marking Information Labeled as Cortina Systems, Inc...................................... 240
70 Example of Top Marking Information Labeled as Intel Corporation* ........................................... 240
71 Example of Top Marking Information Labeled as Level One Communications* ......................... 241
72 Ordering Information - Sample .................................................................................................... 243
Page 9Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Tables
Tables
1 Signal Type Descriptions............................................................................................................... 21
2 RMII PQFP Pin List ....................................................................................................................... 23
3 SMII PQFP Pin List........................................................................................................................ 30
4 SS-SMII PQFP Pin List.................................................................................................................. 37
5 RMII Signal Descriptions – PQFP ................................................................................................. 43
6 SMII/SS-SMII Common Signal Descriptions – PQFP.................................................................... 46
7 SMII Specific Signal Descriptions – PQFP .................................................................................... 46
8 SS-SMII Specific Signal Descriptions – PQFP .............................................................................. 47
9 MDIO Control Interface Signals – PQFP ....................................................................................... 48
10 Signal Detect – PQFP ................................................................................................................... 49
11 Network Interface Signal Descriptions – PQFP............................................................................. 49
12 JTAG Test Signal Descriptions – PQFP........................................................................................ 50
13 Miscellaneous Signal Descriptions – PQFP .................................................................................. 50
14 LED Signal Descriptions – PQFP .................................................................................................. 54
15 Power Supply Signal Descriptions – PQFP................................................................................... 55
16 Unused/Reserved Pins – PQFP .................................................................................................... 57
17 Receive FIFO Depth Considerations.............................................................................................57
18 RMII BGA23 Ball List in Alphanumeric Order by Signal Name ..................................................... 59
19 RMII BGA23 Ball List in Alphanumeric Order by Ball Location ..................................................... 66
20 SMII BGA23 Ball List in Alphanumeric Order by Signal Name...................................................... 74
21 SMII BGA23 Ball List in Alphanumeric Order by Ball Location...................................................... 82
22 SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name................................................ 89
23 SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location................................................ 97
24 RMII Signal Descriptions – BGA23..............................................................................................105
25 SMII/SS-SMII Common Signal Descriptions – BGA23................................................................ 108
26 SMII Specific Signal Descriptions – BGA23 ................................................................................ 108
27 SS-SMII Specific Signal Descriptions – BGA23 .......................................................................... 109
28 MDIO Control Interface Signals – BGA23 ................................................................................... 110
29 Signal Detect – BGA23................................................................................................................ 111
30 Network Interface Signal Descriptions – BGA23 ......................................................................... 111
31 JTAG Test Signal Descriptions – BGA23 .................................................................................... 112
32 Miscellaneous Signal Descriptions – BGA23 .............................................................................. 112
33 LED Signal Descriptions – BGA23 .............................................................................................. 116
34 Power Supply Signal Descriptions – BGA23............................................................................... 117
35 Unused/Reserved Pins – BGA23 ................................................................................................ 119
36 Receive FIFO Depth Configurations............................................................................................ 119
37 LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name .................................... 121
38 LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location (SMII/SS-SMII) ........... 126
39 BGA15 Signal Descriptions ........................................................................................................ 132
40 MDIX Selection............................................................................................................................ 142
41 MII Mode Select........................................................................................................................... 143
42 Global Hardware Configuration Settings ..................................................................................... 152
43 SMII Signal Summary.................................................................................................................. 155
44 RX Status Encoding Bit Definitions ............................................................................................. 159
45 SS-SMII ....................................................................................................................................... 159
46 4B/5B Coding .............................................................................................................................. 167
47 DTE Terms .................................................................................................................................. 173
48 Next Page Message #5 Code Word Definitions .......................................................................... 175
49 BSR Mode of Operation .............................................................................................................. 180
50 Supported JTAG Instructions ...................................................................................................... 180
Page 10Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Tables
51 Magnetics Requirements............................................................................................................. 187
52 Absolute Maximum Ratings......................................................................................................... 194
53 Operating Conditions................................................................................................................... 194
54 Digital I/O DC Electrical Characteristics (VCCIO = 2.5 V +/- 5%) ............................................... 195
55 Digital I/O DC Electrical Characteristics (VCCIO = 3.3 V +/- 5%) ............................................... 196
56 Digital I/O DC Electrical Characteristics – SD Pins ..................................................................... 196
57 Required Clock Characteristics ................................................................................................... 196
58 100BASE-TX Transceiver Characteristics................................................................................... 197
59 100BASE-FX Transceiver Characteristics................................................................................... 197
60 10BASE-T Transceiver Characteristics ....................................................................................... 197
61 SMII - 100BASE-TX Receive Timing Parameters ....................................................................... 198
62 SMII - 100BASE-TX Transmit Timing Parameters ...................................................................... 199
63 SMII - 100BASE-FX Receive Timing Parameters ....................................................................... 200
64 SMII - 100BASE-FX Transmit Timing Parameters ...................................................................... 201
65 SMII - 10BASE-T Receive Timing Parameters............................................................................ 201
66 SMII-10BASE-T Transmit Timing Parameters............................................................................. 202
67 SS-SMII - 100BASE-TX Receive Timing Parameters ................................................................. 203
68 SS-SMII - 100BASE-TX Transmit Timing.................................................................................... 204
69 SS-SMII - 100BASE-FX Receive Timing Parameters ................................................................. 204
70 SS-SMII - 100BASE-FX Transmit Timing Parameters ................................................................ 205
71 SS-SMII - 10BASE-T Receive Timing Parameters...................................................................... 206
72 SS-SMII - 10BASE-T Transmit Timing Parameters..................................................................... 206
73 RMII - 100BASE-TX Receive Timing Parameters ....................................................................... 207
74 RMII - 100BASE-TX Transmit Timing Parameters ...................................................................... 208
75 RMII - 100BASE-FX Receive Timing Parameters ....................................................................... 208
76 RMII - 100BASE-FX Transmit Timing Parameters ...................................................................... 209
77 RMII - 10BASE-T Receive Timing Parameters ........................................................................... 210
78 RMII - 10BASE-T Transmit Timing Parameters .......................................................................... 210
79 Auto-Negotiation and Fast Link Pulse Timing Parameters.......................................................... 211
80 MDIO Timing Parameters............................................................................................................ 212
81 Power-Up Timing Parameters ..................................................................................................... 213
82 RESET_L Recovery Timing Parameters ..................................................................................... 213
83 Register Set................................................................................................................................. 214
84 Control Register (Address 0) ....................................................................................................... 215
85 Status Register (Address 1) ........................................................................................................ 216
86 PHY Identification Register 1 (Address 2)................................................................................... 217
87 PHY Identification Register 2 (Address 3)................................................................................... 217
88 Auto-Negotiation Advertisement Register (Address 4)................................................................ 218
89 Auto-Negotiation Link Partner Base Page Ability Register (Address 5) ...................................... 219
90 Auto-Negotiation Expansion Register (Address 6) ...................................................................... 220
91 Auto-Negotiation Next Page Transmit Register (Address 7) ....................................................... 220
92 Auto-Negotiation Link Partner Next Page Receive Register (Address 8).................................... 221
93 Port Configuration Register (Address 16, Hex 10) ...................................................................... 222
94 Quick Status Register (Address 17, Hex 11)............................................................................... 223
95 Interrupt Enable Register (Address 18, Hex 12).......................................................................... 224
96 Interrupt Status Register (Address 19, Hex 13)........................................................................... 225
97 LED Configuration Register (Address 20, Hex 14)...................................................................... 226
98 Receive Error Count Register (Address 21, Hex 15)................................................................... 228
99 RMII Out-of-Band Signaling Register (Address 25, Hex 19) ....................................................... 228
100 Trim Enable Register (Address 27, Hex 1B) ............................................................................... 229
101 Cable Diagnostics Register (Address 29, Hex 1D)...................................................................... 231
Page 11Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Tables
102 Register Bit Map .......................................................................................................................... 232
103 241-Ball BGA23 Package Dimensions ........................................................................................ 237
104 196-Ball BGA15 Package Dimensions (LXT9785MBC).............................................................. 239
105 Product Information ..................................................................................................................... 242
Page 12Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Revision History
Revision History
Revision 12.0
Revision Date: 04 November 2011
Changed the name and description of the Receive Status to Receive Status/Link Change, bit 12 in Table 94, Quick Status
Register (Address 17, Hex 11), on page 223.
Changed Pin 1 settings for “CFG Pin Settings” in Table 42, Global Hardware Configuration Settings, on page 152.
Revision 11.0
Revision Date: 16 April 2007
First release of this document from Cortina Systems, Inc.
Revision Number: 010
Revision Date: 30-Mar-2006
Page Description
page 55 Modified signal description text for VCCPECL in Ta b le 15 , Power Supply Signal Descriptions – PQFP.
page 117 Modified signal description text for VCCPECL in Ta bl e 34 , Power Supply Signal Descriptions – BGA23.
page 149 Added note under Section 4.4.2.5, RxCLK Signal (SS-SMII Only).
page 152 Modified CFG (1,2,3) settings for Register bit 0.8 when set to “1” in Table 42, Global Hardware Configuration
Settings.
page 215 Added table note 6 to Register bit 0.14 (Loopback) in Table 84, Control Register (Address 0) .
page 218 Modified table note 6 (for Register bit 4.13) in Table 88, Auto-Negotiation Advertisement Register (Address 4).
page 223 Modified note in Register bit 17.11 (Collision Status) in Table 94, Quick Status Register (Address 17, Hex 11).
page 240 Added Section 8.1, Top Label Markings.
page 242 Modified Section 9.0, Ordering Information (Table 105, Product Information and Figure 72, Ordering Information -
Sample.
Revision Number: 009
Revision Date: April 30, 2004
Page Description
1 Modified 196-Ball BGA and DTE Detection bullets under Product Features.
43 Added table note 3 (regarding LINKHOLD) to Table 13, Miscellaneous Signal Descriptions – PQFP, on page 50.
88 Added table note 3 (regarding LINKHOLD) to Table 32, Miscellaneous Signal Descriptions – BGA23, on page 112.
53 Modified Table 18 “RMII BGA23 Ball List in Alphanumeric Order by Signal Name” through Table 23 “SS-SMII
BGA23 Ball List in Alphanumeric Order by Ball Location” for ball, type, and reference page corrections.
229 Modified Table 104 “Product Information” [added new packaging information].
230 Modified Figure 69 “Ordering Information - Sample” [changed Internal Package Designator for B and E, and added
the GD and definition under Package Designator).
Page 13Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Revision History
Revision Number: 008
Revision Date: April 15, 2004
Page Description
All Globally added LEDn_3 to BGA15.
229 Added Figure 68 “Cortina Systems® LXT9785MBC 196-Ball BGA15 Package – Bottom View”.
Revision Number: 007
Revision Date: August 28, 2003
Page Description
21 Modified Figure 2 “Cortina Systems® LXT9785 and Cortina Systems® LXT9785E RMII 208-Pin PQFP
Assignments”.
22 Modified Table 2 “Cortina Systems® LXT9785/LXT9785E RMII PQFP Pin List”.
26 Modified Figure 3 “Cortina Systems® LXT9785/LXT9785E SMII 208-Pin PQFP Assignments”.
27 Modified Table 3 “Cortina Systems® LXT9785/LXT9785E SMII PQFP Pin List”.
31 Modified Figure 4 “Cortina Systems® LXT9785/LXT9785E SS-SMII 208-Pin PQFP Assignments”.
32 Modified Table 4 “Cortina Systems® LXT9785/LXT9785 SS-SMII PQFP Pin List”.
36 Modified Table 5 “Cortina Systems® LXT9785/LXT9785E RMII Signal Descriptions – PQFP”.
40 Modified Table 8 “Cortina Systems® LXT9785/LXT9785E SS-SMII Specific Signal Descriptions – PQFP”.
43 Modified Table 13 “Cortina Systems® LXT9785/LXT9785E Miscellaneous Signal Descriptions – PQFP”.
50 Modified Table 16 “Cortina Systems® LXT9785/LXT9785E Unused/Reserved Pins – PQFP”.
51 Replaced old Figures 5, 6, and 7 with Figure 5 “Cortina Systems® LXT9785/LXT9785E 241-Ball BGA23
Assignments (Top View)”.
52 Modified Table 18 “Cortina Systems® LXT9785/LXT9785E RMII BGA23 Ball List in Alphanumeric Order by Signal
Name”.
57 Modified Table 19 “Cortina Systems® LXT9785/LXT9785E RMII BGA23 Ball List in Alphanumeric Order by Ball
Location”.
62 Modified Table 20 “Cortina Systems® LXT9785/LXT9785E SMII BGA23 Ball List in Alphanumeric Order by Signal
Name”.
67 Modified Table 21 “Cortina Systems® LXT9785/LXT9785E SMII BGA23 Ball List in Alphanumeric Order by Ball
Location”
72 Modified Table 22 “Cortina Systems® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by
Signal Name”.
77 Modified Table 23 “Cortina Systems® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by Ball
Location”.
82 Modified Table 23 “Cortina Systems® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by Ball
Location”.
86 Modified Table 27 “Cortina Systems® LXT9785/LXT9785E SS-SMII Specific Signal Descriptions – BGA23”.
90 Modified Table 32 “Cortina Systems® LXT9785/LXT9785E Miscellaneous Signal Descriptions – BGA23”.
97 Modified Table 35 “Cortina Systems® LXT9785/LXT9785E Unused/Reserved Pins – BGA23”.
98
Added Section 3.5, “BGA15 Ball Assignments” (including Figure 6 “Cortina Systems® LXT9785MBC 196-Ball
BGA15 Assignments (Top View)”, Table 37 “Cortina Systems® LXT9785MBC BGA15 Ball List in Alphanumeric
Order by Signal Name” through Table 39 “Cortina Systems® LXT9785 BGA15 Signal Descriptions”.
116 Added second paragraph under Section 4.1, “Introduction”.
117 Added note under Section 4.1.2.1, “Sectionalization”.
Page 14Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Revision History
119 Added note under Table 40 “Cortina Systems® LXT9785/LXT9785E MDIX Selection”.
119 Added note under Section 4.3, “Media Independent Interface (MII) Interfaces”.
120 Added note to Table 41 “Cortina Systems® LXT9785/LXT9785E MII Mode Select”.
120 Modified/added text under Section 4.3.2, “Internal Loopback”.
121 Modified text under Section 4.3.6, “MII Isolate”.
121
Section 4.3.7, “MDIO Management Interface”:
Added note under second paragraph.
Added last paragraph.
123 Added note under Section 4.3.8, “MII Sectionalization”.
124 Added new Section 4.3.11, “FIFO Initial Fill Values”
125 Modified paragraph three under Section 4.4.1, “Power Requirements”.
127 Added notes under second and last paragraphs under Section 4.5.3, “Power-Down Mode”.
128 Modified last bullet under Section 4.5.3.1, “Global (Hardware) Power Down”.
128 Added last paragraph to Section 4.5.4, “Reset”.
129 Modified Table 42 “Cortina Systems® LXT9785/LXT9785E Global Hardware Configuration Settings”.
130 Change heading and modified last line under Section 4.6.1.2, “Manual Next Page Exchange”.
130
Section 4.6.1.4, “Link Criteria”:
Changed scrambler to descrambler in first line.
Modified second paragraph.
Added two new paragraphs.
131 Added second paragraph under Section 4.6.1.5, “Parallel Detection”.
131 Modified paragraphs under Section 4.6.1.6, “Reliable Link Establishment While Auto MDI/MDIX is Enabled in
Forced Speed Mode”.
136 Changed “1110” to “0101” under Section 4.7.4.3, “Receive Error”.
141 Added note under first paragraph of Section 4.8, “RMII Operation”
148 Changed “asynchronously” to “synchronously” in second paragraph under Section 4.9.3.3, “Carrier Sense/Data
Valid (RMII)”.
148 Modified last sentence in first paragraph under Section 4.9.3.4, “Carrier Sense (SMII)”.
149 Modified paragraph under Section 4.9.3.6.3, “Polarity Correction”.
149 Added note under Section 4.9.3.7, “Fiber PMD Sublayer”.
149 Added second paragraph under Section 4.9.3.7.1, “Far End Fault Indications”.
150 Modified/added text under Section 4.10.1, “Preamble Handling”.
151 Modified text under Section 4.10.4, “Jabber”.
152 Modified first paragraph under Section 4.11, “DTE Discovery Process”.
153 Modified Item 1 of Section 4.11.2, “Interaction between Processor, MAC, and PHY”.
154 Modified second paragraph under Section 4.11.4, “DTE Discovery Process Flow”.
155 Added Section 4.11.5, “DTE Discovery Behavior”
157 Added BGA15 information into first paragraph under Section 4.12.2, “Per-Port LED Driver Functions”.
158 Added last sentence to first paragraph and note under first paragraph under Section 4.12.3, “Out-of-Band
Signaling”.
160 Added Section 4.13, “Cable Diagnostics Overview”.
Revision Number: 007
Revision Date: August 28, 2003
Page Description
Page 15Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Revision History
161 Modified/added text under Section 4.13.3, “Implementation Considerations”.
162 Added Section 4.14, “Link Hold-Off Overview”.
173 Modified Table 52 “Cortina Systems® LXT9785/LXT9785E Operating Conditions”
176 Modified Table 58 “Cortina Systems® LXT9785/LXT9785E 100BASE-FX Transceiver Characteristics”
178-195 Added note to Table 60 “Cortina Systems® LXT9785/LXT9785E SMII - 100BASE-TX Receive Timing Parameters”
through Table 77 “Cortina Systems® LXT9785/LXT9785E RMII - 10BASE-T Transmit Timing Parameters”.
178 Added table note to Table 60 “Cortina Systems® LXT9785/LXT9785E SMII - 100BASE-TX Receive Timing
Parameters”.
184 Added table note to Table 66 “Cortina Systems® LXT9785/LXT9785E SS-SMII - 100BASE-TX Receive Timing
Parameters”.
190 Added table note to Table 72 “Cortina Systems® LXT9785/LXT9785E RMII - 100BASE-TX Receive Timing
Parameters”
198 Added software power-down and note to Table 80 “Cortina Systems® LXT9785/LXT9785E Power-Up Timing
Parameters”.
199 Modified paragraphs and added last paragraph under Section 7.0, “Register Definitions”.
199 Modified Table 82 “Cortina Systems® LXT9785/LXT9785E Register Set”.
200 Modified Table 83 “Control Register (Address 0)”.
201 Modified Table 84 “Status Register (Address 1)”.
203 Modified Table 85 “PHY Identification Register 1 (Address 2)”.
203 Modified Table 86 “PHY Identification Register 2 (Address 3)”
204 Modified Table 87 “Auto-Negotiation Advertisement Register (Address 4)”
205 Modified Table 88 “Auto-Negotiation Link Partner Base Page Ability Register (Address 5)”.
206 Modified Table 89 “Auto-Negotiation Expansion Register (Address 6)”.
206 Modified Table 90 “Auto-Negotiation Next Page Transmit Register (Address 7)”.
206 Modified Table 91 “Auto-Negotiation Link Partner Next Page Receive Register (Address 8)”.
207 Modified Table 92 “Port Configuration Register (Address 16, Hex 10)”. (Register bits 16.6, 16.4:3)
209 Modified Table 93 “Quick Status Register (Address 17, Hex 11)”. (Register bit 17.8)
211 Modified Table 94 “Interrupt Enable Register (Address 18, Hex 12)”.
212 Modified Table 95 “Interrupt Status Register (Address 19, Hex 13)”.
213 Modified Table 96 “LED Configuration Register (Address 20, Hex 14)”.
214 Modified Table 97 “Receive Error Count Register (Address 21, Hex 15)”.
215 Modified Table 98 “RMII Out-of-Band Signaling Register (Address 25, Hex 19)”.
216 Modified Table 99 “Trim Enable Register (Address 27, Hex 1B)”. (Register bit 27.6)
217 Added Table 100 “Cable Diagnostics Register (Address 29, Hex 1D)”.
219 Modified Table 101 “Cortina Systems® LXT9785/LXT9785E Register Bit Map”.
226 Added Figure 102 “Cortina Systems® LXT9785MBC 196-Ball BGA15 Package Dimensions”
227 Modified table and figure under Section 9.0, “Ordering Information”.
Revision Number: 007
Revision Date: August 28, 2003
Page Description
Page 16Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Revision History
Revision Number: 006 (INTERNAL RELEASE)
Revision Date: June 10, 2003
Page Description
1Changed "pseudo-ECL (PECL)" to "Low Voltage Positive Emitter Coupled Logic (LVPECL)" in the second
paragraph, front page.
36 Modified Table 5 “Cortina Systems® LXT9785/LXT9785E RMII Signal Descriptions – PQFP”. Added last sentence
to RXER0 through RXER7 signal description.
42 Modified Table 10 “Cortina Systems® LXT9785/LXT9785E Signal Detect – PQFP”.
42 Modified Table 11 “Cortina Systems® LXT9785/LXT9785E Network Interface Signal Descriptions – PQFP”,
43 Modified Table 13 “Cortina Systems® LXT9785/LXT9785E Miscellaneous Signal Descriptions – PQFP”. Added
note to PREASEL signal description.
116 Modified Section 4.1, “Introduction”. Changed "Pseudo-ECL (PECL)" to "Low Voltage PECL (LVPECL)" in the first
paragraph, second sentence.
119 Replace text under Section 4.2.1.3, “Fiber Interface”.
120 Modified Section 4.3.2, “Internal Loopback”.
130 Modified last sentence under Section 4.6.1.4, “Link Criteria”.
131 Modified text under Section 4.6.1.5, “Parallel Detection”. Added second paragraph.
136 Modified text under Section 4.7.4.3, “Receive Error”.
145 Changed "PECL" to "LVPECL in third paragraph, first sentence under Section 4.9.1, “100BASE-X Network
Operations”.
146 Modified Figure 28 “Cortina Systems® LXT9785/LXT9785E Protocol Sublayers”.
148 Modified Section 4.9.3.3, “Carrier Sense/Data Valid (RMII)”. Changed “asynchronously to “synchronously.”
148 Modified text under Section 4.9.3.4, “Carrier Sense (SMII)”. Revised last sentence in first paragraph.
149 Modified paragraph under Section 4.9.3.6.3, “Polarity Correction”.
149 Replaced text under Section 4.9.3.7, “Fiber PMD Sublayer”.
150 Modified Section 4.10.1, “Preamble Handling”. Added text to last paragraph.
151 Modified first sentence under Section 4.10.4, “Jabber”.
152 Modified first paragraph of Section 4.11, “DTE Discovery Process”.
153 Modified Item 1 of Section 4.11.2, “Interaction between Processor, MAC, and PHY”.
158 Modified Section 4.12.3, “Out-of-Band Signaling”. Added sentence to end of first paragraph.
166 Replaced text under Section 5.2.5, “The Fiber Interface”.
170 Replaced Figure 36 “Recommended Cortina Systems® LXT9785/LXT9785E-to-3.3 V Fiber Transceiver Interface
Circuitry”.
171 Replaced Figure 37 “Recommended Cortina Systems® LXT9785/LXT9785E-to-5 V Fiber Transceiver Interface
Circuitry”.
173 Modified Table 52 “Cortina Systems® LXT9785/LXT9785E Operating Conditions” (rolled in from spec update).
174 Modified Table 53 “Cortina Systems® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics (VCCIO = 2.5 V
+/- 5%)”.
175 Modified Table 54 “Cortina Systems® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics (VCCIO = 3.3 V
+/- 5%)”.
175 Added Table 55 “Cortina Systems® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics – SD Pins”.
176 Modified Table 58 “Cortina Systems® LXT9785/LXT9785E 100BASE-FX Transceiver Characteristics”.
200 Modified Table 83 “Control Register (Address 0)”.
201 Modified Table 84 “Status Register (Address 1)”.
Page 17Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Revision History
204 Modified Table 87 “Auto-Negotiation Advertisement Register (Address 4)”.
205 Modified Table 88 “Auto-Negotiation Link Partner Base Page Ability Register (Address 5)”.
207 Modified Table 91 “Auto-Negotiation Link Partner Next Page Receive Register (Address 8)”.
207 Modified Table 92 “Port Configuration Register (Address 16, Hex 10)”.
209 Modified Table 93 “Quick Status Register (Address 17, Hex 11)”.
211 Modified Table 94 “Interrupt Enable Register (Address 18, Hex 12)” (rolled in from spec update)
212 Modified Table 95 “Interrupt Status Register (Address 19, Hex 13)”. Changed all references of RO/SC to R/LH.
214 Modified Table 97 “Receive Error Count Register (Address 21, Hex 15)”.
215 Modified Table 98 “RMII Out-of-Band Signaling Register (Address 25, Hex 19)”. Added note to Register bit 25.0.
216 Modified Table 99 “Trim Enable Register (Address 27, Hex 1B)”.
227 Modified Table 103 “Product Information”.
Revision Number: 005
Revision Date: January 2002
Page Description
1 Added bullet to Product Features
49 Modified Table 12 “Cortina Systems® LXT9785/LXT9785E Miscellaneous Signal Descriptions” (Added FIFOSEL1
and FIFOSEL0)
70 Added Section 2.6.1.6, “Reliable Link Establishment While Auto MDI/MDIX is Enabled in Forced Speed Mode”
109 Modified Figure 38 “Recommended Cortina Systems® LXT9785/LXT9785E-to-3.3 V Fiber Transceiver Interface
Circuitry”
110 Added Figure 39 “Recommended Cortina Systems® LXT9785/LXT9785E-to-5 V Fiber Transceiver Interface
Circuitry”
111 Added Figure 40 “ON Semiconductor Triple PECL-to-LVPECL Translator”
112 Modified Table 28 “Absolute Maximum Ratings”
112 Modified Table 29 “Operating Conditions”
114 Modified Table 31 “Digital I/O DC Electrical Characteristics (VCCIO = 3.3 V +/- 5%)”(Output low voltage SD pins -
Max)
129 Modified Figure 53 “RMII - 100BASE-TX Receive Timing” and Table 49 “RMII - 100BASE-TX Receive Timing
Parameters”
131 Modified Figure 55 “RMII - 100BASE-FX Receive Timing” and Table 51 “RMII - 100BASE-FX Receive Timing
Parameters”
133 Modified Figure 57 “RMII - 10BASE-T Receive Timing” and Table 53 “RMII - 10BASE-T Receive Timing
Parameters”
146 Modified Table 69 “Port Configuration Register (Address 16, Hex 10)” (Bits 16.5 and 16.6)
148 Modified Table 71 “Interrupt Enable Register (Address 18, Hex 12)”
168 Added product ordering table and diagram.
Revision Number: 006 (INTERNAL RELEASE)
Revision Date: June 10, 2003
Page Description
Page 18Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Revision History
Revision Number: 003
Revision Date: April 2001
Page Description
1 Modified and added new language to front page.
61 Reset: Modified language in first paragraph.
85 Added new section on DTE discovery.
93 Supported JTAG Instructions table: replaced long hit streams with hex.
97 LED Circuit: Modified paragraph language.
97 LED Circuit diagram: Modified diagram.
99 Replaced Typical Fiber Interface diagram.
102 Required Clock Characteristics table: Replaced SMII Input frequency and RMII Input frequency symbol with “f”.
122 Auto-Negotiation and Fast Link Pulse Timing Parameters: FLP burst width under Typ = 2.
126 Control Register table: Modified table and table notes.
128 PHY Identification Register 2 (Address 3): Modified table.
128 PHY Identifier Bit Mapping: Modified diagram.
131 Auto-Negotiation Expansion: Modified table and table notes.
133 Port Configuration Register table: Modified table and table notes.
140 Trim Enable Register: Modified table (DTE Discovery).
141 Modified Register Bit Map table.
Page 19Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
1.0 Introduction
1.0 Introduction
This document contains information on the Cortina Systems®{Doc:ProductName:Long}.
1.1 What You Will Find in This Document
This document contains the following sections:
Section 2.0, Block Diagram, on page 20
Section 3.0, Pin/Ball Assignments and Signal Descriptions, on page 21
This section contains pin/ball assignments and signal descriptions for the following:
Section 3.1, PQFP Pin Assignments, on page 21
Section 3.2, PQFP Signal Descriptions, on page 43
Section 3.3, BGA23 Ball Assignments, on page 58
Section 3.4, BGA23 Signal Descriptions, on page 104
Section 3.5, BGA15 Ball Assignments, on page 120
Section 3.6, BGA15 Signal Descriptions, on page 132
Section 4.0, Functional Description, on page 139
Section 5.0, Application Information, on page 185
Section 6.0, Test Specifications, on page 194
Section 7.0, Register Definitions, on page 214
Section 8.0, Package Specifications, on page 234
Section 9.0, Ordering Information, on page 242
1.2 Related Documents
Document Document
Number
Cortina Systems® LXT9785/LXT9785E Design and Layout Guide 249509
Cortina Systems® LXT9785/LXT9785E Specification Update 249357
Cortina Systems® LXT9785/LXT9785E 100BASE-FX Fiber Optic Transceivers: Connecting a
PECL/LVPECL Interface 250781
IP Telephony and DTE Discovery Using Cortina Systems® Ethernet PHYs 249611
Page 20Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
2.0 Block Diagram
2.0 Block Diagram
Figure 1 provides the LXT9785/LXT9785E block diagram.
Figure 1 Block Diagram
Decoder &
Descrambler
+
-
+
-
Serial to
Parallel
Converter
Scrambler
& Encoder
TxDatanParallel/Serial
Converter
Carrier Sense
Data Valid
Error Detect
RxDatan
Auto
Negotiation
Adaptive EQ with BL
Wander Cancellation
Slicer
Manchester
Decoder
Pulse
Shaper
Manchester
Encoder 10
100
10
100
Media
Select
PORT 0
PORT 1
PORT 2
PORT 3
Management /
Mode Select
Logic & LED
Drivers
Per-Port Functions
TP
Driver TP /
Fiber
Out
ADD_[4:0]
MDIO
MDC
MDINT_L
PORT 4
PORT 5
8-Port Global
Functions
TX PCS
Mgmt
Counters
ECL
Driver
TPFONn
TPFOPn
TPFINn
TPFIPn
PWRDN
REFCLK
SYNC (SMII only)
Fiber
selectn
Register Set
Register Set
Clock
Generator
Clock Generator
+
-
100TX
+
-
100FX
+
-
10BT
TP /
Fiber In
PORT 6
PORT 7
Port LED
Drivers
LEDn_[3:1]_L 3
RX PCS
RESET_L
2
2
2
RMII/SMII Contr
B3368-01
Page 21Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.0 Pin/Ball Assignments and Signal
Descriptions
3.0 Pin/Ball Assignments and Signal Descriptions
3.1 PQFP Pin Assignments
The following sections show PQFP pin assignments and signal descriptions:
Section 3.1.1, PQFP Pin Assignments – RMII Configuration, on page 22
Section 3.1.2, PQFP Pin Assignments – SMII Configuration, on page 29
Section 3.1.3, PQFP Pin Assignments – SS-SMII Configuration, on page 36
Table 1 lists the acronyms and descriptions for signal types.
Table 1 Signal Type Descriptions
Acronym Description
AI Analog Input
AO Analog Output
I Input
O Output
OD Open Drain Output
ST Schmitt Triggered Input
TS Three-State-able Output
SL Slew-rate Limited Output
IP Weak Internal Pull-Up
ID Weak Internal Pull-Down
Page 22Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
3.1.1 PQFP Pin Assignments – RMII Configuration
Figure 2 and Tab le 2, RMII PQFP Pin List, on page 23 provide LXT9785/LXT9785E RMII
PQFP pin assignments.
Figure 2 RMII 208-Pin PQFP Assignments
CRS_DV6 ..... 1
RxER6/LINKHOLD..2
TxEN6 ..... 3
TxData6_0 ..... 4
TxData6_1 ..... 5
REFCLK1 ..... 6
RxData5_1 ..... 7
RxData5_0 ..... 8
GNDIO ..... 9
CRS_DV5 ..... 10
RxER5/FIFOSEL1.. 11
TxEN5 ..... 12
TxData5_0 ..... 13
TxData5_1 ..... 14
RxData4_1 ..... 15
RxData4_0 ..... 16
CRS_DV4 ..... 17
VCCIO ..... 18
GNDIO ..... 19
RxER4/FIFOSEL0.. 20
TxEN4 ..... 21
TxData4_0 ..... 22
TxData4_1 ..... 23
MDC1 ..... 24
MDIO1 .....25
MDINT1_L .....26
RxData3_1 .....27
RxData3_0 .....28
VCCIO .....29
GNDIO .....30
CRS_DV3 .....31
RxER3 .....32
TxEN3 .....33
TxData3_0 .....34
TxData3_1 .....35
RxData2_1 .....36
RxData2_0 .....37
GNDIO .....38
CRS_DV2 .....39
RxER2/PREASEL .....40
TxEN2 .....41
TxData2_0 .....42
TxData2_1 .....43
REFCLK0 .....44
RxData1_1 .....45
RxData1_0 .....46
VCCIO .....47
GNDIO .....48
CRS_DV1 .....49
RxER1/PAUSE .....50
TxEN1 .....51
TxData1_0 .....52
156 ....... TPFIN7
155 ....... GNDR7
154 ....... TPFOP7
153 ....... TPFON7
152 ....... VCCT6/7
151 ....... TPFON6
150 ....... TPFOP6
149 ....... GNDR6
148 ....... GNDT6/7
147 ....... TPFIN6
146 ....... TPFIP6
145 ....... VCCR6
144 ....... VCCR5
143 ....... TPFIP5
142 ....... TPFIN5
141 ....... GNDR5
140 ....... TPFOP5
139 ....... TPFON5
138 ....... VCCT4/5
137 ....... TPFON4
136 ....... TPFOP4
135 ....... GNDR4
134 ....... GNDT4/5
133 ....... TPFIN4
132 ....... TPFIP4
131 ....... VCCR4
130 ....... VCCR3
129 ....... TPFIP3
128 ....... TPFIN3
127 ....... GNDT2/3
126 ....... GNDR3
125 ....... TPFOP3
124 ....... TPFON3
123 ....... VCCT2/3
122 ....... TPFON2
121 ....... TPFOP2
120 ....... GNDR2
119 ....... TPFIN2
118 ....... TPFIP2
117 ....... VCCR2
116 ....... VCCR1
115 ....... TPFIP1
114 ....... TPFIN1
113 ....... GNDT0/1
112 ....... GNDR1
111 ....... TPFOP1
110 ....... TPFON1
109 ....... VCCT0/1
108 ....... TPFON0
107 ....... TPFOP0
106 ....... GNDR0
105 ....... TPFIN0
208....... VCCIO
207....... GNDIO
206....... RxData6_0
205....... RxData6_1
204....... TxData7_1
203....... TxData7_0
202....... TxEN7
201....... RxER7
200....... CRS_DV7
199....... GNDIO
198....... RxData7_0
197....... RxData7_1
196....... VCCD
195....... GNDD
194....... LED7_3_L
193....... LED7_2_L
192....... LED7_1_L
191....... LED6_3_L
190....... LED6_2_L
189....... LED6_1_L
188....... GNDIO
187....... LED5_3_L
186....... LED5_2_L
185....... LED5_1_L
184....... VCCD
183....... GNDD
182....... LED4_3_L
181....... LED4_2_L
180....... LED4_1_L
179....... SGND
178....... ModeSel1
177....... ModeSel0
176....... Section
175....... RESET_L
174....... PWRDWN
173....... G_FX/TP_L
172....... NC
171....... TRST_L
170....... TCK
169....... TMS
168....... TDO
167....... TDI
166....... SD7
165....... SD6
164....... VCCPECL
163....... GNDPECL
162....... SD5
161....... SD4
160....... NC
159....... NC
158....... VCCR7
157....... TPFIP7
TxData1_1......53
RxData0_1......54
RxData0_0......55
VCCIO......56
GNDIO......57
CRS_DV0......58
RxER0/MDIX......59
TxEN0......60
TxData0_0......61
TxData0_1......62
MDC0......63
MDIO0......64
VCCD......65
GNDD......66
MDINT0_L......67
LED3_3_L......68
LED3_2_L......69
LED3_1_L......70
LED2_3_L......71
LED2_2_L......72
LED2_1_L......73
GNDIO......74
LED1_3_L......75
LED1_2_L......76
LED1_1_L......77
VCCD......78
GNDD......79
LED0_3_L......80
LED0_2_L......81
LED0_1_L......82
AMDIX_EN......83
MDDIS......84
CFG_3......85
CFG_2......86
CFG_1......87
ADD_4......88
ADD_3......89
ADD_2......90
ADD_1......91
ADD_0......92
TxSlew_1......93
TxSlew_0......94
SD_2P5V......95
SD0......96
SD1......97
VCCPECL......98
GNDPECL......99
SD2......100
SD3......101
NC......102
VCCR0......103
TPFIP0......104
LXT9785/9785E XX
XXXXXXXX
Part #
FPO #
Rev #
BSMC
Page 23Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
Table 2 RMII PQFP Pin List (Sheet 1 of 6)
Pin Symbol Type Reference for Full Description
1 CRS_DV6 O, TS, SL Table 5
2 RxER6/LINKHOLD O, TS, SL, ID, I, ST Table 5
Table 13
3 TxEN6 I, ID Table 5
4 TxData6_0 I, ID Table 5
5 TxData6_1 I, ID Table 5
6 REFCLK1 I Table 5
7 RxData5_1 O, TS, ID Table 5
8 RxData5_0 O, TS Table 5
9GNDIO Table 15
10 CRS_DV5 O, TS, SL Table 5
11 RxER5 /FIFOSEL1 O, TS, SL, ID, I, ST Table 5
Table 13
12 TxEN5 I, ID Table 5
13 TxData5_0 I, ID Table 5
14 TxData5_1 I, ID Table 5
15 RxData4_1 O, TS,ID Table 5
16 RxData4_0 O, TS Table 5
17 CRS_DV4 O, TS, SL Table 5
18 VCCIO Table 15
19 GNDIO Table 15
20 RxER4 /FIFOSEL0 O, TS, SL, ID, I, ST Table 5
Table 13
21 TxEN4 I, ID Table 5
22 TxData4_0 I, ID Table 5
23 TxData4_1 I, ID Table 5
24 MDC1 I, ST, ID Table 8
25 MDIO1 I/O, TS, SL, IP Table 8
26 MDINT1_L OD, TS, SL, IP Table 8
27 RxData3_1 O, TS, ID Table 5
28 RxData3_0 O, TS Table 5
29 VCCIO Table 15
30 GNDIO Table 15
31 CRS_DV3 O, TS, SL Table 5
32 RxER3 O, TS, SL, ID Table 5
33 TxEN3 I, ID Table 5
34 TxData3_0 I, ID Table 5
35 TxData3_1 I, ID Table 5
36 RxData2_1 O, TS, ID Table 5
Page 24Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
37 RxData2_0 O, TS Table 5
38 GNDIO Table 15
39 CRS_DV2 O, TS, SL Table 5
40 RxER2 (PREASEL) O, TS, SL, ID, I, ST Table 5
Table 13
41 TxEN2 I, ID Table 5
42 TxData2_0 I, ID Table 5
43 TxData2_1 I, ID Table 5
44 REFCLK0 I Table 5
45 RxData1_1 O, TS, ID Table 5
46 RxData1_0 O, TS Table 5
47 VCCIO Table 15
48 GNDIO Table 15
49 CRS_DV1 O, TS, SL Table 5
50 RxER1/PAUSE O, TS, SL, ID, I, ST Table 5
51 TxEN1 I, ID Table 5
52 TxData1_0 I, ID Table 5
53 TxData1_1 I, ID Table 5
54 RxData0_1 O, TS, ID Table 5
55 RxData0_0 O, TS Table 5
56 VCCIO Table 15
57 GNDIO Table 15
58 CRS_DV0 O, TS, SL Table 5
59 RxER0/MDIX O, TS, SL, ID, I, ST Table 5
60 TxEN0 I, ID Table 5
61 TxData0_0 I, ID Table 5
62 TxData0_1 I, ID Table 5
63 MDC0 I, ST, ID Table 8
64 MDIO0 I/O, TS, SL, IP Table 8
65 VCCD Table 15
66 GNDD Table 15
67 MDINT0_L OD, TS, SL, IP Table 8
68 LED3_3_L OD, TS, SO, IP Table 14
69 LED3_2_L OD, TS, SL, IP Table 14
70 LED3_1_L OD, TS, SL, IP Table 14
71 LED2_3_L OD, TS, SL, IP Table 14
72 LED2_2_L OD, TS, SL, IP Table 14
73 LED2_1_L OD, TS, SL, IP Table 14
74 GNDIO Table 15
Table 2 RMII PQFP Pin List (Sheet 2 of 6)
Pin Symbol Type Reference for Full Description
Page 25Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
75 LED1_3_L OD, TS, SL, IP Table 14
76 LED1_2_L OD, TS, SL, IP Table 14
77 LED1_1_L OD, TS, SL, IP Table 14
78 VCCD Table 15
79 GNDD Table 15
80 LED0_3_L OD, TS, SL, IP Table 14
81 LED0_2_L OD, TS, SL, IP Table 14
82 LED0_1_L OD, TS, SL, IP Table 14
83 AMDIX_EN I, ST, IP Table 13
84 MDDIS I, ST, ID Table 9
85 CFG_3 I, ST, ID Table 13
86 CFG_2 I, ST, ID Table 13
87 CFG_1 I, ST, ID Table 13
88 ADD_4 I, ST, ID Table 13
89 ADD_3 I, ST, ID Table 13
90 ADD_2 I, ST, ID Table 13
91 ADD_1 I, ST, ID Table 13
92 ADD_0 I, ST, ID Table 13
93 TxSLEW_1 I, ST, ID Table 13
94 TxSLEW_0 I, ST, ID Table 13
95 SD_2P5V I, ST, ID Table 10
96 SD0 I Table 10
97 SD1 I Table 10
98 VCCPECL Table 15
99 GNDPECL Table 15
100 SD2 I Table 10
101 SD3 I Table 10
102 NC Table 17
103 VCCR0 Table 15
104 TPFIP0 AO/AI Table 11
105 TPFIN0 AO/AI Table 11
106 GNDR0 Table 15
107 TPFOP0 AO/AI Table 11
108 TPFON0 AO/AI Table 11
109 VCCT0/1 Table 15
110 TPFON1 AO/AI Table 11
111 TPFOP1 AO/AI Table 11
112 GNDR1 Table 15
113 GNDT0/1 Table 15
Table 2 RMII PQFP Pin List (Sheet 3 of 6)
Pin Symbol Type Reference for Full Description
Page 26Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
114 TPFIN1 AO/AI Table 11
115 TPFIP1 AO/AI Table 11
116 VCCR1 Table 15
117 VCCR2 Table 15
118 TPFIP2 AO/AI Table 11
119 TPFIN2 AO/AI Table 11
120 GNDR2 Table 15
121 TPFOP2 AO/AI Table 11
122 TPFON2 AO/AI Table 11
123 VCCT2/3 Table 15
124 TPFON3 AO/AI Table 11
125 TPFOP3 AO/AI Table 11
126 GNDR3 Table 15
127 GNDT2/3 Table 15
128 TPFIN3 AO/AI Table 11
129 TPFIP3 AO/AI Table 11
130 VCCR3 Table 15
131 VCCR4 Table 15
132 TPFIP4 AO/AI Table 11
133 TPFIN4 AO/AI Table 11
134 GNDT4/5 Table 15
135 GNDR4 Table 15
136 TPFOP4 AO/AI Table 11
137 TPFON4 AO/AI Table 11
138 VCCT4/5 Table 15
139 TPFON5 AO/AI Table 11
140 TPFOP5 AO/AI Table 11
141 GNDR5 Table 15
142 TPFIN5 AO/AI Table 11
143 TPFIP5 AO/AI Table 11
144 VCCR5 Table 15
145 VCCR6 Table 15
146 TPFIP6 AO/AI Table 11
147 TPFIN6 AO/AI Table 11
148 GNDT6/7 Table 15
149 GNDR6 Table 15
150 TPFOP6 AO/AI Table 11
151 TPFON6 AO/AI Table 11
152 VCCT6/7 Table 15
Table 2 RMII PQFP Pin List (Sheet 4 of 6)
Pin Symbol Type Reference for Full Description
Page 27Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
153 TPFON7 AO/AI Table 11
154 TPFOP7 AO/AI Table 11
155 GNDR7 Table 15
156 TPFIN7 AO/AI Table 11
157 TPFIP7 AO/AI Table 11
158 VCCR7 Table 15
159 NC Table 17
160 NC Table 17
161 SD4 I Table 10
162 SD5 I Table 10
163 GNDPECL Table 15
164 VCCPECL Table 15
165 SD6 I Table 10
166 SD7 I Table 10
167 TDI I, ST, IP Table 12
168 TDO O, TS Table 12
169 TMS I, ST, IP Table 12
170 TCK I, ST, ID Table 12
171 TRST_L I, ST, IP Table 12
172 NC Table 17
173 G_FX/TP_L I, ST, ID Table 13
174 PWRDWN I, ST, ID Table 13
175 RESET_L I, ST, IP Table 13
176 SECTION I, ST, ID Table 13
177 ModeSel0 I, ST, ID Table 13
178 ModeSel1 I, ST, ID Table 13
179 SGND Table 15
180 LED4_1_L OD, TS, SL, IP Table 14
181 LED4_2_L OD, TS, SL, IP Table 14
182 LED4_3_L OD, TS, SL, IP Table 14
183 GNDD Table 15
184 VCCD Table 15
185 LED5_1_L OD, TS, SL, IP Table 14
186 LED5_2_L OD, TS, SL, IP Table 14
187 LED5_3_L OD, TS, SL, IP Table 14
188 GNDIO Table 15
189 LED6_1_L OD, TS, SL, IP Table 14
190 LED6_2_L OD, TS, SL, IP Table 14
191 LED6_3_L OD, TS, SL, IP Table 14
Table 2 RMII PQFP Pin List (Sheet 5 of 6)
Pin Symbol Type Reference for Full Description
Page 28Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
192 LED7_1_L OD, TS, SL, IP Table 14
193 LED7_2_L OD, TS, SL, IP Table 14
194 LED7_3_L OD, TS, SL, IP Table 5
195 GNDD Table 15
196 VCCD Table 15
197 RxData7_1 O, TS, ID Table 5
198 RxData7_0 O, TS Table 5
199 GNDIO Table 15
200 CRS_DV7 O, TS, SL Table 5
201 RxER7 O, TS, SL, ID Table 5
202 TxEN7 I, ID Table 5
203 TxData7_0 I, ID Table 5
204 TxData7_1 I, ID Table 5
205 RxData6_1 O, TS, ID Table 5
206 RxData6_0 O, TS Table 5
207 GNDIO Table 15
208 VCCIO Table 15
Table 2 RMII PQFP Pin List (Sheet 6 of 6)
Pin Symbol Type Reference for Full Description
Page 29Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
3.1.2 PQFP Pin Assignments – SMII Configuration
Figure 3 and Tab le 3, SMII PQFP Pin List, on page 30 provide the LXT9785/LXT9785E
SMII PQFP pin assignments.
Figure 3 SMII 208-Pin PQFP Assignments
NC ..... 1
NC/LINKHOLD ..... 2
NC ..... 3
TxData6 ..... 4
NC ..... 5
REFCLK1 ..... 6
NC ..... 7
RxData5 ..... 8
GNDIO ..... 9
NC ..... 10
FIFOSEL1 ..... 11
NC ..... 12
TxData5 ..... 13
NC ..... 14
NC ..... 15
RxData4 ..... 16
NC ..... 17
VCCIO ..... 18
GNDIO ..... 19
FIFOSEL0 ..... 20
NC ..... 21
TxData4 ..... 22
NC ..... 23
MDC1 ..... 24
MDIO1 ..... 25
MDINT1_L ..... 26
NC ..... 27
RxData3 ..... 28
VCCIO ..... 29
GNDIO ..... 30
NC ..... 31
NC ..... 32
NC ..... 33
TxData3 ..... 34
SYNC0 ..... 35
NC ..... 36
RxData2 ..... 37
GNDIO ..... 38
NC ..... 39
PREASEL ..... 40
NC ..... 41
TxData2 ..... 42
NC ..... 43
REFCLK0 ..... 44
NC ..... 45
RxData1 ..... 46
VCCIO ..... 47
GNDIO ..... 48
NC ..... 49
PAUSE ..... 50
NC ..... 51
TxData1 ..... 52
156 .......TPFIN7
155 .......GNDR7
154 .......TPFOP7
153 .......TPFON7
152 .......VCCT6/7
151 .......TPFON6
150 .......TPFOP6
149 .......GNDR6
148 .......GNDT6/7
147 .......TPFIN6
146 .......TPFIP6
145 .......VCCR6
144 .......VCCR5
143 .......TPFIP5
142 .......TPFIN5
141 .......GNDR5
140 .......TPFOP5
139 .......TPFON5
138 .......VCCT4/5
137 .......TPFON4
136 .......TPFOP4
135 .......GNDR4
134 .......GNDT4/5
133 .......TPFIN4
132 .......TPFIP4
131 .......VCCR4
130 .......VCCR3
129 .......TPFIP3
128 .......TPFIN3
127 .......GNDT2/3
126 .......GNDR3
125 .......TPFOP3
124 .......TPFON3
123 .......VCCT2/3
122 .......TPFON2
121 .......TPFOP2
120 .......GNDR2
119 .......TPFIN2
118 .......TPFIP2
117 .......VCCR2
116 .......VCCR1
115 .......TPFIP1
114 .......TPFIN1
113 .......GNDT0/1
112 .......GNDR1
111 .......TPFOP1
110 .......TPFON1
109 .......VCCT0/1
108 .......TPFON0
107 .......TPFOP0
106 .......GNDR0
105 .......TPFIN0
208 ....... VCCIO
207 ....... GNDIO
206 ....... RxData6
205 ....... NC
204 ....... SYNC1
203 ....... TxData7
202 ....... NC
201 ....... NC
200 ....... NC
199 ....... GNDIO
198 ....... RxData7
197 ....... NC
196 ....... VCCD
195 ....... GNDD
194 ....... LED7_3_L
193 ....... LED7_2_L
192 ....... LED7_1_L
191 ....... LED6_3_L
190 ....... LED6_2_L
189 ....... LED6_1_L
188 ....... GNDIO
187 ....... LED5_3_L
186 ....... LED5_2_L
185 ....... LED5_1_L
184 ....... VCCD
183 ....... GNDD
182 ....... LED4_3_L
181 ....... LED4_2_L
180 ....... LED4_1_L
179 ....... SGND
178 ....... ModeSel_1
177 ....... ModeSel_0
176 ....... Section
175 ....... RESET_L
174 ....... PWRDWN
173 ....... G_FX/TP_L
172 ....... NC
171....... TRST_L
170 ....... TCK
169 ....... TMS
168 ....... TDO
167 ....... TDI
166 ....... SD7
165 ....... SD6
164 ....... VCCPECL
163 ....... GNDPECL
162 ....... SD5
161 ....... SD4
160 ....... NC
159 ....... NC
158 ....... VCCR7
157 ....... TPFIP7
NC ..... 53
NC ..... 54
RxData0 ..... 55
VCCIO ..... 56
GNDIO ..... 57
NC ..... 58
MDIX ..... 59
NC ..... 60
TxData0 ..... 61
NC ..... 62
MDC0 ..... 63
MDIO0 ..... 64
VCCD ..... 65
GNDD ..... 66
MDINT0_L ..... 67
LED3_3_L ..... 68
LED3_2_L ..... 69
LED3_1_L ..... 70
LED2_3_L ..... 71
LED2_2_L ..... 72
LED2_1_L ..... 73
GNDIO ..... 74
LED1_3_L ..... 75
LED1_2_L ..... 76
LED1_1_L ..... 77
VCCD ..... 78
GNDD ..... 79
LED0_3_L ..... 80
LED0_2_L ..... 81
LED0_1_L ..... 82
AMDIX_EN ..... 83
MDDIS ..... 84
CFG_3 ..... 85
CFG_2 ..... 86
CFG_1 ..... 87
ADD_4 ..... 88
ADD_3 ..... 89
ADD_2 ..... 90
ADD_1 ..... 91
ADD_0 ..... 92
TxSlew_1 ..... 93
TxSlew_0 ..... 94
SD_2P5V ..... 95
SD0 ..... 96
SD1 ..... 97
VCCPECL ..... 98
GNDPECL ..... 99
SD2 ..... 100
SD3 ..... 101
NC ..... 102
VCCR0 ..... 103
TPFIP0 ..... 104
LXT9785/9785E XX
XXXXXXXX
Part #
FPO #
Rev #
BSMC
Page 30Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
Table 3 SMII PQFP Pin List (Sheet 1 of 6)
Pin Symbol Type1Reference for Full Description
1NC Table 16
2 NC/LINKHOLD I, ID, Table 16
Table 13
3NC Table 16
4 TxData6 I, ID Table 6
5NC Table 16
6 REFCLK1 I Table 5
7NC Table 16
8 RxData5 O, TS Table 6
9GNDIO Table 15
10 NC Table 16
11 FIFOSEL1 I, ID, ST Table 13
12 NC Table 16
13 TxData5 I, ID Table 6
14 NC Table 16
15 NC Table 16
16 RxData4 O, TS Table 6
17 NC Table 16
18 VCCIO Table 15
19 GNDIO Table 15
20 FIFOSEL0 I, ID, ST Table 13
21 NC I, ID Table 16
22 TxData4 I, ID Table 6
23 NC Table 16
24 MDC1 I, ST, ID Table 9
25 MDIO1 I/O, TS, SL, IP Table 9
26 MDINT1_L OD, TS, SL, IP Table 9
27 NC Table 16
28 RxData3 O, TS Table 6
29 VCCIO Table 15
30 GNDIO Table 15
31 NC Table 16
32 NC Table 16
33 NC Table 16
34 TxData3 I, ID Table 6
35 SYNC0 I, ID Table 7
36 NC Table 16
37 RxData2 O, TS Table 6
Page 31Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
38 GNDIO Table 15
39 NC Table 16
40 PREASEL I, ID, ST Table 13
41 NC Table 16
42 TxData2 I, ID Table 6
43 NC Table 16
44 REFCLK0 I Table 5
45 NC Table 16
46 RxData1 O, TS Table 6
47 VCCIO Table 15
48 GNDIO Table 15
49 NC Table 16
50 PAUSE I, ID, ST Table 13
51 NC Table 16
52 TxData1 I, ID Table 6
53 NC Table 16
54 NC Table 16
55 RxData0 O, TS Table 6
56 VCCIO Table 15
57 GNDIO Table 15
58 NC Table 16
59 MDIX I, ID, ST Table 13
60 NC Table 16
61 TxData0 I, ID Table 6
62 NC Table 16
63 MDC0 I, ST, ID Table 9
64 MDIO0 I/O, TS, SL, IP Table 9
65 VCCD Table 15
66 GNDD Table 15
67 MDINT0_L OD, TS, SL, IP Table 9
68 LED3_3_L OD, TS, SO, IP Table 14
69 LED3_2_L OD, TS, SL, IP Table 14
70 LED3_1_L OD, TS, SL, IP Table 14
71 LED2_3_L OD, TS, SL, IP Table 14
72 LED2_2_L OD, TS, SL, IP Table 14
73 LED2_1_L OD, TS, SL, IP Table 14
74 GNDIO Table 15
75 LED1_3_L OD, TS, SL, IP Table 14
76 LED1_2_L OD, TS, SL, IP Table 14
Table 3 SMII PQFP Pin List (Sheet 2 of 6)
Pin Symbol Type1Reference for Full Description
Page 32Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
77 LED1_1_L OD, TS, SL, IP Table 14
78 VCCD Table 15
79 GNDD Table 15
80 LED0_3_L OD, TS, SL, IP Table 14
81 LED0_2_L OD, TS, SL, IP Table 14
82 LED0_1_L OD, TS, SL, IP Table 14
83 AMDIX_EN I, ST, IP Table 13
84 MDDIS I, ST, ID Table 8
85 CFG_3 I, ST, ID Table 13
86 CFG_2 I, ST, ID Table 13
87 CFG_1 I, ST, ID Table 13
88 ADD_4 I, ST, ID Table 13
89 ADD_3 I, ST, ID Table 13
90 ADD_2 I, ST, ID Table 13
91 ADD_1 I, ST, ID Table 13
92 ADD_0 I, ST, ID Table 13
93 TxSLEW_1 I, ST, ID Table 13
94 TxSLEW_0 I, ST, ID Table 13
95 SD_2P5V I, ST, ID Table 10
96 SD0 I Table 10
97 SD1 I Table 10
98 VCCPECL Table 15
99 GNDPECL Table 15
100 SD2 I Table 10
101 SD3 I Table 10
102 NC Table 17
103 VCCR0 Table 15
104 TPFIP0 AI/AO Table 11
105 TPFIN0 AI/AO Table 11
106 GNDR0 Table 15
107 TPFOP0 AO/AI Table 11
108 TPFON0 AO/AI Table 11
109 VCCT0/1 Table 15
110 TPFON1 AO/AI Table 11
111 TPFOP1 AO/AI Table 11
112 GNDR1 Table 15
113 GNDT0/1 Table 15
114 TPFIN1 AI/AO Table 11
115 TPFIP1 AI/AO Table 11
Table 3 SMII PQFP Pin List (Sheet 3 of 6)
Pin Symbol Type1Reference for Full Description
Page 33Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
116 VCCR1 Table 15
117 VCCR2 Table 15
118 TPFIP2 AI/AO Table 11
119 TPFIN2 AI/AO Table 11
120 GNDR2 Table 15
121 TPFOP2 AO/AI Table 11
122 TPFON2 AO/AI Table 11
123 VCCT2/3 Table 15
124 TPFON3 AO/AI Table 11
125 TPFOP3 AO/AI Table 11
126 GNDR3 Table 15
127 GNDT2/3 Table 15
128 TPFIN3 AI/AO Table 11
129 TPFIP3 AI/AO Table 11
130 VCCR3 Table 15
131 VCCR4 Table 15
132 TPFIP4 AI/AO Table 11
133 TPFIN4 AI/AO Table 11
134 GNDT4/5 Table 15
135 GNDR4 Table 15
136 TPFOP4 AO/AI Table 11
137 TPFON4 AO/AI Table 11
138 VCCT4/5 Table 15
139 TPFON5 AO/AI Table 11
140 TPFOP5 AO/AI Table 11
141 GNDR5 Table 15
142 TPFIN5 AI/AO Table 11
143 TPFIP5 AI/AO Table 11
144 VCCR5 Table 15
145 VCCR6 Table 15
146 TPFIP6 AI/AO Table 11
147 TPFIN6 AI/AO Table 11
148 GNDT6/7 Table 15
149 GNDR6 Table 15
150 TPFOP6 AO/AI Table 11
151 TPFON6 AO/AI Table 11
152 VCCT6/7 Table 15
153 TPFON7 AO/AI Table 11
154 TPFOP7 AO/AI Table 11
Table 3 SMII PQFP Pin List (Sheet 4 of 6)
Pin Symbol Type1Reference for Full Description
Page 34Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
155 GNDR7 Table 15
156 TPFIN7 AI/AO Table 11
157 TPFIP7 AI/AO Table 11
158 VCCR7 Table 15
159 NC Table 17
160 NC Table 17
161 SD4 I Table 10
162 SD5 I Table 10
163 GNDPECL Table 15
164 VCCPECL Table 15
165 SD6 I Table 10
166 SD7 I Table 10
167 TDI I, ST, IP Table 12
168 TDO O, TS Table 12
169 TMS I, ST, IP Table 12
170 TCK I, ST, ID Table 12
171 TRST_L I, ST, IP Table 12
172 NC Table 17
173 G_FX/TP_L I, ST, ID Table 13
174 PWRDWN I, ST, ID Table 13
175 RESET_L I, ST, IP Table 13
176 Section I, ST, ID Table 13
177 ModeSel0 I, ST, ID Table 13
178 ModeSel1 I, ST, ID Table 13
179 SGND Table 15
180 LED4_1_L OD, TS, SL, IP Table 14
181 LED4_2_L OD, TS, SL, IP Table 14
182 LED4_3_L OD, TS, SL, IP Table 14
183 GNDD Table 15
184 VCCD Table 15
185 LED5_1_L OD, TS, SL, IP Table 14
186 LED5_2_L OD, TS, SL, IP Table 14
187 LED5_3_L OD, TS, SL, IP Table 14
188 GNDIO Table 15
189 LED6_1_L OD, TS, SL, IP Table 14
190 LED6_2_L OD, TS, SL, IP Table 14
191 LED6_3_L OD, TS, SL, IP Table 14
192 LED7_1_L OD, TS, SL, IP Table 14
193 LED7_2_L OD, TS, SL, IP Table 14
Table 3 SMII PQFP Pin List (Sheet 5 of 6)
Pin Symbol Type1Reference for Full Description
Page 35Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
194 LED7_3_L OD, TS, SL, IP Table 5
195 GNDD Table 15
196 VCCD Table 15
197 NC O, TS, ID Table 16
198 RxData7 O, TS Table 6
199 GNDIO Table 15
200 NC Table 16
201 NC Table 16
202 NC Table 16
203 TxData7 I, ID Table 6
204 SYNC1 I, ID Table 5
205 NC Table 16
206 RxData6 O, TS Table 6
207 GNDIO Table 15
208 VCCIO Table 15
Table 3 SMII PQFP Pin List (Sheet 6 of 6)
Pin Symbol Type1Reference for Full Description
Page 36Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
3.1.3 PQFP Pin Assignments – SS-SMII Configuration
Figure 4 and Table 4, SS-SMII PQFP Pin List, on page 37 provide the LXT9785/LXT9785E
SS-SMII PQFP pin assignments.
Figure 4 SS-SMII 208-Pin PQFP Assignments
NC ..... 1
NC/LINKHOLD ..... 2
NC ..... 3
TxData6 ..... 4
NC ..... 5
REFCLK1 ..... 6
RxData5 ..... 7
NC ..... 8
GNDIO ..... 9
NC ..... 10
FIFOSEL1 ..... 11
NC ..... 12
TxData5 ..... 13
NC ..... 14
RxData4 ..... 15
NC ..... 16
RxSYNC1 ..... 17
VCCIO ..... 18
GNDIO ..... 19
FIFOSEL0 ..... 20
RxCLK1 ..... 21
TxData4 ..... 22
NC ..... 23
MDC1 ..... 24
MDIO1 ..... 25
MDINT1_L ..... 26
RxData3 ..... 27
NC ..... 28
VCCIO ..... 29
GNDIO ..... 30
NC ..... 31
TxCLK0 ..... 32
NC ..... 33
TxData3 ..... 34
TxSYNC0 ..... 35
RxData2 ..... 36
NC ..... 37
GNDIO ..... 38
NC ..... 39
PREASEL ..... 40
NC ..... 41
TxData2 ..... 42
NC ..... 43
REFCLK0 ..... 44
RxData1 ..... 45
NC ..... 46
VCCIO ..... 47
GNDIO ..... 48
NC ..... 49
PAUSE ..... 50
NC ..... 51
TxData1 ..... 52
PAUSE ..... 52
156....... TPFIN7
155....... GNDR7
154....... TPFOP7
153....... TPFON7
152....... VCCT6/7
151....... TPFON6
150....... TPFOP6
149....... GNDR6
148....... GNDT6/7
147....... TPFIN6
146....... TPFIP6
145....... VCCR6
144....... VCCR5
143....... TPFIP5
142....... TPFIN5
141....... GNDR5
140....... TPFOP5
139....... TPFON5
138....... VCCT4/5
137....... TPFON4
136....... TPFOP4
135....... GNDR4
134....... GNDT4/5
133....... TPFIN4
132....... TPFIP4
131....... VCCR4
130....... VCCR3
129....... TPFIP3
128....... TPFIN3
127....... GNDT2/3
126....... GNDR3
125....... TPFOP3
124....... TPFON3
123....... VCCT2/3
122....... TPFON2
121....... TPFOP2
120....... GNDR2
119....... TPFIN2
118....... TPFIP2
117....... VCCR2
116....... VCCR1
115....... TPFIP1
114....... TPFIN1
113....... GNDT0/1
112....... GNDR1
111....... TPFOP1
110....... TPFON1
109....... VCCT0/1
108....... TPFON0
107....... TPFOP0
106....... GNDR0
105....... TPFIN0
208........ VCCIO
207........ GNDIO
206........ NC
205........ RxData6
204........ TxSYNC1
203........ TxData7
202........ NC
201........ TxCLK1
200........ NC
199........ GNDIO
198........ NC
197........ RxData7
196........VCCD
195........ GNDD
194........ LED7_3_L
193........ LED7_2_L
192........ LED7_1_L
191........ LED6_3_L
190........ LED6_2_L
189........ LED6_1_L
188........ GNDIO
187........ LED5_3_L
186........ LED5_2_L
185........ LED5_1_L
184........ VCCD
183........ GNDD
182........ LED4_3_L
181........ LED4_2_L
180........ LED4_1_L
179........ SGND
178........ ModeSel_1
177........ ModeSel_0
176........ Section
175........ RESET_L
174........ PWRDWN
173........ G_FX/TP_L
172........ NC
171....... TRST_L
170........ TCK
169........ TMS
168........ TDO
167........ TDI
166........ SD7
165........ SD6
164........ VCCPECL
163........ GNDPECL
162........ SD5
161........ SD4
160........ NC
159........ NC
158........ VCCR7
157........ TPFIP7
NC ..... 53
RxData0 ..... 54
NC ..... 55
VCCIO ..... 56
GNDIO ..... 57
RxSYNC0 ..... 58
MDIX ..... 59
RxCLK0 ..... 60
TxData0 ..... 61
NC ..... 62
MDC0 ..... 63
MDIO0 ..... 64
VCCD ..... 65
GNDD ..... 66
MDINT0_L ..... 67
LED3_3_L ..... 68
LED3_2_L ..... 69
LED3_1_L ..... 70
LED2_3_L ..... 71
LED2_2_L ..... 72
LED2_1_L ..... 73
GNDIO ..... 74
LED1_3_L ..... 75
LED1_2_L ..... 76
LED1_1_L ..... 77
VCCD ..... 78
GNDD ..... 79
LED0_3_L ..... 80
LED0_2_L ..... 81
LED0_1_L ..... 82
AMDIX_EN ..... 83
MDDIS ..... 84
CFG_3 ..... 85
CFG_2 ..... 86
CFG_1 ..... 87
ADD_4 ..... 88
ADD_3 ..... 89
ADD_2 ..... 90
ADD_1 ..... 91
ADD_0 ..... 92
TxSlew_1 ..... 93
TxSlew_0 ..... 94
SD_2P5V ..... 95
SD0 ..... 96
SD1 ..... 97
VCCPECL ..... 98
GNDPECL ..... 99
SD2 ..... 100
SD3 ..... 101
NC ..... 102
VCCR0 ..... 103
TPFIP0 ..... 104
LXT9785/9785E XX
XXXXXXXX
Part #
FPO #
Rev #
BSMC
Page 37Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
Table 4 SS-SMII PQFP Pin List (Sheet 1 of 6)
Pin Symbol Type1Reference for Full Description
1NC Ta b le 1 6
2 NC/ LINKHOLD
I, ID
Ta b l e 1 6
Ta b l e 1 3
3NC Ta b le 1 6
4 TxData6 I, ID Ta b l e 6
5NC I Ta b l e 1 6
6 REFCLK1 I Ta b l e 6
7 RxData5 O, TS, ID Ta b l e 8
8NC Ta b le 1 6
9GNDIO Ta b l e 1 5
10 NC Ta b l e 1 6
11 FIFOSEL1 I, ID, ST Ta b l e 1 3
12 NC Ta b l e 1 6
13 TxData5 I, ID Ta b l e 6
14 NC Ta b l e 1 6
15 RxData4 O, TS, ID Ta b l e 8
16 NC Ta b l e 1 6
17 RxSYNC1 O, TS, ID Ta bl e 8
18 VCCIO Ta b l e 1 5
19 GNDIO Ta b l e 1 5
20 FIFOSEL0 I, ID, ST Ta b l e 1 3
21 RxCLK1 O, TS, ID Ta b l e 8
22 TxData4 I, ID Ta b l e 6
23 NC Ta b l e 1 6
24 MDC1 I, ST, ID Ta b l e 9
25 MDIO1 I/O, TS, SL, IP Ta b l e 9
26 MDINT1_L OD, TS, SL, IP Ta b l e 9
27 RxData3 O, TS, ID Ta b l e 8
28 NC Ta b l e 1 6
29 VCCIO Ta b l e 1 5
30 GNDIO Ta b l e 1 5
31 NC Ta b l e 1 6
32 TxCLK0 I, ID Ta b l e 8
33 NC Ta b l e 1 6
34 TxData3 I, ID Ta b l e 6
35 TxSYNC0 I, ID Ta b l e 8
36 RxData2 O, TS, ID Ta b l e 8
37 NC Ta b l e 1 6
Page 38Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
38 GNDIO Ta b l e 1 5
39 NC Ta b l e 1 6
40 PREASEL I, ST Ta b l e 1 3
41 NC Ta b l e 1 6
42 TxData2 I, ID Ta b l e 6
43 NC Ta b l e 1 6
44 REFCLK0 I Ta b l e 6
45 RxData1 O, TS, ID Ta b l e 8
46 NC Ta b l e 1 6
47 VCCIO Ta b l e 1 5
48 GNDIO Ta b l e 1 5
49 NC Ta b l e 1 6
50 PAUSE I, ID, ST Ta b l e 1 3
51 NC Ta b l e 1 6
52 TxData1 I, ID Ta b l e 6
53 NC Ta b l e 1 6
54 RxData0 O, TS, ID Ta b l e 8
55 NC Ta b l e 1 6
56 VCCIO Ta b l e 1 5
57 GNDIO Ta b l e 1 5
58 RxSYNC0 O, TS, ID Ta bl e 8
59 MDIX I, ID, ST Ta b l e 1 3
60 RxCLK0 Ta b l e 8
61 TxData0 I, ID Ta b l e 6
62 NC Ta b l e 1 6
63 MDC0 I, ST, ID Ta b l e 9
64 MDIO0 I/O, TS, SL, IP Ta b l e 9
65 VCCD Ta b l e 1 5
66 GNDD Ta b l e 1 5
67 MDINT0_L OD, TS, SL, IP Ta b l e 9
68 LED3_3_L OD, TS, SO, IP Ta b l e 1 4
69 LED3_2_L OD, TS, SL, IP Ta b l e 1 4
70 LED3_1_L OD, TS, SL, IP Ta b l e 1 4
71 LED2_3_L OD, TS, SL, IP Ta b l e 1 4
72 LED2_2_L OD, TS, SL, IP Ta b l e 1 4
73 LED2_1_L OD, TS, SL, IP Ta b l e 1 4
74 GNDIO Ta b l e 1 5
75 LED1_3_L OD, TS, SL, IP Ta b l e 1 4
76 LED1_2_L OD, TS, SL, IP Ta b l e 1 4
Table 4 SS-SMII PQFP Pin List (Sheet 2 of 6)
Pin Symbol Type1Reference for Full Description
Page 39Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
77 LED1_1_L OD, TS, SL, IP Ta b l e 1 4
78 VCCD Ta b l e 1 5
79 GNDD Ta b l e 1 5
80 LED0_3_L OD, TS, SL, IP Ta b l e 1 4
81 LED0_2_L OD, TS, SL, IP Ta b l e 1 4
82 LED0_1_L OD, TS, SL, IP Ta b l e 1 4
83 AMDIX_EN I, ST, IP Ta b l e 1 3
84 MDDIS I, ST, ID Ta b l e 9
85 CFG_3 I, ST, ID Ta b le 1 3
86 CFG_2 I, ST, ID Ta b le 1 3
87 CFG_1 I, ST, ID Ta b le 1 3
88 ADD_4 I, ST, ID Ta b le 1 3
89 ADD_3 I, ST, ID Ta b le 1 3
90 ADD_2 I, ST, ID Ta b le 1 3
91 ADD_1 I, ST, ID Ta b le 1 3
92 ADD_0 I, ST, ID Ta b le 1 3
93 TxSLEW_1 I, ST, ID Ta b l e 1 3
94 TxSLEW_0 I, ST, ID Ta b l e 1 3
95 SD_2P5V I, ST, ID Ta b l e 1 0
96 SD0 I Ta b l e 1 0
97 SD1 I Ta b l e 1 0
98 VCCPECL Ta b l e 1 5
99 GNDPECL Ta b l e 1 5
100 SD2 I Ta b l e 1 0
101 SD3 I Ta b l e 1 0
102 NC Ta b l e 1 6
103 VCCR0 Ta b l e 1 5
104 TPFIP0 AI/AO Ta b l e 11
105 TPFIN0 AI/AO Ta b l e 11
106 GNDR0 Ta b l e 1 5
107 TPFOP0 AO/AI Ta b l e 11
108 TPFON0 AO/AI Ta b l e 11
109 VCCT0/1 Ta b l e 1 5
110 TPFON1 AO/AI Ta b l e 11
111 TPFOP1 AO/AI Ta b l e 11
112 GNDR1 Ta b l e 1 5
113 GNDT0/1 Ta b l e 1 5
114 TPFIN1 AI/AO Ta b l e 11
115 TPFIP1 AI/AO Ta b l e 11
Table 4 SS-SMII PQFP Pin List (Sheet 3 of 6)
Pin Symbol Type1Reference for Full Description
Page 40Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
116 VCCR1 Ta b l e 1 5
117 VCCR2 Ta b l e 1 5
118 TPFIP2 AI/AO Ta b l e 11
119 TPFIN2 AI/AO Ta b l e 11
120 GNDR2 Ta b l e 1 5
121 TPFOP2 AO/AI Ta b l e 11
122 TPFON2 AO/AI Ta b l e 11
123 VCCT2/3 Ta b l e 1 5
124 TPFON3 AO/AI Ta b l e 11
125 TPFOP3 AO/AI Ta b l e 11
126 GNDR3 Ta b l e 1 5
127 GNDT2/3 Ta b l e 1 5
128 TPFIN3 AI/AO Ta b l e 11
129 TPFIP3 AI/AO Ta b l e 11
130 VCCR3 Ta b l e 1 5
131 VCCR4 Ta b l e 1 5
132 TPFIP4 AI/AO Ta b l e 11
133 TPFIN4 AI/AO Ta b l e 11
134 GNDT4/5 Ta b l e 1 5
135 GNDR4 Ta b l e 1 5
136 TPFOP4 AO/AI Ta b l e 11
137 TPFON4 AO/AI Ta b l e 11
138 VCCT4/5 Ta b l e 1 5
139 TPFON5 AO/AI Ta b l e 11
140 TPFOP5 AO/AI Ta b l e 11
141 GNDR5 Ta b l e 1 5
142 TPFIN5 AI/AO Ta b l e 11
143 TPFIP5 AI/AO Ta b l e 11
144 VCCR5 Ta b l e 1 5
145 VCCR6 Ta b l e 1 5
146 TPFIP6 AI/AO Ta b l e 11
147 TPFIN6 AI/AO Ta b l e 11
148 GNDT6/7 Ta b l e 1 5
149 GNDR6 Ta b l e 1 5
150 TPFOP6 AO/AI Ta b l e 11
151 TPFON6 AO/AI Ta b l e 11
152 VCCT6/7 Ta b l e 1 5
153 TPFON7 AO/AI Ta b l e 11
154 TPFOP7 AO/AI Ta b l e 11
Table 4 SS-SMII PQFP Pin List (Sheet 4 of 6)
Pin Symbol Type1Reference for Full Description
Page 41Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
155 GNDR7 Ta b l e 1 5
156 TPFIN7 AI/AO Ta b l e 11
157 TPFIP7 AI/AO Ta b l e 11
158 VCCR7 Ta b l e 1 5
159 NC Ta b l e 1 6
160 NC Ta b l e 1 6
161 SD4 I Ta b l e 1 0
162 SD5 I Ta b l e 1 0
163 GNDPECL Ta b l e 1 5
164 VCCPECL Ta b l e 1 5
165 SD6 I Ta b l e 1 0
166 SD7 I Ta b l e 1 0
167 TDI I, ST, IP Ta b le 1 2
168 TDO O, TS Ta b l e 1 2
169 TMS I, ST, IP Ta b l e 1 2
170 TCK I, ST, ID Ta bl e 1 2
171 TRST_L I, ST, IP Ta b l e 1 2
172 NC Ta b l e 1 6
173 G_FX/TP_L I, ST, ID Ta b l e 1 3
174 PWRDWN I, ST, ID Ta b le 1 3
175 RESET_L I, ST, IP Ta b l e 1 3
176 SECTION I, ST, ID Ta b l e 1 3
177 ModeSel0 I, ST, ID Ta b l e 1 3
178 ModeSel1 I, ST, ID Ta b l e 1 3
179 SGND Ta b l e 1 5
180 LED4_1_L OD, TS, SL, IP Ta b l e 1 4
181 LED4_2_L OD, TS, SL, IP Ta b l e 1 4
182 LED4_3_L OD, TS, SL, IP Ta b l e 1 4
183 GNDD Ta b l e 1 5
184 VCCD Ta b l e 1 5
185 LED5_1_L OD, TS, SL, IP Ta b l e 1 4
186 LED5_2_L OD, TS, SL, IP Ta b l e 1 4
187 LED5_3_L OD, TS, SL, IP Ta b l e 1 4
188 GNDIO Ta b l e 1 5
189 LED6_1_L OD, TS, SL, IP Ta b l e 1 4
190 LED6_2_L OD, TS, SL, IP Ta b l e 1 4
191 LED6_3_L OD, TS, SL, IP Ta b l e 1 4
192 LED7_1_L OD, TS, SL, IP Ta b l e 1 4
193 LED7_2_L OD, TS, SL, IP Ta b l e 1 4
Table 4 SS-SMII PQFP Pin List (Sheet 5 of 6)
Pin Symbol Type1Reference for Full Description
Page 42Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.1 PQFP Pin Assignments
194 LED7_3_L OD, TS, SL, IP Ta b l e 1 4
195 GNDD Ta b l e 1 5
196 VCCD Ta b l e 1 5
197 RxData7 O, TS, ID Ta b l e 8
198 NC Ta b l e 1 6
199 GNDIO Ta b l e 1 5
200 NC Ta b l e 1 6
201 TxCLK1 I, ID Ta b l e 8
202 NC Ta b l e 1 6
203 TxData7 I, ID Ta b l e 6
204 TxSYNC1 I, ID Ta b l e 8
205 RxData6 O, TS, ID Ta b l e 8
206 NC Ta b l e 1 6
207 GNDIO Ta b l e 1 5
208 VCCIO Ta b l e 1 5
Table 4 SS-SMII PQFP Pin List (Sheet 6 of 6)
Pin Symbol Type1Reference for Full Description
Page 43Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
3.2 PQFP Signal Descriptions
3.2.1 Signal Name Conventions
Signal names may contain either a port designation or a serial designation, or a
combination of the two designations. Signal naming conventions are as follows:
Port Number Only. Individual signals that apply to a particular port are designated by
the Signal Mnemonic, immediately followed by the Port Designation. For example,
Transmit Enable signals would be identified as TxEN0, TxEN1, and TxEN2.
Serial Number Only. A set of signals which are not tied to any specific port are
designated by the Signal Mnemonic, followed by an underscore and a serial
designation. For example, a set of three Global Configuration signals would be
identified as CFG_1, CFG_2, and CFG_3.
Port and Serial Number. In cases where each port is assigned a set of multiple
signals, each signal is designated in the following order: Signal Mnemonic, Port
Designation, an underscore, and the serial designation. For example, a set of three Port
Configuration signals would be identified as RxData0_0 and RxData0_1, RxData1_0
and RxData1_1, and RxData2_0 and RxData2_1.
3.2.2 PQFP Signal Descriptions – RMII, SMII, and SS-SMII
Configurations
Table 5 through Table 17, Receive FIFO Depth Considerations, on page 57 provide PQFP
signal descriptions. Ball designations are included for cross-reference.
Table 5 RMII Signal Descriptions – PQFP (Sheet 1 of 3)
Pin-Ball
Designation Symbol Type1Signal Description2,3
PQFP PBGA
44
6
E6,
E12
REFCLK0
REFCLK1 I
Reference Clock.
50 MHz RMII reference clock is always required. RMII
inputs are sampled on the rising edge of REFCLK,
RMII outputs are sourced on the falling edge.
61
62
E2,
F4
TxData0_0
TxData0_1 I, ID
Transmit Data - Port 0.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 0 are clocked in synchronously to REFCLK.
52
53
C3,
D4
TxData1_0
TxData1_1 I, ID
Transmit Data - Port 1.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 1 are clocked in synchronously to REFCLK
42
43
B5
A4
TxData2_0
TxData2_1 I, ID
Transmit Data - Port 2.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 2 are clocked in synchronously to REFCLK.
34
35
D8,
A6
TxData3_0
TxData3_1 I, ID
Transmit Data - Port 3.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 3 are clocked in synchronously to REFCLK.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W
Power-Down modes and during H/W reset.
Page 44Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
22
23
A11,
C10
TxData4_0
TxData4_1 I, ID
Transmit Data - Port 4.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 4 are clocked in synchronously to REFCLK.
13
14
B13,
D11
TxData5_0
TxData5_1 I, ID
Transmit Data - Port 5.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 5 are clocked in synchronously to REFCLK.
4
5
D13,
A16
TxData6_0
TxData6_1 I, ID
Transmit Data - Port 6.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 6 are clocked in synchronously to REFCLK.
203
204
E14,
C16
TxData7_0
TxData7_1 I, ID
Transmit Data - Port 7.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 7 are clocked in synchronously to REFCLK.
60
51
41
33
21
12
3
202
E3,
B2,
C6,
A7,
B11,
A14,
C14,
D16
TxEN0
TxEN1
TxEN2
TxEN3
TxEN4
TxEN5
TxEN6
TxEN7
I, ID
Transmit Enable - Ports 0-7.
Active High input enables respective port transmitter.
This signal must be synchronous to the REFCLK.
55
54
C2,
B1
RxData0_0
RxData0_1
O, TS
O, TS, ID
Receive Data - Port 0.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
46
45
A3,
B4
RxData1_0
RxData1_1
O, TS
O, TS, ID
Receive Data - Port 1.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
37
36
B6,
C7
RxData2_0
RxData2_1
O, TS
O, TS, ID
Receive Data - Port 2.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
28
27
D9,
B9
RxData3_0
RxData3_1
O, TS
O, TS, ID
Receive Data - Port 3.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
16
15
A13,
C12
RxData4_0
RxData4_1
O, TS
O, TS, ID
Receive Data - Port 4.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
8
7
B14,
B15
RxData5_0
RxData5_1
O, TS
O, TS, ID
Receive Data - Port 5.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
206
205
C15,
B17
RxData6_0
RxData6_1
O, TS
O, TS, ID
Receive Data - Port 6.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
Table 5 RMII Signal Descriptions – PQFP (Sheet 2 of 3)
Pin-Ball
Designation Symbol Type1Signal Description2,3
PQFP PBGA
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W
Power-Down modes and during H/W reset.
Page 45Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
198
197
E16,
F14
RxData7_0
RxData7_1
O, TS
O, TS, ID
Receive Data - Port 7.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
58
49
39
31
17
10
1
200
E4,
C4,
A5,
B8,
B12,
D12,
B16,
E15
CRS_DV0
CRS_DV1
CRS_DV2
CRS_DV3
CRS_DV4
CRS_DV5
CRS_DV6
CRS_DV7
O, TS, SL,
ID
Carrier Sense/Receive Data Valid - Ports 0-7.
On detection of valid carrier, these signals are asserted
asynchronously with respect to REFCLK. CRS_DVn is
de-asserted on loss of carrier, synchronous to
REFCLK.
59
50
40
32
20
11
2
201
D2,
D5,
D7,
C8,
A12,
A15,
A17,
D17
RxER0
RxER1
RxER2
RxER3
RxER4
RxER5
RxER6
RxER7
O, TS, SL,
ID
Receive Error - Ports 0-7.
These signals are synchronous to the respective
REFCLK. Active High indicates that received code
group is invalid, or that PLL is not locked.
The RxER signals have the following additional
function pins:
RxER0 (MDIX)
RxER1 (PAUSE)
RxER2 (PREASEL)
RxER4 (FIFOSEL0)
RxER5 (FIFOSEL1)
RxER6 (LINKHOLD)
Table 5 RMII Signal Descriptions – PQFP (Sheet 3 of 3)
Pin-Ball
Designation Symbol Type1Signal Description2,3
PQFP PBGA
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W
Power-Down modes and during H/W reset.
Page 46Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
Table 6 SMII/SS-SMII Common Signal Descriptions – PQFP
Pin/Ball
Designation Symbol Type1Signal Description2
PQFP PBGA
61
52
42
34
22
13
4
203
E2,
C3,
B5,
D8,
A11,
B13,
D13,
E14
TxData0
TxData1
TxData2
TxData3
TxData4
TxData5
TxData6
TxData7
I, ID
Transmit Data - Ports 0-7.
These serial input streams provide data to be transmitted to
the network. The LXT9785/LXT9785E clocks the data in
synchronously to REFCLK.
44
6
E6,
E12
REFCLK0
REFCLK1 I
Reference Clock.
The LXT9785/LXT9785E always requires a 125 MHz
reference clock input. Refer to Functional Description for
detailed clock requirements. REFCLK0 and REFCLK1 are
always connected regardless of sectionalization mode.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode.
Table 7 SMII Specific Signal Descriptions – PQFP
Pin/Ball
Designation Symbol Type1Signal Description2,3
PQFP PBGA
35
204
A6,
C16
SYNC0
SYNC1 I, ID
SMII Synchronization.
The MAC must generate a SYNC pulse every 10 REFCLK
cycles to synchronize the SMII. SYNC0 is used when 1x8
port sectionalization is selected. SYNC0 and SYNC1 are to
be used when 2x4 port sectionalization is chosen.
55
46
37
28
16
8
206
198
C2,
A3,
B6,
D9,
A13,
B14,
C15,
E16
RxData0
RxData1
RxData2
RxData3
RxData4
RxData5
RxData6
RxData7
O, TS
Receive Data - Ports 0-7.
These serial output streams provide data received from the
network. The LXT9785/LXT9785E drives the data out
synchronously to REFCLK.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode.
3. RxData[0:7] outputs are three-stated in Isolation and hardware power-down modes and during hardware
reset.
Page 47Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
Table 8 SS-SMII Specific Signal Descriptions – PQFP
Pin/Ball
Designation Symbol Type1Signal Description2,3
PQFP PBGA
35
204
A6,
C16
TxSYNC0
TxSYNC1 I, ID
SS-SMII Transmit Synchronization.
The MAC must generate a TxSYNC pulse every 10 TxCLK
cycles to mark the start of TxData segments. TxSYNC0 is
used when 1x8 port sectionalization is selected.
58
17
E4,
B12
RxSYNC0
RxSYNC1
O, TS,
ID
SS-SMII Receive Synchronization.
The LXT9785/LXT9785E generates these pulses every 10
RxCLK cycles to mark the start of RxData segments for the
MAC. RxSYNC1 is used when 1x8 port sectionalization is
selected. RxSYNC0 may not be used. These outputs are
only enabled when SS-SMII mode is enabled.
32
201
C8,
D17
TxCLK0
TxCLK1 I, ID
SS-SMII Transmit Clock.
The MAC sources this 125 MHz clock as the timing
reference for TxData and TxSYNC. Only TxCLK0 is used
when 1x8 port sectionalization is selected. See
Section 4.4.2, Clock/SYNC Requirements, on page 148 for
detailed clock requirements.
60
21
E3,
B11
RxCLK0
RxCLK1
O, TS,
ID
SS-SMII Receive Clock.
The LXT9785/LXT9785E generates these clocks, based on
REFCLK, to provide a timing reference for RxData and
RxSYNC to the MAC. RxCLK1 is used when 1x8 port
sectionalization is selected. RxCLK0 may not be used. See
Section 4.4.2, Clock/SYNC Requirements, on page 148 for
detailed clock requirements. These outputs are only
enabled when SS-SMII mode is enabled.
54
45
36
27
15
7
205
197
B1,
B4,
C7,
B9,
C12,
B15,
B17,
F14
RxData0
RxData1
RxData2
RxData3
RxData4
RxData5
RxData6
RxData7
O, TS,
ID
Receive Data - Ports 0-7.
These serial output streams provide data received from the
network. The LXT9785/LXT9785E drives the data out
synchronously to REFCLK.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. RxData[0:7], RxSYNC[0:1], and RxCLK[0:1] outputs are three-stated in Isolation and H/W Power-Down
modes and during H/W reset.
Page 48Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
Table 9 MDIO Control Interface Signals – PQFP
Pin/Ball
Designation Symbol Type1Signal Description2,3,4
PQFP PBGA
64
25
F3,
A10
MDIO0
MDIO1
I/O, TS, SL,
IP
Management Data Input/Output.
Bidirectional serial data channel for communication
between the PHY and MAC or switch ASIC. Only MDIO0
is used when 1x8 port sectionalization is selected. In 2x4
port sectionalization mode, MDIO0 accesses ports 0-3
and MDIO1 accesses ports 4-7. Refer to Figure 21 on
page 161.
67
26
F1,
C9
MDINT0_L
MDINT1_L
OD,TS, SL,
IP
Management Data Interrupt.
When Register bit 18.1 = 1, an active Low output on this
Pin indicates status change. Only MDINT0_L is used
when 1x8 port sectionalization is selected. In 2x4 port
sectionalization mode, MDINT0_L is associated with
ports 0-3 and MDINT1_L is associated with ports 4-7.
Refer to Figure 21 on page 161.
63
24
E1,
B10
MDC0
MDC1 I, ST, ID
Management Data Clock.
Clock for the MDIO serial data channel. Maximum
frequency is 20 MHz. Only MDC0 is used when 1x8 port
sectionalization is selected. In 2x4 port sectionalization
mode, MDC0 clocks ports 0-3 register accesses and
MDC1 clocks ports 4-7 register accesses. Refer to
Figure 21 on page 161.
84 L1 MDDIS I, ST, ID
Management Disable.
When MDDIS is tied High, the MDIO port is completely
disabled and the Hardware Control Interface pins set
their respective bits at power up and reset.
When MDDIS is pulled Low at power up or reset, via the
internal pull-down resistor or by tying it to ground, the
Hardware Control Interface Pins control only the initial or
“default” values of their respective register bits. After the
power-up/reset cycle is complete, bit control reverts to
the MDIO serial channel.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. MDIO[0:1] and MDINT[0:1] outputs are three-stated in H/W Power-Down mode and during H/W reset.
4. Supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an “X.Y” notation,
where X is the register number (0-32) and Y is the bit number (0-15).
Page 49Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
Table 10 Signal Detect – PQFP
Pin/Ball
Designation Symbol Type1Signal Description2,3
PQFP PBGA
95 P1 SD_2P5V I, ST, ID
Signal Detect 2.5 Volt Interface.
SD input threshold voltage select.
Tie to VCCPECL = Select 2.5 V LVPECL input levels
Float or Tie to GNDPECL = Select 3.3 V LVPECL input
levels
96
97
100
101
161
162
165
166
P2,
N4,
P3,
N5,
P15,
P16,
P17,
N17
SD0
SD1
SD2
SD3
SD4
SD5
SD6
SD7
I
Signal Detect - Ports 0-7.
Signal Detect input from the fiber transceiver (these inputs
are only active for ports operating in fiber mode).
Logic High = Normal operation (the process of searching
for receive idles for the purpose of bringing link up is
initiated)
Logic Low = Link is declared lost
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode.
3. Tie SD[0:7] inputs to GNDPECL if unused.
Table 11 Network Interface Signal Descriptions – PQFP
Pin/Ball Designation
Symbol Type1Signal Description
PQFP PBGA
107, 108
111, 110
121, 122
125, 124
136, 137
140, 139
150, 151
154, 153
T2, U1,
T3, R4,
T6, U5,
U7, T7,
T10, R10,
T11, U11,
T14,U15,
R14, T15
TPFOP0, TPFON0
TPFOP1, TPFON1
TPFOP2, TPFON2
TPFOP3, TPFON3
TPFOP4, TPFON4
TPFOP5, TPFON5
TPFOP6, TPFON6
TPFOP7, TPFON7
AO/AI
Twisted-Pair/Fiber Outputs2, Positive &
Negative, Ports 0-7.
During 100BASE-TX or 10BASE-T operation,
TPFO pins drive 802.3 compliant pulses onto
the line.
During 100BASE-FX operation, TPFO pins
produce differential LVPECL outputs for fiber
transceivers.
104, 105
115, 114
118, 119
129, 128
132, 133
143, 142
146, 147
157, 156
R2, T1,
U3, T4,
R6, T5,
T8, R8,
T9, U9,
U13, T12,
R12, T13,
R16, T16
TPFIP0, TPFIN0
TPFIP1, TPFIN1
TPFIP2, TPFIN2
TPFIP3, TPFIN3
TPFIP4, TPFIN4
TPFIP5, TPFIN5
TPFIP6, TPFIN6
TPFIP7, TPFIN7
AI/AO
Twisted-Pair/Fiber Inputs3, Positive &
Negative, Ports 0-7.
During 100BASE-TX or 10BASE-T operation,
TPFI pins receive differential 100BASE-TX or
10BASE-T signals from the line.
During 100BASE-FX operation, TPFI pins
receive differential LVPECL inputs from fiber
transceivers.
1. Type Column Coding: AI = Analog Input, AO = Analog Output.
2. Switched to Inputs (see TPFIP/N description) when not in fiber mode and MDIX is not active [that is,
twisted-pair, non-crossover MDI mode].
3. Switched to Outputs (see TPFOP/N description) when not in fiber mode and MDIX is not active [that is,
twisted-pair, non-crossover MDI mode].
Page 50Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
Table 12 JTAG Test Signal Descriptions – PQFP
Pin/Ball
Designation Symbol Type1Signal Description2,3
PQFP PBGA
167 N14 TDI I, ST, IP Test Data Input.
Test data sampled with respect to the rising edge of TCK.
168 N15 TDO O, TS Test Data Output.
Test data driven with respect to the falling edge of TCK.
169 N16 TMS I, ST, IP Test Mode Select.
170 M16 TCK I, ST, ID Test Clock.
Clock input for JTAG test.
171 M17 TRST I, ST, IP Test Reset.
Reset input for JTAG test.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain, TS = Three-State-able output, SMT = Schmitt
Triggered input, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. TDO output is three-stated in H/W Power-Down mode and during H/W reset.
Table 13 Miscellaneous Signal Descriptions – PQFP (Sheet 1 of 4)
Pin/Ball
Designation Symbol Type1Signal Description2
PQFP PBGA
94
93
N3,
M4
TxSLEW_0
TxSLEW_1 I, ST, ID
Tx Output Slew Controls 0 and 1 Defaults.
These pins are read at startup or reset. Their value at
that time is used to set the default state of Register bits
27.11:10 for all ports. These register bits can be read
and overwritten after startup / reset.
These pins select the TX output slew rate for all ports
(rise and fall time) as follows:
TxSLEW_1 TxSLEW_0 Slew Rate (Rise and Fall
Time)
0 0 3.3 ns
0 1 3.6 ns
1 0 3.9 ns
1 1 4.2 ns
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal
Pull-Down.
2. The IP/ID resistors are disabled during hardware power-down mode.
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).
Page 51Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
50 D5 PAUSE I, ID, ST
Pause Default.
This pin is read at startup or reset. Its value at that time
is used to set the default state of Register bit 4.10 for all
ports. This register bit can be read and overwritten after
startup / reset.
When High, the LXT9785/LXT9785E advertises Pause
capabilities on all ports during auto-negotiation.
This pin is shared with RMII-RxER1. An external pull-up
resistor (see applications section for value) can be used
to set Pause active while RxER1 is three-stated during
H/W reset. If no pull-up is used, the default Pause state
is set inactive via the internal pull-down resistor.
174 L14 PWRDWN I, ST, ID
Power-Down.
When High, forces the LXT9785/LXT9785E into global
power-down mode.
Pin is not on JTAG chain.
175 M15 RESET_L I, ST, IP
Reset.
This active low input is ORed with the control register
Reset Register bit 0.15. When held Low, all outputs are
forced to inactive state.
Pin is not on JTAG chain.
88
89
90
91
92
L4,
M2,
M3,
N1,
N2
ADD_4
ADD_3
ADD_2
ADD_1
ADD_0
I, ST, ID
Address <4:0>.
Sets base address. Each port adds its port number
(starting with 0) to this address to determine its PHY
address.
Port 0 Address = Base
Port 1 Address = Base + 1
Port 2 Address = Base + 2
Port 3 Address = Base + 3
Port 4 Address = Base + 4
Port 5 Address = Base + 5
Port 6 Address = Base + 6
Port 7 Address = Base + 7
178
177
L17,
L16
MODESEL_1
MODESEL_0 I, ST, ID
Mode Select[1:0].
00 = RMII
01 = SMII
10 = SS-SMII
11 = Reserved
All ports are configured the same. Interfaces cannot be
mixed and must be all RMII, SMII, or SS-SMII.
176 L15 SECTION I, ST, ID
Sectionalization Select.
This pin selects sectionalization into separate ports.
0 = 1x8 ports,
1 = 2x4 ports
Table 13 Miscellaneous Signal Descriptions – PQFP (Sheet 2 of 4)
Pin/Ball
Designation Symbol Type1Signal Description2
PQFP PBGA
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal
Pull-Down.
2. The IP/ID resistors are disabled during hardware power-down mode.
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).
Page 52Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
83 K1 AMDIX_EN I, ST, IP
Auto MDIX Enable Default.
This pin is read at startup or reset. Its value at that time
is used to set the default state of Register bit 27.9 for all
ports. These register bits can be read and overwritten
after startup / reset. Refer to Table 40 on page 142.
When active (High), automatic MDI crossover (MDIX)
(regardless of segmentation) is selected for all ports.
When inactive (Low) MDIX is selected according to the
MDIX pin.
59 D2 MDIX I, ID, ST
MDIX Select Default.
This pin is read at startup or reset. Its value at that time
is used to set the default state of Register bit 27.8 for all
ports. These register bits can be read and overwritten
after startup / reset. Refer to Table 40, MDIX Selection,
on page 142.
When AMDIX_EN is active this pin is ignored.
When AMDIX_EN is inactive, all ports are forced to the
MDI or the MDIX function regardless of segmentation. If
this pin is active (high), MDI crossover (MDIX) is
selected. If this pin is inactive, non-crossover MDI mode
is set.
This pin is shared with RMII-RxER0. An external pull-up
resistor (see applications section for value) can be used
to set MDIX active while RxER0 is three-stated during
H/W reset. If no pull-up is used, the default MDIX state
is set inactive via the internal pull-down resistor. Do not
tie this pin directly to VCCIO (vs. using a pull-up) in
non-RMII modes.
85
86
87
L2,
L3,
M1
CFG_3
CFG_2
CFG_1
I, ST, ID
Global Port Configuration Defaults 1-3.
These pins are read at startup or reset. Their value at
that time is used to set the default state of register bits
shown in Table 42, Global Hardware Configuration
Settings, on page 152 for all ports. These register bits
can be read and overwritten after startup / reset.
When operating in Hardware Control Mode, these pins
provide configuration control options for all the ports
(refer to page 152 for details).
173 M14 G_FX/TP_L I, ST, ID
Global FX/TP_L Enable Default.
This pin is read at startup or reset. Its value at that time
is used to set the default state of Register bit 16.0 for all
ports. These register bits can be read and overwritten
after startup / reset. Refer to Table 93, Port
Configuration Register (Address 16, Hex 10), on
page 222.
This input selects whether all the ports are defaulted to
TP vs. FX mode.
Table 13 Miscellaneous Signal Descriptions – PQFP (Sheet 3 of 4)
Pin/Ball
Designation Symbol Type1Signal Description2
PQFP PBGA
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal
Pull-Down.
2. The IP/ID resistors are disabled during hardware power-down mode.
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).
Page 53Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
11
20
A15
A12
FIFOSEL1
FIFOSEL0 I, ID, ST
FIFO Select <1:0>.
These pins are read at startup or reset. Their value at
that time is used to set the default state of Register bits
18.15:14 for all ports. These register bits can be read
and overwritten after startup/reset.
These pins are shared with RMII-RxER<5:4>. An
external pull-up resistor (see applications section for
value) can be used to set FIFO Select<1:0> to active
while RxER<5:4> are three-stated during hardware
reset. If no pull-up is used, the default FIFO select state
is set via the internal pull-down resistors.
See Table 17, Receive FIFO Depth Considerations, on
page 57.
40 D7 PREASEL I, ID, ST
Preamble Select.
This pin is read at startup or reset. Its value at that time
is used to set the default state of Register bit 16.5 for all
ports. This register bit can be read and overwritten after
startup/reset.
This pin is shared with RMII-RxER2. An external pull-up
resistor (see applications section for value) can be used
to set Preamble Select to active while RxER2 is
three-stated during hardware reset. If no pull-up is used,
the default Preamble Select state is set via the internal
pull-down resistors.
Note: Preamble select has no effect in 100 Mbps
operation.
2 A17 LINKHOLD3ID
LINKHOLD Default. This pin is read at startup or reset.
Its value at that time is used to set the default state of
Register bit 0.11 for all ports. This register bit can be
read and overwritten after startup / reset. When High,
the LXT9785/LXT9785E powers down all ports.
This pin is shared with RMII-RxER6. An external pull-up
resistor (see applications section for value) can be used
to set LINKHOLD active while RxER6 is tri-stated during
H/W reset. If no pull-up is used, the default LINKHOLD
state is set inactive via the internal pull-down resistor.
Table 13 Miscellaneous Signal Descriptions – PQFP (Sheet 4 of 4)
Pin/Ball
Designation Symbol Type1Signal Description2
PQFP PBGA
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal
Pull-Down.
2. The IP/ID resistors are disabled during hardware power-down mode.
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).
Page 54Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
Table 14 LED Signal Descriptions – PQFP (Sheet 1 of 2)
Pin/Ball
Designation Symbol Type1Signal Description2,3
PQFP PBGA
82
81
80
K3,
K2,
J1
LED0_1_L
LED0_2_L
LED0_3_L
OD, TS, SL,
IP
Port 0 LED Drivers 1-3.
These pins drive LED indicators for Port 0. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
77
76
75
J4,
J3,
H1
LED1_1_L
LED1_2_L
LED1_3_L
OD, TS, SL,
IP
Port 1 LED Drivers 1-3.
These pins drive LED indicators for Port 1. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
73
72
71
H2,
H3,
G1
LED2_1_L
LED2_2_L
LED2_3_L
OD, TS, SL,
IP
Port 2 LED Drivers 1-3.
These pins drive LED indicators for Port 2. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
70
69
68
F2,
G3,
G4
LED3_1_L
LED3_2_L
LED3_3_L
OD, TS, SL,
IP
Port 3 LED Drivers 1-3.
These pins drive LED indicators for Port 3. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
180
181
182
K16,
K17,
J17
LED4_1_L
LED4_2_L
LED4_3_L
OD, TS, SL,
IP
Port 4 LED Drivers 1-3.
These pins drive LED indicators for Port 4. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. The LED outputs are three-stated in H/W Power-Down mode and during H/W reset.
Page 55Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
185
186
187
J15,
J16,
H17
LED5_1_L
LED5_2_L
LED5_3_L
OD, TS, SL,
IP
Port 5 LED Drivers 1-3.
These pins drive LED indicators for Port 5. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
189
190
191
H15,
H16,
G17
LED6_1_L
LED6_2_L
LED6_3_L
OD, TS, SL,
IP
Port 6 LED Drivers 1-3.
These pins drive LED indicators for Port 6. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
192
193
194
G15,
F17,
F16
LED7_1_L
LED7_2_L
LED7_3_L
OD, TS, SL,
IP
Port 7 LED Drivers 1-3.
These pins drive LED indicators for Port 7. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
Table 15 Power Supply Signal Descriptions – PQFP (Sheet 1 of 2)
Pin/Ball Designation
Symbol Type Signal Description
PQFP PBGA
65, 78, 184,
196
G13, J14,
F5, J5 VCCD - Digital Power Supply - Core.
+2.5 V supply for core digital circuits.
18, 29, 47,
56, 208
A2, A8,
C1, C11,
D14
VCCIO -
Digital Power Supply - I/O Ring.
+2.5/3.3 V supply for digital I/O circuits. The digital input
circuits running off of this rail, having a TTL-level
threshold and over-voltage protection, may be
interfaced with 3.3/5.0 V, when the IO supply is 3.3 V,
and 2.5/3.3/5.0 V when 2.5 V.
98, 164 L13, L5 VCCPECL -
Digital Power Supply - PECL Signal Detect Inputs.
+2.5/3.3 V supply for PECL Signal Detect input circuits.
If Fiber Mode is not used (that is, G_FX/TP_L is pulled
Low), the VCCPECL pins may be tied to GNDPECL to
save power.
103, 116,
117, 130,
131, 144,
145, 158
N13, P4,
P7, P8,
P9, P10,
P11, P12
VCCR - Analog Power Supply - Receive.
+2.5 V supply for all analog receive circuits.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
Table 14 LED Signal Descriptions – PQFP (Sheet 2 of 2)
Pin/Ball
Designation Symbol Type1Signal Description2,3
PQFP PBGA
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. The LED outputs are three-stated in H/W Power-Down mode and during H/W reset.
Page 56Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
109, 123,
138, 152
N6, N7,
N9, N11,
N12
VCCT - Analog Power Supply - Transmit.
+2.5 V supply for all analog transmit circuits.
66, 79,
183, 195
A1, A9,
B3, B7,
C5, C13,
C17, D1,
D3, D6,
D10, D15,
E5, E7,
E9, E11,
E13, E17,
F13, H8,
H9, H10,
J8, J9,
J10, K8,
K9, K10
GNDD -
Digital Ground.
Ground return for core digital supplies (VCCD). All
ground pins can be tied together using a single ground
plane.
9, 19, 30,
38, 48, 57,
74, 188,
199, 207
–GNDIO-
Digital GND - I/O Ring.
Ground return for digital I/O circuits (VCCIO).
99, 163 M5, M13 GNDPECL - Digital GND - PECL Signal Detect Inputs.
Ground return for PECL Signal Detect input circuits.
106, 112,
120, 126,
135, 141,
149, 155
P5, P6,
P13, R7,
R9, R11,
R13, U8
GNDR -
Analog Ground - Receive.
Ground return for receive analog supply. All ground pins
can be tied together using a single ground plane.
113, 127,
134, 148
P14, R1,
R3, R5,
R15, R17,
T17, U2,
U4, U6,
U10, U12,
U14, U16,
U17
GNDT -
Analog Ground - Transmit.
Ground return for transmit analog supply. All ground
pins can be tied together using a single ground plane.
179 K14 SGND -
Substrate Ground.
Ground for chip substrate. All ground pins can be tied
together using a single ground plane.
Table 15 Power Supply Signal Descriptions – PQFP (Sheet 2 of 2)
Pin/Ball Designation
Symbol Type Signal Description
PQFP PBGA
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
Page 57Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.2 PQFP Signal Descriptions
Table 16 Unused/Reserved Pins – PQFP
Pin/Ball
Designation Symbol Type1Signal Description
PQFP PBGA
NC
F15, G2,
G5, G14,
G16, H4,
H14, J2,
J13, K4,
K15
NC No Connection.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
Table 17 Receive FIFO Depth Considerations
FIFOSEL1 FIFOSEL0 Register 18.15 Value Register 18.14 Value
00 1 0
01 1 1
10 0 0
11 0 1
Page 58Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
3.3 BGA23 Ball Assignments
The following sections provide BGA23 ball location and signal description information for
RMII, SMII, and SS-SMII:
3.3.1, RMII BGA23 Ball List, on page 58
3.3.2, SMII BGA23 Ball List, on page 74
3.3.3, SS-SMII BGA23 Ball List, on page 89
3.4, BGA23 Signal Descriptions, on page 104
Figure 5 illustrates the LXT9785/LXT9785E 241-ball BGA23 ball locations for RMII, SMII,
and SS-SMII.
3.3.1 RMII BGA23 Ball List
The following tables provide the RMII BGA23 ball locations and signal names arranged in
alphanumeric order as follows:
Table 18, RMII BGA23 Ball List in Alphanumeric Order by Signal Name
Table 19, RMII BGA23 Ball List in Alphanumeric Order by Ball Location, on page 66
Figure 5 241-Ball BGA23 Assignments (Top View)
B1498-01
A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
= No Ball
U6U5U4U3U2U1
T6T5T4T3T2T1
R6R5R4R3R2R1
P6P5P4P3P2P1
N6N5N4N3N2N1
M6M5M4M3M2M1
L6L5L4L3L2L1
K6K5K4K3K2K1
J6J5J4J3J2J1
H6H5H4H3H2H1
G6G5G4G3G2G1
F17F16F15F14F13F12F11F10F9F8F7F6F5F4F3F2F1
E17E16E15E14E13E12E11E10
E9
E8E7E6E5E4E3E2E1
D17
D16D15D14D13D12D11D10D9D8D7D6D5D4D3D2D1
C17C16C15C14C13C12C11C10C9C8C7C6C5C4C3C2C1
B17B16B15B14B13B12B11B10B9B8B7B6B5B4B3B1
A17A16A15A14A13A12A11A10A9A8A7A6A5A4A3A2A1
B2
G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17
H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17
J7
K7
L7
M7
J8
K8
L8
M8
J9
K9
L9
M9
J10
K10
L10
M10
J11
K11
L11
M11
J12
K12
L12
M12
J13
K13
L13
M13
J14
K14
L14
M14
J15
K15
L15
M15
J16
K16
L16
M16
J17
K17
L17
M17
N7
P7
R7
T7
U7
N8
P8
R8
T8
U8
N9
P9
R9
T9
U9
N10
P10
R10
T10
U10
N11
P11
R11
T11
U11
N12
P12
R12
T12
U12
N13
P13
R13
T13
U13
N14
P14
R14
T14
U14
N15
P15
R15
T15
U15
N16
P16
R16
T16
U16
N17
P17
R17
T17
U17
Page 59Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
Table 18 RMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 1 of 8)
Signal Ball Type1Reference for Full Description
ADD_0 N2 I, ST, ID Table 32
ADD_1 N1 I, ST, ID Table 32
ADD_2 M3 I, ST, ID Table 32
ADD_3 M2 I, ST, ID Table 32
ADD_4 L4 I, ST, ID Table 32
AMDIX_EN K1 I, ST, IP Table 32
CFG_1 M1 I, ST, ID Table 32
CFG_2 L3 I, ST, ID Table 32
CFG_3 L2 I, ST, ID Table 32
CRS_DV0 E4 O, TS, SL, ID Table 24
CRS_DV1 C4 O, TS, SL, ID Table 24
CRS_DV2 A5 O, TS, SL, ID Table 24
CRS_DV3 B8 O, TS, SL, ID Table 24
CRS_DV4 B12 O, TS, SL, ID Table 24
CRS_DV5 D12 O, TS, SL, ID Table 24
CRS_DV6 B16 O, TS, SL, ID Table 24
CRS_DV7 E15 O, TS, SL, ID Table 24
G_FX/TP_L M14 I, ST, ID Table 32
GNDD A1 Table 34
GNDD A9 Table 34
GNDD B3 Table 34
GNDD B7 Table 34
GNDD C5 Table 34
GNDD C13 Table 34
GNDD C17 Table 34
GNDD D1 Table 34
GNDD D3 Table 34
GNDD D6 Table 34
GNDD D10 Table 34
GNDD D15 Table 34
GNDD E5 Table 34
GNDD E7 Table 34
GNDD E9 Table 34
GNDD E11 Table 34
GNDD E13 Table 34
GNDD E17 Table 34
GNDD F13 Table 34
GNDD H8 Table 34
Page 60Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
GNDD H9 Table 34
GNDD H10 Table 34
GNDD J8 Table 34
GNDD J9 Table 34
GNDD J10 Table 34
GNDD K8 Table 34
GNDD K9 Table 34
GNDD K10 Table 34
GNDPECL M5 Table 34
GNDPECL M13 Table 34
GNDR P5 Table 34
GNDR P6 Table 34
GNDR P13 Table 34
GNDR R7 Table 34
GNDR R9 Table 34
GNDR R11 Table 34
GNDR R13 Table 34
GNDR U8 Table 34
GNDT P14 Table 34
GNDT R1 Table 34
GNDT R3 Table 34
GNDT R5 Table 34
GNDT R15 Table 34
GNDT R17 Table 34
GNDT T17 Table 34
GNDT U2 Table 34
GNDT U4 Table 34
GNDT U6 Table 34
GNDT U10 Table 34
GNDT U12 Table 34
GNDT U14 Table 34
GNDT U16 Table 34
GNDT U17 Table 34
LED0_1_L K3 OD, TS, SL, IP Table 33
LED0_2_L K2 OD, TS, SL, IP Table 33
LED0_3_L J1 OD, TS, SL, IP Table 33
LED1_1_L J4 OD, TS, SL, IP Table 33
LED1_2_L J3 OD, TS, SL, IP Table 33
LED1_3_L H1 OD, TS, SL, IP Table 33
Table 18 RMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 2 of 8)
Signal Ball Type1Reference for Full Description
Page 61Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
LED2_1_L H2 OD, TS, SL, IP Table 33
LED2_2_L H3 OD, TS, SL, IP Table 33
LED2_3_L G1 OD, TS, SL, IP Table 33
LED3_1_L F2 OD, TS, SL, IP Table 33
LED3_2_L G3 OD, TS, SL, IP Table 33
LED3_3_L G4 OD, TS, SO, IP Table 33
LED4_1_L K16 OD, TS, SL, IP Table 33
LED4_2_L K17 OD, TS, SL, IP Table 33
LED4_3_L J17 OD, TS, SL, IP Table 33
LED5_1_L J15 OD, TS, SL, IP Table 33
LED5_2_L J16 OD, TS, SL, IP Table 33
LED5_3_L H17 OD, TS, SL, IP Table 33
LED6_1_L H15 OD, TS, SL, IP Table 33
LED6_2_L H16 OD, TS, SL, IP Table 33
LED6_3_L G17 OD, TS, SL, IP Table 33
LED7_1_L G15 OD, TS, SL, IP Table 33
LED7_2_L F17 OD, TS, SL, IP Table 33
LED7_3_L F16 OD, TS, SL, IP Table 33
MDC0 E1 I, ST, ID Table 28
MDC1 B10 I, ST, ID Table 28
MDDIS L1 I, ST, ID Table 28
MDINT0_L F1 OD, TS, SL, IP Table 28
MDINT1_L C9 OD, TS, SL, IP Table 28
MDIO0 F3 I/O, TS, SL, IP Table 28
MDIO1 A10 I/O, TS, SL, IP Table 28
ModeSel0 L16 I, ST, ID Table 32
ModeSel1 L17 I, ST, ID Table 32
NC F15 Table 35
NC G2 Table 35
NC G5 Table 35
NC G14 Table 35
NC G16 Table 35
NC H4 Table 35
NC H14 Table 35
NC J2 Table 35
NC J13 Table 35
NC K4 Table 35
NC K15 Table 35
No ball F6
Table 18 RMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 3 of 8)
Signal Ball Type1Reference for Full Description
Page 62Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
No ball F7
No ball F8
No Ball E8
No Ball E10
No Ball F9
No Ball F10
No Ball F11
No Ball F12
No Ball G6
No Ball G7
No Ball G8
No Ball G9
No Ball G10
No Ball G11
No Ball G12
No Ball H5
No Ball H6
No Ball H7
No Ball H11
No Ball H12
No Ball H13
No Ball J6
No Ball J7
No Ball J11
No Ball J12
No Ball K5
No Ball K6
No Ball K7
No Ball K11
No Ball K12
No Ball K13
No Ball L6
No Ball L7
No Ball L8
No Ball L9
No Ball L10
No Ball L11
No Ball L11
No Ball M6
Table 18 RMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 4 of 8)
Signal Ball Type1Reference for Full Description
Page 63Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
No Ball M7
No Ball M8
No Ball M9
No Ball M10
No Ball M11
No Ball M12
No Ball N8
No Ball N10
PWRDWN L14 I, ST, ID Table 32
REFCLK0 E6 I Table 24
REFCLK1 E12 I Table 24
RESET_L M15 I, ST, IP Table 32
RxData0_0 C2 O, TS Table 24
RxData0_1 B1 O, TS, ID Table 24
RxData1_0 A3 O, TS Table 24
RxData1_1 B4 O, TS, ID Table 24
RxData2_0 B6 O, TS Table 24
RxData2_1 C7 O, TS, ID Table 24
RxData3_0 D9 O, TS Table 24
RxData3_1 B9 O, TS, ID Table 24
RxData4_0 A13 O, TS Table 24
RxData4_1 C12 O, TS,ID Table 24
RxData5_0 B14 O, TS Table 24
RxData5_1 B15 O, TS, ID Table 24
RxData6_0 C15 O, TS Table 24
RxData6_1 B17 O, TS, ID Table 24
RxData7_0 E16 O, TS Table 24
RxData7_1 F14 O, TS, ID Table 24
RxER0 (MDIX) D2 O, TS, SL, ID, I, ST Table 24
Table 32
RxER1 (PAUSE) D5 O, TS, SL, ID, I, ST Table 24
Table 32
RxER2 (PREASEL) D7 O, TS, SL, ID, I, ST Table 24
Table 32
RxER3 C8 O, TS, SL, ID Table 24
RxER4 (FIFOSEL0) A12 O, TS, SL, ID, I, ST Table 24
Table 32
RxER5 (FIFOSEL1) A15 O, TS, SL, ID, I, ST Table 24
Table 32
Table 18 RMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 5 of 8)
Signal Ball Type1Reference for Full Description
Page 64Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
RxER6
LINKHOLD A17 O, TS, SL, I, ID, ST Table 24
Table 32
RxER7 D17 O, TS, SL, ID Table 24
SD_2P5V P1 I, ST, ID Table 29
SD0 P2 I Table 29
SD1 N4 I Table 29
SD2 P3 I Table 29
SD3 N5 I Table 29
SD4 P15 I Table 29
SD5 P16 I Table 29
SD6 P17 I Table 29
SD7 N17 I Table 29
SECTION L15 I, ST, ID Table 32
SGND K14 Table 34
TCK M16 I, ST, ID Table 31
TDI N14 I, ST, IP Table 31
TDO N15 O, TS Table 31
TMS N16 I, ST, IP Table 31
TPFIN0 T1 AO/AI Table 30
TPFIN1 T4 AO/AI Table 30
TPFIN2 T5 AO/AI Table 30
TPFIN3 R8 AO/AI Table 30
TPFIN4 U9 AO/AI Table 30
TPFIN5 T12 AO/AI Table 30
TPFIN6 T13 AO/AI Table 30
TPFIN7 T16 AO/AI Table 30
TPFIP0 R2 AO/AI Table 30
TPFIP1 U3 AO/AI Table 30
TPFIP2 R6 AO/AI Table 30
TPFIP3 T8 AO/AI Table 30
TPFIP4 T9 AO/AI Table 30
TPFIP5 U13 AO/AI Table 30
TPFIP6 R12 AO/AI Table 30
TPFIP7 R16 AO/AI Table 30
TPFON0 U1 AO/AI Table 30
TPFON1 R4 AO/AI Table 30
TPFON2 U5 AO/AI Table 30
TPFON3 T7 AO/AI Table 30
TPFON4 R10 AO/AI Table 30
Table 18 RMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 6 of 8)
Signal Ball Type1Reference for Full Description
Page 65Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
TPFON5 U11 AO/AI Table 30
TPFON6 U15 AO/AI Table 30
TPFON7 T15 AO/AI Table 30
TPFOP0 T2 AO/AI Table 30
TPFOP1 T3 AO/AI Table 30
TPFOP2 T6 AO/AI Table 30
TPFOP3 U7 AO/AI Table 30
TPFOP4 T10 AO/AI Table 30
TPFOP5 T11 AO/AI Table 30
TPFOP6 T14 AO/AI Table 30
TPFOP7 R14 AO/AI Table 30
TRST_L M17 I, ST, IP Table 31
TxData0_0 E2 I, ID Table 24
TxData0_1 F4 I, ID Table 24
TxData1_0 C3 I, ID Table 24
TxData1_1 D4 I, ID Table 24
TxData2_0 B5 I, ID Table 24
TxData2_1 A4 I, ID Table 24
TxData3_0 D8 I, ID Table 24
TxData3_1 A6 I, ID Table 24
TxData4_0 A11 I, ID Table 24
TxData4_1 C10 I, ID Table 24
TxData5_0 B13 I, ID Table 24
TxData5_1 D11 I, ID Table 24
TxData6_0 D13 I, ID Table 24
TxData6_1 A16 I, ID Table 24
TxData7_0 E14 I, ID Table 24
TxData7_1 C16 I, ID Table 24
TxEN0 E3 I, ID Table 24
TxEN1 B2 I, ID Table 24
TxEN2 C6 I, ID Table 24
TxEN3 A7 I, ID Table 24
TxEN4 B11 I, ID Table 24
TxEN5 A14 I, ID Table 24
TxEN6 C14 I, ID Table 24
TxEN7 D16 I, ID Table 24
TxSLEW_0 N3 I, ST, ID Table 32
TxSLEW_1 M4 I, ST, ID Table 32
VCCD F5 Table 34
Table 18 RMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 7 of 8)
Signal Ball Type1Reference for Full Description
Page 66Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
VCCD G13 Table 34
VCCD J5 Table 34
VCCD J14 Table 34
VCCIO A2 Table 34
VCCIO A8 Table 34
VCCIO C1 Table 34
VCCIO C11 Table 34
VCCIO D14 Table 34
VCCPECL L5 Table 34
VCCPECL L13 Table 34
VCCR N13 Table 34
VCCR P4 Table 34
VCCR P7 Table 34
VCCR P8 Table 34
VCCR P9 Table 34
VCCR P10 Table 34
VCCR P11 Table 34
VCCR P12 Table 34
VCCT N6 Table 34
VCCT N7 Table 34
VCCT N9 Table 34
VCCT N11 Table 34
VCCT N12 Table 34
Table 18 RMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 8 of 8)
Signal Ball Type1Reference for Full Description
Table 19 RMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 1 of 9)
Ball Signal Type1Reference for Full Description
A1 GNDD Ta b le 3 4
A2 VCCIO Ta b le 3 4
A3 RxData1_0 O, TS Tab l e 2 4
A4 TxData2_1 I, ID Ta b l e 2 4
A5 CRS_DV2 O, TS, SL, ID Ta b l e 2 4
A6 TxData3_1 I, ID Ta b l e 2 4
A7 TxEN3 I, ID Ta b l e 2 4
A8 VCCIO Ta b le 3 4
A9 GNDD Ta b le 3 4
A10 MDIO1 I/O, TS, SL, IP Ta b l e 2 8
A11 TxData4_0 I, ID Ta b l e 2 4
A12 RxER4 (FIFOSEL0) O, TS, SL, ID, I, ST Ta b le 2 4
Ta b l e 3 2
Page 67Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
A13 RxData4_0 O, TS Ta b l e 2 4
A14 TxEN5 I, ID Ta b l e 2 4
A15 RxER5 (FIFOSEL1) O, TS, SL, ID, I, ST Ta b le 2 4
Ta b l e 3 2
A16 TxData6_1 I, ID Ta b l e 2 4
A17 RxER6LINKHOLD O, TS, SL,
I, ID, ST
Ta b l e 2 4
Ta b l e 3 2
B1 RxData0_1 O, TS, ID Ta b l e 2 4
B2 TxEN1 I, ID Ta b l e 2 4
B3 GNDD Ta b le 3 4
B4 RxData1_1 O, TS, ID Ta b l e 2 4
B5 TxData2_0 I, ID Ta b l e 2 4
B6 RxData2_0 O, TS Tab l e 2 4
B7 GNDD Ta b le 3 4
B8 CRS_DV3 O, TS, SL, ID Ta b l e 2 4
B9 RxData3_1 O, TS, ID Ta b l e 2 4
B10 MDC1 I, ST, ID Ta b l e 2 8
B11 TxEN4 I, ID Ta b l e 2 4
B12 CRS_DV4 O, TS, SL, ID Ta b l e 2 4
B13 TxData5_0 I, ID Ta b l e 2 4
B14 RxData5_0 O, TS Ta b l e 2 4
B15 RxData5_1 O, TS, ID Ta b l e 2 4
B16 CRS_DV6 O, TS, SL, ID Ta b l e 2 4
B17 RxData6_1 O, TS, ID Ta b l e 2 4
C1 VCCIO Ta b le 3 4
C2 RxData0_0 O, TS Ta b l e 2 4
C3 TxData1_0 I, ID Ta b l e 2 4
C4 CRS_DV1 O, TS, SL, ID Ta b l e 2 4
C5 GNDD Ta b l e 3 4
C6 TxEN2 I, ID Ta b l e 2 4
C7 RxData2_1 O, TS, ID Ta b l e 2 4
C8 RxER3 O, TS, SL, ID Ta b l e 2 4
C9 MDINT1_L OD, TS, SL, IP Ta b l e 2 8
C10 TxData4_1 I, ID Ta b l e 2 4
C11 VCCIO Ta b l e 3 4
C12 RxData4_1 O, TS,ID Ta b l e 2 4
C13 GNDD Ta b le 3 4
C14 TxEN6 I, ID Ta b l e 2 4
C15 RxData6_0 O, TS Ta b le 2 4
Table 19 RMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 2 of 9)
Ball Signal Type1Reference for Full Description
Page 68Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
C16 TxData7_1 I, ID Ta b l e 2 4
C17 GNDD Ta b le 3 4
D1 GNDD Ta b l e 3 4
D2 RxER0 (MDIX) O, TS, SL, I, ID, ST Ta b l e 2 4
Ta b l e 3 2
D3 GNDD Ta b l e 3 4
D4 TxData1_1 I, ID Ta b l e 2 4
D5 RxER1 (PAUSE) O, TS, SL, ID, I, ST Ta b l e 2 4
Ta b l e 3 2
D6 GNDD Ta b l e 3 4
D7 RxER2 (PREASEL) O, TS, SL, I, ID, ST Ta b l e 2 4
Ta b l e 3 2
D8 TxData3_0 I, ID Ta b l e 2 4
D9 RxData3_0 O, TS Ta b l e 2 4
D10 GNDD Ta b le 3 4
D11 TxData5_1 I, ID Ta b l e 2 4
D12 CRS_DV5 O, TS, SL, ID Ta b l e 2 4
D13 TxData6_0 I, ID Ta b l e 2 4
D14 VCCIO Ta b le 3 4
D15 GNDD Ta b le 3 4
D16 TxEN7 I, ID Ta b l e 2 4
D17 RxER7 O, TS, SL, ID Ta b l e 2 4
E1 MDC0 I, ST, ID Ta b le 2 8
E2 TxData0_0 I, ID Ta b l e 2 4
E3 TxEN0 I, ID Ta b l e 2 4
E4 CRS_DV0 O, TS, SL, ID Ta b l e 2 4
E5 GNDD Ta b le 3 4
E6 REFCLK0 I Ta b l e 2 4
E7 GNDD Ta b le 3 4
E8 No Ball
E9 GNDD Ta b le 3 4
E10 No Ball
E11 GNDD Ta b l e 3 4
E12 REFCLK1 I Ta b l e 2 4
E13 GNDD Ta b le 3 4
E14 TxData7_0 I, ID Ta b l e 2 4
E15 CRS_DV7 O, TS, SL, ID‘ Ta b l e 2 4
E16 RxData7_0 O, TS Ta b l e 2 4
E17 GNDD Ta b le 3 4
F1 MDINT0_L OD, TS, SL, IP Ta b l e 2 8
Table 19 RMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 3 of 9)
Ball Signal Type1Reference for Full Description
Page 69Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
F2 LED3_1_L OD, TS, SL, IP Ta b l e 3 3
F3 MDIO0 I/O, TS, SL, IP Ta b l e 2 8
F4 TxData0_1 I, ID Ta b l e 2 4
F5 VCCD Ta b le 3 4
F6 No ball
F7 No ball
F8 No ball
F9 No Ball
F10 No Ball
F11 No Ball
F12 No Ball
F13 GNDD Ta b l e 3 4
F14 RxData7_1 O, TS, ID Ta b l e 2 4
F15 NC Ta b l e 3 5
F16 LED7_3_L OD, TS, SL, IP Ta b l e 3 3
F17 LED7_2_L OD, TS, SL, IP Ta b l e 3 3
G1 LED2_3_L OD, TS, SL, IP Ta b l e 3 3
G2 NC Ta b l e 3 5
G3 LED3_2_L OD, TS, SL, IP Ta b l e 3 3
G4 LED3_3_L OD, TS, SO, IP Ta b l e 3 3
G5 NC Ta b l e 3 5
G6 No Ball
G7 No Ball
G8 No Ball
G9 No Ball
G10 No Ball
G11 No Ball
G12 No Ball
G13 VCCD Ta b le 3 4
G14 NC Ta b l e 3 5
G15 LED7_1_L OD, TS, SL, IP Ta b l e 3 3
G16 NC Ta b l e 3 5
G17 LED6_3_L OD, TS, SL, IP Ta b l e 3 3
H1 LED1_3_L OD, TS, SL, IP Ta b l e 3 3
H2 LED2_1_L OD, TS, SL, IP Ta b l e 3 3
H3 LED2_2_L OD, TS, SL, IP Ta b l e 3 3
H4 NC Ta b l e 3 5
H5 No Ball
H6 No Ball
Table 19 RMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 4 of 9)
Ball Signal Type1Reference for Full Description
Page 70Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
H7 No Ball
H8 GNDD Ta b l e 3 4
H9 GNDD Ta b l e 3 4
H10 GNDD Ta b le 3 4
H11 No Ball
H12 No Ball
H13 No Ball
H14 NC Ta b l e 3 5
H15 LED6_1_L OD, TS, SL, IP Ta b l e 3 3
H16 LED6_2_L OD, TS, SL, IP Ta b l e 3 3
H17 LED5_3_L OD, TS, SL, IP Ta b l e 3 3
J1 LED0_3_L OD, TS, SL, IP Ta b l e 3 3
J2 NC Ta b l e 3 5
J3 LED1_2_L OD, TS, SL, IP Ta b l e 3 3
J4 LED1_1_L OD, TS, SL, IP Ta b l e 3 3
J5 VCCD Ta b le 3 4
J6 No Ball
J7 No Ball
J8 GNDD Ta b l e 3 4
J9 GNDD Ta b l e 3 4
J10 GNDD Ta b l e 3 4
J11 No Ball
J12 No Ball
J13 NC Ta b l e 3 5
J14 VCCD Ta b le 3 4
J15 LED5_1_L OD, TS, SL, IP Ta b l e 3 3
J16 LED5_2_L OD, TS, SL, IP Ta b l e 3 3
J17 LED4_3_L OD, TS, SL, IP Ta b l e 3 3
K1 AMDIX_EN I, ST, IP Ta b l e 3 2
K2 LED0_2_L OD, TS, SL, IP Ta b l e 3 3
K3 LED0_1_L OD, TS, SL, IP Ta b l e 3 3
K4 NC Ta b l e 3 5
K5 No Ball
K6 No Ball
K7 No Ball
K8 GNDD Ta b le 3 4
K9 GNDD Ta b le 3 4
K10 GNDD Ta b le 3 4
K11 No Ball
Table 19 RMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 5 of 9)
Ball Signal Type1Reference for Full Description
Page 71Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
K12 No Ball
K13 No Ball
K14 SGND Ta b l e 3 4
K15 NC Ta b l e 3 5
K16 LED4_1_L OD, TS, SL, IP Ta b l e 3 3
K17 LED4_2_L OD, TS, SL, IP Ta b l e 3 3
L1 MDDIS I, ST, ID Ta b l e 2 8
L2 CFG_3 I, ST, ID Ta b l e 3 2
L3 CFG_2 I, ST, ID Ta b l e 3 2
L4 ADD_4 I, ST, ID Ta b l e 3 2
L5 VCCPECL Ta b le 3 4
L6 No Ball
L7 No Ball
L8 No Ball
L9 No Ball
L10 No Ball
L11 No Ball
L11 No Ball
L13 VCCPECL Ta b le 3 4
L14 PWRDWN I, ST, ID Ta b l e 3 2
L15 SECTION I, ST, ID Ta b le 3 2
L16 ModeSel0 I, ST, ID Tab l e 3 2
L17 ModeSel1 I, ST, ID Tab l e 3 2
M1 CFG_1 I, ST, ID Ta b l e 3 2
M2 ADD_3 I, ST, ID Ta b l e 3 2
M3 ADD_2 I, ST, ID Ta b l e 3 2
M4 TxSLEW_1 I, ST, ID Tab l e 3 2
M5 GNDPECL Ta b le 3 4
M6 No Ball
M7 No Ball
M8 No Ball
M9 No Ball
M10 No Ball
M11 No Ball
M12 No Ball
M13 GNDPECL Tab l e 3 4
M14 G_FX/TP_L I, ST, ID Ta b le 3 2
M15 RESET_L I, ST, IP Ta b l e 3 2
M16 TCK I, ST, ID Ta b l e 3 1
Table 19 RMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 6 of 9)
Ball Signal Type1Reference for Full Description
Page 72Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
M17 TRST_L I, ST, IP Ta b le 3 1
N1 ADD_1 I, ST, ID Ta b l e 3 2
N2 ADD_0 I, ST, ID Ta b l e 3 2
N3 TxSLEW_0 I, ST, ID Ta b le 3 2
N4 SD1 I Ta b l e 2 9
N5 SD3 I Ta b l e 2 9
N6 VCCT Ta b l e 3 4
N7 VCCT Ta b l e 3 4
N8 No Ball
N9 VCCT Ta b l e 3 4
N10 No Ball
N11 VCCT Ta b l e 3 4
N12 VCCT Ta b l e 3 4
N13 VCCR Ta b le 3 4
N14 TDI I, ST, IP Ta b l e 3 1
N15 TDO O, TS Ta b l e 3 1
N16 TMS I, ST, IP Ta b l e 3 1
N17 SD7 I Ta b l e 2 9
P1 SD_2P5V I, ST, ID Ta b le 2 9
P2 SD0 I Ta b l e 2 9
P3 SD2 I Ta b l e 2 9
P4 VCCR Tab l e 3 4
P5 GNDR Ta b le 3 4
P6 GNDR Ta b le 3 4
P7 VCCR Tab l e 3 4
P8 VCCR Tab l e 3 4
P9 VCCR Tab l e 3 4
P10 VCCR Ta b l e 3 4
P11 VCCR Ta b l e 3 4
P12 VCCR Ta b l e 3 4
P13 GNDR Ta b le 3 4
P14 GNDT Ta b le 3 4
P15 SD4 I Ta b l e 2 9
P16 SD5 I Ta b l e 2 9
P17 SD6 I Ta b l e 2 9
R1 GNDT Ta b le 3 4
R2 TPFIP0 AO/AI Ta b l e 3 0
R3 GNDT Ta b le 3 4
R4 TPFON1 AO/AI Ta b l e 3 0
Table 19 RMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 7 of 9)
Ball Signal Type1Reference for Full Description
Page 73Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
R5 GNDT Ta b le 3 4
R6 TPFIP2 AO/AI Ta b l e 3 0
R7 GNDR Ta b l e 3 4
R8 TPFIN3 AO/AI Ta b l e 3 0
R9 GNDR Ta b l e 3 4
R10 TPFON4 AO/AI Ta b le 3 0
R11 GNDR Ta b le 3 4
R12 TPFIP6 AO/AI Ta b l e 3 0
R13 GNDR Ta b le 3 4
R14 TPFOP7 AO/AI Ta b l e 3 0
R15 GNDT Ta b le 3 4
R16 TPFIP7 AO/AI Ta b l e 3 0
R17 GNDT Ta b le 3 4
T1 TPFIN0 AO/AI Ta b l e 3 0
T2 TPFOP0 AO/AI Tab l e 3 0
T3 TPFOP1 AO/AI Tab l e 3 0
T4 TPFIN1 AO/AI Ta b l e 3 0
T5 TPFIN2 AO/AI Ta b l e 3 0
T6 TPFOP2 AO/AI Tab l e 3 0
T7 TPFON3 AO/AI Ta b l e 3 0
T8 TPFIP3 AO/AI Ta b l e 3 0
T9 TPFIP4 AO/AI Ta b l e 3 0
T10 TPFOP4 AO/AI Ta b l e 3 0
T11 TPFOP5 AO/AI Ta b l e 3 0
T12 TPFIN5 AO/AI Ta b l e 3 0
T13 TPFIN6 AO/AI Ta b l e 3 0
T14 TPFOP6 AO/AI Ta b l e 3 0
T15 TPFON7 AO/AI Ta b l e 3 0
T16 TPFIN7 AO/AI Ta b l e 3 0
T17 GNDT Ta b l e 3 4
U1 TPFON0 AO/AI Ta b l e 3 0
U2 GNDT Ta b le 3 4
U3 TPFIP1 AO/AI Ta b l e 3 0
U4 GNDT Ta b le 3 4
U5 TPFON2 AO/AI Ta b l e 3 0
U6 GNDT Ta b le 3 4
U7 TPFOP3 AO/AI Ta b l e 3 0
U8 GNDR Ta b l e 3 4
U9 TPFIN4 AO/AI Ta b l e 3 0
Table 19 RMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 8 of 9)
Ball Signal Type1Reference for Full Description
Page 74Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
3.3.2 SMII BGA23 Ball List
The following tables provide the SMII ball locations and signal names arranged in
alphanumeric order as follows:
Table 20, SMII BGA23 Ball List in Alphanumeric Order by Signal Name
Table 21, SMII BGA23 Ball List in Alphanumeric Order by Ball Location, on page 82
U10 GNDT Ta b le 3 4
U11 TPFON5 AO/AI Ta b l e 3 0
U12 GNDT Ta b le 3 4
U13 TPFIP5 AO/AI Ta b l e 3 0
U14 GNDT Ta b le 3 4
U15 TPFON6 AO/AI Ta b l e 3 0
U16 GNDT Ta b le 3 4
U17 GNDT Ta b le 3 4
Table 19 RMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 9 of 9)
Ball Signal Type1Reference for Full Description
Table 20 SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 1 of 8)
Signal Ball Type1Reference for Full Description
ADD_0 N2 I, ST, ID Table 32
ADD_1 N1 I, ST, ID Table 32
ADD_2 M3 I, ST, ID Table 32
ADD_3 M2 I, ST, ID Table 32
ADD_4 L4 I, ST, ID Table 32
AMDIX_EN K1 I, ST, IP Table 32
CFG_1 M1 I, ST, ID Table 32
CFG_2 L3 I, ST, ID Table 32
CFG_3 L2 I, ST, ID Table 32
FIFOSEL0 A12 O, TS, SL, ID, I, ST Table 32
FIFOSEL1 A15 O, TS, SL, ID, I, ST Table 32
G_FX/TP_L M14 I, ST, ID Table 32
GNDD A1 Table 34
GNDD A9 Table 34
GNDD B3 Table 34
GNDD B7 Table 34
GNDD C5 Table 34
GNDD C13 Table 34
GNDD C17 Table 34
GNDD D1 Table 34
GNDD D3 Table 34
GNDD D6 Table 34
Page 75Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
GNDD D10 Table 34
GNDD D15 Table 34
GNDD E5 Table 34
GNDD E7 Table 34
GNDD E9 Table 34
GNDD E11 Table 34
GNDD E13 Table 34
GNDD E17 Table 34
GNDD F13 Table 34
GNDD H8 Table 34
GNDD H9 Table 34
GNDD H10 Table 34
GNDD J8 Table 34
GNDD J9 Table 34
GNDD J10 Table 34
GNDD K8 Table 34
GNDD K9 Table 34
GNDD K10 Table 34
GNDPECL M5 Table 34
GNDPECL M13 Table 34
GNDR P5 Table 34
GNDR P6 Table 34
GNDR P13 Table 34
GNDR R7 Table 34
GNDR R9 Table 34
GNDR R11 Table 34
GNDR R13 Table 34
GNDR U8 Table 34
GNDT P14 Table 34
GNDT R1 Table 34
GNDT R3 Table 34
GNDT R5 Table 34
GNDT R15 Table 34
GNDT R17 Table 34
GNDT T17 Table 34
GNDT U2 Table 34
GNDT U4 Table 34
GNDT U6 Table 34
GNDT U10 Table 34
Table 20 SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 2 of 8)
Signal Ball Type1Reference for Full Description
Page 76Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
GNDT U12 Table 34
GNDT U14 Table 34
GNDT U16 Table 34
GNDT U17 Table 34
LED0_1_L K3 OD, TS, SL, IP Table 33
LED0_2_L K2 OD, TS, SL, IP Table 33
LED0_3_L J1 OD, TS, SL, IP Table 33
LED1_1_L J4 OD, TS, SL, IP Table 33
LED1_2_L J3 OD, TS, SL, IP Table 33
LED1_3_L H1 OD, TS, SL, IP Table 33
LED2_1_L H2 OD, TS, SL, IP Table 33
LED2_2_L H3 OD, TS, SL, IP Table 33
LED2_3_L G1 OD, TS, SL, IP Table 33
LED3_1_L F2 OD, TS, SL, IP Table 33
LED3_2_L G3 OD, TS, SL, IP Table 33
LED3_3_L G4 OD, TS, SO, IP Table 33
LED4_1_L K16 OD, TS, SL, IP Table 33
LED4_2_L K17 OD, TS, SL, IP Table 33
LED4_3_L J17 OD, TS, SL, IP Table 33
LED5_1_L J15 OD, TS, SL, IP Table 33
LED5_2_L J16 OD, TS, SL, IP Table 33
LED5_3_L H17 OD, TS, SL, IP Table 33
LED6_1_L H15 OD, TS, SL, IP Table 33
LED6_2_L H16 OD, TS, SL, IP Table 33
LED6_3_L G17 OD, TS, SL, IP Table 33
LED7_1_L G15 OD, TS, SL, IP Table 33
LED7_2_L F17 OD, TS, SL, IP Table 33
LED7_3_L F16 OD, TS, SL, IP Table 33
MDC0 E1 I, ST, ID Table 28
MDC1 B10 I, ST, ID Table 28
MDDIS L1 I, ST, ID Table 28
MDINT0_L F1 OD, TS, SL, IP Table 28
MDINT1_L C9 OD, TS, SL, IP Table 28
MDIO0 F3 I/O, TS, SL, IP Table 28
MDIO1 A10 I/O, TS, SL, IP Table 28
MDIX D2 I, ID, ST Table 32
ModeSel0 L16 I, ST, ID Table 32
ModeSel1 L17 I, ST, ID Table 32
NC A4 Table 35
Table 20 SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 3 of 8)
Signal Ball Type1Reference for Full Description
Page 77Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
NC A5 Table 35
NC A7 Table 35
NC A14 Table 35
NC A16 Table 35
NC B1 Table 35
NC B2 Table 35
NC B4 Table 35
NC B8 Table 35
NC B9 Table 35
NC B11 Table 35
NC B12 Table 35
NC B15 Table 35
NC B16 Table 35
NC B17 Table 35
NC C4 Table 35
NC C6 Table 35
NC C7 Table 35
NC C8 Table 35
NC C10 Table 35
NC C12 Table 35
NC C14 Table 35
NC D4 Table 35
NC D11 Table 35
NC D12 Table 35
NC D16 Table 35
NC D17 Table 35
NC E3 Table 35
NC E4 Table 35
NC E15 Table 35
NC F4 Table 35
NC F14 Table 35
NC F15 Table 35
NC G2 Table 35
NC G5 Table 35
NC G14 Table 35
NC G16 Table 35
NC H4 Table 35
NC H14 Table 35
NC J2 Table 35
Table 20 SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 4 of 8)
Signal Ball Type1Reference for Full Description
Page 78Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
NC J13 Table 35
NC K4 Table 35
NC K15 Table 35
NC/LINKHOLD A17 I, ID, ST Table 35
Table 32
No ball F6
No ball F7
No ball F8
No Ball E8
No Ball E10
No Ball F9
No Ball F10
No Ball F11
No Ball F12
No Ball G6
No Ball G7
No Ball G8
No Ball G9
No Ball G10
No Ball G11
No Ball G12
No Ball H5
No Ball H6
No Ball H7
No Ball H11
No Ball H12
No Ball H13
No Ball J6
No Ball J7
No Ball J11
No Ball J12
No Ball K5
No Ball K6
No Ball K7
No Ball K11
No Ball K12
No Ball K13
No Ball L6
No Ball L7
Table 20 SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 5 of 8)
Signal Ball Type1Reference for Full Description
Page 79Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
No Ball L8
No Ball L9
No Ball L10
No Ball L11
No Ball L11
No Ball M6
No Ball M7
No Ball M8
No Ball M9
No Ball M10
No Ball M11
No Ball M12
No Ball N8
No Ball N10
PAUSE D5 O, TS, SL, ID, I, ST Table 32
PREASEL D7 I, ID, ST Table 32
PWRDWN L14 I, ID, ST Table 32
REFCLK0 E6 I Table 25
REFCLK1 E12 I Table 25
RESET_L M15 I, ST, IP Table 32
RxData0 C2 O, TS, ID Table 26
RxData1 A3 O, TS, ID Table 26
RxData2 B6 O, TS, ID Table 26
RxData3 D9 O, TS, ID Table 26
RxData4 A13 O, TS, ID Table 26
RxData5 B14 O, TS, ID Table 26
RxData6 C15 O, TS, ID Table 26
RxData7 E16 O, TS, ID Table 26
SD_2P5V P1 I, ST, ID Table 29
SD0 P2 I Table 29
SD1 N4 I Table 29
SD2 P3 I Table 29
SD3 N5 I Table 29
SD4 P15 I Table 29
SD5 P16 I Table 29
SD6 P17 I Table 29
SD7 N17 I Table 29
SECTION L15 I, ST, ID Table 32
SGND K14 Table 34
Table 20 SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 6 of 8)
Signal Ball Type1Reference for Full Description
Page 80Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
SYNC0 A6 I, ID Table 26
SYNC1 C16 I, ID Table 26
TCK M16 I, ST, ID Table 31
TDI N14 I, ST, IP Table 31
TDO N15 O, TS Table 31
TMS N16 I, ST, IP Table 31
TPFIN0 T1 AO/AI Table 30
TPFIN1 T4 AO/AI Table 30
TPFIN2 T5 AO/AI Table 30
TPFIN3 R8 AO/AI Table 30
TPFIN4 U9 AO/AI Table 30
TPFIN5 T12 AO/AI Table 30
TPFIN6 T13 AO/AI Table 30
TPFIN7 T16 AO/AI Table 30
TPFIP0 R2 AO/AI Table 30
TPFIP1 U3 AO/AI Table 30
TPFIP2 R6 AO/AI Table 30
TPFIP3 T8 AO/AI Table 30
TPFIP4 T9 AO/AI Table 30
TPFIP5 U13 AO/AI Table 30
TPFIP6 R12 AO/AI Table 30
TPFIP7 R16 AO/AI Table 30
TPFON0 U1 AO/AI Table 30
TPFON1 R4 AO/AI Table 30
TPFON2 U5 AO/AI Table 30
TPFON3 T7 AO/AI Table 30
TPFON4 R10 AO/AI Table 30
TPFON5 U11 AO/AI Table 30
TPFON6 U15 AO/AI Table 30
TPFON7 T15 AO/AI Table 30
TPFOP0 T2 AO/AI Table 30
TPFOP1 T3 AO/AI Table 30
TPFOP2 T6 AO/AI Table 30
TPFOP3 U7 AO/AI Table 30
TPFOP4 T10 AO/AI Table 30
TPFOP5 T11 AO/AI Table 30
TPFOP6 T14 AO/AI Table 30
TPFOP7 R14 AO/AI Table 30
TRST_L M17 I, ST, IP Table 31
Table 20 SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 7 of 8)
Signal Ball Type1Reference for Full Description
Page 81Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
TxData0 E2 I, ID Table 25
TxData1 C3 I, ID Table 25
TxData2 B5 I, ID Table 25
TxData3 D8 I, ID Table 25
TxData4 A11 I, ID Table 25
TxData5 B13 I, ID Table 25
TxData6 D13 I, ID Table 25
TxData7 E14 I, ID Table 25
TxSLEW_0 N3 I, ST, ID Table 32
TxSLEW_1 M4 I, ST, ID Table 32
VCCD F5 Table 34
VCCD G13 Table 34
VCCD J5 Table 34
VCCD J14 Table 34
VCCIO A2 Table 34
VCCIO A8 Table 34
VCCIO C1 Table 34
VCCIO C11 Table 34
VCCIO D14 Table 34
VCCPECL L5 Table 34
VCCPECL L13 Table 34
VCCR N13 Table 34
VCCR P4 Table 34
VCCR P7 Table 34
VCCR P8 Table 34
VCCR P9 Table 34
VCCR P10 Table 34
VCCR P11 Table 34
VCCR P12 Table 34
VCCT N6 Table 34
VCCT N7 Table 34
VCCT N9 Table 34
VCCT N11 Table 34
VCCT N12 Table 34
Table 20 SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 8 of 8)
Signal Ball Type1Reference for Full Description
Page 82Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
Table 21 SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 1 of 8)
Ball Signal Type1Reference for Full Description
A1 GNDD Table 34
A2 VCCIO Table 34
A3 RxData1 O, TS, ID Table 26
A4 NC Table 35
A5 NC Table 35
A6 SYNC0 I, ID Table 26
A7 NC Table 35
A8 VCCIO Table 34
A9 GNDD Table 34
A10 MDIO1 I/O, TS, SL, IP Table 28
A11 TxData4 I, ID Table 25
A12 FIFOSEL0 O, TS, SL, ID, I, ST Table 32
A13 RxData4 O, TS, ID Table 26
A14 NC Table 35
A15 FIFOSEL1 O, TS, SL, ID, I, ST Table 32
A16 NC Table 35
A17 NC/LINKHOLD I, ID, ST Table 35
Table 32
B1 NC Table 35
B2 NC Table 35
B3 GNDD Table 34
B4 NC Table 35
B5 TxData2 I, ID Table 25
B6 RxData2 O, TS, ID Table 26
B7 GNDD Table 34
B8 NC Table 35
B9 NC Table 35
B10 MDC1 I, ST, ID Table 28
B11 NC Table 35
B12 NC Table 35
B13 TxData5 I, ID Table 25
B14 RxData5 O, TS, ID Table 26
B15 NC Table 35
B16 NC Table 35
B17 NC Table 35
C1 VCCIO Table 34
C2 RxData0 O, TS, ID Table 26
C3 TxData1 I, ID Table 25
Page 83Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
C4 NC Table 35
C5 GNDD Table 34
C6 NC Table 35
C7 NC Table 35
C8 NC Table 35
C9 MDINT1_L OD, TS, SL, IP Table 28
C10 NC Table 35
C11 VCCIO Table 34
C12 NC Table 35
C13 GNDD Table 34
C14 NC Table 35
C15 RxData6 O, TS, ID Table 26
C16 SYNC1 I, ID Table 26
C17 GNDD Table 34
D1 GNDD Table 34
D2 MDIX I, ID, ST Table 32
D3 GNDD Table 34
D4 NC Table 35
D5 PAUSE O, TS, SL, ID, I, ST Table 32
D6 GNDD Table 34
D7 PREASEL I, ID, ST Table 32
D8 TxData3 I, ID Table 25
D9 RxData3 O, TS, ID Table 26
D10 GNDD Table 34
D11 NC Table 35
D12 NC Table 35
D13 TxData6 I, ID Table 25
D14 VCCIO Table 34
D15 GNDD Table 34
D16 NC Table 35
D17 NC Table 35
E1 MDC0 I, ST, ID Table 28
E2 TxData0 I, ID Table 25
E3 NC Table 35
E4 NC Table 35
E5 GNDD Table 34
E6 REFCLK0 I Table 25
E7 GNDD Table 34
E8 No Ball
Table 21 SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 2 of 8)
Ball Signal Type1Reference for Full Description
Page 84Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
E9 GNDD Table 34
E10 No Ball
E11 GNDD Table 34
E12 REFCLK1 I Table 25
E13 GNDD Table 34
E14 TxData7 I, ID Table 25
E15 NC Table 35
E16 RxData7 O, TS, ID Table 26
E17 GNDD Table 34
F1 MDINT0_L OD, TS, SL, IP Table 28
F2 LED3_1_L OD, TS, SL, IP Table 33
F3 MDIO0 I/O, TS, SL, IP Table 28
F4 NC Table 35
F5 VCCD Table 34
F6 No ball
F7 No ball
F8 No ball
F9 No Ball
F10 No Ball
F11 No Ball
F12 No Ball
F13 GNDD Table 34
F14 NC Table 35
F15 NC Table 35
F16 LED7_3_L OD, TS, SL, IP Table 33
F17 LED7_2_L OD, TS, SL, IP Table 33
G1 LED2_3_L OD, TS, SL, IP Table 33
G2 NC Table 35
G3 LED3_2_L OD, TS, SL, IP Table 33
G4 LED3_3_L OD, TS, SO, IP Table 33
G5 NC Table 35
G6 No Ball
G7 No Ball
G8 No Ball
G9 No Ball
G10 No Ball
G11 No Ball
G12 No Ball
G13 VCCD Table 34
Table 21 SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 3 of 8)
Ball Signal Type1Reference for Full Description
Page 85Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
G14 NC Table 35
G15 LED7_1_L OD, TS, SL, IP Table 33
G16 NC Table 35
G17 LED6_3_L OD, TS, SL, IP Table 33
H1 LED1_3_L OD, TS, SL, IP Table 33
H2 LED2_1_L OD, TS, SL, IP Table 33
H3 LED2_2_L OD, TS, SL, IP Table 33
H4 NC Table 35
H5 No Ball
H6 No Ball
H7 No Ball
H8 GNDD Table 34
H9 GNDD Table 34
H10 GNDD Table 34
H11 No Ball
H12 No Ball
H13 No Ball
H14 NC Table 35
H15 LED6_1_L OD, TS, SL, IP Table 33
H16 LED6_2_L OD, TS, SL, IP Table 33
H17 LED5_3_L OD, TS, SL, IP Table 33
J1 LED0_3_L OD, TS, SL, IP Table 33
J2 NC Table 35
J3 LED1_2_L OD, TS, SL, IP Table 33
J4 LED1_1_L OD, TS, SL, IP Table 33
J5 VCCD Table 34
J6 No Ball
J7 No Ball
J8 GNDD Table 34
J9 GNDD Table 34
J10 GNDD Table 34
J11 No Ball
J12 No Ball
J13 NC Table 35
J14 VCCD Table 34
J15 LED5_1_L OD, TS, SL, IP Table 33
J16 LED5_2_L OD, TS, SL, IP Table 33
J17 LED4_3_L OD, TS, SL, IP Table 33
K1 AMDIX_EN I, ST, IP Table 32
Table 21 SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 4 of 8)
Ball Signal Type1Reference for Full Description
Page 86Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
K2 LED0_2_L OD, TS, SL, IP Table 33
K3 LED0_1_L OD, TS, SL, IP Table 33
K4 NC Table 35
K5 No Ball
K6 No Ball
K7 No Ball
K8 GNDD Table 34
K9 GNDD Table 34
K10 GNDD Table 34
K11 No Ball
K12 No Ball
K13 No Ball
K14 SGND Table 34
K15 NC Table 35
K16 LED4_1_L OD, TS, SL, IP Table 33
K17 LED4_2_L OD, TS, SL, IP Table 33
L1 MDDIS I, ST, ID Table 28
L2 CFG_3 I, ST, ID Table 32
L3 CFG_2 I, ST, ID Table 32
L4 ADD_4 I, ST, ID Table 32
L5 VCCPECL Table 34
L6 No Ball
L7 No Ball
L8 No Ball
L9 No Ball
L10 No Ball
L11 No Ball
L11 No Ball
L13 VCCPECL Table 34
L14 PWRDWN I, ID, ST Table 32
L15 SECTION I, ST, ID Table 32
L16 ModeSel0 I, ST, ID Table 32
L17 ModeSel1 I, ST, ID Table 32
M1 CFG_1 I, ST, ID Table 32
M2 ADD_3 I, ST, ID Table 32
M3 ADD_2 I, ST, ID Table 32
M4 TxSLEW_1 I, ST, ID Table 32
M5 GNDPECL Table 34
M6 No Ball
Table 21 SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 5 of 8)
Ball Signal Type1Reference for Full Description
Page 87Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
M7 No Ball
M8 No Ball
M9 No Ball
M10 No Ball
M11 No Ball
M12 No Ball
M13 GNDPECL Table 34
M14 G_FX/TP_L I, ST, ID Table 32
M15 RESET_L I, ST, IP Table 32
M16 TCK I, ST, ID Table 31
M17 TRST_L I, ST, IP Table 31
N1 ADD_1 I, ST, ID Table 32
N2 ADD_0 I, ST, ID Table 32
N3 TxSLEW_0 I, ST, ID Table 32
N4 SD1 I Table 29
N5 SD3 I Table 29
N6 VCCT Table 34
N7 VCCT Table 34
N8 No Ball
N9 VCCT Table 34
N10 No Ball
N11 VCCT Table 34
N12 VCCT Table 34
N13 VCCR Table 34
N14 TDI I, ST, IP Table 31
N15 TDO O, TS Table 31
N16 TMS I, ST, IP Table 31
N17 SD7 I Table 29
P1 SD_2P5V I, ST, ID Table 29
P2 SD0 I Table 29
P3 SD2 I Table 29
P4 VCCR Table 34
P5 GNDR Table 34
P6 GNDR Table 34
P7 VCCR Table 34
P8 VCCR Table 34
P9 VCCR Table 34
P10 VCCR Table 34
P11 VCCR Table 34
Table 21 SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 6 of 8)
Ball Signal Type1Reference for Full Description
Page 88Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
P12 VCCR Table 34
P13 GNDR Table 34
P14 GNDT Table 34
P15 SD4 I Table 29
P16 SD5 I Table 29
P17 SD6 I Table 29
R1 GNDT Table 34
R2 TPFIP0 AO/AI Table 30
R3 GNDT Table 34
R4 TPFON1 AO/AI Table 30
R5 GNDT Table 34
R6 TPFIP2 AO/AI Table 30
R7 GNDR Table 34
R8 TPFIN3 AO/AI Table 30
R9 GNDR Table 34
R10 TPFON4 AO/AI Table 30
R11 GNDR Table 34
R12 TPFIP6 AO/AI Table 30
R13 GNDR Table 34
R14 TPFOP7 AO/AI Table 30
R15 GNDT Table 34
R16 TPFIP7 AO/AI Table 30
R17 GNDT Table 34
T1 TPFIN0 AO/AI Table 30
T2 TPFOP0 AO/AI Table 30
T3 TPFOP1 AO/AI Table 30
T4 TPFIN1 AO/AI Table 30
T5 TPFIN2 AO/AI Table 30
T6 TPFOP2 AO/AI Table 30
T7 TPFON3 AO/AI Table 30
T8 TPFIP3 AO/AI Table 30
T9 TPFIP4 AO/AI Table 30
T10 TPFOP4 AO/AI Table 30
T11 TPFOP5 AO/AI Table 30
T12 TPFIN5 AO/AI Table 30
T13 TPFIN6 AO/AI Table 30
T14 TPFOP6 AO/AI Table 30
T15 TPFON7 AO/AI Table 30
T16 TPFIN7 AO/AI Table 30
Table 21 SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 7 of 8)
Ball Signal Type1Reference for Full Description
Page 89Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
3.3.3 SS-SMII BGA23 Ball List
The following tables provide the SS-SMII ball locations and signal names arranged in
alphanumeric order as follows:
Table 22, SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name
Table 23, SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location, on page 97
T17 GNDT Table 34
U1 TPFON0 AO/AI Table 30
U2 GNDT Table 34
U3 TPFIP1 AO/AI Table 30
U4 GNDT Table 34
U5 TPFON2 AO/AI Table 30
U6 GNDT Table 34
U7 TPFOP3 AO/AI Table 30
U8 GNDR Table 34
U9 TPFIN4 AO/AI Table 30
U10 GNDT Table 34
U11 TPFON5 AO/AI Table 30
U12 GNDT Table 34
U13 TPFIP5 AO/AI Table 30
U14 GNDT Table 34
U15 TPFON6 AO/AI Table 30
U16 GNDT Table 34
U17 GNDT Table 34
Table 21 SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 8 of 8)
Ball Signal Type1Reference for Full Description
Table 22 SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 1 of 9)
Signal Ball Type1Reference for Full Description
ADD_0 N2 I, ST, ID Table 32
ADD_1 N1 I, ST, ID Table 32
ADD_2 M3 I, ST, ID Table 32
ADD_3 M2 I, ST, ID Table 32
ADD_4 L4 I, ST, ID Table 32
AMDIX_EN K1 I, ST, IP Table 32
CFG_1 M1 I, ST, ID Table 32
CFG_2 L3 I, ST, ID Table 32
CFG_3 L2 I, ST, ID Table 32
FIFOSEL0 A12 I, ID, ST Table 32
FIFOSEL1 A15 I, ID, ST Table 32
G_FX/TP_L M14 I, ID, ST Table 32
Page 90Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
GNDD A1 Table 34
GNDD A9 Table 34
GNDD B3 Table 34
GNDD B7 Table 34
GNDD C5 Table 34
GNDD C13 Table 34
GNDD C17 Table 34
GNDD D1 Table 34
GNDD D3 Table 34
GNDD D6 Table 34
GNDD D10 Table 34
GNDD D15 Table 34
GNDD E5 Table 34
GNDD E7 Table 34
GNDD E9 Table 34
GNDD E11 Table 34
GNDD E13 Table 34
GNDD E17 Table 34
GNDD F13 Table 34
GNDD H8 Table 34
GNDD H9 Table 34
GNDD H10 Table 34
GNDD J8 Table 34
GNDD J9 Table 34
GNDD J10 Table 34
GNDD K8 Table 34
GNDD K9 Table 34
GNDD K10 Table 34
GNDPECL M5 Table 34
GNDPECL M13 Table 34
GNDR P5 Table 34
GNDR P6 Table 34
GNDR P13 Table 34
GNDR R7 Table 34
GNDR R9 Table 34
GNDR R11 Table 34
GNDR R13 Table 34
GNDR U8 Table 34
GNDT P14 Table 34
Table 22 SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 2 of 9)
Signal Ball Type1Reference for Full Description
Page 91Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
GNDT R1 Table 34
GNDT R3 Table 34
GNDT R5 Table 34
GNDT R15 Table 34
GNDT R17 Table 34
GNDT T17 Table 34
GNDT U2 Table 34
GNDT U4 Table 34
GNDT U6 Table 34
GNDT U10 Table 34
GNDT U12 Table 34
GNDT U14 Table 34
GNDT U16 Table 34
GNDT U17 Table 34
LED0_1_L K3 OD, TS, SL, IP Table 33
LED0_2_L K2 OD, TS, SL, IP Table 33
LED0_3_L J1 OD, TS, SL, IP Table 33
LED1_1_L J4 OD, TS, SL, IP Table 33
LED1_2_L J3 OD, TS, SL, IP Table 33
LED1_3_L H1 OD, TS, SL, IP Table 33
LED2_1_L H2 OD, TS, SL, IP Table 33
LED2_2_L H3 OD, TS, SL, IP Table 33
LED2_3_L G1 OD, TS, SL, IP Table 33
LED3_1_L F2 OD, TS, SL, IP Table 33
LED3_2_L G3 OD, TS, SL, IP Table 33
LED3_3_L G4 OD, TS, SL, IP Table 33
LED4_1_L K16 OD, TS, SL, IP Table 33
LED4_2_L K17 OD, TS, SL, IP Table 33
LED4_3_L J17 OD, TS, SL, IP Table 33
LED5_1_L J15 OD, TS, SL, IP Table 33
LED5_2_L J16 OD, TS, SL, IP Table 33
LED5_3_L H17 OD, TS, SL, IP Table 33
LED6_1_L H15 OD, TS, SL, IP Table 33
LED6_2_L H16 OD, TS, SL, IP Table 33
LED6_3_L G17 OD, TS, SL, IP Table 33
LED7_1_L G15 OD, TS, SL, IP Table 33
LED7_2_L F17 OD, TS, SL, IP Table 33
LED7_3_L F16 OD, TS, SL, IP Table 33
MDC0 E1 I, ST, ID Table 28
Table 22 SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 3 of 9)
Signal Ball Type1Reference for Full Description
Page 92Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
MDC1 B10 I, ST, ID Table 28
MDDIS L1 I, ST, ID Table 28
MDINT0_L F1 OD, TS, SL, IP Table 28
MDINT1_L C9 OD, TS, SL, IP Table 28
MDIO0 F3 I/O, TS, SL, IP Table 28
MDIO1 A10 I/O, TS, SL, IP Table 28
MDIX D2 I, ID, ST Table 32
ModeSel0 L16 I, ST, ID Table 32
ModeSel1 L17 I, ST, ID Table 32
NC A3 Table 35
NC A4 Table 35
NC A5 Table 35
NC A7 Table 35
NC A13 Table 35
NC A14 Table 35
NC A16 Table 35
NC B2 Table 35
NC B6 Table 35
NC B8 Table 35
NC B14 Table 35
NC B16 Table 35
NC C2 Table 35
NC C4 Table 35
NC C6 Table 35
NC C10 Table 35
NC C14 Table 35
NC C15 Table 35
NC D4 Table 35
NC D9 Table 35
NC D11 Table 35
NC D12 Table 35
NC D16 Table 35
NC E15 Table 35
NC E16 Table 35
NC F4 Table 35
NC F15 Table 35
NC G2 Table 35
NC G5 Table 35
NC G14 Table 35
Table 22 SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 4 of 9)
Signal Ball Type1Reference for Full Description
Page 93Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
NC G16 Table 35
NC H4 Table 35
NC H14 Table 35
NC J2 Table 35
NC J13 Table 35
NC K4 Table 35
NC K15 Table 35
NC/LINKHOLD A17 I, ID, ST Table 35
Table 32
No ball F6
No ball F7
No ball F8
No Ball E8
No Ball E10
No Ball F9
No Ball F10
No Ball F11
No Ball F12
No Ball G6
No Ball G7
No Ball G8
No Ball G9
No Ball G10
No Ball G11
No Ball G12
No Ball H5
No Ball H6
No Ball H7
No Ball H11
No Ball H12
No Ball H13
No Ball J6
No Ball J7
No Ball J11
No Ball J12
No Ball K5
No Ball K6
No Ball K7
No Ball K11
Table 22 SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 5 of 9)
Signal Ball Type1Reference for Full Description
Page 94Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
No Ball K12
No Ball K13
No Ball L6
No Ball L7
No Ball L8
No Ball L9
No Ball L10
No Ball L11
No Ball L11
No Ball M6
No Ball M7
No Ball M8
No Ball M9
No Ball M10
No Ball M11
No Ball M12
No Ball N8
No Ball N10
PAUSE D5 ID, I, ST Table 32
PREASEL D7 I, ID, ST Table 32
PWRDWN L14 I, ST, ID Table 32
REFCLK0 E6 I Table 25
REFCLK1 E12 I Table 25
RESET_L M15 I, ST, IP Table 32
RxCLK0 E3 O, TS, ID Table 27
RxCLK1 B11 O, TS, ID Table 27
RxData0 B1 O, TS, ID Table 27
RxData1 B4 O, TS, ID Table 27
RxData2 C7 O, TS, ID Table 27
RxData3 B9 O, TS, ID Table 27
RxData4 C12 O, TS, ID Table 27
RxData5 B15 O, TS, ID Table 27
RxData6 B17 O, TS, ID Table 27
RxData7 F14 O, TS, ID Table 27
RxSYNC0 E4 O, TS, ID Table 27
RxSYNC1 B12 O, TS, ID Table 27
SD_2P5V P1 I, ST, ID Table 29
SD0 P2 I Table 29
SD1 N4 I Table 29
Table 22 SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 6 of 9)
Signal Ball Type1Reference for Full Description
Page 95Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
SD2 P3 I Table 29
SD3 N5 I Table 29
SD4 P15 I Table 29
SD5 P16 I Table 29
SD6 P17 I Table 29
SD7 N17 I Table 29
SECTION L15 I, ID, ST Table 32
SGND K14 Table 34
TCK M16 I, ST, ID Table 31
TDI N14 I, ST, IP Table 31
TDO N15 O, TS Table 31
TMS N16 I, ST, IP Table 31
TPFIN0 T1 AO/AI Table 30
TPFIN1 T4 AO/AI Table 30
TPFIN2 T5 AO/AI Table 30
TPFIN3 R8 AO/AI Table 30
TPFIN4 U9 AO/AI Table 30
TPFIN5 T12 AO/AI Table 30
TPFIN6 T13 AO/AI Table 30
TPFIN7 T16 AO/AI Table 30
TPFIP0 R2 AO/AI Table 30
TPFIP1 U3 AO/AI Table 30
TPFIP2 R6 AO/AI Table 30
TPFIP3 T8 AO/AI Table 30
TPFIP4 T9 AO/AI Table 30
TPFIP5 U13 AO/AI Table 30
TPFIP6 R12 AO/AI Table 30
TPFIP7 R16 AO/AI Table 30
TPFON0 U1 AO/AI Table 30
TPFON1 R4 AO/AI Table 30
TPFON2 U5 AO/AI Table 30
TPFON3 T7 AO/AI Table 30
TPFON4 R10 AO/AI Table 30
TPFON5 U11 AO/AI Table 30
TPFON6 U15 AO/AI Table 30
TPFON7 T15 AO/AI Table 30
TPFOP0 T2 AO/AI Table 30
TPFOP1 T3 AO/AI Table 30
TPFOP2 T6 AO/AI Table 30
Table 22 SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 7 of 9)
Signal Ball Type1Reference for Full Description
Page 96Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
TPFOP3 U7 AO/AI Table 30
TPFOP4 T10 AO/AI Table 30
TPFOP5 T11 AO/AI Table 30
TPFOP6 T14 AO/AI Table 30
TPFOP7 R14 AO/AI Table 30
TRST_L M17 I, IP, ST Table 31
TxCLK0 C8 I, ID Table 27
TxCLK1 D17 I, ID Table 27
TxData0 E2 I, ID Table 25
TxData1 C3 I, ID Table 25
TxData2 B5 I, ID Table 25
TxData3 D8 I, ID Table 25
TxData4 A11 I, ID Table 25
TxData5 B13 I, ID Table 25
TxData6 D13 I, ID Table 25
TxData7 E14 I, ID Table 25
TxSLEW_0 N3 I, ST, ID Table 32
TxSLEW_1 M4 I, ST, ID Table 32
TxSYNC0 A6 I, ID Table 27
TxSYNC1 C16 I, ID Table 27
VCCD F5 Table 34
VCCD G13 Table 34
VCCD J5 Table 34
VCCD J14 Table 34
VCCIO A2 Table 34
VCCIO A8 Table 34
VCCIO C1 Table 34
VCCIO C11 Table 34
VCCIO D14 Table 34
VCCPECL L5 Table 34
VCCPECL L13 Table 34
VCCR N13 Table 34
VCCR P4 Table 34
VCCR P7 Table 34
VCCR P8 Table 34
VCCR P9 Table 34
VCCR P10 Table 34
VCCR P11 Table 34
VCCR P12 Table 34
Table 22 SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 8 of 9)
Signal Ball Type1Reference for Full Description
Page 97Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
VCCT N6 Table 34
VCCT N7 Table 34
VCCT N9 Table 34
VCCT N11 Table 34
VCCT N12 Table 34
Table 22 SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name (Sheet 9 of 9)
Signal Ball Type1Reference for Full Description
Table 23 SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 1 of 8)
Ball Signal Type1Reference for Full Description
A1 GNDD Table 34
A2 VCCIO Table 34
A3 NC Table 35
A4 NC Table 35
A5 NC Table 35
A6 TxSYNC0 I, ID Table 27
A7 NC Table 35
A8 VCCIO Table 34
A9 GNDD Table 34
A10 MDIO1 I/O, TS, SL, IP Table 28
A11 TxData4 I, ID Table 25
A12 FIFOSEL0 I, ID, ST Table 32
A13 NC Table 35
A14 NC Table 35
A15 FIFOSEL1 I, ID, ST Table 32
A16 NC Table 35
A17 NC/LINKHOLD I, ID, ST Table 35
Table 32
B1 RxData0 O, TS, ID Table 27
B2 NC Table 35
B3 GNDD Table 34
B4 RxData1 O, TS, ID Table 27
B5 TxData2 I, ID Table 25
B6 NC Table 35
B7 GNDD Table 34
B8 NC Table 35
B9 RxData3 O, TS, ID Table 27
B10 MDC1 I, ST, ID Table 28
B11 RxCLK1 O, TS, ID Table 27
B12 RxSYNC1 O, TS, ID Table 27
B13 TxData5 I, ID Table 25
Page 98Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
B14 NC Table 35
B15 RxData5 O, TS, ID Table 27
B16 NC Table 35
B17 RxData6 O, TS, ID Table 27
C1 VCCIO Table 34
C2 NC Table 35
C3 TxData1 I, ID Table 25
C4 NC Table 35
C5 GNDD Table 34
C6 NC Table 35
C7 RxData2 O, TS, ID Table 27
C8 TxCLK0 I, ID Table 27
C9 MDINT1_L OD, TS, SL, IP Table 28
C10 NC Table 35
C11 VCCIO Table 34
C12 RxData4 O, TS, ID Table 27
C13 GNDD Table 34
C14 NC Table 35
C15 NC Table 35
C16 TxSYNC1 I, ID Table 27
C17 GNDD Table 34
D1 GNDD Table 34
D2 MDIX I, ID, ST Table 32
D3 GNDD Table 34
D4 NC Table 35
D5 PAUSE ID, I, ST Table 32
D6 GNDD Table 34
D7 PREASEL I, ID, ST Table 32
D8 TxData3 I, ID Table 25
D9 NC Table 35
D10 GNDD Table 34
D11 NC Table 35
D12 NC Table 35
D13 TxData6 I, ID Table 25
D14 VCCIO Table 34
D15 GNDD Table 34
D16 NC Table 35
D17 TxCLK1 I, ID Table 27
E1 MDC0 I, ST, ID Table 28
Table 23 SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 2 of 8)
Ball Signal Type1Reference for Full Description
Page 99Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
E2 TxData0 I, ID Table 25
E3 RxCLK0 O, TS, ID Table 27
E4 RxSYNC0 O, TS, ID Table 27
E5 GNDD Table 34
E6 REFCLK0 I Table 25
E7 GNDD Table 34
E8 No Ball
E9 GNDD Table 34
E10 No Ball
E11 GNDD Table 34
E12 REFCLK1 I Table 25
E13 GNDD Table 34
E14 TxData7 I, ID Table 25
E15 NC Table 35
E16 NC Table 35
E17 GNDD Table 34
F1 MDINT0_L OD, TS, SL, IP Table 28
F2 LED3_1_L OD, TS, SL, IP Table 33
F3 MDIO0 I/O, TS, SL, IP Table 28
F4 NC Table 35
F5 VCCD Table 34
F6 No ball
F7 No ball
F8 No ball
F9 No Ball
F10 No Ball
F11 No Ball
F12 No Ball
F13 GNDD Table 34
F14 RxData7 O, TS, ID Table 27
F15 NC Table 35
F16 LED7_3_L OD, TS, SL, IP Table 33
F17 LED7_2_L OD, TS, SL, IP Table 33
G1 LED2_3_L OD, TS, SL, IP Table 33
G2 NC Table 35
G3 LED3_2_L OD, TS, SL, IP Table 33
G4 LED3_3_L OD, TS, SL, IP Table 33
G5 NC Table 35
G6 No Ball
Table 23 SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 3 of 8)
Ball Signal Type1Reference for Full Description
Page 100Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
G7 No Ball
G8 No Ball
G9 No Ball
G10 No Ball
G11 No Ball
G12 No Ball
G13 VCCD Table 34
G14 NC Table 35
G15 LED7_1_L OD, TS, SL, IP Table 33
G16 NC Table 35
G17 LED6_3_L OD, TS, SL, IP Table 33
H1 LED1_3_L OD, TS, SL, IP Table 33
H2 LED2_1_L OD, TS, SL, IP Table 33
H3 LED2_2_L OD, TS, SL, IP Table 33
H4 NC Table 35
H5 No Ball
H6 No Ball
H7 No Ball
H8 GNDD Table 34
H9 GNDD Table 34
H10 GNDD Table 34
H11 No Ball
H12 No Ball
H13 No Ball
H14 NC Table 35
H15 LED6_1_L OD, TS, SL, IP Table 33
H16 LED6_2_L OD, TS, SL, IP Table 33
H17 LED5_3_L OD, TS, SL, IP Table 33
J1 LED0_3_L OD, TS, SL, IP Table 33
J2 NC Table 35
J3 LED1_2_L OD, TS, SL, IP Table 33
J4 LED1_1_L OD, TS, SL, IP Table 33
J5 VCCD Table 34
J6 No Ball
J7 No Ball
J8 GNDD Table 34
J9 GNDD Table 34
J10 GNDD Table 34
J11 No Ball
Table 23 SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 4 of 8)
Ball Signal Type1Reference for Full Description
Page 101Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
J12 No Ball
J13 NC Table 35
J14 VCCD Table 34
J15 LED5_1_L OD, TS, SL, IP Table 33
J16 LED5_2_L OD, TS, SL, IP Table 33
J17 LED4_3_L OD, TS, SL, IP Table 33
K1 AMDIX_EN I, ST, IP Table 32
K2 LED0_2_L OD, TS, SL, IP Table 33
K3 LED0_1_L OD, TS, SL, IP Table 33
K4 NC Table 35
K5 No Ball
K6 No Ball
K7 No Ball
K8 GNDD Table 34
K9 GNDD Table 34
K10 GNDD Table 34
K11 No Ball
K12 No Ball
K13 No Ball
K14 SGND Table 34
K15 NC Table 35
K16 LED4_1_L OD, TS, SL, IP Table 33
K17 LED4_2_L OD, TS, SL, IP Table 33
L1 MDDIS I, ST, ID Table 28
L2 CFG_3 I, ST, ID Table 32
L3 CFG_2 I, ST, ID Table 32
L4 ADD_4 I, ST, ID Table 32
L5 VCCPECL Table 34
L6 No Ball
L7 No Ball
L8 No Ball
L9 No Ball
L10 No Ball
L11 No Ball
L11 No Ball
L13 VCCPECL Table 34
L14 PWRDWN I, ST, ID Table 32
L15 SECTION I, ID, ST Table 32
L16 ModeSel0 I, ST, ID Table 32
Table 23 SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 5 of 8)
Ball Signal Type1Reference for Full Description
Page 102Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
L17 ModeSel1 I, ST, ID Table 32
M1 CFG_1 I, ST, ID Table 32
M2 ADD_3 I, ST, ID Table 32
M3 ADD_2 I, ST, ID Table 32
M4 TxSLEW_1 I, ST, ID Table 32
M5 GNDPECL Table 34
M6 No Ball
M7 No Ball
M8 No Ball
M9 No Ball
M10 No Ball
M11 No Ball
M12 No Ball
M13 GNDPECL Table 34
M14 G_FX/TP_L I, ID, ST Table 32
M15 RESET_L I, IP, ST Table 32
M16 TCK I, ST, ID Table 31
M17 TRST_L I, IP, ST Table 31
N1 ADD_1 I, ID, ST Table 32
N2 ADD_0 I, ID, ST Table 32
N3 TxSLEW_0 I, ID, ST Table 32
N4 SD1 I Table 29
N5 SD3 I Table 29
N6 VCCT Table 34
N7 VCCT Table 34
N8 No Ball
N9 VCCT Table 34
N10 No Ball
N11 VCCT Table 34
N12 VCCT Table 34
N13 VCCR Table 34
N14 TDI I, ST, IP Table 31
N15 TDO O, TS Table 31
N16 TMS I, ST, IP Table 31
N17 SD7 I Table 29
P1 SD_2P5V I, ST, ID Table 29
P2 SD0 I Table 29
P3 SD2 I Table 29
P4 VCCR Table 34
Table 23 SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 6 of 8)
Ball Signal Type1Reference for Full Description
Page 103Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.3 BGA23 Ball Assignments
P5 GNDR Table 34
P6 GNDR Table 34
P7 VCCR Table 34
P8 VCCR Table 34
P9 VCCR Table 34
P10 VCCR Table 34
P11 VCCR Table 34
P12 VCCR Table 34
P13 GNDR Table 34
P14 GNDT Table 34
P15 SD4 I Table 29
P16 SD5 I Table 29
P17 SD6 I Table 29
R1 GNDT Table 34
R2 TPFIP0 AO/AI Table 30
R3 GNDT Table 34
R4 TPFON1 AO/AI Table 30
R5 GNDT Table 34
R6 TPFIP2 AO/AI Table 30
R7 GNDR Table 34
R8 TPFIN3 AO/AI Table 30
R9 GNDR Table 34
R10 TPFON4 AO/AI Table 30
R11 GNDR Table 34
R12 TPFIP6 AO/AI Table 30
R13 GNDR Table 34
R14 TPFOP7 AO/AI Table 30
R15 GNDT Table 34
R16 TPFIP7 AO/AI Table 30
R17 GNDT Table 34
T1 TPFIN0 AO/AI Table 30
T2 TPFOP0 AO/AI Table 30
T3 TPFOP1 AO/AI Table 30
T4 TPFIN1 AO/AI Table 30
T5 TPFIN2 AO/AI Table 30
T6 TPFOP2 AO/AI Table 30
T7 TPFON3 AO/AI Table 30
T8 TPFIP3 AO/AI Table 30
T9 TPFIP4 AO/AI Table 30
Table 23 SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 7 of 8)
Ball Signal Type1Reference for Full Description
Page 104Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
3.4 BGA23 Signal Descriptions
3.4.1 Signal Name Conventions
Signal names may contain either a port designation or a serial designation, or a
combination of the two designations. Signal naming conventions are as follows:
Port Number Only. Individual signals that apply to a particular port are designated by
the Signal Mnemonic, immediately followed by the Port Designation. For example,
Transmit Enable signals would be identified as TxEN0, TxEN1, and TxEN2.
Serial Number Only. A set of signals which are not tied to any specific port are
designated by the Signal Mnemonic, followed by an underscore and a serial
designation. For example, a set of three Global Configuration signals would be
identified as CFG_1, CFG_2, and CFG_3.
Port and Serial Number. In cases where each port is assigned a set of multiple
signals, each signal is designated in the following order: Signal Mnemonic, Port
Designation, an underscore, and the serial designation. For example, a set of three Port
T10 TPFOP4 AO/AI Table 30
T11 TPFOP5 AO/AI Table 30
T12 TPFIN5 AO/AI Table 30
T13 TPFIN6 AO/AI Table 30
T14 TPFOP6 AO/AI Table 30
T15 TPFON7 AO/AI Table 30
T16 TPFIN7 AO/AI Table 30
T17 GNDT Table 34
U1 TPFON0 AO/AI Table 30
U2 GNDT Table 34
U3 TPFIP1 AO/AI Table 30
U4 GNDT Table 34
U5 TPFON2 AO/AI Table 30
U6 GNDT Table 34
U7 TPFOP3 AO/AI Table 30
U8 GNDR Table 34
U9 TPFIN4 AO/AI Table 30
U10 GNDT Table 34
U11 TPFON5 AO/AI Table 30
U12 GNDT Table 34
U13 TPFIP5 AO/AI Table 30
U14 GNDT Table 34
U15 TPFON6 AO/AI Table 30
U16 GNDT Table 34
U17 GNDT Table 34
Table 23 SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location (Sheet 8 of 8)
Ball Signal Type1Reference for Full Description
Page 105Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
Configuration signals would be identified as RxData0_0 and RxData0_1, RxData1_0
and RxData1_1, and RxData2_0 and RxData2_1.
3.4.2 Signal Descriptions – RMII, SMII, and SS-SMII Configurations
Table 24 RMII Signal Descriptions – BGA23 (Sheet 1 of 3)
Ball/Pin
Designation Symbol Type1Signal Description2,3
BGA23 PQFP
E6,
E12
44
6
REFCLK0
REFCLK1 I
Reference Clock.
50 MHz RMII reference clock is always required. RMII
inputs are sampled on the rising edge of REFCLK,
RMII outputs are sourced on the falling edge.
E2,
F4
61
62
TxData0_0
TxData0_1 I, ID
Transmit Data - Port 0.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 0 are clocked in synchronously to REFCLK.
C3,
D4
52
53
TxData1_0
TxData1_1 I, ID
Transmit Data - Port 1.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 1 are clocked in synchronously to REFCLK
B5
A4
42
43
TxData2_0
TxData2_1 I, ID
Transmit Data - Port 2.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 2 are clocked in synchronously to REFCLK.
D8,
A6
34
35
TxData3_0
TxData3_1 I, ID
Transmit Data - Port 3.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 3 are clocked in synchronously to REFCLK.
A11,
C10
22
23
TxData4_0
TxData4_1 I, ID
Transmit Data - Port 4.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 4 are clocked in synchronously to REFCLK.
B13,
D11
13
14
TxData5_0
TxData5_1 I, ID
Transmit Data - Port 5.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 5 are clocked in synchronously to REFCLK.
D13,
A16
4
5
TxData6_0
TxData6_1 I, ID
Transmit Data - Port 6.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 6 are clocked in synchronously to REFCLK.
E14,
C16
203
204
TxData7_0
TxData7_1 I, ID
Transmit Data - Port 7.
Inputs containing 2-bit parallel di-bits to be transmitted
from port 7 are clocked in synchronously to REFCLK.
E3,
B2,
C6,
A7,
B11,
A14,
C14,
D16
60
51
41
33
21
12
3
202
TxEN0
TxEN1
TxEN2
TxEN3
TxEN4
TxEN5
TxEN6
TxEN7
I, ID
Transmit Enable - Ports 0-7.
Active High input enables respective port transmitter.
This signal must be synchronous to the REFCLK.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W
Power-Down modes and during H/W reset.
Page 106Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
C2,
B1
55
54
RxData0_0
RxData0_1
O, TS
O, TS, ID
Receive Data - Port 0.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
A3,
B4
46
45
RxData1_0
RxData1_1
O, TS
O, TS, ID
Receive Data - Port 1.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
B6,
C7
37
36
RxData2_0
RxData2_1
O, TS
O, TS, ID
Receive Data - Port 2.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
D9,
B9
28
27
RxData3_0
RxData3_1
O, TS
O, TS, ID
Receive Data - Port 3.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
A13,
C12
16
15
RxData4_0
RxData4_1
O, TS
O, TS, ID
Receive Data - Port 4.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
B14,
B15
8
7
RxData5_0
RxData5_1
O, TS
O, TS, ID
Receive Data - Port 5.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
C15,
B17
206
205
RxData6_0
RxData6_1
O, TS
O, TS, ID
Receive Data - Port 6.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
Table 24 RMII Signal Descriptions – BGA23 (Sheet 2 of 3)
Ball/Pin
Designation Symbol Type1Signal Description2,3
BGA23 PQFP
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W
Power-Down modes and during H/W reset.
Page 107Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
E16,
F14
198
197
RxData7_0
RxData7_1
O, TS
O, TS, ID
Receive Data - Port 7.
Receive data signals (2-bit parallel di-bits) are driven
synchronously to REFCLK.
E4,
C4,
A5,
B8,
B12,
D12,
B16,
E15
58
49
39
31
17
10
1
200
CRS_DV0
CRS_DV1
CRS_DV2
CRS_DV3
CRS_DV4
CRS_DV5
CRS_DV6
CRS_DV7
O, TS, SL,
ID
Carrier Sense/Receive Data Valid - Ports 0-7.
On detection of valid carrier, these signals are asserted
asynchronously with respect to REFCLK. CRS_DVn is
de-asserted on loss of carrier, synchronous to
REFCLK.
D2,
D5,
D7,
C8,
A12,
A15,
A17,
D17
59
50
40
32
20
11
2
201
RxER0
RxER1
RxER2
RxER3
RxER4
RxER5
RxER6
RxER7
O, TS, SL,
ID, I, ST
Receive Error - Ports 0-7.
These signals are synchronous to the respective
REFCLK. Active High indicates that received code
group is invalid, or that PLL is not locked.
The RxER signals have the following additional
function pins:
RxER0 (MDIX)
RxER1 (PAUSE)
RxER2 (PREASEL)
RxER4 (FIFOSEL0)
RxER5 (FIFOSEL1)
RxER6 {LINKHOLD)
Table 24 RMII Signal Descriptions – BGA23 (Sheet 3 of 3)
Ball/Pin
Designation Symbol Type1Signal Description2,3
BGA23 PQFP
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W
Power-Down modes and during H/W reset.
Page 108Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
Table 25 SMII/SS-SMII Common Signal Descriptions – BGA23
Ball/Pin
Designation Symbol Type1Signal Description2
BGA23 PQFP
E2,
C3,
B5,
D8,
A11,
B13,
D13,
E14
61
52
42
34
22
13
4
203
TxData0
TxData1
TxData2
TxData3
TxData4
TxData5
TxData6
TxData7
I, ID
Transmit Data - Ports 0-7.
These serial input streams provide data to be transmitted to
the network. The LXT9785/LXT9785E clocks the data in
synchronously to REFCLK.
E6,
E12
44
6
REFCLK0
REFCLK1 I
Reference Clock.
The LXT9785/LXT9785E always requires a 125 MHz
reference clock input. Refer to Functional Description for
detailed clock requirements. REFCLK0 and REFCLK1 are
always connected regardless of sectionalization mode.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode.
Table 26 SMII Specific Signal Descriptions – BGA23
Pin/Ball
Designation Symbol Type1Signal Description2,3
BGA23 PQFP
A6,
C16
35
204
SYNC0
SYNC1 I, ID
SMII Synchronization.
The MAC must generate a SYNC pulse every 10 REFCLK
cycles to synchronize the SMII. SYNC0 is used when 1x8
port sectionalization is selected. SYNC0 and SYNC1 are to
be used when 2x4 port sectionalization is chosen.
C2,
A3,
B6,
D9,
A13,
B14,
C15,
E16
55
46
37
28
16
8
206
198
RxData0
RxData1
RxData2
RxData3
RxData4
RxData5
RxData6
RxData7
O, TS
Receive Data - Ports 0-7.
These serial output streams provide data received from the
network. The LXT9785/LXT9785E drives the data out
synchronously to RXCLK.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode.
3. RxData[0:7] outputs are three-stated in Isolation and hardware power-down modes and during hardware
reset.
Page 109Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
Table 27 SS-SMII Specific Signal Descriptions – BGA23
Ball/Pin
Designation Symbol Type1Signal Description2,3
BGA23 PQFP
A6,
C16
35
204
TxSYNC0
TxSYNC1 I, ID
SS-SMII Transmit Synchronization.
The MAC must generate a TxSYNC pulse every 10 TxCLK
cycles to mark the start of TxData segments. TxSYNC0 is
used when 1x8 port sectionalization is selected.
E4,
B12
58
17
RxSYNC0
RxSYNC1
O, TS,
ID
SS-SMII Receive Synchronization.
The LXT9785/LXT9785E generates these pulses every 10
RxCLK cycles to mark the start of RxData segments for the
MAC. RxSYNC1 is used when 1x8 port sectionalization is
selected. RxSYNC0 may not be used. These outputs are
only enabled when SS-SMII mode is enabled.
C8,
D17
32
201
TxCLK0
TxCLK1 I, ID
SS-SMII Transmit Clock.
The MAC sources this 125 MHz clock as the timing
reference for TxData and TxSYNC. Only TxCLK0 is used
when 1x8 port sectionalization is selected.
E3,
B11
60
21
RxCLK0
RxCLK1
O, TS,
ID
SS-SMII Receive Clock.
The LXT9785/LXT9785E generates these clocks, based on
REFCLK, to provide a timing reference for RxData and
RxSYNC to the MAC. RxCLK1 is used when 1x8 port
sectionalization is selected. RxCLK0 may not be used.
B1,
B4,
C7,
B9,
C12,
B15,
B17,
F14
54
45
36
27
15
7
205
197
RxData0
RxData1
RxData2
RxData3
RxData4
RxData5
RxData6
RxData7
O, TS,
ID
Receive Data - Ports 0-7.
These serial output streams provide data received from the
network. The LXT9785/LXT9785E drives the data out
synchronously to REFCLK.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. RxData[0:7], RxSYNC[0:1], and RxCLK[0:1] outputs are three-stated in Isolation and H/W Power-Down
modes and during H/W reset.
Page 110Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
Table 28 MDIO Control Interface Signals – BGA23
Ball/Pin
Designation Symbol Type1Signal Description2,3,4
BGA23 PQFP
F3,
A10
64
25
MDIO0
MDIO1
I/O, TS, SL,
IP
Management Data Input/Output.
Bidirectional serial data channel for communication
between the PHY and MAC or switch ASIC. Only MDIO0
is used when 1x8 port sectionalization is selected. In 2x4
port sectionalization mode, MDIO0 accesses ports 0-3
and MDIO1 accesses ports 4-7. Refer to Figure 21,
Typical SS-SMII Quad Sectionalization, on page 161.
F1,
C9
67
26
MDINT0_L
MDINT1_L
OD, TS, SL,
IP
Management Data Interrupt.
When Register bit 18.1 = 1, an active Low output on this
Pin indicates status change. Only MDINT0_L is used
when 1x8 port sectionalization is selected. In 2x4 port
sectionalization mode, MDINT0_L is associated with
ports 0-3 and MDINT1_L is associated with ports 4-7.
Refer to Figure 21, Typical SS-SMII Quad
Sectionalization, on page 161.
E1,
B10
63
24
MDC0
MDC1 I, ST, ID
Management Data Clock.
Clock for the MDIO serial data channel. Maximum
frequency is 20 MHz. Only MDC0 is used when 1x8 port
sectionalization is selected. In 2x4 port sectionalization
mode, MDC0 clocks ports 0-3 register accesses and
MDC1 clocks ports 4-7 register accesses. Refer to
Figure 21, Typical SS-SMII Quad Sectionalization, on
page 161.
L1 84 MDDIS I, ST, ID
Management Disable.
When MDDIS is tied High, the MDIO port is completely
disabled and the Hardware Control Interface pins set
their respective bits at power up and reset.
When MDDIS is pulled Low at power up or reset, via the
internal pull-down resistor or by tying it to ground, the
Hardware Control Interface Pins control only the initial or
“default” values of their respective register bits. After the
power-up/reset cycle is complete, bit control reverts to
the MDIO serial channel.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. MDIO[0:1] and MDINT[0:1]_L outputs are three-stated in H/W Power-Down mode and during H/W reset.
4. Supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an “X.Y” notation,
where X is the register number (0-32) and Y is the bit number (0-15).
Page 111Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
Table 29 Signal Detect – BGA23
Ball/Pin
Designation Symbol Type1Signal Description2,3
BGA23 PQFP
P1 95 SD_2P5V I, ST, ID
Signal Detect 2.5 Volt Interface.
SD input threshold voltage select.
Tie to VCCPECL = Select 2.5 V LVPECL input levels
Float or Tie to GNDPECL = Select 3.3 V LVPECL input
levels
P2,
N4,
P3,
N5,
P15,
P16,
P17,
N17
96
97
100
101
161
162
165
166
SD0
SD1
SD2
SD3
SD4
SD5
SD6
SD7
I
Signal Detect - Ports 0-7.
Signal Detect input from the fiber transceiver (these inputs
are only active for ports operating in fiber mode).
Logic High = Normal operation (the process of searching
for receive idles for the purpose of bringing link up is
initiated)
Logic Low = Link is declared lost
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode.
3. Tie SD[0:7] inputs to GNDPECL if unused.
Table 30 Network Interface Signal Descriptions – BGA23
Ball/Pin Designation
Symbol Type1Signal Description
BGA23 PQFP
T2, U1,
T3, R4,
T6, U5,
U7, T7,
T10, R10,
T11, U11,
T14,U15,
R14, T15
107, 108
111, 110
121, 122
125, 124
136, 137
140, 139
150, 151
154, 153
TPFOP0, TPFON0
TPFOP1, TPFON1
TPFOP2, TPFON2
TPFOP3, TPFON3
TPFOP4, TPFON4
TPFOP5, TPFON5
TPFOP6, TPFON6
TPFOP7, TPFON7
AO/AI
Twisted-Pair/Fiber Outputs2, Positive &
Negative, Ports 0-7.
During 100BASE-TX or 10BASE-T operation,
TPFO pins drive 802.3 compliant pulses onto
the line.
During 100BASE-FX operation, TPFO pins
produce differential LVPECL outputs for fiber
transceivers.
R2, T1,
U3, T4,
R6, T5,
T8, R8,
T9, U9,
U13, T12,
R12, T13,
R16, T16
104, 105
115, 114
118, 119
129, 128
132, 133
143, 142
146, 147
157, 156
TPFIP0, TPFIN0
TPFIP1, TPFIN1
TPFIP2, TPFIN2
TPFIP3, TPFIN3
TPFIP4, TPFIN4
TPFIP5, TPFIN5
TPFIP6, TPFIN6
TPFIP7, TPFIN7
AI/AO
Twisted-Pair/Fiber Inputs3, Positive &
Negative, Ports 0-7.
During 100BASE-TX or 10BASE-T operation,
TPFI pins receive differential 100BASE-TX or
10BASE-T signals from the line.
During 100BASE-FX operation, TPFI pins
receive differential LVPECL inputs from fiber
transceivers.
1. Type Column Coding: AI = Analog Input, AO = Analog Output.
2. Switched to Inputs (see TPFIP/N description) when not in fiber mode and MDIX is not active [that is,
twisted-pair, non-crossover MDI mode].
3. Switched to Outputs (see TPFOP/N description) when not in fiber mode and MDIX is not active [that is,
twisted-pair, non-crossover MDI mode].
Page 112Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
Table 31 JTAG Test Signal Descriptions – BGA23
Ball/Pin
Designation Symbol Type1Signal Description2,3
BGA23 PQFP
N14 167 TDI I, ST, IP Test Data Input.
Test data sampled with respect to the rising edge of TCK.
N15 168 TDO O, TS Test Data Output.
Test data driven with respect to the falling edge of TCK.
N16 169 TMS I, ST, IP Test Mode Select.
M16 170 TCK I, ST, ID Test Clock.
Clock input for JTAG test.
M17 171 TRST_L I, ST, IP Test Reset.
Reset input for JTAG test.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain, TS = Three-State-able output, SMT = Schmitt
Triggered input, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. TDO output is three-stated in H/W Power-Down mode and during H/W reset.
Table 32 Miscellaneous Signal Descriptions – BGA23 (Sheet 1 of 4)
Ball/Pin
Designation Symbol Type1Signal Description2
BGA23 PQFP
N3,
M4
94
93
TxSLEW_0
TxSLEW_1 I, ST, ID
Tx Output Slew Controls 0 and 1 Defaults.
These pins are read at startup or reset. Their value at
that time is used to set the default state of Register bits
27.11:10 for all ports. These register bits can be read
and overwritten after startup / reset.
These pins select the TX output slew rate for all ports
(rise and fall time) as follows:
TxSLEW_1 TxSLEW_0 Slew Rate (Rise and Fall
Time)
0 0 3.3 ns
0 1 3.6 ns
1 0 3.9 ns
1 1 4.2 ns
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal
Pull-Down.
2. The IP/ID resistors are disabled during hardware power-down mode.
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).
Page 113Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
D5 50 PAUSE ID, I, ST
Pause Default.
This pin is read at startup or reset. Its value at that time
is used to set the default state of Register bit 4.10 for all
ports. This register bit can be read and overwritten after
startup / reset.
When High, the LXT9785/LXT9785E advertises Pause
capabilities on all ports during auto-negotiation.
This pin is shared with RMII-RxER1. An external pull-up
resistor (see applications section for value) can be used
to set Pause active while RxER1 is three-stated during
H/W reset. If no pull-up is used, the default Pause state
is set inactive via the internal pull-down resistor.
L14 174 PWRDWN I, ST, ID
Power-Down.
When High, forces the LXT9785/LXT9785E into global
power-down mode.
Pin is not on JTAG chain.
M15 175 RESET_L I, ST, IP
Reset.
This active low input is ORed with the control register
Reset Register bit 0.15. When held Low, all outputs are
forced to inactive state.
Pin is not on JTAG chain.
L4,
M2,
M3,
N1,
N2
88
89
90
91
92
ADD_4
ADD_3
ADD_2
ADD_1
ADD_0
I, ST, ID
Address <4:0>.
Sets base address. Each port adds its port number
(starting with 0) to this address to determine its PHY
address.
Port 0 Address = Base
Port 1 Address = Base + 1
Port 2 Address = Base + 2
Port 3 Address = Base + 3
Port 4 Address = Base + 4
Port 5 Address = Base + 5
Port 6 Address = Base + 6
Port 7 Address = Base + 7
L17,
L16
178
177
MODESEL_1
MODESEL_0 I, ST, ID
Mode Select[1:0].
00 = RMII
01 = SMII
10 = SS-SMII
11 = Reserved
All ports are configured the same. Interfaces cannot be
mixed and must be all RMII, SMII, or SS-SMII.
L15 176 SECTION I, ST, ID
Sectionalization Select.
This pin selects sectionalization into separate ports.
0 = 1x8 ports,
1 = 2x4 ports
Table 32 Miscellaneous Signal Descriptions – BGA23 (Sheet 2 of 4)
Ball/Pin
Designation Symbol Type1Signal Description2
BGA23 PQFP
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal
Pull-Down.
2. The IP/ID resistors are disabled during hardware power-down mode.
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).
Page 114Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
K1 83 AMDIX_EN I, ST, IP
Auto MDI/MDIX Enable Default.
This pin is read at startup or reset. Its value at that time
is used to set the default state of Register bit 27.9 for all
ports. These register bits can be read and overwritten
after startup / reset. Refer to Table 40, MDIX Selection,
on page 142.
When active (High), automatic MDI crossover (MDIX)
(regardless of segmentation) is selected for all ports.
When inactive (Low) MDIX is selected according to the
MDIX pin.
D2 59 MDIX I, ID, ST
MDIX Select Default.
This pin is read at startup or reset. Its value at that time
is used to set the default state of Register bit 27.8 for all
ports. These register bits can be read and overwritten
after startup / reset. Refer to Table 40, MDIX Selection,
on page 142.
When AMDIX_EN is active this pin is ignored.
When AMDIX_EN is inactive, all ports are forced to the
MDI or the MDIX function regardless of segmentation. If
this pin is active (high), MDI crossover (MDIX) is
selected. If this pin is inactive, non-crossover MDI mode
is set.
This pin is shared with RMII-RxER0. An external pull-up
resistor (see applications section for value) can be used
to set MDIX active while RxER0 is three-stated during
H/W reset. If no pull-up is used, the default MDIX state
is set inactive via the internal pull-down resistor. Do not
tie this pin directly to VCCIO (vs. using a pull-up) in
non-RMII modes.
L2,
L3,
M1
85
86
87
CFG_3
CFG_2
CFG_1
I, ST, ID
Global Port Configuration Defaults 1-3.
These pins are read at startup or reset. Their value at
that time is used to set the default state of register bits
shown in Table 42, Global Hardware Configuration
Settings, on page 152 for all ports. These register bits
can be read and overwritten after startup / reset.
When operating in Hardware Control Mode, these pins
provide configuration control options for all the ports
(refer to Table 42, Global Hardware Configuration
Settings, on page 152 for details).
M14 173 G_FX/TP_L I, ST, ID
Global FX/TP_L Enable Default.
This pin is read at startup or reset. Its value at that time
is used to set the default state of Register bit 16.0 for all
ports. These register bits can be read and overwritten
after startup / reset. Refer to Table 93, Port
Configuration Register (Address 16, Hex 10), on
page 222.
This input selects whether all the ports are defaulted to
TP vs. FX mode.
Table 32 Miscellaneous Signal Descriptions – BGA23 (Sheet 3 of 4)
Ball/Pin
Designation Symbol Type1Signal Description2
BGA23 PQFP
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal
Pull-Down.
2. The IP/ID resistors are disabled during hardware power-down mode.
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).
Page 115Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
A15
A12
11
20
FIFOSEL1
FIFOSEL0 I, ID, ST
FIFO Select <1:0>.
These pins are read at startup or reset. Their value at
that time is used to set the default state of Register bits
18.15:14 for all ports. These register bits can be read
and overwritten after startup/reset.
These pins are shared with RMII-RxER<5:4>. An
external pull-up resistor (see applications section for
value) can be used to set FIFO Select<1:0> to active
while RxER<5:4> are three-stated during hardware
reset. If no pull-up is used, the default FIFO select state
is set via the internal pull-down resistors.
See Table 36, Receive FIFO Depth Configurations, on
page 119.
D7 40 PREASEL I, ID, ST
Preamble Select.
This pin is read at startup or reset. Its value at that time
is used to set the default state of Register bit 16.5 for all
ports. This register bit can be read and overwritten after
startup/reset.
This pin is shared with RMII-RxER2. An external pull-up
resistor (see applications section for value) can be used
to set Preamble Select to active while RxER2 is
three-stated during hardware reset. If no pull-up is used,
the default Preamble Select state is set via the internal
pull-down resistors.
Note: Preamble select has no effect in 100 Mbps
operation.
A17 2 LINKHOLD3I, ID, ST
LINKHOLD Default. This pin is read at startup or reset.
Its value at that time is used to set the default state of
Register bit 0.11 for all ports. This register bit can be
read and overwritten after startup / reset. When High,
the LXT9785/LXT9785E powers down all ports.
This pin is shared with RMII-RxER6. An external pull-up
resistor (see applications section for value) can be used
to set LINKHOLD active while RxER6 is tri-stated during
H/W reset. If no pull-up is used, the default LINKHOLD
state is set inactive via the internal pull-down resistor.
Table 32 Miscellaneous Signal Descriptions – BGA23 (Sheet 4 of 4)
Ball/Pin
Designation Symbol Type1Signal Description2
BGA23 PQFP
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal
Pull-Down.
2. The IP/ID resistors are disabled during hardware power-down mode.
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).
Page 116Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
Table 33 LED Signal Descriptions – BGA23 (Sheet 1 of 2)
Ball/Pin
Designation Symbol Type1Signal Description2,3
BGA23 PQFP
K3,
K2,
J1
82
81
80
LED0_1_L
LED0_2_L
LED0_3_L
OD, TS, SL,
IP
Port 0 LED Drivers 1-3.
These pins drive LED indicators for Port 0. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
J4,
J3,
H1
77
76
75
LED1_1_L
LED1_2_L
LED1_3_L
OD, TS, SL,
IP
Port 1 LED Drivers 1-3.
These pins drive LED indicators for Port 1. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
H2,
H3,
G1
73
72
71
LED2_1_L
LED2_2_L
LED2_3_L
OD, TS, SL,
IP
Port 2 LED Drivers 1-3.
These pins drive LED indicators for Port 2. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
F2,
G3,
G4
70
69
68
LED3_1_L
LED3_2_L
LED3_3_L
OD, TS, SL,
IP
Port 3 LED Drivers 1-3.
These pins drive LED indicators for Port 3. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
K16,
K17,
J17
180
181
182
LED4_1_L
LED4_2_L
LED4_3_L
OD, TS, SL,
IP
Port 4 LED Drivers 1-3.
These pins drive LED indicators for Port 4. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. The LED outputs are three-stated in H/W Power-Down mode and during H/W reset.
Page 117Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
J15,
J16,
H17
185
186
187
LED5_1_L
LED5_2_L
LED5_3_L
OD, TS, SL,
IP
Port 5 LED Drivers 1-3.
These pins drive LED indicators for Port 5. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
H15,
H16,
G17
189
190
191
LED6_1_L
LED6_2_L
LED6_3_L
OD, TS, SL,
IP
Port 6 LED Drivers 1-3.
These pins drive LED indicators for Port 6. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
G15,
F17,
F16
192
193
194
LED7_1_L
LED7_2_L
LED7_3_L
OD, TS, SL,
IP
Port 7 LED Drivers 1-3.
These pins drive LED indicators for Port 7. Each LED
can display one of several available status conditions
as selected by the LED Configuration Register (refer
to Table 97, LED Configuration Register (Address 20,
Hex 14), on page 226 for details).
Table 34 Power Supply Signal Descriptions – BGA23 (Sheet 1 of 2)
Ball/Pin Designation
Symbol Type Signal Description
BGA23 PQFP
F5,
G13,
J14,
J5
65,
78,
184,
196
VCCD Digital Power Supply - Core.
+2.5 V supply for core digital circuits.
A2,
A8,
C1,
C11,
D14
18,
29,
47,
56,
208
VCCIO
Digital Power Supply - I/O Ring.
+2.5/3.3 V supply for digital I/O circuits. The digital input
circuits running off of this rail, having a TTL-level
threshold and over-voltage protection, may be
interfaced with 3.3/5.0 V, when the IO supply is 3.3 V,
and 2.5/3.3/5.0 V when 2.5 V.
L5,
L13
98,
164 VCCPECL
Digital Power Supply - PECL Signal Detect Inputs.
+2.5/3.3 V supply for PECL Signal Detect input circuits.
If Fiber Mode is not used (that is, G_FX/TP_L is pulled
Low), the VCCPECL pins may be tied to GNDPECL to
save power.
N13, P4,
P7, P8,
P9, P10,
P11, P12
103, 116,
117, 130,
131, 144,
145, 158
VCCR Analog Power Supply - Receive.
+2.5 V supply for all analog receive circuits.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
Table 33 LED Signal Descriptions – BGA23 (Sheet 2 of 2)
Ball/Pin
Designation Symbol Type1Signal Description2,3
BGA23 PQFP
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID
resistors are also disabled when the output is enabled.
3. The LED outputs are three-stated in H/W Power-Down mode and during H/W reset.
Page 118Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
N6, N7,
N9, N11,
N12
109, 123,
138, 152 VCCT Analog Power Supply - Transmit.
+2.5 V supply for all analog transmit circuits.
A1, A9,
B3, B7,
C5, C13,
C17, D1,
D3, D6,
D10, D15,
E5, E7,
E9, E11,
E13, E17,
F13, H8,
H9, H10,
J8, J9,
J10, K8,
K9, K10
66, 79,
183, 195 GNDD
Digital Ground.
Ground return for core digital supplies (VCCD). All
ground pins can be tied together using a single ground
plane.
9, 19, 30,
38, 48, 57,
74, 188,
199, 207
GNDIO Digital GND - I/O Ring.
Ground return for digital I/O circuits (VCCIO).
M5, M13 99, 163 GNDPECL Digital GND - PECL Signal Detect Inputs.
Ground return for PECL Signal Detect input circuits.
P5, P6,
P13, R7,
R9, R11,
R13, U8
106, 112,
120, 126,
135, 141,
149, 155
GNDR
Analog Ground - Receive.
Ground return for receive analog supply. All ground pins
can be tied together using a single ground plane.
P14, R1,
R3, R5,
R15, R17,
T17, U2,
U4, U6,
U10, U12,
U14, U16,
U17
113, 127,
134, 148 GNDT
Analog Ground - Transmit.
Ground return for transmit analog supply. All ground
pins can be tied together using a single ground plane.
K14 179 SGND
Substrate Ground.
Ground for chip substrate. All ground pins can be tied
together using a single ground plane.
Table 34 Power Supply Signal Descriptions – BGA23 (Sheet 2 of 2)
Ball/Pin Designation
Symbol Type Signal Description
BGA23 PQFP
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
Page 119Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.4 BGA23 Signal Descriptions
Table 35 Unused/Reserved Pins – BGA23
Pin/Ball Designation
Symbol Type1Signal Description
BGA23 PQFP
RMII - No Connection
F15, G2, G5, G14,
G16, H4, H14, J2,
J13, K4, K15
NC NC No Connection.
SMII - No Connection
A4, A5, A7, A14,
A16, B1, B2, B4,
B8, B9, B11, B12,
B15, B16, B17, C4,
C6, C7, C8, C10,
C12, C14, D4, D11,
D12, D16, D17, E3,
E4, E15, F4, F14,
F15, G2, G5, G14,
G16, H4, H14, J2,
J13, K4, K15
NC NC No Connection
SS-SMII - No Connection
A3, A4, A5, A7,
A13, A14, A16, B2,
B6, B8, B14, B16,
C2, C4, C6, C10,
C14, C15, D4, D9,
D11, D12, D16,
E15, E16, F4, F15,
G2, G5, G14, G16,
H4, H14, J2, J13,
K4, K15
NC NC No Connection
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
Table 36 Receive FIFO Depth Configurations
FIFOSEL1 FIFOSEL0 Register 18.15 Value Register 18.14 Value
00 10
01 11
10 00
11 01
Page 120Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.5 BGA15 Ball Assignments
3.5 BGA15 Ball Assignments
The following figure and tables provide the BGA15 ball locations and signal names
arranged in alphanumeric order as follows:
Figure 6, 196-Ball BGA15 Assignments (Top View)
Table 37, LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name, on
page 121
Table 38, LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location
(SMII/SS-SMII), on page 126
3.5.1 BGA15 Ball List
The following tables provide the RMII BGA23 ball locations and signal names arranged in
alphanumeric order as follows:
Table 37, LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name, on
page 121
Table 38, LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location
(SMII/SS-SMII), on page 126
Figure 6 196-Ball BGA15 Assignments (Top View)
B1532-01
A
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14
B
C
D
E
F
G
H
J
K
L
M
N
P
A
B
C
D
E
F
G
H
J
K
L
M
N
P
P6P5P4P3P2P1
N6N5N4N3N2N1
M6M5M4M3M2M1
L6L5L4L3L2L1
K6K5K4K3K2K1
J6J5J4J3J2J1
H6H5H4H3H2H1
G6G5G4G3G2G1
F14F13F12F11F10F9F8F7F6F5F4F3F2F1
E14E13E12E11E10
E9
E8E7E6E5E4E3E2E1
D14D13D12D11D10D9D8D7D6D5D4D3D2D1
C14C13C12C11C10C9C8C7C6C5C4
C3C2C1
B14B13B12B11B10B9B8B7B6B5B4B3B1
A14A13A12A11A10A9A8A7A6A5A4A3A2A1
B2
G7 G8 G9 G10 G11 G12 G13 G14
H7 H8 H9 H10 H11 H12 H13 H14
J7
K7
L7
M7
J8
K8
L8
M8
J9
K9
L9
M9
J10
K10
L10
M10
J11
K11
L11
M11
J12
K12
L12
M12
J13
K13
L13
M13
J14
K14
L14
M14
N7
P7
N8
P8
N9
P9
N10
P10
N11
P11
N12
P12
N13
P13
N14
P14
Page 121Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.5 BGA15 Ball Assignments
Table 37 LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name
(Sheet 1 of 6)
Signal Name Ball Type Reference for Full Description
ADD_3 P10 I, ST, ID Table 39
ADD_4 N10 I, ST, ID Table 39
AMDIX_EN K8 I, ST, IP Table 39
AVCC D12 Table 39
AVCC E12 Table 39
AVCC F12 Table 39
AVCC G12 Table 39
AVCC H12 Table 39
AVCC J12 Table 39
AVCC K12 Table 39
AVCC L12 Table 39
AVSS E11 Table 39
AVSS F9 Table 39
AVSS F10 Table 39
AVSS F11 Table 39
AVSS G9 Table 39
AVSS G10 Table 39
AVSS G11 Table 39
AVSS H9 Table 39
AVSS H10 Table 39
AVSS H11 Table 39
AVSS J9 Table 39
AVSS J10 Table 39
AVSS J11 Table 39
AVSS K11 Table 39
AVSS L11 Table 39
CFG_1 M10 I, ST, ID Table 39
CFG_2 L9 I, ST, ID Table 39
CFG_3 M9 I, ST, ID Table 39
FIFOSEL0 F1 I, ID Table 39
FIFOSEL1 C1 I, ID Table 39
GNDD A1 Table 39
GNDD A2 Table 39
GNDD A3 Table 39
GNDD B1 Table 39
GNDD B2 Table 39
GNDD B5 Table 39
Page 122Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.5 BGA15 Ball Assignments
GNDD B10 Table 39
GNDD D9 Table 39
GNDD D11 Table 39
GNDD E5 Table 39
GNDD E6 Table 39
GNDD E9 Table 39
GNDD E10 Table 39
GNDD F5 Table 39
GNDD F6 Table 39
GNDD F7 Table 39
GNDD F8 Table 39
GNDD G4 Table 39
GNDD G6 Table 39
GNDD G7 Table 39
GNDD G8 Table 39
GNDD H6 Table 39
GNDD H7 Table 39
GNDD H8 Table 39
GNDD J5 Table 39
GNDD J6 Table 39
GNDD J7 Table 39
GNDD J8 Table 39
GNDD K5 Table 39
GNDD K6 Table 39
GNDD K9 Table 39
GNDD K10 Table 39
GNDD L2 Table 39
GNDD N1 Table 39
GNDD N11 Table 39
GNDD P1 Table 39
GNDD P11 Table 39
LED0_1_L N9 OD, TS, SL, IP Table 39
LED0_2_L P9 OD, TS, SL, IP Table 39
LED0_3_L M8 OD, TS, SL, IP Table 39
LED1_1_L N8 OD, TS, SL, IP Table 39
LED1_2_L P8 OD, TS, SL, IP Table 39
LED1_3_L L8 OD, TS, SL, IP Table 39
LED2_1_L P7 OD, TS, SL, IP Table 39
Table 37 LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name
(Sheet 2 of 6)
Signal Name Ball Type Reference for Full Description
Page 123Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.5 BGA15 Ball Assignments
LED2_2_L N7 OD, TS, SL, IP Table 39
LED2_3_L M7 OD, TS, SL, IP Table 39
LED3_1_L P6 OD, TS, SL, IP Table 39
LED3_2_L N6 OD, TS, SL, IP Table 39
LED3_3_L M6 OD, TS, SL, IP Table 39
LED4_1_L B9 OD, TS, SL, IP Table 39
LED4_2_L A9 OD, TS, SL, IP Table 39
LED4_3_L D8 OD, TS, SL, IP Table 39
LED5_1_L B8 OD, TS, SL, IP Table 39
LED5_2_L A8 OD, TS, SL, IP Table 39
LED5_3_L C7 OD, TS, SL, IP Table 39
LED6_1_L A7 OD, TS, SL, IP Table 39
LED6_2_L B7 OD, TS, SL, IP Table 39
LED6_3_L D6 OD, TS, SL, IP Table 39
LED7_1_L B6 OD, TS, SL, IP Table 39
LED7_2_L A6 OD, TS, SL, IP Table 39
LED7_3_L D5 OD, TS, SL, IP Table 39
LINKHOLD B3 ID Table 39
MDC P4 I, ST, ID Table 39
MDINT_L P5 OD, TS, SL, IP Table 39
MDIO N5 IO, TS, SL, IP Table 39
ModeSel_0 C9 I, ST, ID Table 39
ModeSel_1 E8 I, ST, ID Table 39
NC C4 Table 39
NC D1 Table 39
NC D2 Table 39
NC D10 Table 39
NC E4 Table 39
NC E7 Table 39
NC G2 Table 39
NC G5 Table 39
NC H1 Table 39
NC H5 Table 39
NC J4 Table 39
NC K4 Table 39
NC K7 Table 39
NC L1 Table 39
NC L6 Table 39
Table 37 LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name
(Sheet 3 of 6)
Signal Name Ball Type Reference for Full Description
Page 124Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.5 BGA15 Ball Assignments
NC L10 Table 39
NC M4 Table 39
NC M5 Table 39
NC P2 Table 39
NC P3 Table 39
REFCLK0 L4 I Table 39
REFCLK1 C3 I Table 39
RESET_L C10 I, ST, IP Table 39
RXCLK G1 O, TS, ID Table 39
RxData0_S N3 O, TS Table 39
RxData0_SS M3 O, TS, ID Table 39
RxData1_S M2 O, TS Table 39
RxData1_SS M1 O, TS, ID Table 39
RxData2_S K2 O, TS Table 39
RxData2_SS J2 O, TS, ID Table 39
RxData3_S H3 O, TS Table 39
RxData3_SS H2 O, TS, ID Table 39
RxData4_S F2 O, TS Table 39
RxData4_SS F3 O, TS, ID Table 39
RxData5_S E3 O, TS Table 39
RxData5_SS C2 O, TS Table 39
RxData6_S B4 O, TS Table 39
RxData6_SS A4 O, TS, ID Table 39
RxData7_S C5 O, TS Table 39
RxData7_SS C6 O, TS, ID Table 39
RxSYNC E1 O, TS, ID Table 39
SGND C8 Table 39
SYNC/TXSYNC K1 I, ID Table 39
TCK A11 I, ST, ID Table 39
TDI C12 I, ST, IP Table 39
TDO C11 O, TS Table 39
TMS B11 I, ST, IP Table 39
TPIN0 N12 AI/AO Table 39
TPIN1 M13 AI/AO Table 39
TPIN2 L14 AI/AO Table 39
TPIN3 H13 AI/AO Table 39
TPIN4 G13 AI/AO Table 39
TPIN5 D14 AI/AO Table 39
Table 37 LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name
(Sheet 4 of 6)
Signal Name Ball Type Reference for Full Description
Page 125Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.5 BGA15 Ball Assignments
TPIN6 C13 AI/AO Table 39
TPIN7 B12 AI/AO Table 39
TPIP0 P12 AI/AO Table 39
TPIP1 M14 AI/AO Table 39
TPIP2 L13 AI/AO Table 39
TPIP3 H14 AI/AO Table 39
TPIP4 G14 AI/AO Table 39
TPIP5 D13 AI/AO Table 39
TPIP6 C14 AI/AO Table 39
TPIP7 A12 AI/AO Table 39
TPON0 N13 AO/AI Table 39
TPON1 P14 AO/AI Table 39
TPON2 K14 AO/AI Table 39
TPON3 J13 AO/AI Table 39
TPON4 F13 AO/AI Table 39
TPON5 E14 AO/AI Table 39
TPON6 A14 AO/AI Table 39
TPON7 B13 AO/AI Table 39
TPOP0 P13 AO/AI Table 39
TPOP1 N14 AO/AI Table 39
TPOP2 K13 AO/AI Table 39
TPOP3 J14 AO/AI Table 39
TPOP4 F14 AO, AI Table 39
TPOP5 E13 AO/AI Table 39
TPOP6 B14 AO/AI Table 39
TPOP7 A13 AO/AI Table 39
TRST_L A10 I, ST, IP Table 39
TXCLK J3 I, ID Table 39
TxData0 N4 I, ID Table 39
TxData1 N2 I, ID Table 39
TxData2 K3 I, ID Table 39
TxData3 J1 I, ID Table 39
TxData4 G3 I, ID Table 39
TxData5 E2 I, ID Table 39
TxData6 D3 I, ID Table 39
TxData7 A5 I, ID Table 39
TXSLEW_0 M11 I, ST, ID Table 39
TXSLEW_1 M12 I,ST, ID Table 39
Table 37 LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name
(Sheet 5 of 6)
Signal Name Ball Type Reference for Full Description
Page 126Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.5 BGA15 Ball Assignments
Table 38 shows the ball locations and signal names arranged in order by ball location.
VCCD D7 Table 39
VCCD L7 Table 39
VCCIO D4 Table 39
VCCIO F4 Table 39
VCCIO H4 Table 39
VCCIO L3 Table 39
VCCIO L5 Table 39
Table 37 LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name
(Sheet 6 of 6)
Signal Name Ball Type Reference for Full Description
Table 38 LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location
(SMII/SS-SMII) (Sheet 1 of 6)
Ball Signal Name Type Reference for Full Description
A1 GNDD Table 39
A2 GNDD Table 39
A3 GNDD Table 39
A4 RxData6_SS O, TS, ID Table 39
A5 TxData7 I, ID Table 39
A6LED7_2_L OD, TS, SL, IP Table 39
A7 LED6_1_L OD, TS, SL, IP Table 39
A8 LED5_2_L OD, TS, SL, IP Table 39
A9 LED4_2_L OD, TS, SL, IP Table 39
A10 TRST_L I, ST, IP Table 39
A11 TCK I, ST, ID Table 39
A12 TPIP7 AI/AO Table 39
A13 TPOP7 AO/AI Table 39
A14 TPON6 AO/AI Table 39
B1 GNDD Table 39
B2 GNDD Table 39
B3 LINKHOLD ID Table 39
B4 RxData6_S O, TS Table 39
B5 GNDD Table 39
B6 LED7_1_L OD, TS, SL, IP Table 39
B7 LED6_2_L OD, TS, SL, IP Table 39
B8 LED5_1_L OD, TS, SL, IP Table 39
B9 LED4_1_L OD, TS, SL, IP Table 39
B10 GNDD Table 39
B11 TMS I, ST, IP Table 39
B12 TPIN7 AI/AO Table 39
Page 127Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.5 BGA15 Ball Assignments
B13 TPON7 AO/AI Table 39
B14 TPOP6 AO/AI Table 39
C1 FIFOSEL1 I, ID Table 39
C2 RxData5_SS O, TS, ID Table 39
C3 REFCLK1 I Table 39
C4 NC Table 39
C5 RxData7_S O, TS Table 39
C6 RxData7_SS O, TS, ID Table 39
C7 LED5_3_L OD, TS, SL, IP Table 39
C8 SGND Table 39
C9 ModeSel_0 I, ST, ID Table 39
C10 RESET_L I, ST, IP Table 39
C11 TDO O, TS Table 39
C12 TDI I, ST, IP Table 39
C13 TPIN6 AI/AO Table 39
C14 TPIP6 AI/AO Table 39
D1 NC Table 39
D2 NC Table 39
D3 TxData6 I, ID Table 39
D4 VCCIO Table 39
D5 LED7_3_L OD, TS, SL, IP Table 39
D6 LED6_3_L OD, TS, SL, IP Table 39
D7 VCCD Table 39
D8 LED4_3_L OD, TS, SL, IP Table 39
D9 GNDD Table 39
D10 NC Table 39
D11 GNDD Table 39
D12 AVCC Table 39
D13 TPIP5 AI/AO Table 39
D14 TPIN5 AI/AO Table 39
E1 RxSYNC O, TS, ID Table 39
E2 TxData5 I, ID Table 39
E3 RxData5_S O, TS Table 39
E4 NC Table 39
E5 GNDD Table 39
E6 GNDD Table 39
E7 NC Table 39
E8 ModeSel_1 I, ST, ID Table 39
Table 38 LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location
(SMII/SS-SMII) (Sheet 2 of 6)
Ball Signal Name Type Reference for Full Description
Page 128Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.5 BGA15 Ball Assignments
E9 GNDD Table 39
E10 GNDD Table 39
E11 AVSS Table 39
E12 AVCC Table 39
E13 TPOP5 AO/AI Table 39
E14 TPON5 AO/AI Table 39
F1 FIFOSEL0 I, ID Table 39
F2 RxData4_S O, TS Table 39
F3 RxData4_SS O, TS, ID Table 39
F4 VCCIO Table 39
F5 GNDD Table 39
F6 GNDD Table 39
F7 GNDD Table 39
F8 GNDD Table 39
F9 AVSS Table 39
F10 AVSS Table 39
F11 AVSS Table 39
F12 AVCC Table 39
F13 TPON4 AO/AI Table 39
F14 TPOP4 AO, AI Table 39
G1 RXCLK O, TS, ID Table 39
G2 NC Table 39
G3 TxData4 I, ID Table 39
G4 GNDD Table 39
G5 NC Table 39
G6 GNDD Table 39
G7 GNDD Table 39
G8 GNDD Table 39
G9 AVSS Table 39
G10 AVSS Table 39
G11 AVSS Table 39
G12 AVCC Table 39
G13 TPIN4 AI/AO Table 39
G14 TPIP4 AI/AO Table 39
H1 NC Table 39
H2 RxData3_SS O, TS, ID Table 39
H3 RxData3_S O, TS Table 39
H4 VCCIO Table 39
Table 38 LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location
(SMII/SS-SMII) (Sheet 3 of 6)
Ball Signal Name Type Reference for Full Description
Page 129Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.5 BGA15 Ball Assignments
H5 NC Table 39
H6 GNDD Table 39
H7 GNDD Table 39
H8 GNDD Table 39
H9 AVSS Table 39
H10 AVSS Table 39
H11 AVSS Table 39
H12 AVCC Table 39
H13 TPIN3 AI/AO Table 39
H14 TPIP3 AI/AO Table 39
J1 TxData3 I, ID Table 39
J2 RxData2_SS O, TS, ID Table 39
J3 TXCLK I, ID Table 39
J4 NC Table 39
J5 GNDD Table 39
J6 GNDD Table 39
J7 GNDD Table 39
J8 GNDD Table 39
J9 AVSS Table 39
J10 AVSS Table 39
J11 AVSS Table 39
J12 AVCC Table 39
J13 TPON3 AO/AI Table 39
J14 TPOP3 AO/AI Table 39
K1 SYNC/TXSYNC I, ID Table 39
K2 RxData2_S O, TS Table 39
K3 TxData2 I, ID Table 39
K4 NC Table 39
K5 GNDD Table 39
K6 GNDD Table 39
K7 NC Table 39
K8 AMDIX_EN I, ST, IP Table 39
K9 GNDD Table 39
K10 GNDD Table 39
K11 AVSS Table 39
K12 AVCC Table 39
K13 TPOP2 AO/AI Table 39
K14 TPON2 AO/AI Table 39
Table 38 LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location
(SMII/SS-SMII) (Sheet 4 of 6)
Ball Signal Name Type Reference for Full Description
Page 130Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.5 BGA15 Ball Assignments
L1 NC Table 39
L2 GNDD Table 39
L3 VCCIO Table 39
L4 REFCLK0 I Table 39
L5 VCCIO Table 39
L6 NC Table 39
L7 VCCD Table 39
L8 LED1_3_L OD, TS, SL, IP Table 39
L9 CFG_2 I, ST, ID Table 39
L10 NC Table 39
L11 AVSS Table 39
L12 AVCC Table 39
L13 TPIP2 AI/AO Table 39
L14 TPIN2 AI/AO Table 39
M1 RxData1_SS O, TS, ID Table 39
M2 RxData1_S O, TS Table 39
M3 RxData0_SS O, TS, ID Table 39
M4 NC Table 39
M5 NC Table 39
M6 LED3_3_L OD, TS, SL, IP Table 39
M7 LED2_3_L OD, TS, SL, IP Table 39
M8 LED0_3_L OD, TS, SL, IP Table 39
M9 CFG_3 I, ST, ID Table 39
M10 CFG_1 I, ST, ID Table 39
M11 TXSLEW_0 I, ST, ID Table 39
M12 TXSLEW_1 I,ST, ID Table 39
M13 TPIN1 AI/AO Table 39
M14 TPIP1 AI/AO Table 39
N1 GNDD Table 39
N2 TxData1 I, ID Table 39
N3 RxData0_S O, TS Table 39
N4 TxData0 I, ID Table 39
N5 MDIO IO, TS, SL, IP Table 39
N6 LED3_2_L OD, TS, SL, IP Table 39
N7 LED2_2_L OD, TS, SL, IP Table 39
N8 LED1_1_L OD, TS, SL, IP Table 39
N9 LED0_1_L OD, TS, SL, IP Table 39
N10 ADD_4 I, ST, ID Table 39
Table 38 LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location
(SMII/SS-SMII) (Sheet 5 of 6)
Ball Signal Name Type Reference for Full Description
Page 131Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.5 BGA15 Ball Assignments
N11 GNDD Table 39
N12 TPIN0 AI/AO Table 39
N13 TPON0 AO/AI Table 39
N14 TPOP1 AO/AI Table 39
P1 GNDD Table 39
P2 NC Table 39
P3 NC Table 39
P4 MDC I, ST, ID Table 39
P5 MDINT_L OD, TS, SL, IP Table 39
P6 LED3_1_L OD, TS, SL, IP Table 39
P7 LED2_1_L OD, TS, SL, IP Table 39
P8 LED1_2_L OD, TS, SL, IP Table 39
P9 LED0_2_L OD, TS, SL, IP Table 39
P10 ADD_3 I, ST, ID Table 39
P11 GNDD Table 39
P12 TPIP0 AI/AO Table 39
P13 TPOP0 AO/AI Table 39
P14 TPON1 AO/AI Table 39
Table 38 LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location
(SMII/SS-SMII) (Sheet 6 of 6)
Ball Signal Name Type Reference for Full Description
Page 132Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.6 BGA15 Signal Descriptions
3.6 BGA15 Signal Descriptions
3.6.1 Signal Name Conventions
Signal names may contain either a port designation or a serial designation, or a
combination of the two designations. Signal naming conventions are as follows:
Port Number Only. Individual signals that apply to a particular port are designated by
the Signal Mnemonic, immediately followed by the Port Designation. For example,
Transmit Enable signals would be identified as TxEN0, TxEN1, and TxEN2.
Serial Number Only. A set of signals which are not tied to any specific port are
designated by the Signal Mnemonic, followed by an underscore and a serial
designation. For example, a set of three Global Configuration signals would be
identified as CFG_1, CFG_2, and CFG_3.
Port and Serial Number. In cases where each port is assigned a set of multiple
signals, each signal is designated in the following order: Signal Mnemonic, Port
Designation, an underscore, and the serial designation. For example, a set of three Port
Configuration signals would be identified as RxData0_0 and RxData0_1, RxData1_0
and RxData1_1, and RxData2_0 and RxData2_1.
3.6.2 Signal Descriptions – SMII and SS-SMII Configurations
Table 39 provides the BGA15 signal descriptions.
Table 39 BGA15 Signal Descriptions (Sheet 1 of 7)
Symbol BGA15 Ball
Designation Type Signal Description
SMII/SS-SMII Common Signal Descriptions
TxData0
TxData1
TxData2
TxData3
TxData4
TxData5
TxData6
TxData7
N4,
N2,
K3,
J1,
G3,
E2,
D3,
A5
I, ID
Transmit Data - Ports 0-7.
These serial input streams provide data to be transmitted to
the network. The LXT9785/LXT9785E clocks the data in
synchronously to REFCLK.
REFCLK1
REFCLK0
C3
L4 I
Reference Clock.
The LXT9785/LXT9785E always requires a 125 MHz
reference clock input. Refer to Section 4.4.2, Clock/SYNC
Requirements, on page 148 for detailed clock requirements.
SMII Specific Signal Descriptions
SYNC K1 I, ID
SMII Synchronization.
The MAC must generate a SYNC pulse every 10 REFCLK
cycles to synchronize the SMII.
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. Switched to TPIP/N Inputs when MDIX is not active (twisted-pair, non-crossover MDI mode).
3. Switched to TPOP/N Outputs when MDIX is not active (twisted-pair, non-crossover MDI mode).
Page 133Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.6 BGA15 Signal Descriptions
RxData0_S
RxData1_S
RxData2_S
RxData3_S
RxData4_S
RxData5_S
RxData6_S
RxData7_S
N3,
M2,
K2,
H3,
F2,
E3,
B4,
C5
O, TS
Receive Data - Ports 0-7.
These serial output streams provide data received from the
network. The LXT9785/LXT9785E drives the data out
synchronously to REFCLK.
SS-SMII Specific Signal Descriptions
TxSYNC K1 I, ID
SS-SMII Transmit Synchronization.
The MAC must generate a TxSYNC pulse every 10 TxCLK
cycles to mark the start of TxData segments.
RxSYNC E1 O, TS,
ID
SS-SMII Receive Synchronization.
The LXT9785/LXT9785E generates these pulses every 10
RxCLK cycles to mark the start of RxData segments for the
MAC.
TxCLK J3 I, ID
SS-SMII Transmit Clock.
The MAC sources this 125 MHz clock as the timing
reference for TxData and TxSYNC.
RxCLK G1 O, TS,
ID
SS-SMII Receive Clock.
The LXT9785/LXT9785E generates these clocks, based on
REFCLK, to provide a timing reference for RxData and
RxSYNC to the MAC.
RxData0_SS
RxData1_SS
RxData2_SS
RxData3_SS
RxData4_SS
RxData5_SS
RxData6_SS
RxData7_SS
M3,
M1,
J2,
H2,
F3,
C2,
A4,
C6
O, TS,
ID
Receive Data - Ports 0-7.
These serial output streams provide data received from the
network. The LXT9785/LXT9785E drives the data out
synchronously to REFCLK.
MDIO Control Interface Signal Descriptions
MDIO N5 I/O, TS,
SL, IP
Management Data Input/Output.
Bidirectional serial data channel for communication between
the PHY and MAC or switch ASIC. Refer to Figure 21 on
page 161.
MDINT_L P5
OD, TS,
SL,
IP
Management Data Interrupt.
When Register bit 18.1 = 1, an active Low output on this Pin
indicates status change. Refer to Figure 21 on page 161.
MDC P4 I, ST, ID
Management Data Clock.
Clock for the MDIO serial data channel. Maximum frequency
is 20 MHz. Only MDC0 is used when 1x8 port
sectionalization is selected. In 2x4 port sectionalization
mode, MDC0 clocks ports 0-3 register accesses and MDC1
clocks ports 4-7 register accesses. Refer to Figure 21 on
page 161.
Network Interface Signal Description
Table 39 BGA15 Signal Descriptions (Sheet 2 of 7)
Symbol BGA15 Ball
Designation Type Signal Description
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. Switched to TPIP/N Inputs when MDIX is not active (twisted-pair, non-crossover MDI mode).
3. Switched to TPOP/N Outputs when MDIX is not active (twisted-pair, non-crossover MDI mode).
Page 134Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.6 BGA15 Signal Descriptions
TPOP0, TPON0
TPOP1, TPON1
TPOP2, TPON2
TPOP3, TPON3
TPOP4, TPON4
TPOP5, TPON5
TPOP6, TPON6
TPOP7, TPON7
P13, N13,
N14, P14,
K13, K14,
J14, J13,
F14, F13,
E13, E14,
B14, A14,
A13, B13
AO/AI
Twisted-Pair Outputs2, Positive & Negative, Ports 0-7.
During 100BASE-TX or 10BASE-T operation, TPO pins
drive 802.3 compliant pulses onto the line.
TPIP0, TPIN0
TPIP1, TPIN1
TPIP2, TPIN2
TPIP3, TPIN3
TPIP4, TPIN4
TPIP5, TPIN5
TPIP6, TPIN6
TPIP7, TPIN7
P12, N12,
M14, M13,
L13, L14,
H14, H13,
G14, G13,
D13, D14,
C14, C13,
A12, B12
AI/AO
Twisted-Pair Inputs3, Positive & Negative, Ports 0-7.
During 100BASE-TX or 10BASE-T operation, TPI pins
receive differential 100BASE-TX or 10BASE-T signals from
the line.
JTAG Test Signal Description
TDI C12 I, ST, IP Test Data Input.
Test data sampled with respect to the rising edge of TCK.
TDO C11 O, TS Test Data Output.
Test data driven with respect to the falling edge of TCK.
TMS B11 I, ST, IP Test Mode Select.
TCK A11 I, ST, ID Test Clock.
Clock input for JTAG test.
TRST_L A10 I, ST, IP Test Reset.
Reset input for JTAG test.
Miscellaneous Signal Description
TxSLEW_0
TxSLEW_1
M11,
M12 I, ST, ID
Tx Output Slew Controls 0 and 1 Defaults.
These pins are read at startup or reset. Their value at that
time is used to set the default state of Register bits 27.11:10
for all ports. These register bits can be read and overwritten
after startup / reset.
These pins select the TX output slew rate for all ports (rise
and fall time) as follows:
TxSLEW_1 TxSLEW_0 Slew Rate (Rise and Fall
Time)
0 0 3.3 ns
0 1 3.6 ns
1 0 3.9 ns
1 1 4.2 ns
Table 39 BGA15 Signal Descriptions (Sheet 3 of 7)
Symbol BGA15 Ball
Designation Type Signal Description
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. Switched to TPIP/N Inputs when MDIX is not active (twisted-pair, non-crossover MDI mode).
3. Switched to TPOP/N Outputs when MDIX is not active (twisted-pair, non-crossover MDI mode).
Page 135Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.6 BGA15 Signal Descriptions
RESET_L C10 I, ST, IP
Reset.
This active low input is ORed with the control register Reset
Register bit 0.15. When held Low, all outputs are forced to
inactive state.
Pin is not on JTAG chain.
ADD_4
ADD_3
N10,
P10 I, ST, ID
Address <4:3>.
Sets base address to one of the following four possible
addresses:
00000
01000
10000
11000
Each port adds its port number (starting with 0) to this
address to determine its PHY address.
Port 0 Address = Base
Port 1 Address = Base + 1
Port 2 Address = Base + 2
Port 3 Address = Base + 3
Port 4 Address = Base + 4
Port 5 Address = Base + 5
Port 6 Address = Base + 6
Port 7 Address = Base + 7
MODESEL_1
MODESEL_0
E8
C9, I, ST, ID
Mode Select[1:0].
00 = Reserved
01 = SMII
10 = SS-SMII
11 = Reserved
All ports are configured the same. Interfaces cannot be
mixed and must be all SMII or SS-SMII.
AMDIX_EN K8 I, ST, IP
Auto MDI/MDIX Enable Default.
This pin is read at startup or reset. Its value at that time is
used to set the default state of Register bit 27.9 for all ports.
These register bits can be read and overwritten after startup
/ reset. Refer to Table 40 on page 142.
When active (High), automatic MDI crossover (MDIX)
(regardless of segmentation) is selected for all ports. When
inactive (Low) MDIX is selected according to the MDIX pin.
CFG_1
CFG_2
CFG_3
M10,
L9,
M9
I, ST, ID
Global Port Configuration Defaults 1-3.
These pins are read at startup or reset. Their value at that
time is used to set the default state of register bits shown in
Table 42, Global Hardware Configuration Settings, on
page 152 for all ports. These register bits can be read and
overwritten after startup / reset.
When operating in Hardware Control Mode, these pins
provide configuration control options for all the ports (refer to
page 152 for details).
Table 39 BGA15 Signal Descriptions (Sheet 4 of 7)
Symbol BGA15 Ball
Designation Type Signal Description
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. Switched to TPIP/N Inputs when MDIX is not active (twisted-pair, non-crossover MDI mode).
3. Switched to TPOP/N Outputs when MDIX is not active (twisted-pair, non-crossover MDI mode).
Page 136Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.6 BGA15 Signal Descriptions
FIFOSEL1
FIFOSEL0
C1,
F1 I, ID, ST
FIFO Select <1:0>.
These pins are read at startup or reset. Their value at that
time is used to set the default state of Register bits 18.15:14
for all ports. These register bits can be read and overwritten
after startup/reset.
These pins are shared with RMII-RxER<5:4>. An external
pull-up resistor (see applications section for value) can be
used to set FIFO Select<1:0> to active while RxER<5:4> are
three-stated during hardware reset. If no pull-up is used, the
default FIFO select state is set via the internal pull-down
resistors.
See Table 36, Receive FIFO Depth Configurations, on
page 119.
LINKHOLD B3 I, ID, ST
LINKHOLD Default. This pin is read at startup or reset. Its
value at that time is used to set the default state of Register
bit 0.11 for all ports. This register bit can be read and
overwritten after startup / reset. When High, the
LXT9785/LXT9785E powers down all ports.
This pin is shared with RMII-RxER6. An external pull-up
resistor (see applications section for value) can be used to
set LINKHOLD active while RxER6 is three-stated during
H/W reset. If no pull-up is used, the default LINKHOLD state
is set inactive via the internal pull-down resistor.
LED Signal Descriptions
LED0_1_L
LED0_2_L
LED0_3_L
N9
P9
M8
OD, TS,
SL, IP
Port 0 LED Drivers 1-3.
These pins drive LED indicators for Port 0. Each LED can
display one of several available status conditions as
selected by the LED Configuration Register (refer to
Table 97, LED Configuration Register (Address 20, Hex 14),
on page 226 for details).
LED1_1_L
LED1_2_L
LED1_3_L
N8
P8
L8
OD, TS,
SL, IP
Port 1 LED Drivers 1-3.
These pins drive LED indicators for Port 1. Each LED can
display one of several available status conditions as
selected by the LED Configuration Register (refer to
Table 97, LED Configuration Register (Address 20, Hex 14),
on page 226 for details).
LED2_1_L
LED2_2_L
LED2_3_L
P7
N7
M7
OD, TS,
SL, IP
Port 2 LED Drivers 1-3.
These pins drive LED indicators for Port 2. Each LED can
display one of several available status conditions as
selected by the LED Configuration Register (refer to
Table 97, LED Configuration Register (Address 20, Hex 14),
on page 226 for details).
LED3_1_L
LED3_2_L
LED3_3_L
P6
N6
M6
OD, TS,
SL, IP
Port 3 LED Drivers 1-3.
These pins drive LED indicators for Port 3. Each LED can
display one of several available status conditions as
selected by the LED Configuration Register (refer to
Table 97, LED Configuration Register (Address 20, Hex 14),
on page 226 for details).
Table 39 BGA15 Signal Descriptions (Sheet 5 of 7)
Symbol BGA15 Ball
Designation Type Signal Description
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. Switched to TPIP/N Inputs when MDIX is not active (twisted-pair, non-crossover MDI mode).
3. Switched to TPOP/N Outputs when MDIX is not active (twisted-pair, non-crossover MDI mode).
Page 137Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.6 BGA15 Signal Descriptions
LED4_1_L
LED4_2_L
LED4_3_L
B9
A9
D8
OD, TS,
SL, IP
Port 4 LED Drivers 1-3.
These pins drive LED indicators for Port 4. Each LED can
display one of several available status conditions as
selected by the LED Configuration Register (refer to
Table 97, LED Configuration Register (Address 20, Hex 14),
on page 226 for details).
LED5_1_L
LED5_2_L
LED5_3_L
B8
A8
C7
OD, TS,
SL, IP
Port 5 LED Drivers 1-3.
These pins drive LED indicators for Port 5. Each LED can
display one of several available status conditions as
selected by the LED Configuration Register (refer to
Table 97, LED Configuration Register (Address 20, Hex 14),
on page 226 for details).
LED6_1_L
LED6_2_L
LED6_3_L
A7
B7
D6
OD, TS,
SL, IP
Port 6 LED Drivers 1-3.
These pins drive LED indicators for Port 6. Each LED can
display one of several available status conditions as
selected by the LED Configuration Register (refer to
Table 97, LED Configuration Register (Address 20, Hex 14),
on page 226 for details).
LED7_1_L
LED7_2_L
LED7_3_L
B6
A6
D5
OD, TS,
SL, IP
Port 7 LED Drivers 1-3.
These pins drive LED indicators for Port 7. Each LED can
display one of several available status conditions as
selected by the LED Configuration Register (refer to
Table 97, LED Configuration Register (Address 20, Hex 14),
on page 226 for details).
Power Supply Signal Descriptions
AVCC
D12, E12,
F12, G12,
H12, J12,
K12, L12,
Analog Power Supply.
+2.5 V supply for analog circuits.
AVSS
E11, F9, F10,
F11, G9, G10,
G11, H9, H10,
H11, J9, J10,
J11, K11, L11
Analog Ground.
Ground return for analog supply (AVCC). all grounds can be
tied together using a single ground plane.
VCCD D7, L7 Digital Power Supply - Core.
+2.5 V supply for core digital circuits.
VCCIO D4, F4, H4,
L3, L5,
Digital Power Supply - I/O Ring.
+2.5/3.3 V supply for digital I/O circuits. The digital input
circuits running off of this rail, having a TTL-level threshold
and over-voltage protection, may be interfaced with 3.3/5.0
V, when the IO supply is 3.3 V, and 2.5/3.3/5.0 V when 2.5 V.
Table 39 BGA15 Signal Descriptions (Sheet 6 of 7)
Symbol BGA15 Ball
Designation Type Signal Description
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. Switched to TPIP/N Inputs when MDIX is not active (twisted-pair, non-crossover MDI mode).
3. Switched to TPOP/N Outputs when MDIX is not active (twisted-pair, non-crossover MDI mode).
Page 138Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
3.6 BGA15 Signal Descriptions
GNDD
A1, A2, A3,
B1, B2, B5,
B10, D9, D11,
E5, E6, E9,
E10, F5, F6,
F7, F8, G4,
G6, G7, G8,
H6, H7, H8,
J5, J6, J7, J8,
K5, K6, K9,
K10, L2, N1,
N11, P1, P11
Digital Ground.
Ground return for core digital supplies (VCCD). All ground
pins can be tied together using a single ground plane.
SGND C8
Substrate Ground.
Ground for chip substrate. All ground pins can be tied
together using a single ground plane.
Unused/Reserved Balls
NC
C4, D1, D2,
D10, E4, E7,
G2, G5, H1,
H5, J4, K4,
K7, L1, L6,
L10, M4, M5,
P2, P3
No Connection.
Table 39 BGA15 Signal Descriptions (Sheet 7 of 7)
Symbol BGA15 Ball
Designation Type Signal Description
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal
pull-Down.
2. Switched to TPIP/N Inputs when MDIX is not active (twisted-pair, non-crossover MDI mode).
3. Switched to TPOP/N Outputs when MDIX is not active (twisted-pair, non-crossover MDI mode).
Page 139Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.0 Functional Description
4.0 Functional Description
4.1 Introduction
The Cortina Systems® LXT9785/LXT9785E is an 8-port Fast Ethernet 10/100 PHY
transceiver that supports 10 Mbps and 100 Mbps networks, complying with all applicable
requirements of IEEE 802.3 standards. The device incorporates a Serial Media
Independent Interface (SMII), Source Synchronous-Serial Media Independent Interface
(SS-SMII), and a Reduced Serial Independent Interface (RMII) to enable each individual
network port to interface with multiple 10/100 MACs. Each port directly drives either a
100BASE-TX line or a 10BASE-T line. The LXT9785/LXT9785E also supports
100BASE-FX operation via an LVPECL interface. The device has a 241-ball BGA, a 208-pin
QFP, or a 196-ball BGA package.
The 196-ball BGA package (BGA15) is a reduced feature-set product designated as the
LXT9785MBC. The BGA15 package does not support the following features:
•RMII
•Fiber
Sectionalization
Hardware control pins:
PAUSE
—MDIX
—MDDIS
PWRDWN
Lower three PHY address (out of five PHY address bits)
Extended temperature
Note:
Unless otherwise noted, all information in this document applies to the LXT9785 and
LXT9785E.
4.1.1 OSP™ Architecture
The LXT9785/LXT9785E incorporates high-efficiency Optimal Signal Processing™ design
techniques, combining the best properties of digital and analog signal processing to
produce a truly optimal device.
The receiver utilizes decision feedback equalization to increase noise and cross-talk
immunity by as much as 3 dB over an ideal all-analog equalizer. Using OSP mixed-signal
processing techniques in the receive equalizer avoids the quantization noise and
calculation truncation errors found in traditional DSP-based receivers (typically complex
DSP engines with A/D converters). The result is improved receiver noise and cross-talk
performance.
The OSP architecture also requires substantially less computational logic than traditional
DSP-based designs. The result is lower power consumption and reduced logic switching
noise generated by DSP engines clocked at speeds up to 125 MHz. The logic switching
noise can be a considerable source of EMI when generated from the device’s power
supplies.
The OSP-based LXT9785/LXT9785E provides improved data recovery, EMI performance
and power consumption.
Page 140Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.2 Interface Descriptions
4.1.2 Comprehensive Functionality
The LXT9785/LXT9785E performs all functions of the Physical Coding Sublayer (PCS) and
Physical Media Attachment (PMA) sublayer as defined in the IEEE 802.3 100BASE-X
specification. This device also performs all functions of the Physical Media Dependent
(PMD) sublayer for 100BASE-TX connections.
On power-up, the LXT9785/LXT9785E reads its configuration inputs to check for forced
operation settings. If not configured for forced operation, each port uses
auto-negotiation/parallel detection to automatically determine line operating conditions. If
the PHY device on the other side of the link supports auto-negotiation, the
LXT9785/LXT9785E auto-negotiates with it using Fast Link Pulse (FLP) Bursts. If the PHY
partner does not support auto-negotiation, the LXT9785/LXT9785E automatically detects
the presence of either link pulses (10 Mbps PHY) or Idle symbols (100 Mbps PHY) and set
its operating conditions accordingly.
The LXT9785/LXT9785E provides half-duplex and full-duplex operation at 100 Mbps and 10
Mbps.
4.1.2.1 Sectionalization
The LXT9785/LXT9785E’s sectional design allows flexibility with large multiport MACs and
ASICs. With the use of the Section pin, the LXT9785/LXT9785E can be configured into a
single 8-port or two separate 4-port sections, each with its own MDIO (with separate MDC
clock) and MII data (with separate REFCLK/TxCLK/RxCLK clocks) interfaces. See
Figure 16, Typical SMII Quad Sectionalization, on page 156, Figure 21, Typical SS-SMII
Quad Sectionalization, on page 161, and Figure 26, Typical RMII Quad Sectionalization, on
page 165.
Note:
The BGA15 package does not support sectionalization.
4.2 Interface Descriptions
4.2.1 10/100 Network Interface
The LXT9785/LXT9785E supports 10 Mbps and 100 Mbps (10BASE-T and 100BASE-TX)
Ethernet over twisted-pair, or 100 Mbps (100BASE-FX) Ethernet over fiber media. Each
network interface port consists of four external pins (two differential signal pairs). The pins
are shared between twisted-pair (TP) and fiber. The LXT9785/LXT9785E pinout is designed
to interface seamlessly with dual-high stacked RJ-45 connectors. Refer to Table 11,
Network Interface Signal Descriptions – PQFP, on page 49 for specific pin assignments.
The LXT9785/LXT9785E output drivers generate either 100BASE-TX, 10BASE-T, or
100BASE-FX output. When not transmitting data, the device generates IEEE
802.3-compliant link pulses or idle code. Input signals are decoded either as a
100BASE-TX, 100BASE-FX, or 10BASE-T input, depending on the mode selected.
Auto-negotiation/parallel detection or manual control is used to determine the speed of this
interface.
Page 141Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.2 Interface Descriptions
4.2.1.1 Twisted-Pair Interface
The LXT9785/LXT9785E supports either 100BASE-TX or 10BASE-T connections over 100
, Category 5, Unshielded Twisted-Pair (UTP). Only a transformer, RJ-45, and bypass
capacitors are required to complete this interface. Using waveshaping technology, the
transmitter shapes the outgoing signal to help reduce the need for external EMI filters. Four
slew rate settings (refer to Table 13, Miscellaneous Signal Descriptions – PQFP, on
page 50) allow the designer to match the output waveform to the magnetic characteristics.
Both transmit and receive terminations are built into the LXT9785/LXT9785E so no external
components are required between the LXT9785/LXT9785E and the external transformer.
The transmitter uses a transformer with a center tap to help reduce power consumption.
When operating at 100 Mbps, MLT3 symbols are continuously transmitted and received.
When not transmitting data, the LXT9785/LXT9785E generates “IDLE” symbols.
During 10 Mbps operation, LXT9785/LXT9785E encoded data is exchanged. When no data
are being exchanged, the line is left in an idle state with NLPs transmitted to maintain link.
Figure 7 Interface Signals
TXENn
RXDn_0
TXDn_0
TXDn_1
RXDn_1
CRS_DVn
RXERn
DATA
Interface
MDDIS
MDCn
MDINTn
MDIOn
MDIO
Management
Interface
LEDn_2
LEDn_3
Port LEDs/
Controls
ADD[4:0]
TPFOPn
TPFONn
TPFIPn
TPFINn
Network
Interface
VCCIO +3.3V
OR
+2.5V
VCCD +2.5V
GNDD
.01uF
Addr &
MDIX/
Contr
Mode Select
MDIX_Enb
Direct Drive
TXCLK
RXCLK
LEDn_1
B3369-01
Page 142Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.3 Media Independent Interface
(MII) Interfaces
4.2.1.2 MDI Crossover (MDIX)
The LXT9785/LXT9785E crossover function, which is compliant to the IEEE 802.3, clause
23 standard, connects the transmit output of the device to the far-end receiver in a link
segment. This function can be disabled via Register bits 27.9:8 or by using the hardware
configuration pins.
Note:
The BGA15 package does not support MDIX hardware configuration. Software must be
used to control the function after power-up.
4.2.1.3 Fiber Interface
The LXT9785/LXT9785E fiber ports are designed to interface with common
industry-standard 3.3 V and 5 V fiber transceivers. Each of the 8 ports incorporates a
Low-Voltage PECL interface that complies with the ANSI X3.166 standard for seamless
integration.
Note:
The BGA15 package does not support the fiber interface.
Fiber mode is selected through Register bit 16.0 by the following two methods:
1. Configure Register bit 16.0 = 1 on a global basis (all 8 ports) by driving the Hardware
Control pin G_FX/TP_L to a logic High value on power-up and/or reset.
2. Configure Register bit 16.0 = 1 on a per-port basis through the MDIO interface.
The fiber interface is capable of full-duplex or half-duplex operation. In half duplex,
operation collisions must be managed by external Layer 2 logic (MAC). Auto negotiation is
not supported for fiber mode.
4.3 Media Independent Interface (MII) Interfaces
The LXT9785/LXT9785E supports Reduced MII or Serial MII, but not concurrently. The
interface mode selection pins configures the device for either RMII or SMII/SS-SMII on all
eight ports. Refer to Table 41 for the mode select settings.
Note:
The BGA15 package does not support the RMII interface.
4.3.1 Global MII Mode Select
The mode select pins are used for MII interface configuration settings upon power-up
sequencing. All ports are configured the same and cannot be intermixed.
Table 40 MDIX Selection
AMDIX_EN MDIX MDIX Mode
0 0 MDI forced
0 1 MDIX forced
1 X Auto MDI/MDIX
Page 143Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.3 Media Independent Interface
(MII) Interfaces
4.3.2 Internal Loopback
Register bit 0.14 must be set to enable internal loopback operation. Register bits 16.14 and
0.8 must be set for 10 Mbps operation. Cortina recommends that auto-negotiation be
disabled while internal loopback is enabled. The normal auto-negotiation process code
word exchange cannot be completed.The following two-step sequence is recommended for
the most efficient mode change when enabling forced 100 Mbps internal loopback mode
directly from auto-negotiation mode:
1. Write Register 0 with 0x2100h (forced 100 Mbps), and
2. Write Register 0 with 0x6100h (enable internal loopback with forced 100 Mbps)
This two-step process ensures the 100 Mbps link comes up quickly. If the one-write process
of writing 0x6100h is followed, it may take up to 1.5 seconds before link is established and
data is received on the port. The 1.5 second delay is due to the IEEE auto-negotiation
Break Link Timer (BLT) requirement. The timer must expire before link is established when
changing modes directly from auto-negotiation to internal loopback forced 100 Mbps mode.
Use the above two-step process to eliminate the auto-negotiation BLT timer requirement.
4.3.3 RMII Data Interface
The LXT9785/LXT9785E provides a separate RMII for each network port, each complying
with the RMII Specification, Revision 1.2. The RMII includes both a data interface and an
MDIO management interface. The RMII Data Interface exchanges data between the
LXT9785/LXT9785E and up to eight Media Access Controllers (MACs).
Table 41 MII Mode Select
Configuration ModeSel1 ModeSel0
RMII100
SMII 0 1
SS-SMII 1 0
Reserved 1 1
1. Invalid for the BGA15 package.
Figure 8 Internal Loopback
Loopback
Digital
Block
Analog
Block
RMII/
SMII/
SS-
SMII
inter
face
Fx
Driver
Tx
Driver
LXT9785/9785E
Page 144Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.3 Media Independent Interface
(MII) Interfaces
4.3.4 Serial Media Independent Interface (SMII) and Source
Synchronous- Serial Media Independent Interface (SS-SMII)
4.3.4.1 SMII Interface
The LXT9785/LXT9785E provides an independent serial interface for each network port,
complying with the Serial-MII Specification, Revision 1.2. All SMII ports use a common
reference clock and SYNC signal. The SMII Data Interface exchanges data between the
LXT9785/LXT9785E and multiple Media Access Controllers (MACs). All signals are
synchronous to the reference clock. One SYNC control stream is sourced by the MAC to the
PHY. Both the transmit and receive data streams are segmented into boundaries delimited
by the SYNC pulses. This interface is expected to drive up to 6 inches of trace lengths.
4.3.4.2 Source Synchronous-Serial Media Independent Interface
The new revision to the SMII interface, SS-SMII, allows for a longer trace length and helps
to relieve timing constraints, requiring the addition of four new signals, TxCLK, TxSYNC,
RxCLK, and RxSYNC. The transmit TxCLK and TxSYNC are sourced from the MAC to the
PHY and referenced to the REFCLK input. The receive RxCLK and RxSYNC are sourced
by the PHY to the MAC and in reference to the REFCLK.
4.3.5 Configuration Management Interface
The LXT9785/LXT9785E provides an MDIO Management Interface and a Hardware Control
Interface (via the CFG pins) for device configuration and management. Mode control
selection is provided via the MDDIS pin as shown in Table 9, MDIO Control Interface
Signals – PQFP, on page 48. When sectionalization (2x4) is selected, separate MDIO
interfaces are enabled (see Figure 13 on page 150).
4.3.6 MII Isolate
In applications where the MII must be isolated from the bus, the RMII and the SMII/SS-SMII
configurations can be three-stated using Register 0.10. On each individual port, Register bit
0.10 controls the isolation of the transmit and receive data signals for that port. Register bit
0.10 on ports 0 and 4 isolate the RxCLKn/TxCLKn and SYNC signals.
When 1x8 sectionalization is selected, TxCLK0, TxSYNC0, RxCLK1, and RxSYNC1 are
used for the clocking and synchronization interface. Port 4 controls the isolation of RxCLK0,
RxCLK1, RxSYNC0, and RxSYNC1, and must be used to isolate the receive clock and
synchronization interface.
When 2x4 sectionalization is selected, TxCLK0, TxSNC0, RxCLK0, and TxCLK0 are used
for Port 0 through Port 3 and TxCLK1, TxSYNC1, RxCLK1, and RxSYNC1 are used for Port
4 through Port 7. Port 0 must be isolated to isolate the receive clock and synchronization
interface for Port 0 through Port 3. Port 4 must be isolated to isolate Port 4 through Port 7.
4.3.7 MDIO Management Interface
The LXT9785/LXT9785E supports the IEEE 802.3 MII Management Interface, also known
as the Management Data Input/Output (MDIO) Interface. This interface allows upper-layer
devices to monitor and control the state of the LXT9785/LXT9785E. The MDIO interface
consists of a physical connection, a specific protocol that runs across the connection, and
an internal set of addressable registers. Some registers are required and their functions are
defined by the IEEE 802.3 specification. Additional registers allow for expanded
functionality. Specific bits in the registers are referenced using an “X.Y” notation, where X is
the register number (0-32) and Y is the bit number (0-15).
Page 145Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.3 Media Independent Interface
(MII) Interfaces
The physical interface consists of a data line (MDIO) and clock line (MDC). Operation of this
interface is controlled by the MDDIS input pin. When MDDIS is High, all the MDIOs are
completely disabled. The Hardware Control Interface provides primary configuration control.
When MDDIS is Low, the MDIO port is enabled for both read and write operations and the
Hardware Control Interface is not used.
Note:
The BGA15 package does not support the MDDIS pin.
The timing for the MDIO Interface is shown in Table 80, MDIO Timing Parameters, on
page 212. MDIO read and write cycles are shown in Figure 9, Management Interface Read
Frame Structure, on page 145 and Figure 10, Management Interface Write Frame
Structure, on page 145.
The protocol allows one controller to communicate with multiple LXT9785/LXT9785E
devices. Pins ADD_<4:0> determine the base address. Each port adds its port number to
the base address to obtain its port address as shown in Figure 11.
The BGA15 package uses a similar scheme where the ADD_[2:0] bits internally set to 0 and
the ADD_[4:3] bits are used to select from four base addresses (0x00000b, 0x01000b,
0x10000b, or 0x11000b.
Figure 9 Management Interface Read Frame Structure
Figure 10 Management Interface Write Frame Structure
MDC
MDIO
(Read) 32 "1"s 0110
Preamble ST Op Code PHY Address Turn
Around
Z0
A4 A3 A0 R4 R3 R0
Register Address
D15 D14 D1
Data
Write Read
D15 D14 D1 D0
Idle
High Z
Page 146Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.3 Media Independent Interface
(MII) Interfaces
4.3.8 MII Sectionalization
When sectionalized into two quad sections, the MDIO bus splits into two separate PHY
access ports. Ports 0-3 of the MDIO section operate independently of ports 4-7. The MII
isolate function is unaffected and operates normally. Sectionalization is selected by pulling
pin 176 (Section) High on the initial power-up sequence (refer to Figure 13). In applications
that need sectionalization, such as 1x8 and 2x4 and have a single MDIO bus structure, it is
necessary that the addressing scheme be contiguous. For example, the first eight ports are
addressed 0-7, so the next four ports must be addressed 8-11.
Note:
The BGA15 package does not support the MII sectionalization feature.
4.3.9 MII Interrupts
The LXT9785/LXT9785E provides a single per-section interrupt pin that is available to all
ports. Interrupt logic is shown in Figure 12. The LXT9785/LXT9785E also provides two
dedicated interrupt registers for each port. Register 18 provides interrupt enable and mask
functions and Register 19 provides interrupt status. Setting Register bit 18.1 = 1 enables a
port to request interrupt via the MDINT_L pin. An active Low on this pin indicates a status
change on the device. Because it is a shared interrupt, there is no indication which port is
requesting interrupt service (see Figure 12).
There are five conditions that may cause an interrupt:
Auto-negotiation complete.
Speed status change.
Duplex status change.
Figure 11 Port Address Scheme
BA SE ADD _<4:0>
(example ADD_<4:0> = 4)
PHY ADD_<4:0> (BASE+0)
PHY ADD_<4:0> (BASE+1)
PHY ADD_<4:0> (BASE+2)
PHY ADD_<4:0> (BASE+3)
PHY ADD_<4:0> (BASE+4)
PHY ADD_<4:0> (BASE+5)
e x. 4
e x. 5
e x. 6
e x. 7
e x. 8
e x. 9
LXT9785
Port 0
Port 1
Port 2
Port 3
Port 4
Port 5
PHY ADD_<4:0> (BASE+7)
ex. 11
Por t 7
PHY ADD_<4:0> (BASE+6)
ex. 10
Port 6
LXT9785/9785E
Page 147Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.3 Media Independent Interface
(MII) Interfaces
Link status change.
Isolate status change.
4.3.10 Global Hardware Control Interface
The LXT9785/LXT9785E provides a Hardware Control Interface for applications where the
MDIO is not desired. Refer to Section 4.5, Initialization, on page 149 for additional details.
4.3.11 FIFO Initial Fill Values
The FIFO initial fill value sets the number of bits required to be written into the FIFO before
the process of reading the packet out of the FIFO is started. The read operation is aligned
on nibble boundaries because the FIFO is one nibble wide. The read clock on the RMII and
SMII interfaces may occur any time within the next available nibble. Therefore, the effective
size of the FIFO is one nibble less than the selected size.
Large initial fill FIFO settings alter both the data-path latency and the InterFrame Gap (IFG)
output on the RMII and SMII interfaces. The latency values are increased or decreased
depending on the number of bits the FIFO size is increased or decreased. The IFG may
decrease up to twice the size of the initial fill FIFO setting. When the following three
conditions are met, the IPG on the RMII and SMII interfaces may become nonexistent
between packets, effectively concatenating the packets into one long corrupted packet:
The frequency difference between the link partner and the local LXT9785/LXT9785E
device exceed 200 ppm (the IEEE standard requirement).
Jumbo packets (8192 byte packets or longer) are used.
Packets on the wire occur with minimum Inter-Packet Gap (IPG) of 96 bit times.
The concatenation of the packets is flagged by the MAC as a CRC error and possibly an
oversized packet depending upon the length indication capabilities of the MAC. The
possibility of packet concatenation can be minimized on the RMII interface by setting the
initial fill FIFO Register bits 18.15:14 to 01. The FIFO setting bits should be set to 10 for the
SMII interfaces.
Figure 12 Interrupt Logic
Force Interrupt Interrupt Enable
Event X Enable Reg
Event X Status Reg
Interrupt Pin
.
.
.
AND
OR
AND .
.
.
Per port
Per Event
Por t
Combine
Logic
Interrupt (Event) Status Register is cleared on read.
X = Any Int errupt ca pability
Page 148Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.4 Operating Requirements
4.4 Operating Requirements
4.4.1 Power Requirements
The LXT9785/LXT9785E requires four power supply inputs: VCCD, VCCA, VCCPECL and
VCCIO. The digital and analog circuits require 2.5 V supplies (VCCD, VCCR, and VCCT).
These inputs may be supplied from a single source although decoupling is required to each
respective ground. The fiber VCCPECL supply can be connected to either 2.5 V or 3.3 V.
A separate power supply may be used for the MII, JTAG and MDIO (VCCIO) interfaces.
The power supply may be either +2.5 V or +3.3 V. VCCIO should be supplied from the same
power source used to supply the controller on the other side of the interface. Refer to
Table 54, Digital I/O DC Electrical Characteristics (VCCIO = 2.5 V +/- 5%), on page 195,
Table 55, Digital I/O DC Electrical Characteristics (VCCIO = 3.3 V +/- 5%), on page 196,
and Table 56, Digital I/O DC Electrical Characteristics – SD Pins, on page 196 for I/O
characteristics.
As a matter of good practice, these supplies should be as clean as possible. Typical filtering
and decoupling are shown in Figure 34 on page 189. The power supplies should be brought
up as close to the same time as possible. However, there are no specific timing
requirements.
4.4.2 Clock/SYNC Requirements
4.4.2.1 Reference Clock
The LXT9785/LXT9785E requires a constant enabled reference clock (REFCLK).
REFCLK’s frequency must be 50 MHz for RMII or 125 MHz for SMII/SS-SMII. The
reference clock is used to generate transmit signals and recover receive signals. A
crystal-based clock is recommended over a derived clock (that is, PLL-based) to minimize
transmit jitter. Refer to Table 57, Required Clock Characteristics, on page 196 for clock
timing requirements.
For applications that use a single 8-port sectionalization, REFCLK0 and REFCLK1 must
always be tied together and to the source. In 2x4 applications, REFCLK0 and REFCLK1 are
not tied together.
4.4.2.2 TxCLK Signal (SS-SMII only)
The LXT9785/LXT9785E requires a 125 MHz input transmit clock synchronous with
TxDatan and frequency locked to REFCLK. See Figure 22 on page 162.
4.4.2.3 TxSYNC Signal (SMII/SS-SMII)
The LXT9785/LXT9785E requires a 12.5 MHz input pulse for SMII synchronization. See
Figure 22 on page 162.
4.4.2.4 RxSYNC Signal (SS-SMII only)
The LXT9785/LXT9785E provides a 12.5 MHz output pulse synchronous with the RxDatan
outputs. See Figure 23 on page 162.
Page 149Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.5 Initialization
4.4.2.5 RxCLK Signal (SS-SMII Only)
In SS-SMII mode, the LXT9785/LXT9785E provides a 125 MHz clock output in reference to
the output RxDatan. RxCLK is referenced and synchronized to the REFCLK. See Figure 23
on page 162.
Note:
Although RXCLK is referenced to REFCLK, the RXCLK may vary in cumulative phase by up
to four bit-times relative to REFCLK.
4.5 Initialization
When the LXT9785/LXT9785E is first powered on, reset, or encounters a link failure state, it
checks the MDIO register configuration bits to determine the line speed and operating
conditions to use for the network link. The configuration bits may be set by the Hardware
Control or MDIO interface as shown in Figure 13 on page 150.
4.5.1 MDIO Control Mode
In the MDIO Control mode, the LXT9785/LXT9785E reads the Hardware Control Interface
pins to set the initial (default) values of the MDIO registers. Once the initial values are set,
bit control reverts to the MDIO interface.
4.5.2 Hardware Control Mode
In the Hardware Control Mode, the LXT9785/LXT9785E disables direct write operations to
the MDIO registers via the MDIO Interface. On power-up or hardware reset, the
LXT9785/LXT9785E reads the Hardware Control Interface pins and sets the MDIO registers
accordingly.
The following modes are available using either Hardware Control or MDIO Control:
Force network link to 100BASE-FX (Fiber).
Force network link operation to:
100BASE-TX, Full-Duplex
100BASE-TX, Half-Duplex
10BASE-T, Full-Duplex
10BASE-T, Half-Duplex
Allow auto-negotiation/parallel-detection.
Auto/Manual MDIX enable/disable.
Pause for full-duplex links operation.
Global Output Slew Rate Control.
When the network link is forced to a specific configuration, the LXT9785/LXT9785E
immediately begins operating the network interface as commanded. When auto-negotiation
is enabled, the LXT9785/LXT9785E begins the auto-negotiation/ parallel-detection
operation.
Page 150Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.5 Initialization
4.5.3 Power-Down Mode
The LXT9785/LXT9785E incorporates numerous features to maintain the lowest power
possible. The device can be put into a low-power state via Register 0 as well as a near-zero
power state with the power down pin. When in power-down mode, the device is not capable
of receiving or transmitting packets.
The lowest power operation is achieved using the Global power-down pin, which is active
High. This pin powers down every circuit in the device, including all clocks. All registers are
unaltered and maintained when the Global PWRDWN pin is released.
Note:
The BGA15 package does not support the PWRDWN pin feature.
Individual ports (software power down) can be powered down using Register bit 0.11. This
bit powers down a significant portion of the port, but clocks to the register section remain
active. This allows the management interface to remain active during register power-down.
The power-down bit is active High.
Note:
Cortina recommends that a minimum recovery time be allowed after bringing up a port from
software or hardware power-down or link hold-off modes. The recovery times are specified
in Table 81, Power-Up Timing Parameters, on page 213
Figure 13 Initialization Sequence
MDDIS Voltage
Level? HighLow
MDIO Control
Mode
Hardware Control
Mode
Disable MDIO Writes
Reset MDIO Registers to
values read at H/W
Control Interface at last
Hardware Reset
Pass Control to MDIO
Interface
Power-up or Reset
Initialize MDIO Registers
Read H/W Control
Interface
Hardware
Reset?
Software
Reset?
YesYes
Page 151Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.5 Initialization
4.5.3.1 Global (Hardware) Power Down
The global power-down mode is controlled by the PWRDWN pin. When PWRDWN is High,
the following conditions are true:
All LXT9785/LXT9785E ports and the clock are shut down.
All outputs are three-stated.
All weak pad pull-up and pull-down resistors are disabled.
The MDIO registers are not accessible.
Configuration pins are read upon release of the PWRDWN pin, and registers are loaded
with the current values of the hardware configuration pins.
4.5.3.2 Port (Software) Power Down
Individual port power-down control is provided by Register bit 0.11 in the respective port
Control Registers (refer to Table 84, Control Register (Address 0), on page 215). During
individual port power-down, the following conditions are true:
The individual port is shut down.
The MDIO registers remain accessible.
Pull-up and pull-down resisters are not affected and the outputs are not three-stated.
The register remains unchanged.
4.5.4 Reset
The LXT9785/LXT9785E provides both hardware and software resets. Configuration control
of Auto-Negotiation, speed, and duplex mode selection is handled differently for each.
During a hardware reset, settings for bits 0.13, 0.12, 0.8, and 4.8:5 are read in from the pins
(refer to Table 42, Global Hardware Configuration Settings, on page 152 for pin settings,
and Table 84, Control Register (Address 0), on page 215 and Table 88, Auto-Negotiation
Advertisement Register (Address 4), on page 218 for register bit definitions).
During a software reset (Register bit 0.15 = 1), the bit settings are not re-read from the pins
and revert back to the values that were read in during the last hardware reset. Any changes
to pin values from the last hardware reset are not detected during a software reset.
During a hardware reset, register information is unavailable for 1 ms after de-assertion of
the reset. All MII interface pins are disabled during a hardware reset and released to the bus
on de-assertion of reset.
During a software reset (0.15 = 1) the registers are available for reading. The reset bit
should be polled to see when the part has completed reset (0.15 = 0). Pull up and pull down
resisters are not affected.
Cortina recommends that a minimum recovery time be allowed after bringing up a port from
software or hardware reset. The recovery times are specified in Table 81, Power-Up Timing
Parameters, on page 213
4.5.5 Hardware Configuration Settings
The LXT9785/LXT9785E provides a hardware option to set the initial device configuration.
The hardware option uses three Global CFG pins that provide control for all ports (see
Table 42).
Page 152Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.6 Link Establishment
4.6 Link Establishment
4.6.1 Auto-Negotiation
The LXT9785/LXT9785E attempts to auto-negotiate with its link partner by sending Fast
Link Pulse (FLP) bursts. Each burst consists of 33 link pulses spaced 62.5 s apart. Odd
link pulses (clock pulses) are always present. Even link pulses (data pulses) may also be
present or absent to indicate a “1” or a “0”. Each FLP burst exchanges 16 bits of data,
referred to as a “page”. All devices that support auto-negotiation must implement the “Base
Page”, defined by IEEE 802.3 (registers 4 and 5). The LXT9785/LXT9785E also supports
the optional “Next Page” function (registers 7 and 8).
4.6.1.1 Base Page Exchange
By exchanging Base Pages, the LXT9785/LXT9785E and its link partner communicate their
capabilities to each other. Both sides must receive at least three identical base pages for
negotiation to proceed. Each side finds their highest common capabilities, exchange more
pages, and agree on the operating state of the line.
4.6.1.2 Manual Next Page Exchange
Additional information, exceeding that required by base page exchange, is also sent via
“Next Pages.” The LXT9785/LXT9785E fully supports the IEEE 802.3 method of negotiation
via Next Page exchange. The Next Page exchange uses Register 7 to send information and
Register 8 to receive it. Next Page exchange occurs only if both ends of the link partners
advertise their ability to exchange Next Pages. A special mode has been added to make
manual next page exchange easier for software. When Register 6 “page” is received, it
stays set until read. This bit is cleared when a new negotiation occurs, preventing the user
from reading an old value in Register 6 and assuming there is valid information in Registers
5 and 8. The page received bit is cleared upon reading the Section Table 90,
Auto-Negotiation Expansion Register (Address 6), on page 220.
Table 42 Global Hardware Configuration Settings
Desired Mode CFG
Pin Settings1Resulting Register Bit Values
AutoNeg Speed Duplex 1 2 3 0.12 0.13 0.8 4.8 4.7 4.6 4.5
Disabled
10
Half Low Low Low
0
0
0
N/A
Auto-Negotiation
Advertisement
Full Low Low High 1
100
Half Low High Low
1
0
Full Low High High 1
Enabled
100
Half High Low Low
1
1001
00
Full/Half High Low High 1 0 1 1
10/100
Half High High Low 1 0 0 1 0 1
Full/Half High High High 1 0 1 1 1 1
1. Refer to Table 5, RMII Signal Descriptions – PQFP, on page 43 through Table 17, Receive FIFO Depth
Considerations, on page 57 Table 24, RMII Signal Descriptions – BGA23, on page 105 through Table 36,
Receive FIFO Depth Configurations, on page 119, and Table 39, BGA15 Signal Descriptions, on page 132
for CFG pin assignments.
Page 153Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.6 Link Establishment
4.6.1.3 Controlling Auto-Negotiation
The following steps are recommended when auto-negotiation is controlled by software:
After power-up, power-down, or reset, the power-down recovery time, as specified in
Table 81, Power-Up Timing Parameters, on page 213, must be exhausted before
proceeding.
Set the auto-negotiation advertisement register bits in Register 4 as desired.
Enable auto-negotiation (set MDIO Register bit 0.12 = 1).
Enable or restart auto-negotiation as soon as possible after writing to Register 4 to
ensure proper operation.
4.6.1.4 Link Criteria
In 100 Mbps mode, link is established when the descrambler becomes locked and remains
locked for approximately 50 ms. Link remains up unless the descrambler receives less than
16 consecutive idle symbols in any 2 ms period. This provides a robust operation, filtering
out any small noise hits that may disrupt the link.
MLT-3 idle waveforms, for short periods, meet all the criteria for 10BASE-T start delimiters.
A working 10BASE-T receive may temporarily indicate link to 100BASE-TX waveforms.
However, the PHY will not bring up a permanent 10 Mbps link.
According to the IEEE standard 10 Mbps link state machine, the last condition that must be
met before 10 Mbps link can come up is a period of transmit and receive idle time. TXEN
and RXDV are inactive at the same time. This ensures that link is not brought up in the
middle of transmitting or receiving a packet. To ensure link establishment, Cortina
recommends no packet transmission into the MII interface until link is established.
The IEEE Standard references this requirement in Section 14.2.3 State Diagrams, Figure
14-6-Link Integrity Test Function State Diagram and in Section 28.3.4 State Diagrams,
Figure 28-17-NLP Receive Link Integrity Test State Diagram. These diagrams illustrate that
while the PHY is in the Link Test Fail Extend state, the last state before Link Pass state)
Packet receive activity (RD) and Transmit Activity (DO) must be idle (RD = idle * D0 = idle)
for link to establish.
4.6.1.5 Parallel Detection
In parallel with auto-negotiation, the LXT9785/LXT9785E also monitors for 10 Mbps Normal
Link Pulses (NLP) or 100 Mbps Idle symbols. If either symbol is detected, the device
automatically reverts to the corresponding operating speed in half-duplex mode. Parallel
detection allows the LXT9785/LXT9785E to communicate with devices that do not support
auto-negotiation.
When parallel detection resolves a link, the link must be established in half-duplex mode.
According to IEEE standards, the forced link partner cannot be configured to full-duplex. If
the auto-negotiation link partner does not advertise half-duplex capability at the speed of the
forced link partner, link is not established. The IEEE Standard prevents forced
full-duplex-to-half-duplex link connections.
Page 154Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.7 Serial MII Operation
4.6.1.6 Reliable Link Establishment While Auto MDI/MDIX is Enabled in Forced
Speed Mode
With auto MDI/MDIX hardware enabled, end users experience reliable link establishment
under all settings of auto MDI/MDIX and speed between the LXT9785/LXT9785E and its
link partners. As stated in the IEEE clauses 40.4.5.1 (Auto MDI/MDIX) and 28.3.2 (Parallel
Detect), when ports are forced to 10 Mbps or 100 Mbps and auto MDI/MDIX is enabled, and
the port is connected to a partner with auto-negotiation enabled, an undefined condition
exists between the IEEE auto MDIX and Parallel Detect specifications. Link may not occur
according to the IEEE specification.
During this undefined condition, when the LXT9785/LXT9785E is set to 10 Mbps or 100
Mbps and auto MDI/MDIX is enabled, the LXT9785/LXT9785E and the link partner
auto-negotiation processes are expected to be skewed enough to establish link in all but the
rarest cases. Auto MDI/MDIX is configured through hardware and software. If auto
MDI/MDIX operation is desired in forced modes, disabling auto MDI/MDIX using the
software programming can aid link establishment.
4.7 Serial MII Operation
The LXT9785/LXT9785E exchanges transmit and receive data with the controller via the
Serial MII (SMII). The SMII performs the following functions:
Conveys complete MII information between a 10/100 PHY and MAC with two pins per
port.
Allows a multi-port MAC/PHY communication with one system clock.
Operates in both half and full-duplex.
Supports per-packet switching between 10 Mbps and 100 Mbps data rates.
Figure 14 Auto-Negotiation Operation
Check Value
0.12
Start
Done
Enable
Auto-Neg/Parallel Detection
Go To Forced
Settings
Attempt Auto-
Negotiation
Listen for 10T
Link Pulses
Listen for 100TX
Idle Symbols
Link Set?
NOYES
Power-Up, Reset,
Link Failure
Disable
Auto-Negotiation 0.12 = 0 0.12 = 1
Page 155Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.7 Serial MII Operation
The Serial MII operates at 125 MHz using a global reference clock and frame
synchronization signal (REFCLK and SYNC). Each port has an individual two-line data
interface (TxDatan and RxDatan). All signals are synchronous to REFCLK. Table 43
summarizes the SMII signals.
Data is exchanged in 10-bit serial words. Each word contains one data byte (two nibbles of
4B coded data) and two status bits. When the port is operating at 100 Mbps, each word
contains a new data byte. When the port is operating at 10 Mbps, each data byte is
repeated 10 times.
Table 43 SMII Signal Summary
Signal To From Purpose
TxData PHY MAC Transmit data & control
SYNC PHY MAC Synchronization
RxData MAC PHY Receive data & control
REFCLK MAC & PHY System Synchronization
1. Refer to Table 7, SMII Specific Signal Descriptions – PQFP, on page 46 for detailed signal descriptions.
Figure 15 Typical SMII Interface
Typical SMII Interface
in a 16-Port System
8-Port Media
Access Controller
( MAC)
SYNC0
Magnetics/Fiber Transceiver
MDIO0
MDC0
MDINT0
8-Port Media
Access Controller
(MAC)
Magnetics/Fiber Transceiver
SYNC0
MDIO0
MDC0
MDINT0
SYSTEM CLK
125 MHz Sourced
Externally or from
Switch ASIC
RefCLK0
LXT9785/9785E 8-Port Phy LXT9785/9785E 8-Port Phy
RefCLK1
RefCLK0 RefCLK1
8
TxDatan
RxDatan
8
8
8RxDatan
SECTION
SECTION
TxDatan
Page 156Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.7 Serial MII Operation
Figure 16 Typical SMII Quad Sectionalization
Magnetics/Fiber Transceiver
SYNC0
LXT9785/9785E 8-Port Phy
12-Port Media
Access Controller
( MAC)
SYNC1
4
Magnetics/Fiber Transceiver Magnetics/Fiber Transceiver
8
SYNC0
8
125 MHz Sourced
Externally or from
Switch ASIC
4
LXT9785/9785E 8-Port Phy
12-Port Media
Access Controller
( MAC)
SYNC0
4
4
MDC0
MDC0
MDIO0
MDIO0
MDIO0
MDC0
8
8
4-Port (sec) 4-Port (sec)
MDIO1
MDC1
RefClk0
RefClk1
RefClk0 RefClk1
RefClk0 RefClk1
TxDatan
RxDatan
TxDatan
RxDatan
TxDatan
RxDatan
MDINT1
MDINT0
MDINT0
MDINT0
TxData n
RxData n
SECTION
SECTION
SECTION
VCC
LXT9785/9785E
Typical SMII Interface in a
24-Port System
Page 157Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.7 Serial MII Operation
4.7.1 SMII Reference Clock
The REFCLK operates at 125 MHz. The transmit and receive data and control streams
must always be synchronized to the REFCLK by the MAC and PHY. The
LXT9785/LXT9785E samples these signals on the rising edge of the REFCLK.
4.7.2 TxSYNC Pulse (SMII/SS-SMII)
The TxSYNC pulse delimits segment boundaries and synchronizes with REFCLK. The
MAC must continuously generate a TxSYNC pulse once every 10 REFCLK cycles. The
TxSYNC pulse signals the start of each new segment (see Figure 21 on page 161).
4.7.3 Transmit Data Stream
Transmit data and control information are signaled in ten- bit segments. In 100 Mbps mode,
each segment contains a new byte of data. In 10 Mbps mode, the MAC must repeat a 10M
serial word ten times on TxData. The LXT9785/LXT9785E may sample that serial word at
any point.
The TxSYNC pulse signals the start of a new segment as shown in Figure 18.
4.7.3.1 Transmit Enable
The MAC must assert the TxEN bit in each segment of TxData, and de-assert TxENn after
the last segment of the packet.
4.7.3.2 Transmit Error
When the MAC asserts the TxER bit in 100BASE-X mode, the LXT9785/LXT9785E drives
“H” symbols onto the network interface. TxER does not have any function in 10M operation.
Figure 17 100 Mbps Serial MII Data Flow
4B/5B
S0 S1 S2 S3 S4D0 D1 D2
D3 D4 D5 D6 D7
S0 S1
Serial Data Stream
Strip
TX_EN &
TX_ER
Status
Bits
Insert
CRS &
RX_DV
Status
Bits
D0 D1 D2 D3
D0 D1 D2 D3
2 Nibbles Tx/Rx Data
S0 S1 S2 S3 S4
2 Symbols Tx/Rx Data
To/From
MAC
To/From
PMD
Sublayer
Figure 18 Serial MII Transmit Synchronization
TXD0 TXD1 TXD2 TXD3 TXD4 TXD5 TXD6 TXD7
CLOCK
TxSYNC
TX TxENTxER TxER
Page 158Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.7 Serial MII Operation
4.7.4 Receive Data Stream
Receive data and control information are signalled in ten-bit segments. In 100 Mbps mode,
each segment contains a new byte of data. In 10 Mbps mode, each segment is repeated ten
times (except for the CRS bit), and the MAC can sample any of the ten segments.
4.7.4.1 Carrier Sense
The CRS bit (slot 0) is generated when a packet is received from the network interface. The
CRS bit is set in real time, even in 10 Mbps mode (all other bits are repeated in 10
sequential segments).
4.7.4.2 Receive Data Valid
The LXT9785/LXT9785E asserts the RX_DV bit (slot 1) when it receives a valid packet. The
assertion timing changes depending on line operating speed:
For 100BASE-TX and 100BASE-FX links, the RX_DV bit is asserted from the first
nibble of preamble to the last nibble of the data packet.
For 10BASE-T links, the entire preamble is truncated. The RX_DV bit is asserted with
the first nibble of the Start-of-Frame Delimiter (SFD) “5D” and remains asserted until the
end of the packet.
4.7.4.3 Receive Error
When the LXT9785/LXT9785E receives an invalid symbol from the network in 100BASE-TX
mode, it drives “0101” on the associated RxData signals.
4.7.4.4 Receive Status Encoding
The LXT9785/LXT9785E encodes status information onto the RxData line during IPG as
seen in Table 44 on page 159. Status bit RxData<5> indicates the validity of the upper
nibble (RxData<7:4> of the last byte of the previous frame). RxData and RX_DV are passed
through the internal elasticity FIFO to smooth any clock rate differences between the
recovered clock and the 125 MHz reference clock.
4.7.5 Collision
The SMII interface does not provide a collision output and relies on the MAC to interpret
COL conditions using CRS and TxEN. CRS is unaffected by the transmit path.
Figure 19 Serial MII Receive Synchronization
CRS RX_DV RXD0 RXD1 RXD2 RXD3 RXD4 RXD5 RXD6 RXD7 CRS
CLOC K
RxS YNC
RX R XER S peed Duplex Link J abber Valid F CE R XD7
Page 159Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.7 Serial MII Operation
4.7.6 Source Synchronous-Serial Media Independent Interface
Some system designs require the PHY to be placed between 3 to 12 inches away from the
MAC. A new Source Synchronous-Serial Media Independent Interface (SS-SMII) definition
has been added because of this requirement. To provide a source synchronous interface
between the PHY and MAC, the PHY must drive the RxCLK and the RxSYNC signals to the
MAC. Also, the MAC must drive the TxCLK and the TxSYNC signal to the PHY. The
REFCLK is also needed to synchronize the data to the PHY’s core clock domain. TxData is
clocked in using TxCLK and then synchronized to REFCLK and transmitted to the
twisted-pair. The RxData is synchronized to the RxCLK. See Figure 23 on page 162.
Table 44 RX Status Encoding Bit Definitions
Signal Definition
CRS Carrier Sense - identical to MII, except that it is not an asynchronous signal.
RxDV
Receive Data Valid - identical to MII. When RX_DV = 0, status
information is transmitted to the MAC. When RX_DV = 1,
received data is transmitted to the MAC.
0 = Status Byte
1 = Valid Data Byte
RxER
(RxData0)
Inter-frame status bit RxData0 indicates whether or not the PHY
detected an error somewhere in the previous frame.
0 = No Error
1 = Error
SPEED
(RxData1) Inter-frame status bit RxData1 indicates port operating speed. 0 = 10 Mbps
1 = 100 Mbps
DUPLEX
(RxData2) Inter-frame status bit RxData2 indicates port duplex condition. 0 = Half-duplex
1 = Full-duplex
LINK
(RxData3) Inter-frame status bit RxData3 indicates port link status. 0 = Down
1 = Up
JABBER
(RxData4) Inter-frame status bit RxData4 indicates port jabber status. 0 = OK
1 = Error
VALID
(RxData5)
Inter-frame status bit RxData5 conveys the validity of the upper
nibble of the last byte of the previous frame
0 = Invalid
1 = Valid
False Carrier
(RxData6)
Inter-frame status bit RxData6 indicates whether or not the PHY
has detected a false carrier event.
0 = No FC detected
1 = FC detected
RxData7 This bit is set to 1. 1 = Always
1. Both RxData0 and RxData5 bits are valid in the segment immediately following a frame, and remain valid
until the first data segment of the next frame begins.
Table 45 SS-SMII
Signal To From Purpose
TxData PHY MAC Transmit data & control
TxCLK PHY MAC Transmit clock
TxSYNC PHY MAC Synchronization pulses
RxData MAC PHY Receive data & control
RxCLK MAC PHY Receive clock
RxSYNC MAC PHY Receive Synchronization
REFCLK MAC System Synchronization
Page 160Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.7 Serial MII Operation
Figure 20 Typical SS-SMII Interface
Typical SS-SMII Interface in
a 16-Port System
8-Port Media
Access Controller
( MAC)
TxSYNC0
Magnetics/Fiber Transceiver
TxCLK0
RxSYNC1
RxCLK1
MDIO0
MDC0
MDINT0
8-Port Media
Access Controller
(MAC)
Magnetics/Fiber Transceiver
TxSYNC0
RxSYNC1
MDIO0
MDC0
MDINT0
SYS_CLK
TxCLK0
RxCLK1
RefCLK0,1
LXT9785/9785E 8-Port Phy LXT9785/9785E 8-Port Phy
RefCLK0,1
125 MHz Sourced
Externally or from
Switch ASIC
RxDatan
8
8
8
8
nTxData
SECTION
SECTION
TxData
n
RxDatan
Page 161Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.7 Serial MII Operation
Figure 21 Typical SS-SMII Quad Sectionalization
Magnetics/Fiber Transceiver
TxSYNC0
RxSYNC1
TxCLK0
RxCLK1
LXT9785/9785E 8-Port Phy
12-Port Media
Access Controller
( MAC)
TxSYNC1
4
Magnetics/Fiber Transceiver
TxData n
TxCLK1
RxSYNC1
RxCLK1
RxData n
Magnetics/Fiber Transceiver
8
TxSYNC0
RxSYNC1
8
125 MHz Sourced
Externally or from
Switch ASIC
4
TxCLK0
RxCLK1
LXT9785/9785E 8-Port Phy
12-Port Media
Access Controller
( MAC)
TxSYNC0
4TxData n
TxCLK0
RxSYNC0
RxCLK0
RxData n
4
MDC0
MDC0
MDIO0
MDIO0
MDIO0
MDC0
8
8
4-port (sec) 4-port (sec)
MDIO1
MDC1
RefClk0
RefClk1
RefClk0 RefClk1
RefClk0 RefClk1
MDINT0
MDINT0
MDINT1
TxData n
RxData n
RxData n
TxData n
MDINT0
SECTION
SECTION
SECTION
VCC
Typical SS-SMII Interface
in a 24-Port System
LXT9785/9785E
Page 162Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.8 RMII Operation
4.8 RMII Operation
The LXT9785/LXT9785E provides an independent Reduced MII port for each network port.
Each RMII uses four signals to pass received data to the MAC: RxDatan<1:0>, RxERn, and
CRS_DVn (where n reflects the port number). Three signals are used to transmit data from
the MAC: TxDatan_<1:0> and TxENn. Both receive and transmit signals are clocked by
REFCLK. Data transmission across the RMII is implemented in di-bit pairs which equal a
4-bit wide nibble.
Note:
The BGA15 package does not support the RMII interface.
4.8.1 RMII Reference Clock
The LXT9785/LXT9785E requires a 50 MHz reference clock (REFCLK). The device
samples the RMII input signals on the rising edge of REFCLK and drives RMII output
signals on the falling edge.
Figure 22 SS-SMII Transmit Timing
Figure 23 SS-SMII Receive Timing
TxCLK
TxSYNC
TxData
All signals are synchronous to the clock
TXER TXEN TXD2TXD0 TXD1 TXD3 TXD4 TXD5 TXD7TXD6
TxCLK
TxSYNC
TxData TXER Dplx
Frcerr Speed Jabr
LINKTXEN
TXER
TXER
RxCLK
RxSYNC
RxData
All signals are synchronous to the clock
CRS RXDV RXD2RXD0 RXD1 RXD3 RXD4 RXD5 RXD7RXD6
RxCLK
RxSYNC
RxData CRS Dplx
RXER Speed UPnibJabr FlsCar
LINKRXDV
CRS
CRS
Page 163Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.8 RMII Operation
4.8.2 Transmit Enable
TxENn must be asserted and de-asserted synchronously with REFCLK. The MAC must
assert TxENn at the same time as the first nibble of preamble. TxENn must be de-asserted
after the last bit of the packet.
4.8.3 Carrier Sense & Data Valid
The LXT9785/LXT9785E asserts CRS_DVn when it detects activity on the line. However,
RxDatan outputs zeros until the received data is decoded and available for transfer to the
controller.
4.8.4 Receive Error
Whenever the LXT9785/LXT9785E receives an error symbol from the network, it asserts
RxERn. When it detects a bad Start-of-Stream Delimiter (SSD) it drives a “10” jam pattern
on the RxData pins to indicate a false carrier event.
4.8.5 Out-of-Band Signaling
The LXT9785/LXT9785E has the capability of encoding status information in the RxData
stream during IPG. See Section 4.12, Monitoring Operations, on page 177. for details.
4B/5B Coding Operations
The 100BASE-X protocol specifies the use of a 5-bit symbol code on the network media.
However, data is normally transmitted across the RMII interface in 2-bit nibblets or “di-bits”.
The LXT9785/LXT9785E incorporates a parallel/serial converter that translates between
di-bit pairs and 4-bit nibbles, and a 4B/5B encoder/decoder circuit that translates between
4-bit nibbles and 5-bit symbols for the 100BASE-X connection. Figure 24 shows the data
conversion flow from nibbles to symbols. Table 46 on page 167 shows 4B/5B symbol coding
(not all symbols are valid).
Figure 24 RMII Data Flow
D2
D3
D0
D1
Parallel
to
Serial
Serial
to
Parallel
D0 D1 D2 D3 4B/5B S0 S1 S2 S3 S4 MLT3
0
+1
-1
00
Transition = 1.
No Transition = 0.
All transitions must follow
pattern: 0, +1, 0, -1, 0, +1...
Scramble
De-
Scramble
Reduced MII Mode Data Flow
di-bit
pairs
4-bit
nibbles
5-bit
symbols
Page 164Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.8 RMII Operation
Figure 25 Typical RMII Interface
50 Mhz Sourced
Externally or from
Switch ASIC
Magnetics/Fiber Transceiver
Typical RMII Interface
in a 16-Port System
8-Port Media
Access Controller
( MAC)
Magnetics/Fiber Transceiver
8
8
LXT9785/9785E 8-Port Phy
8-Port Media
Access Controller
( MAC)
MDC0
MDIO0
MDIO0
MDC0
8
8
8
8
8
8
8
8
RefClk0
8
8
8
8
TxD0n
TxD1n
TxENn
RxD0n
RxD1n
CRS_DVn
RxERn
LXT9785/9785E 8-Port Phy
MDINT0
MDINT0
TxD0 n
TxD1n
TxEN n
RxD0 n
RxD1n
CRS_DV n
RxERn
RefClk1
RefClk0 RefClk1
SECTION
SECTION
Page 165Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.8 RMII Operation
Figure 26 Typical RMII Quad Sectionalization
Magnetics/Fiber Transceiver
12-Port Media
Access Controller
( MAC)
TxD1n
4
Magnetics/Fiber Transceiver
TxD0n
Magnetics/Fiber Transceiver
8
8
50 MHz Sourced
Externally or from
Switch ASIC
4
LXT9785/9785E 8-Port Phy
12-Port Media
Access Controller
( MAC)
4
4
MDC0
MDC0
MDIO0
MDIO0
MDIO0
MDC0
8
8
4-Port (sec) 4-Port (sec)
MDIO1
MDC1
RefClk0
8
8
8
8
8
8
RefClk1
4
4
4
4
4
4
4
4
4
4
RefClk1
8
8
8
8
RefClk0
TxD0n
TxD1n
TxENn
RxD0n
RxD1n
CRS_DVn
RxERn
LXT9785/9785E 8-Port Phy
MDINT0
TxD0n
TxD1n
TxENn
RxD0n
RxD1n
CRS_DV n
RxERn
MDINT0
TxENn
RxD0 n
RxD1n
RxER n
MDINT1
CRS_DVn
MDINT0
TxD0 n
TxD1n
TxEN n
RxD0 n
RxD1n
CRS_DV n
RxERn
SECTION
SECTION
SECTION
VCC
RefClk1
RefClk0
Typical RMII Interface
in a 24-Port System
LXT9785/9785E
Page 166Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.9 100 Mbps Operation
4.9 100 Mbps Operation
4.9.1 100BASE-X Network Operations
During 100BASE-X operation, the LXT9785/LXT9785E transmits and receives 5-bit
symbols across the network link. Figure 27 shows the structure of a standard frame packet.
When the MAC is not actively transmitting data, the LXT9785/LXT9785E sends out Idle
symbols on the line.
In 100BASE-TX mode, the device scrambles the data and transmits it to the network using
MLT-3 line code. The MLT-3 signals received from the network are de-scrambled and
decoded, and sent across the RMII to the MAC.
In 100BASE-FX mode, the LXT9785/LXT9785E transmits and receives NRZI signals
across the LVPECL interface. An external 100BASE-FX transceiver module is required to
complete the fiber connection.
As shown in Figure 27, the MAC starts each transmission with a preamble pattern. As soon
as the LXT9785/LXT9785E detects the start of preamble, it transmits a J/K Start-of-Stream
Delimiter (SSD) symbol to the network. It then encodes and transmits the rest of the packet,
including the balance of the preamble, the Start-of-Frame Delimiter (SFD), packet data, and
CRC. Once the packet ends, the LXT9785/LXT9785E transmits the T/R End-of-Stream
Delimiter (ESD) symbol and then returns to transmitting Idle symbols.
4.9.2 100BASE-X Protocol Sublayer Operations
In a 7-layer communications model, the LXT9785/LXT9785E is a Physical Layer 1 (PHY)
device. The LXT9785/LXT9785E implements the Physical Coding Sublayer (PCS), Physical
Medium Attachment (PMA), and Physical Medium Dependent (PMD) sublayers of the
reference model defined by the IEEE 802.3u specification. The following paragraphs
discuss the LXT9785/LXT9785E operation from the reference model point of view.
4.9.2.1 PCS Sublayer
The Physical Coding Sublayer (PCS) provides the RMII interface, as well as the 4B/5B
encoding/decoding function. For 100BASE-TX and 100BASE-FX operation, the PCS layer
provides IDLE symbols to the PMD-layer line driver as long as TxEN is de-asserted. For
10T operation, the PCS layer merely provides a bus interface and
serialization/de-serialization function. 10T operation does not use the 4B/5B encoder.
Figure 27 100BASE-X Frame Format
P0 P1 P6
SFD
64-Bit Preamble
(8 Octets)
Start-of-Frame
Delimiter (SFD)
DA DA SA SA
Destination and Source
Address (6 Octets each)
L1 L2
Packet Length
(2 Octets)
D0 D1 Dn
Data Field
(Pad to minimum packet size)
Frame Check Field
(4 Octets)
CRC I0
InterFrame Gap / Idle Code
(> 12 Octets)
Replaced by
/T/R/ code-groups
End-of-Stream Delimiter (ESD)
IFG
Replaced by
/J/K/ code-groups
Start-of-Stream
Delimiter (SSD)
Page 167Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.9 100 Mbps Operation
4.9.2.1.1 Preamble Handling
When the MAC asserts TxEN, the PCS substitutes a /J/K/ symbol pair, also known as the
Start-of-Stream Delimiter (SSD), for the first two nibbles received across the RMII. The PCS
layer continues to encode the remaining RMII data until TxEN is de-asserted (see Table 46
on page 167). It then returns to supplying IDLE symbols to the line driver.
The PCS layer performs the opposite function in the receive direction by substituting two
preamble nibbles for the SSD.
4.9.3 PMA Sublayer
The 100BASE-X PMA protocol uses the 4B/5B data encoding scheme to encode/decode
the data streams. The coding scheme is shown in Tab le 46 .
Figure 28 Protocol Sublayers
Encoder/Decoder
Serializer/De-serializer
Link/Carrier Detect
PCS
Sublayer
PMA
Sublayer
MII Interface
LVPECL Interface
Fiber Transceiver
LXT9785
100BASE-TX 100BASE-FX
Scrambler/
De-scrambler
PMD
Sublayer
Table 46 4B/5B Coding (Sheet 1 of 2)
Code Type 4B Code
3 2 1 0 Name 5B Code
4 3 2 1 0 Interpretation
0 0 0 0 0 1 1 1 1 0 Data 0
0 0 0 1 1 0 1 0 0 1 Data 1
0 0 1 0 2 1 0 1 0 0 Data 2
0 0 1 1 3 1 0 1 0 1 Data 3
0 1 0 0 4 0 1 0 1 0 Data 4
0 1 0 1 5 0 1 0 1 1 Data 5
0 1 1 0 6 0 1 1 1 0 Data 6
1. The /I/ (Idle) code group is sent continuously between frames.
2. The /J/ and /K/ (SSD) code groups are always sent in pairs; /K/ follows /J/.
3. The /T/ and /R/ (ESD) code groups are always sent in pairs; /R/ follows /T/.
4. An /H/ (Error) code group is used to signal an error condition.
Page 168Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.9 100 Mbps Operation
4.9.3.1 Link
In 100 Mbps mode, the LXT9785/LXT9785E establishes a link whenever the descrambler
becomes locked and remains locked for approximately 50 ms. Whenever the descrambler
loses lock (<16 consecutive idle symbols during a 2 ms window), the link is taken down.
This provides a robust link, filtering out any small noise hits that may otherwise disrupt the
link. Furthermore, 100 Mbps idle patterns will not bring up a 10 Mbps link.
DATA 0 1 1 1 7 0 1 1 1 1 Data 7
1 0 0 0 8 1 0 0 1 0 Data 8
1 0 0 1 9 1 0 0 1 1 Data 9
1 0 1 0 A 1 0 1 1 0 Data A
1 0 1 1 B 1 0 1 1 1 Data B
1 1 0 0 C 1 1 0 1 0 Data C
1 1 0 1 D 1 1 0 1 1 Data D
1 1 1 0 E 1 1 1 0 0 Data E
1 1 1 1 F 1 1 1 0 1 Data F
IDLE undefined I 1 1 1 1 11 Idle. Used as inter stream fill code.
0 1 0 1 J 2 1 1 0 0 0 Start-of-Stream Delimiter (SSD),
part 1 of 2.
CONTROL 0 1 0 1 K 2 1 0 0 0 1 Start-of-Stream Delimiter (SSD),
part 2 of 2.
undefined T 3 0 1 1 0 1 End-of-Stream Delimiter (ESD),
part 1 of 2.
undefined R 3 0 0 1 1 1 End-of-Stream Delimiter (ESD),
part 2 of 2.
undefined H 4 0 0 1 0 0 Transmit Error. Used to force
signaling errors.
undefined Invalid 0 0 0 0 0 Invalid
undefined Invalid 0 0 0 0 1 Invalid
undefined Invalid 0 0 0 1 0 Invalid
INVALID undefined Invalid 0 0 0 1 1 Invalid
undefined Invalid 0 0 1 0 1 Invalid
undefined Invalid 0 0 1 1 0 Invalid
undefined Invalid 0 1 0 0 0 Invalid
undefined Invalid 0 1 1 0 0 Invalid
undefined Invalid 1 0 0 0 0 Invalid
undefined Invalid 1 1 0 0 1 Invalid
Table 46 4B/5B Coding (Sheet 2 of 2)
Code Type 4B Code
3 2 1 0 Name 5B Code
4 3 2 1 0 Interpretation
1. The /I/ (Idle) code group is sent continuously between frames.
2. The /J/ and /K/ (SSD) code groups are always sent in pairs; /K/ follows /J/.
3. The /T/ and /R/ (ESD) code groups are always sent in pairs; /R/ follows /T/.
4. An /H/ (Error) code group is used to signal an error condition.
Page 169Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.9 100 Mbps Operation
The LXT9785/LXT9785E reports link failure via the Register status bits (1.2, 17.10, and
19.4) and interrupt functions. If auto-negotiate is enabled, link failure causes the device to
re-negotiate.
4.9.3.2 Link Failure Override
The LXT9785/LXT9785E normally transmits 100 Mbps data packets or Idle symbols only if it
detects the link is up, and transmits only FLP bursts if the link is not up. Setting bit 16.14 = 1
overrides this function, allowing the LXT9785/LXT9785E to transmit data packets even
when the link is down. This feature is provided as a diagnostic tool.
Note:
Auto-negotiation must be disabled to transmit data packets in the absence of link. If
auto-negotiation is enabled, the LXT9785/LXT9785E automatically begins transmitting FLP
bursts if the link goes down.
4.9.3.3 Carrier Sense/Data Valid (RMII)
The LXT9785/LXT9785E asserts CRS_DV whenever the respective port receiver is in a
non-idle state (as defined by the RMII Specification Revision 1.2), including false carrier
events. Assertion of CRS_DV is asynchronous with respect to REFCLK. In the event that
signal decoding is not complete when CRS_DV is asserted, the LXT9785/LXT9785E
outputs 00 on the RxData1:0 lines until the decoded data are available.
When the line returns to an idle state, CRS_DV is de-asserted synchronously with respect
to REFCLK. If the FIFO still contains data to be passed to the MAC via the RMII when CRS
is de-asserted, CRS_DV toggles on nibble boundaries until the FIFO is empty. For
100BASE-X signals, CRS_DV toggles at 25 MHz. For 10BASE-T signals, CRS_DV toggles
at 2.5 MHz.
4.9.3.4 Carrier Sense (SMII)
For 100BASE-TX and 100BASE-FX links, a Start-of-Stream Delimiter (SSD) or /J/K/ symbol
pair causes assertion of carrier sense (CRS). An End-of-Stream Delimiter (ESD), or /T/R/
symbol pair causes de-assertion of CRS. The PMA layer also de-asserts CRS if IDLE
symbols are received without /T/R/. In this event, receive error is indicated during the IPG
until the next packet is received.
For 10T links, CRS assertion is based on receipt of valid preamble, and de-assertion on
receipt of an End-of-Frame (EOF) marker.
4.9.3.5 Receive Data Valid (SMII)
The LXT9785/LXT9785E asserts the RX_DV bit when it receives a valid packet. However,
RxData outputs zeros until the received data are decoded and available for transfer to the
controller.
4.9.3.6 Twisted-Pair PMD Sublayer
The twisted-pair Physical Medium Dependent (PMD) layer provides the signal scrambling
and descrambling, line coding and decoding (MLT-3 for 100BASE-TX, Manchester for 10T),
as well as receiving, polarity correction, and baseline wander correction functions.
4.9.3.6.1 Scrambler/Descrambler (100BASE-TX Only)
The purpose of the scrambler is to spread the signal power spectrum and further reduce
EMI using an 11-bit, non-data-dependent polynomial. The receiver automatically decodes
the polynomial whenever IDLE symbols are received.
Page 170Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.9 100 Mbps Operation
The scrambler/descrambler can be bypassed by setting Register bit 16.12 = 1. The
scrambler is automatically bypassed when the fiber port is enabled. Scrambler bypass is
provided for diagnostic and test support.
4.9.3.6.2 Baseline Wander Correction
The LXT9785/LXT9785E provides a baseline wander correction function which makes the
device robust under all network operating conditions. The MLT3 coding scheme used in
100BASE-TX is, by definition, “unbalanced”. This means that the DC average value of the
signal voltage can “wander” significantly over short time intervals (tenths of seconds). This
wander may cause receiver errors, particularly in less robust designs, at long line lengths
(100 meters). The exact characteristics of the wander are completely data dependent.
The LXT9785/LXT9785E baseline wander correction characteristics allow the device to
recover error-free data while receiving worst-case “killer” packets over all cable lengths.
4.9.3.6.3 Polarity Correction
The LXT9785/LXT9785E automatically detects and corrects for the condition where the
receive signal (TPFIP/N) is inverted. Reversed polarity is detected if eight inverted link
pulses or four inverted End-of-Frame (EOF) markers are received consecutively. If link
pulses or data are not received by the maximum receive time-out period, the polarity state is
reset to a non-inverted state. Before the polarity switch occurs, every frame is inverted and
causes RxER to assert. The specific number of RxER events observed depends on how
many link pulses occur between packets.
4.9.3.7 Fiber PMD Sublayer
The LXT9785/LXT9785E provides an LVPECL interface for connection to an external 3.3 V
or 5 V fiber transceiver. (The external transceiver provides the PMD function for the optical
medium.) The LXT9785/LXT9785E uses a 125 Mbaud NRZI format for the fiber interface,
and does not support 10BASE-FL applications.
Note:
The BGA15 package does not support fiber interface.
4.9.3.7.1 Far End Fault Indications
The LXT9785/LXT9785E Signal Detect pins independently detect signal faults from the
local fiber transceivers via the SD pins. The device also uses Register bit 1.4 to report
Remote Fault indications received from its link partner. The device “ORs” both fault
conditions to set bit 1.4. Register bit 1.4 is set once and clears when read.
The far-end fault detection process in fiber operation requires idles to establish link. Link will
not establish if a far-end fault pattern is the initial signal detected.
Either fault condition causes the LXT9785/LXT9785E to drop the link unless Forced Link
Pass is selected (16.14 = 1). Link down condition is then reported via interrupts and status
bits.
In response to locally detected signal faults (SD activated by the local fiber transceiver), the
affected port can transmit the far end fault code if fault code transmission is enabled by
Register bit 16.2.
When Register bit 16.2 = 1, transmission of the far end fault code is enabled. The
LXT9785/LXT9785E transmits far end fault code if fault conditions are detected by the
Signal Detect pins.
When Register bit 16.2 = 0, the LXT9785/LXT9785E does not transmit far end fault
code. It continues to transmit idle code and may or may not drop link depending on the
setting for Register bit 16.14.
Page 171Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.10 10 Mbps Operation
The occurrence of a Far End Fault causes all transmission of data from the Reconciliation
Sublayer to stop and the Far End fault code to begin. The Far End Fault code consists of 84
ones’s followed by a single “0” and is repeated until the Far End Fault condition is removed.
4.10 10 Mbps Operation
The LXT9785/LXT9785E operates as a standard 10BASE-T transceiver and supports all
the standard 10 Mbps functions. During 10BASE-T (10T) operation, the
LXT9785/LXT9785E transmits and receives Manchester-encoded data across the network
link. When the MAC is not actively transmitting data, the device sends out link pulses on the
line.
In 10T mode, the polynomial scrambler/descrambler is inactive. Manchester-encoded
signals received from the network are decoded by the LXT9785/LXT9785E and sent across
the MII to the MAC.
Note:
The LXT9785/LXT9785E does not support fiber connections at 10 Mbps.
4.10.1 Preamble Handling
The LXT9785/LXT9785E offers two options for preamble handling, which are selected by
Register bit 16.5. In 10BASE-T mode, when Register bit 16.5 = 0, the device strips the
preamble off the received packets. In RMII and the SMII modes, the CRS signal is asserted
based upon receive activity. In the SMII modes, Out-of-Band (OOB) signaling is present
until the SFD is output. The DV signal is initially asserted in the frame that the SFD is
output. In RMII mode, zeros are output after receive activity is detected until the SFD is
output. The packet is output following the SFD.
When Register bit 16.5 = 1 in 10BASE-T mode, the LXT9785/LXT9785E passes the
preamble through the RMII and the SMII interfaces. In RMII and the SMII modes, the CRS
signal is asserted based upon receive activity. In the SMII modes, OOB signaling is
continued until preamble is available from the receive FIFO. After the preamble, the SFD is
output with the initial assertion of the DV signal. The RMII interface outputs zeros after
receive activity is detected until preamble is available from the FIFO. The number of zero
nibbles output before preamble is based upon the FIFO initial fill settings (Register bits
18.15:14). The preamble is followed by the SFD and the packet body. Register bit 16.5 has
no effect in 100 Mbps operation.
4.10.2 Dribble Bits
The LXT9785/LXT9785E device handles dribble bits in all modes. If one through four
dribble bits are received, the nibble is passed across the RMII. If five through seven dribble
bits are received, the second nibble is not sent onto the RMII bus.
4.10.3 Link Test
The LXT9785/LXT9785E always transmits link pulses in 10T mode. When enabled, the link
test function monitors the connection for link pulses. Once link pulses are detected, data
transmission is enabled and remains enabled as long as either the link pulses or data
transmission continue. If link pulses stop, the data transmission is disabled.
If the link test function is disabled, the LXT9785/LXT9785E transmits to the connection
regardless of detected link pulses. The link test function is disabled by setting Register bit
16.14 = 1.
Page 172Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.11 DTE Discovery Process
4.10.3.1 Link Failure
Link failure occurs if Link Test is enabled and link pulses or packets stop being received. If
this condition occurs, the LXT9785/LXT9785E returns to the auto-negotiation phase if
auto-negotiation is enabled.
4.10.4 Jabber
If a transmission exceeds the jabber timer, the LXT9785/LXT9785E disables the transmit
and loopback functions and the Collision Status bit (Register bit 17.11) is set regardless of
duplex. The jabber timer, according to the IEEE standard, must be between 20 ms to 150
ms. The RMII does not include a Jabber pin, but the MAC may read Register 1 to determine
jabber status. The LXT9785/LXT9785E automatically exits jabber mode after the unjab time
expires. This function is disabled by setting Register bit 16.10 = 1.
4.11 DTE Discovery Process
The DTE discovery process is port dependent and must be enabled through software. The
process is implemented as a next page option to the auto-negotiation flow. When the
process is enabled, manual control of auto-negotiation next pages is not allowed. This
feature applies to the LXT9785E transceiver only.
The process depends upon an IP phone, or any other DTE capable of being powered
remotely, having a specific filter that passes NLPs and FLPs. This filter should be
non-polarized to insure that the latest status of Auto-MDIX operation does not effect
operation. This filter attenuates 100 Mbps MLT3 signals and 10 Mbps Manchester-encoded
signals, and must be bypassed when power is applied to the IP phone. Figure 29 shows a
typical IP telephone system connection.
4.11.1 Definitions
The terms in Table 47 are used throughout the DTE discovery sections:
Figure 29 Typical IP Telephone System Connection
Power
Outlet
Computer
123
456
789
*8#
IP Telephone
UPS/
Generator
Power cable
SD
Power
Fault
123456
789101112
Link
Mode
Mode
Link
13 14 1 51 6 17 18
19 2120 2 2 23 24
Mode Select
FdxAct
1X 2X 3X 4X 5X 6X
7X 8X 9X 10X 11X 12X
13X 14X 15X 16X 17X 18X
19X 20X 21X 22X 23X 24X
10/100Base-T Ports
100
Reset Clear
Module Status
Self Tes t
Console
ProCurve Switch 2424M
HP J4122B
VoIP-Enabled Switch
Power
Outlet
Data only over
Category 5 cable
Power cable
Power and data over
Category 5 cable
Page 173Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.11 DTE Discovery Process
4.11.2 Interaction between Processor, MAC, and PHY
The state machines that control the mechanics of the Discovery process reside within the
LXT9785E device. However, control of the power supply and overall system control reside
in the system processor. The processor communicates with the power supply unit (PSU)
and switches it on and off dependant on the data that is supplied by the PHY. The PHY
register data is read by the MAC using the MDIO interface. The required control bits are
contained in the PHY device register map and are discussed in detail in the section labeled
Section 4.11.3, Management Interface and Control, on page 174.
Note:
The details of the processor/MAC interface and the processor/PSU interface are
implementation specific and therefore are out of the scope of this specification.
The following is an overview of the system control for a successful Remote-Power DTE
discovery:
1. The discovery process is enabled by the DTE Discovery Process Enable (Dis_EN)
Register bit 27.6 and the Auto-Negotiation Enable Register bit 0.12. Writing Register bit
27.6 immediately affects the Auto-Negotiation Base Page. If already enabled,
auto-negotiation should be restarted after this bit is written to ensure proper operation.
Register bit 4.15 is used for manual control of auto-negotiation next pages and should
be left in the default state (cleared).
2. The LXT9785E PHY then tests to see if a Remote-Power DTE is present as the link
partner. If a Remote-Power DTE is found, the Power Enable (Power_EN) Register bit
27.4 is set. The processor polls this signal via the MAC.
3. Upon detecting a Remote-Power DTE, the processor instructs the power supply to
switch on. Once power has been applied to the DTE, normal negotiation takes place.
The processor must enable the required negotiation process by restarting
auto-negotiation, or by setting forced speed mode after power has been applied. The
processor must poll the link-up Register bit 1.2 for the corresponding LXT9785E port, or
the link status change interrupt, to ensure that the link has been established.
4. A time-out must be connected with this feature so that if link is not established within a
pre-determined time period (system dependant), the processor instructs the power
supply to switch off. If link is not established prior to the expiration of the “link fail inhibit
timer”, the LXT9785E restarts negotiation with DTE detection if auto-negotiation mode
was used to establish link with the phone, and the DTE process is still enabled. The
LXT9785E restarts negotiation without DTE detection if either forced speed mode is
used to establish link with the phone, or the DTE process is disabled.
Table 47 DTE Terms
Term Definition
Negotiation Process: This includes auto-negotiation and parallel detection processes
System: The switch system using the LXT9785E for DTE Discovery
Link Partner: A device connected to the LXT9785E through twisted pair cables
DTE: Data Terminal Equipment; any end-of-link partner
Standard Link Partner: A link partner that is not requiring power over a Category 5 cable; typically a PC
Remote-Power DTE: Data Terminal Equipment requiring power over a Category 5 cable; typically an IP
telephone
Discovery: The process of identifying the type of link partner present
Page 174Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.11 DTE Discovery Process
5. If power is applied and link is established, the system must still poll the Link Status
Register bit 1.2 for the corresponding LXT9785E port or the link status change interrupt.
This is required since link status is the only way to know when the Remote-Power DTE
is removed or unplugged. On seeing the Link_Down condition, the processor instructs
the power supply to switch off, and the DTE Discovery begins again or is disabled.
4.11.3 Management Interface and Control
The management and control of the DTE discovery process is via the MDIO port. Each port
on the LXT9785E is capable of running the discovery process, thus each port is
independently controlled. This is achieved by each port having a dedicated set of control
and status bits. These bits are found in Register 27 as follows:
DTE DISCOVERY PROCESS ENABLE - Register Bit 27.6 (Dis_EN)
R/W Default value = 0: Disabled.
Register bit 27.6 controls the operation of the process. The discovery process is disabled
when Register bit 27.6 = 0, and enabled when Register bit 27.6 = 1. The MAC controller
sets Register bit 27.6 to a 1 when a port search for a DTE requiring power is desired. Once
set, Register bit 27.6 remains = 1 until the MAC clears it, either by directly clearing it or by
resetting the PHY. This allows the discovery process to continue to function if unsuccessful
in detecting a DTE, without being continually re-enabled by the MAC. If Register bit 27.6 is
set after link is established, no action is taken until after the link goes down.
POWER ENABLE - Register Bit 27.4 (Power_EN)
R Default value = 0: No Remote-Power DTE found.
Register bit 27.4 contains the result of the discovery process. When Register bit 27.4 = 0,
the discovery process has not found Remote-Power DTE, and when Register bit 27.4 = 1,
the discovery process has potentially found a DTE requiring power. This indicates power
should be applied to the Category 5 cable. Register bit 27.4 is polled by the MAC during the
discovery process, and is cleared when the PHY is reset, when auto-negotiation is
restarted, or when auto-negotiation is disabled. In the event of a discovery process being
interrupted due to detection of an already powered link partner (auto-negotiation completion
or Parallel Detection), Register bit 27.4 = 0.
STANDARD LINK PARTNER DETECTED - Register Bit 27.3 (SLP_Det)
R/W Clear on Read Default value = 0: No link partner found.
When Register bit 27.3 = 1, a standard link partner has been detected by the LXT9785E
(NLPs, MLT3 data, FLPs without next page support, or FLPs with non-matching next
pages). This indicates power should not be applied to the Category 5 cable. When Register
bit 27.3 = 0, other bits are checked to determine overall status of the link partner. Register
bit 27.3 is cleared on read, or DTE discovery is disabled, link is established, or
auto-negotiation is either restarted or disabled.
LINK FAIL TIMEOUT - Register Bit 27.2 (LFIT Expired)
R/W Clear on Read Default value = 0 (Link Fail Inhibit timer has expired without
establishment of link with a standard link partner). Valid only when Standard Link Partner
Detected Register bit 27.3 = 1.
Register bit 27.2 is set if link is not established prior to the Link Fail Inhibit Timer expiring.
This indicates that the Discovery process has restarted and the Standard Link Partner
Detected Register bit may no longer be valid. Register bit 27.2 is cleared on read, or DTE
discovery is disabled, link is established, or auto-negotiation is either restarted or disabled.
Page 175Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.11 DTE Discovery Process
4.11.4 DTE Discovery Process Flow
The following section describes the DTE Discovery process.See Figure 30,
Cortina Systems® LXT9785E Negotiation Flow Chart, on page 177 for a flow chart of the
discovery process.When DTE Discovery (27.6) and auto-negotiation (0.12) are enabled
(auto-negotiation mode is required), the LXT9785E transmits the auto-negotiation base
page with the next page ability bit set
(Section Table 88, Auto-Negotiation Advertisement Register (Address 4), on page 218).
System software polls Register 27 to determine if or when a Remote-Power DTE is
detected. The receiver monitors the line to determine if NLPs, MLT3 data, or FLP bursts are
being received. If the receive activity is FLP bursts, the status of the next page ability bit is
checked. If the detected “link partner” also supports next page, then the LXT9785E
transmits out the next page sequence associated with message code #5 (Organizationally
Unique Identifier (OUI) Tag Code). The definition for the next pages to be sent out for this
message code include some user-defined code values. These values are loaded with
randomly created data from an internal LSFR that is free running and seeded with the PHY
address of the LXT9785E port. The Next Pages are hard coded in the logic (the LXT9785E
ignores any data written into Register 7) and are outlined in Ta bl e 48. The receiver monitors
the next pages to determine that the exact next page data (especially the random data)
transmitted is received. As soon as the first non-matching next page is detected, the DTE
Discovery process is stopped and the base page is used to determine the capability
options. The Power-Enable Register bit 27.4 is set when a Remote-Power DTE is detected
as the link partner, and the last next page is repeatedly transmitted until software restarts
the required negotiation process (auto-negotiation or forced-speed mode).
The software should be written so that the negotiation is not restarted until the DTE has
been powered up over the Category 5 cable. The Power-Enable Register bit 27.4 is cleared
upon restarting or disabling auto-negotiation (selecting forced mode). The system must be
able to detect over-current conditions and be capable of disabling power in case the link
partner is not a Remote-Power DTE. Some examples of devices that would mistakenly set
Power-Enable Register bit 27.4 are a token-ring balun and a loopback cable. Once link
partner power has been stabilized and sufficient time has passed for the link partner to
initialize, the auto-negotiation process may be restarted.
The negotiation process establishes link if a compatible mode exists between the
LXT9785E and the link partner. If a compatible mode does not exist (not compatible or not
established within the Link Fail Inhibit Timer period), the LXT9785E either restarts
auto-negotiation/DTE discovery (discovery is enabled (27.6=1) and auto-negotiation is
enabled (0.12 = 1)), or normal negotiation (discovery is disabled (27.6=0) and
auto-negotiation is enabled (0.12 = 1)), or either 10 Mbps or 100 Mbps forced-mode
operation (auto-negotiation is disabled (0.12 = 0)). The software must detect this non-link
state and disable power.
Table 48 Next Page Message #5 Code Word Definitions (Sheet 1 of 2)
Next
Page
Encoding
D15 D1
4
D1
3
D1
2
D1
1
D1
0D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
OUI
Tagged
Message
1a10 t 00000000101
User
Page 1 1a00t
3.1
0
3.1
1
3.1
2
3.1
3
3.1
4
3.1
52.0 2.1 2.2 2.3 2.4
1. a is the acknowledge bit; t is the toggle bit; L is the LFSR
Page 176Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.11 DTE Discovery Process
4.11.5 DTE Discovery Behavior
The device behavior checks the comparison bit after each next page is successfully
auto-negotiated. If the first next page or any subsequent next page does not match, the
DTE Discovery process transmits one last null page with the next page bit cleared to stop
the DTE Discovery process. If each page is successfully auto-negotiated (it matches the
transmitted page), DTE Discovery completes as previously described. The five Next Pages
consist of a message page and four user pages.
User
Page 2 1 a 0 0 t 2.5 2.6 2.7 2.8 2.9 2.1
0
2.1
1
2.1
2
2.1
3
2.1
4
2.1
5
User
Page 3 1 a 0 0 t 0 0 L.8 L.7 L.6 L.5 L.4 L.3 L.2 L.1 L.0
User
Page 4 1a00t
L.1
0L.9 L.8 L.7 L.6 L.5 L.4 L.3 L.2 L.1 L.0
Table 48 Next Page Message #5 Code Word Definitions (Sheet 2 of 2)
Next
Page
Encoding
D15 D1
4
D1
3
D1
2
D1
1
D1
0D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
1. a is the acknowledge bit; t is the toggle bit; L is the LFSR
Page 177Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.12 Monitoring Operations
4.12 Monitoring Operations
4.12.1 Monitoring Auto-Negotiation
Auto-negotiation may be monitored as follows:
Figure 30 Cortina Systems® LXT9785E Negotiation Flow Chart
Default Mode
Transmit based upon hardware
configuration
FLP, NLP or IDLE Symbols
Power Up
or
Link Down 1.2 = 0 and Dis_EN 27.6 = 0
or
Link Down 1.2 = 0 and Forced Mode
Software Intervention
Auto-negotiation 0.12 = 1 (if needed)
Power_EN 27.6 = 1
Discovery Base
Transmit FLPs
Base Page (Register 4)
with Next Page 4.15 = 1
FLP Detected
Next Page
Set?
No
Auto Negotiation
Determine Compatibility Options
FLP Detected
LFIT Expired 27.2 = 1
Dis_EN 27.6 = 1
LFIT Expired 27.2 = 1
Dis_EN 27.6 = 0
NLPs or IDLE Symbols
Detected
Yes
Next Page Transmission
Use Random Data for User Defined
Bits as Code
Next Pages Received
Pages = Code
Transmitted?
No
Parallel Detection
Determine Compatibility on
Speed and Duplex
Check Advertisement
NLPs or IDLE Symbols
Detected
Yes
DTE Discovered
Transmit Last Page Continuously
Power_EN 27.4 = 1
Software Intervention
Software Polled Power_EN 27.4 = 1
Turn On Power Supply
Link Up
Compatibility
LFIT Expired 27.2 = 1
Dis_EN 27.6 = 1
Compatibility
Power On
Wait State for
Proper Power
Assertiion
Set Mode
Restart
Auto-Negotiation
or
Force Speed
Auto-
Negotiation?
Yes
No
Assumptions:
Auto-Negotiation/Forced Speed Set by Pins
Advertisement Requirements Set by Pins
LFIT Expired 27.2 = 1
Link Fail Timeout = 1
Dis_EN Not Set 27.6 = 0
Start
Link Down 1.2 = 0
and
Dis_EN 27.6 = 1
and
Auto-Neg 0.12 = 1
Power Applied
Nonmatching DTE
Discovery NP
Received
Page 178Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.12 Monitoring Operations
Bits 1.2 and 17.10 = 1 once the link is established.
Additional bits in Register 1 (refer to Table 85, Status Register (Address 1), on
page 216) and Register 17 (refer to Table 94, Quick Status Register (Address 17, Hex
11), on page 223) can be used to determine the link operating conditions and status.
4.12.2 Per-Port LED Driver Functions
The LXT9785/LXT9785E incorporates three direct drive LEDs per port (LEDn_1_L,
LEDn_2_L, and LEDn_3_L).
On power up, all the LEDs lights up for approximately one second after reset de-asserts.
Each LED may be programmed to one of several different display modes using the LED
Configuration Register. Each per-port LED may be programmed (refer to Table 97, LED
Configuration Register (Address 20, Hex 14), on page 226) to indicate one of the following
conditions:
Operating Speed
Transmit Activity
Receive Activity
Collision Condition
Link Status
Duplex Mode
Isolate Condition
The LEDs can also be programmed to display various combined status conditions. For
example, setting bits 20.15:12 = 1101 produces the following combination of Link and
Activity indications:
If Link is down, LED is off.
If Link is up, LED is on.
If Link is up AND activity is detected, the LED blinks at the stretch interval selected by
bits 20.3:2 and continues to blink as long as activity is present.
The LED driver pins are open drain circuits (10 mA max current rating). Refer to
Section 5.2.6, LED Circuit, on page 188 under the Application Information Section for LED
circuit design details. The LED Configuration Register also provides optional LED pulse
stretching to 30, 60, or 100 ms. If during this pulse stretch period, the event occurs again,
the pulse stretch time is further extended (see Table 97, LED Configuration Register
(Address 20, Hex 14), on page 226).
When an event such as receiving a packet occurs, it is edge detected and starts the stretch
timer. The LED driver remains asserted until the stretch timer expires. If another event
occurs before the stretch timer expires, the stretch timer is reset and the stretch time
extended.
When a long event (such as duplex status) occurs, it is edge detected and starts the stretch
timer. When the stretch timer expires, the edge detector is reset so that a long event causes
another pulse to be generated from the edge detector. The edge detector resets the stretch
timer, causing the LED driver to remain asserted. Figure 31 on page 179 shows how the
stretch operation functions.
Page 179Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.12 Monitoring Operations
4.12.3 Out-of-Band Signaling
The LXT9785/LXT9785E provides an out-of-band signaling option to transfer status
information across the RMII receive interface. This feature is enabled when Register bit
25.0 = 1 and uses the RxData(1:0) data bus during the Inter-Packet Gap (IPG) time as
shown in Figure 32. Out-of-Band signaling is disabled when Isolate mode is enabled by
setting Register 0.10.
Note:
The BGA15 package does not support Out-of-Band Signaling nor the RMII interface.
The two status bits transferred across the RxData bus are software selectable via Register
25 (see Table 99, RMII Out-of-Band Signaling Register (Address 25, Hex 19), on page 228).
In normal operation, the LXT9785/LXT9785E stuffs the RxData bus with zeros during the
IPG. A software-selectable bit enables the RMII out-of-band signaling feature. Once this bit
is set, the LXT9785/LXT9785E replaces the zeros with selected status bits during the IPG.
The LXT9785/LXT9785E includes an IEEE 1149.1 boundary scan test port for board level
testing. All digital input, output, and input/output pins are accessible.
Figure 31 LED Pulse Stretching
Event
LED
Note: The direct drive LED outputs in this diagram are shown as active Low.
stretch stretch stretch
Figure 32 RMII Programmable Out-of-Band Signaling
RE FCLK
CRS_DV
RX D(1)
RX D(0)
data
data
data
data
data
data
data
datast a tu s 0 st atu s 0 status 0status 0status 0status 0
st a tu s 1 st atu s 1 status 1status 1status 1status 1
0s st atu s 1
status 0
0s
1. When network activity is detected, the LXT9785/LXT9785E asserts CRS_DV asynchronously with respect
to REFCLK.
2. After CRS_DV is asserted, the LXT9785/LXT9785E zero-stuffs the RxData bits until the received data has
been processed through the FIFO.
3. When network activity ceases, the LXT9785/LXT9785E de-asserts CRS_DV synchronously with respect
to REFCLK. CRS_DV toggles until all data in the FIFO has been processed through the RMII. Once the
FIFO is empty, LXT9785/LXT9785E drives the status bits selected by the Out-of-Band Signaling Register
(refer to Table 99, RMII Out-of-Band Signaling Register (Address 25, Hex 19), on page 228) on the
Page 180Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.12 Monitoring Operations
4.12.4 Boundary Scan Interface
This interface consists of five pins (TMS, TDI, TDO, TCK and TRST_L). It includes a state
machine, data register array, and instruction register. The TMS and TDI pins are internally
pulled up and the TCK pin is internally pulled down. TDO does not have an internal pull-up
or pull-down.
4.12.5 State Machine
The TAP controller is a 16-state machine driven by the TCK and TMS pins. Upon reset, the
TEST_LOGIC_RESET state is entered. The state machine is also reset when TMS and TDI
are High for five TCK periods.
4.12.6 Instruction Register
The IDCODE instruction is always invoked after the state machine resets. The decode logic
ensures the correct data flow to the Data registers according to the current instruction. Valid
instructions are listed in Ta bl e 50 .
4.12.7 Boundary Scan Register
Each Boundary Scan Register (BSR) cell has two stages. A flip-flop and a latch are used for
the serial shift stage and the parallel output stage. There are four modes of operation as
listed in Table 49. Refer to the Identification Information section in the
Cortina Systems®{Doc:ProductName:Long} Specification Update (document number
249357) for the JTAG ID numbers.
Table 49 BSR Mode of Operation
Mode Description
1 Capture
2Shift
3 Update
4 System Function
Table 50 Supported JTAG Instructions
Name Code Description Data Register
EXTEST 0000 Hex External Test BSR
IDCODE FFFE Hex ID Code Inspection ID REG
SAMPLE FFF8 Hex Sample Boundary BSR
High Z FFCF Hex Force Float Bypass
Clamp FFEF Hex Clamp BSR
BYPASS FFFF Hex Bypass Scan Bypass
Page 181Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.13 Cable Diagnostics Overview
4.13 Cable Diagnostics Overview
Debugging cable problems increases the overall cost of owning and operating a local area
network. Cable Diagnostic tools were incorporated into the LXT9785/LXT9785E device to
help customers debug network cable problems. The Cable Diagnostic tools provide the
ability to detect severe cable problems, such as open and short circuits, and determine the
distance to the discontinuity.
4.13.1 Features
The following are three cases to consider for Cable Diagnostics:
Distance to a short circuit between wires of a single twisted-pair
An open circuit
Detection of an improperly terminated cable by the link partner.
An improperly terminated cable will not meet IEEE 802.3 return loss requirements. Register
29 has been added to control cable testing and report cable testing results.
Cable Diagnostics provides a method to determine the distance to opens and shorts when
the link partner is inactive on the twisted-pair under test. The cable tests produce undefined
results if the link partner is transmitting signals. Implementation methods may vary
depending upon the system use requirements of Cable Diagnostics.
4.13.2 Operation
Cable Diagnostics utilizes the PHY transmit drivers and receivers to test a single
twisted-pair. A transmit pulse is driven down the twisted-pair under test and the reflected
signal is analyzed. Link partners transmitting NLP, FLP, MLT3, or other TDR pulses may
interfere with the ability of the LXT9785/LXT9785E to properly analyze the reflected Cable
Diagnostic pulse. Implementation algorithms must take these potential situations into
consideration.
4.13.2.1 Short and Long Cable Testing Requirements
Implementing Cable Diagnostic tests, by enabling short and long cable tests sequentially,
allows more accurate measurements to a detected fault. Both tests are necessary to reach
full precision. The short and long cable tests can be run by writing 0x7400h and 0x6C00h to
Register 29, respectively. See Section 4.13.4, Basic Implementation, on page 182 for
implementation details.
4.13.2.2 Precision
Cable Diagnostics estimates the distance to a fault up to 150 m. Category 5 or better cable
produces the most accurate test results. Less than Category 5 cable may produce less
accurate results on long cable lengths. Cable Diagnostics returns the distance to the closest
fault, if a fault is present.
Cable Diagnostic tests report the distance to a cable fault based on the velocity of signal
propagation, which is used to determine the electrical length to the fault. The electrical
length may vary slightly from the physical cable length. The measurement accuracy may
vary by +/- 2 m. The following basic equation is used to calculate the distance to a fault:
Distance_to_Fault = (Reg29[7:0] - 3.5) / 1.16
Page 182Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.13 Cable Diagnostics Overview
4.13.3 Implementation Considerations
Before performing Cable Diagnostics, the twisted-pair to be tested may be verified to be
inactive. All applicable link configurations should be attempted. Cable Diagnostic tests may
be started if the attempts indicate no link partners are active. If link partners are detected,
additional tests and decisions as to next steps may need to be implemented in the cable
testing algorithm to ensure the most accurate results.
Cortina recommends that a 100BASE-TX link be attempted with MDI and MDIX enabled
sequentially, prior to performing Cable Diagnostic testing, to determine if a
100BASE-TX-only link partner is present. If a link partner is in forced 100BASE-TX
operation, transmitting MLT3, the Cable Diagnostic test result will be undefined due to the
interference MLT3 causes in attempting to process the reflected Cable Diagnostic pulse.
Auto MDI/MDIX on the link partner should be accounted for in deriving the cable testing
algorithm.
Cortina recommends auto MDI/MDIX be disabled when running the cable tests. The
transmit and receive twisted-pairs must be tested one at a time with both short and long
cable test suites. The MDI/MDIX control bits in Table 100, Trim Enable Register (Address
27, Hex 1B), on page 229 can be used to select the twisted-pair to be tested. This
requirement creates a minimum of four test permutations that must be completed to
determine if the fault exists, the distance to the fault.
If Cable Diagnostics testing is completed using a powered down LXT9785/LXT9785E
device as the link partner, specific results can be expected. The results will indicate an open
connection when the PWRDWN hardware configuration pin is used. These power-down
methods disable the internal termination resistors to create a high impedance connection
equivalent to an open circuit.
If Transmit Disable (Register bit 16.13) or software controlled Power-Down (Register bit
0.11) is used, the powered down device transmit logic will look like an open circuit and the
receive circuit will look like a 100 terminated connection. The Transmit Disable bit and the
software Power-Down bit disable the transmit circuit but do not affect the receive circuit.
The result of Cable Diagnostic tests using an IP Phone indicate an open or a short fault at a
gross approximation of the distance to the IP Phone. The termination resistors are not
powered and do not create a proper termination. The filter circuit used by some
manufacturers adversely affects the test results.
Transmission and reception of packets is disabled when Cable Diagnostics is enabled.
Internal loopback must be disabled for Cable Diagnostics to operate properly. Internal
loopback disables the analog interface.
4.13.4 Basic Implementation
Register 29 is used to control and report the Cable Diagnostics test results. The function
tests one pair of the twisted-pair cable at a time. The basic process flow is described as
follows (see Table 101, Cable Diagnostics Register (Address 29, Hex 1D), on page 231 for
Register 29 bit definitions):
1. Disable auto-negotiation by clearing Register bit 0.12, set to MDI by clearing Register
bits 27.9:8, and ensure internal loopback is disabled, Register bit 0.14 = 0.
2. Write 0x7400h to Register 29. Setting these bits places the device in short cable Cable
Diagnostics mode and forces link to drop. The device waits a specific amount of time
(1.2 s to 1.5 s) to ensure link drops on any connected link partner, and initiates the
Cable Diagnostics test on the selected twisted-pair.
3. Poll Register bit 29.9. When this bit is set, the test is complete and Register bits 29.7:0
contain a value used to determine if a cable fault was found and the distance to that
Page 183Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.14 Link Hold-Off Overview
fault. A value of 0xFFh indicates no fault was found. Any other value indicates a fault
was found, that value should be stored for later use.
4. Write 0x6C00h to Register 29. Setting these bits places the device in long cable Cable
Diagnostics mode.
5. Poll Register bit 29.9. When set, record the value of Register bits 29.7:0 if a fault is
found.
6. If a fault is present, a calculation is used to determine the distance to the fault. Insert the
smallest value recorded from Register bits 29.7:0 in steps 3 and 5 above into the
following formula:
Distance_to_Fault = (Reg29[7:0] - 3.5) / 1.16
Register bit 29.8 is set if the fault is detected as a short circuit and is cleared if the fault
is detected as an open circuit. Register bits 29.12:11 are cleared when read and are
cleared during the same read cycle when Register bit 29.9 is read, indicating a fault
condition exists.
7. Normal PHY operation can be resumed by writing 0x4000h to Register 29 or by
software or hardware reset. The test suite can be run again by resuming at step 2
above.
4.14 Link Hold-Off Overview
The PHY link is established as soon as the system platform powers-up. In many cases, the
system platform is not capable of supporting network operation until configuration firmware
is loaded. It is desirable in such cases to prevent the PHY from establishing a link until the
system platform is fully configured and ready for network operation. Link Hold-Off was
incorporated into the LXT9785/LXT9785E device to satisfy these requirements. Enabling
Link Hold-Off disables the PHY Link capability until the system platform is fully capable of
supporting network operation. The feature is enabled by hardware control at power-up or
software control during normal operation.
4.14.1 Features
Link Hold-Off prevents the LXT9785/LXT9785E from establishing a link by disabling the
analog transmit and receive capability. The digital capabilities of the PHY are unaffected
including register access and LED operation. Link Hold-Off can be enabled by an external
hardware pin for all ports or by software register access for individual ports. When Link
Hold-Off is enabled, the transmitter and receiver on the selected ports are forced into
software power-down mode (see Section 4.5.3, Power-Down Mode, on page 150) to block
signal activity from establishing a link and passing packets through the PHY.
The hardware enabled Link Hold-Off is controlled by the LINKHOLD pin. Internal pull-down
resistors hold the pin in the inactive state. Connecting a 5k pull-up resistor to the pin
enables the feature at power-up reset or external hardware pin Reset. Once a PHY port is
programmed as desired, clearing Register bit 0.11 will re-enable that port. Each port must
be individually re-enabled.
When a port is software reset, by setting Register 0.15, the state of the hardware
configuration pin captured by the last hardware or power-up reset determines the default
register values for the specific function for that port. Link Hold-Off, once enabled by
hardware configuration, is re-enabled on a port by issuing a software reset for that port. It is
not necessary to reset the entire PHY or switch system to re-enable Link Hold-Off.
Link Hold-Off software control is enabled or disabled on individual ports by respectively
setting or clearing Register bit 0.11, the power-down bit, during normal operation. It is not
required to have previously enabled Link Hold-Off by hardware configuration.
Page 184Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
4.14 Link Hold-Off Overview
Link Hold-Off is disabled if the external pin MDDIS is active. The MDDIS pin disables the
MDIO interface required to re-enable normal transmit and receive link operation. MDDIS is
intended to disable the MDIO management interface for unmanaged applications. Internal
loopback circuitry is unaffected in Link Hold-Off mode.
4.14.2 Operation
Link Hold-Off is implemented in one of the following two ways:
Using a hardware pin at power-up or hardware reset
Using software control through the MII Management (MDC/MDIO) interface.
Link Hold-Off use by an external hardware pin is as follows:
1. Pull the LINKHOLD pin High with a pull-up resistor (approximately 5 k Ohms).
2. Power up the system or drive the reset pin active.
3. All ports are link disabled.
4. Program all ports to the desired configuration.
5. Clear Register Bit 0.11, power-down for each individual port.
6. Normal operation resumes on each port after Register bit 0.11 is cleared (see Table 83
for the recovery time).
Link Hold-Off is enabled on a per port basis by software control using the following two
methods:
Method One:
This method requires that Link Hold-Off is enabled by the LINKHOLD pin during the last
power-up or hardware reset.
1. Set Register bit 0.15 to reset and re-enable Link Hold-Off for the desired port.
2. Program the PHY to the desired configuration.
3. Clear Register bit 0.11 (power-down) to disable Link Hold-Off.
4. Normal operation resumes.
Method Two:
This method enables Link Hold-Off regardless of the LINKHOLD hardware configuration
state.
1. Set Register bit 0.11(power-down) to enable Link Hold-Off for the desired port.
2. Program the PHY to the desired configuration.
3. Clear Register bit 0.11 (power-down) to disable Link Hold-Off.
4. Normal operation resumes.
Note:
High is defined by the IO voltage supply level selected (2.5V or 3.3V).
Page 185Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
5.0 Application Information
5.0 Application Information
5.1 Design Recommendations
The LXT9785/LXT9785E is designed to comply with IEEE 802.3 requirements to provide
outstanding receive Bit Error Rate (BER), and long-line-length performance. To achieve
maximum performance from the LXT9785/LXT9785E, attention to detail and good design
practices are required. Refer to the Cortina Systems®{Doc:ProductName:Long} Design
and Layout Guide application note for detailed design and layout information.
5.2 General Design Guidelines
Adherence to generally accepted design practices is essential to minimize noise levels on
power and ground planes. Up to 50 mV maximum of noise is considered acceptable.
High-frequency switching noise can be reduced, and its effects eliminated, by following
these simple guidelines throughout the design:
Fill in unused areas of the signal planes with solid copper and attach them with vias to a
VCC or ground plane that is not located adjacent to the signal layer.
Use ample bulk and decoupling capacitors throughout the design (a value of 0.01F is
recommended for decoupling caps).
Provide ample power and ground planes.
Provide termination on all high-speed switching signals and clock lines.
Provide impedance matching on long traces to prevent reflections.
Route high-speed signals next to a continuous, unbroken ground plane.
Filter and shield DC-DC converters, oscillators, etc.
Do not route any digital signals between the LXT9785/LXT9785E and the RJ-45
connectors at the edge of the board.
Do not extend any circuit power and ground plane past the center of the magnetics or to
the edge of the board. Use this area for chassis ground, or leave it void.
5.2.1 Power Supply Filtering
Power supply ripple and digital switching noise on the VCC plane may cause EMI problems
and degrade line performance. The best approach to this problem is to minimize ground
noise as much as possible using good general techniques and by filtering the VCC plane. It
is generally difficult to predict in advance the performance of any design, although certain
factors greatly increase the risk of having problems:
Poorly-regulated or over-burdened power supplies.
Wide data busses (32-bits+) running at a high clock rate.
DC-to-DC converters.
Cortina recommends filtering the power supply to the analog VCC pins of the
LXT9785/LXT9785E. This has two benefits. First, it keeps digital switching noise out of the
analog circuitry inside the LXT9785/LXT9785E, helping with line performance. Second, if
the VCC planes are laid out correctly, digital switching noise is kept away from external
connectors, reducing EMI problems.
Page 186Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
5.2 General Design Guidelines
The recommended implementation is to break the VCC plane into two sections. The digital
section supplies power to the VCCD and VCCIO pins of the LXT9785/LXT9785E. The
analog section supplies power to the VCCA pins. The break between the two planes should
run underneath the device. In designs with more than one the LXT9785/LXT9785E, a
single continuous analog VCC plane can be used to supply them all.
The digital and analog VCC planes should be joined at one or more points by ferrite beads.
The beads should produce at least a 100 impedance at 100 MHz. Beads should be
placed so that current flow is evenly distributed. The maximum current rating of the beads
should be at least 150% of the current that is actually expected to flow through them. A bulk
cap (2.2 -10F) should be placed on each side of each bead.
In addition, a high-frequency bypass cap (0.01 F) should be placed near each analog VCC
pin.
5.2.2 Power and Ground Plane Layout Considerations
Great care needs to be taken when laying out the power and ground planes.
Follow the guidelines in the Cortina Systems®{Doc:ProductName:Long} Design and
Layout Guide for locating the split between the digital and analog VCC planes.
Keep the digital VCC plane away from the TPFOP/N and TPFIP/N signals, the
magnetics, and the RJ-45 connectors.
Place the layers so the TPFOP/N and TFPIP/N signals can be routed close to the
ground plane. For EMI reasons, it is more important to shield TPFOP/N than TPFIP/N.
5.2.2.1 Chassis Ground
For ESD reasons, it is a good design practice to create a separate chassis ground that
encircles the board and is isolated via moats and keep-out areas from all circuit-ground
planes and active signals. Chassis ground should extend from the RJ-45 connectors to the
magnetics, and can be used to terminate unused signal pairs (Bob Smith termination). In
single-point grounding applications, provide a single connection between chassis and circuit
grounds with a 2 kV isolation capacitor. In multi-point grounding schemes (chassis and
circuit grounds joined at multiple points), provide 2 kV isolation to the Bob Smith
termination.
5.2.3 MII Terminations
Series termination resistors are required on all the SS-SMII output signals driven by the
LXT9785/LXT9785E. Special trace layout consideration should be used when using the
SMII interface. Keep all traces orthogonal and as short as possible. Whenever possible,
route the clock and sync traces evenly between the longest and shortest data routes. This
minimizes round-trip, clock-to-data delays and allows a larger margin to the setup and hold
requirements.
5.2.4 Twisted-Pair Interface
Use the following standard guidelines for a twisted-pair interface:
Place the magnetics as close as possible to the LXT9785/LXT9785E.
Keep transmit pair traces as short as possible; both traces should have the same
length.
Avoid vias and layer changes as much as possible.
Keep the transmit and receive pairs apart to avoid cross-talk.
Page 187Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
5.2 General Design Guidelines
Route the transmit pair adjacent to a ground plane. The optimum arrangement is to
place the transmit traces two to three layers from the ground plane, with no intervening
signals.
Improve EMI performance by filtering the TPO center tap. A single ferrite bead rated at
400 mA may be used to supply center tap current to all ports.
5.2.4.1 Magnetic Requirements
The LXT9785/LXT9785E requires a 1:1 ratio for both the receive transformers and the
transmit transformers. The transmit isolation voltage should be rated at 1.5 kV to protect the
circuitry from static voltages across the connectors and cables. The LXT9785/LXT9785E is
a current driven transceiver that requires an external voltage (center tap) to drive the
transmit signal. In order to support the Auto-MDIX functionality of the LXT9785/LXT9785E,
the magnetic must provide a center tap for both the transmit and receive magnetic winding,
with both connected to VCCT. See the LXT9785/LXT9785E Design and Layout Guide
(249509-001) for magnetic testing with the LXT9785/LXT9785E. Before committing to a
specific component, designers should contact the manufacturer for current product
specifications, and validate the magnetics for the specific application. Tab le 51 provides the
magnetics requirements.
5.2.5 The Fiber Interface
The fiber interface consists of an LVPECL transmit and receive pair to an external fiber
transceiver. Both 3.3 V fiber transceivers and 5 V fiber transceivers can be used with the
LXT9785/LXT9785E. See the 100BASE-FX Fiber Optic Transceivers-Connecting a
PECL/LVPECL Interface Application Note (document number 250781) for detailed
information on fiber interface designs and recommendations for Cortina PHYs.
The following should occur in 3.3 V fiber transceiver applications as shown in Figure 36:
The transmit pair should be AC-coupled with 2.5 V supplies and re-biased to 3.3 V
LVPECL levels
The transmit pair should contain a balance offset in the pull-up resistors to prevent
PHY-to-fiber transceiver crosstalk amplification in power-down, loopback, and reset
states (see fiber interface application note)
The receive pair should be DC-coupled with an emitter current path for the fiber
transceiver
Table 51 Magnetics Requirements
Parameter Min Nom Max Units Test Condition
Rx turns ratio 1:1
Tx turns ratio 1:1
Insertion loss 0.0 0.6 1.1 dB
Primary inductance 350 H
Transformer isolation 2 kV
Differential to common mode
rejection
40 dB .1 to 60 MHz
35 dB 60 to 100 MHz
Return Loss
-16 dB 30 MHz
-10 dB 80 MHz
Page 188Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
5.3 Typical Application Circuits
The signal detect pin should be DC-coupled with an emitter current path for the fiber
transceiver
Refer to the fiber transceiver manufacturers recommendations for termination circuitry.
Figure 36 shows a typical example of an LXT9785/LXT9785E-to-3.3 V fiber transceiver
interface.
The following occurs in 5 V fiber transceiver applications as shown in Figure 37:
The transmit pair should be AC-coupled and re-biased to 5 V PECL input levels
The transmit pair should contain a balance offset in the pull-up resistors to prevent
PHY-to-fiber transceiver crosstalk amplification in power-down, loopback, and reset
states (see fiber interface application note)
The receive pair should be AC-coupled with an emitter current path for the fiber
transceiver and re-biased to 1.2 V
The signal detect pin on a 5 V fiber transceiver interface should use the logic translator
circuitry as shown in Figure 38.
Refer to the fiber transceiver manufacturers recommendations for termination circuitry.
Figure 37 shows a typical example of an LXT9785/LXT9785E-to-5 V fiber transceiver
interface, while Figure 38 shows the interface circuitry for the logic translator.
5.2.6 LED Circuit
Each Direct Drive LED has a corresponding open-drain pin. The LEDs are connected
through a current-limiting resistor to a positive-voltage rail. The LEDs are turned on when
the output pin drives Low. The open-drain LED pins are 5 V tolerant, allowing use of either a
3.3 V or 5 V rail (a 2.5 V rail is unlikely to work with standard forward voltage LEDs). A 5 V
rail eases LED component selection by allowing more common, high-forward voltage LEDs
to be used. Refer to Figure 33 for a circuit illustration.
5.3 Typical Application Circuits
Figure 34 through Figure 37 on page 192 show typical application circuits for the
LXT9785/LXT9785E. Figure 38 on page 193 shows the interface circuitry for the logic
translator.
Figure 33 LED Circuit
R
VLED
Inside
IC
Outside
IC
LEDn_m
VCCIO < VLED < 5 V + 5%
Page 189Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
5.3 Typical Application Circuits
Figure 34 Power and Ground Supply Connections
GNDR/GNDT
VCCR/VCCT
0.01F
GNDD
VCCD
0.01 F
+
Ferrite
Bead
10 F
LXT9785/9785E
10F
Digital Supply Plane
Analog Supply Plane
VCCIO
+2.5 V
+ 2.5 V
or +3.3 V
0.01 F
SGND
+2. 5 V
or +3.3 V
VCCPECL
GNDPECL
0.1 F
Page 190Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
5.3 Typical Application Circuits
Figure 35 Typical Twisted-Pair Interface
TPFOP
TPFON
RJ-45
* = 0.001 F /
2.0 kV
To Twisted-Pair Network
3
6
1
2
1:1
LXT9785/9785E
50
50 50
50
50
50
4
5
8
7
1:1
TPFIP
TPFIN
VCCT
GNDA
0.1F.01F
2
1
* = 0.001 F /
2.0 kV
.01F
1. The 100 transmit load termination resistor typically required is integrated in the
LXT9785/LXT9785E.
2. The 100 receive load termination resistor typically required is integrated in the
Page 191Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
5.3 Typical Application Circuits
Figure 36 Recommended LXT9785/LXT9785E-to-3.3 V Fiber Transceiver Interface
Circuitry
LXT9785(E)
TPFINn
TPFIPn
TPFOPn
TPFONn
To Fiber
Network
3.3V
Fiber Txcvr
TD -
TD +
RD -
RD +
SD
SDn
+2.5V +2.5V
+3.3V


 
 F
F
 
1
F
F
+3.3V
F
F
kk
kk
SD_2P5V
GNDPECL
VCCPECL
3.3V
1. Refer to the transceiver manufacturers’ recommendations for termination circuitry.
Page 192Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
5.3 Typical Application Circuits
Figure 37 Recommended LXT9785/LXT9785E-to-5 V Fiber Transceiver Interface Circuitry
LXT9785(E)
TPFINn
TPFIPn
TPFOPn
TPFONn
To Fiber
Network
5V
Fiber Txcvr
TD -
TD +
RD -
RD +
SD
SDn
+2.5V +2.5V
+2.5V
F
F
F
F
F
F
F
F
ON Semiconductor*
MC100LVEL92
PECL-to-LVPECL
Logic Translator
2

 
 
   
1
+5V
kk
kk
F
F
SD_2P5V
GNDPECL
VCCPECL
3.3V
1. Refer to the transceiver manufacturers’ recommendations for termination circuitry.
2. See Figure 38 on page 193 for recommended logic translator interface circuitry.
Page 193Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
5.3 Typical Application Circuits
Figure 38 ON Semiconductor Triple PECL-to-LVPECL Translator
Vcc
D0
__
D0
VBB PECL
D1
__
D1
VBB PECL
D2
__
D2
GND
Vcc
Q0
__
Q0
LVCC
Q1
__
Q1
LVCC
Q2
__
Q2
Vcc
0.01 F
5V
0.01 F
3.3V
LVPECL
Output Signal
(LXT9785)
PECL Input
Signal
(5V Fiber
Txcvr)
3.3V
130
82
5V
130
82
ON Semiconductor*
MC100LVEL92
1
2
3
4
5
6
7
8
9
10 11
12
13
14
15
16
17
18
19
20
0.01 F
3.3V
130
82
Page 194Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
6.0 Test Specifications
Table 52 through Tabl e 82 and Figure 39 through Figure 62 represent the target
specifications of the LXT9785/LXT9785E. These specifications are not guaranteed and are
subject to change without notice. Minimum and maximum values listed in Table 54 through
Table 82 apply over the recommended operating conditions specified in Tab le 53 .
Table 52 Absolute Maximum Ratings
Parameter Sym Min Max Units
Supply voltage VCCIO, VCCPECL -0.3 4.0 V
VCCA, VCCD -0.3 3.0 V
Storage temperature TST -65 +150 ºC
Caution:
Exceeding these values may cause permanent damage. Functional
operation under these conditions is not implied. Exposure to maximum
rating conditions for extended periods may affect device reliability.
Table 53 Operating Conditions (Sheet 1 of 2)
Parameter Sym Min Typ1
(2.5 VCCIO)
Typ1
(3.3 VCCIO)Max Units
Commercial
Operating
Temperature
Ambient Topa 0 70 ºC
Case Topc 0 108 ºC
Extended
Operating
Temperature
Ambient TOPA -40 85 ºC
Case TOPC -40 123 ºC
Supply voltage2
Analog & Digital Vcca, Vccd 2.38 2.5 2.5 2.63 V
I/O VCCIO 2.38 2.5 3.3 3.46 V
I/O (SD_2P5V = 0) VCCPECL 3.14 N/A 3.3 3.46 V
I/O (SD_2P5V = 1) 2.38 2.5 N/A 2.63 V
Operating
Current - RMII3
100BASE-TX ICC 780 810 mA
ICCIO 60 130 160 mA
100BASE-FX ICC 380 410 mA
ICCIO 90 170 200 mA
10BASE-T ICC 710 765 mA
ICCIO –30 70 90mA
Power-Down
Mode
Hardware
ICC –20 20mA
ICCIO –2 3 4mA
Auto-Negotiation ICC 500 540 mA
ICCIO –2 4 4mA
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. Voltages with respect to ground unless otherwise specified.
3. Values are aggregated for all eight ports.
Page 195Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Operating
Current - SMII3
100BASE-TX ICC 800 830 mA
ICCIO 70 130 160 mA
100BASE-FX ICC 380 410 mA
ICCIO 90 170 200 mA
10BASE-T ICC 740 770 mA
ICCIO 60 110 130 mA
Power-Down
Mode
Hardware
ICC –50 50mA
ICCIO –3 5 5mA
Auto-Negotiation ICC 520 570 mA
ICCIO –20 30 30mA
Operating
Current -
SS-SMII3
100BASE-TX ICC 800 835 mA
ICCIO 90 170 200 mA
100BASE-FX Icc 380 410 mA
ICCIO 90 170 200 mA
10BASE-T ICC 740 780 mA
ICCIO 90 150 180 mA
Power-Down
Mode
Hardware
ICC –30 40mA
ICCIO –3 5 5mA
Auto-Negotiation ICC 530 570 mA
ICCIO –50 70 80mA
Table 54 Digital I/O DC Electrical Characteristics (VCCIO = 2.5 V +/- 5%)
Parameter Sym Min Typ1 Max Units Test Conditions
Input Low voltage VIL ––0.75V
Input High voltage VIH 1.75 V
Input current II-100 100 A 0.0 < VI < VCC
Output Low voltage VOL ––0.2V IOL = 4 mA
Output Low voltage (LEDm_n_L
pins) VOL-LED 0.5 V IOL = 10 mA
Output High voltage VOH 2.07 V IOH = -4 mA
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
Table 53 Operating Conditions (Sheet 2 of 2)
Parameter Sym Min Typ1
(2.5 VCCIO)
Typ1
(3.3 VCCIO)Max Units
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. Voltages with respect to ground unless otherwise specified.
3. Values are aggregated for all eight ports.
Page 196Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Table 55 Digital I/O DC Electrical Characteristics (VCCIO = 3.3 V +/- 5%)
Parameter Sym Min Typ1 Max Units Test Conditions
Input Low voltage VIL ––0.8V
Input High voltage VIH 2.0 V
Input current II-100 100 A 0.0 < VI < VCC
Output Low voltage VOL ––0.2V IOL = 4 mA
Output Low voltage (LEDm_n_L
pins) VOL-LED 0.5 V IOL = 10 mA
Output High voltage VOH 2.4 V IOH = -4 mA
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
Table 56 Digital I/O DC Electrical Characteristics – SD Pins
Parameter Sym Min Typ1Max Units Test Conditions
2.5 V Operation
Input Low voltage VIL 0.69 0.8 1.03 V VCCPECL = 2.5 V
Input High voltage VIH 1.34 1.6 1.62 V VCCPECL = 2.5 V
3.3 V Operation
Input Low voltage VIL 1.49 1.6 1.83 V VCCPECL = 3.3 V
Input High voltage VIH 2.14 2.4 2.42 V VCCPECL = 3.3 V
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. For 2.5 V operation, SD_2P5V = VCCPECL and VCCPECL=2.5 V.
3. For 3.3 V operation, SD_2P5V = GNDPECL or Floating and VCCPECL=3.3 V.
Table 57 Required Clock Characteristics
Parameter Sym Min Typ2 Max Units Test Conditions
SMII Input frequency f 125 MHz
RMII Input frequency f 50 MHz
Input clock frequency tolerance1f ± 50 ppm
Input clock duty cycle1Tdc 35 50 65 % RMII selection
Input clock duty cycle - REFCLK,
TxCLK1Tdc 40 50 60 % SMII/SS-SMII selection
Output RxCLK duty cycle Tdc 45 50 55 % SS-SMII only
1. Parameter is guaranteed by design; not subject to production testing.
2. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
Page 197Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Table 58 100BASE-TX Transceiver Characteristics
Parameter Sym Min Typ1Max Units Test Conditions
Peak differential output voltage VP0.95 1.05 V Note 2
Signal amplitude symmetry Vss 98 102 % Note 2
Signal rise/fall time trf 3– 5ns Note 2
Rise/fall time symmetry trfs ––0.5ns Note 2
Duty cycle distortion +/- 0.5 ns
Offset from 16 ns pulse
width at 50% of pulse
peak
Overshoot VO–– 5 %
Jitter magnitude (measured
differentially) ttx-jit ––1.4ns
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. Measured at the line side of the transformer, line replaced by 100(+/-1%) resistor.
Table 59 100BASE-FX Transceiver Characteristics
Parameter Sym Min Typ1Max Units Test Conditions
Transmitter
Peak-to-peak differential
output voltage VDIFFP-P0.6 1.44 V
Signal rise/fall time trf –– 1.8 ns Note2
Jitter magnitude (measured
differentially) ttx-jit –– 1.4 ns
Receiver
Peak differential input voltage VIP 0.55 V
Common mode input range VCMIR ––VCC - 0.5 V
Input Low Voltage (SD pins) VIL VCC
-1.84
VCC
-1.63 V–
Input High Voltage (SD Pins) VIH VCC
-1.04
VCC
-0.88 V–
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. 20 - 80 percent into 100 equivalent load of a typical fiber transceiver.
Table 60 10BASE-T Transceiver Characteristics (Sheet 1 of 2)
Parameter Sym Min Typ1Max Units Test Conditions
Transmitter
Peak differential output voltage VOP 2.2 2.5 2.8 V Note 2
Link transmit period 8 24 ms
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. Parameter is guaranteed by design; not subject to production testing.
3. IEEE 802.3 specifies maximum jitter addition at 1.5 ns for the AUI cable, 0.5 ns from the encoder, and 3.5 ns
from the MAU.
4. After line model specified by IEEE 802.3 for 10BASE-T MAU.
Page 198Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Jitter magnitude added by the
MAU and PLS sections 3,4 ttx-jit ––11 ns
Receiver
Receive input impedance3ZIN 100 W Between TPFIP and
TPFIN
Link min receive timer TLRmin 2 7 ms
Link max receive timer TLRmax 50 150 ms
Differential squelch threshold VDS 475 mV Peak 5 MHz square wave
input
Figure 39 SMII - 100BASE-TX Receive Timing
Table 61 SMII - 100BASE-TX Receive Timing Parameters (Sheet 1 of 2)
Parameter Sym Min Typ1 Max Units Test Conditions
RxData output delay from REFCLK
rising edge t1 1.5 5 ns Minimum CL = 5 pF
Maximum CL = 20 pF
RxData Rise/Fall Time t2 1.0 ns
Receive start of /J/ to CRS asserted t3 21 29 BT2Synchronous sampling of
SMII
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
Table 60 10BASE-T Transceiver Characteristics (Sheet 2 of 2)
Parameter Sym Min Typ1Max Units Test Conditions
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. Parameter is guaranteed by design; not subject to production testing.
3. IEEE 802.3 specifies maximum jitter addition at 1.5 ns for the AUI cable, 0.5 ns from the encoder, and 3.5 ns
from the MAU.
4. After line model specified by IEEE 802.3 for 10BASE-T MAU.
REFCLK
RxData
TPFI
t3
t1t2
t4
t6t5
SYNC
Page 199Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Receive start of /T/ to CRS de-asserted t4 25 30 BT2Synchronous sampling of
SMII
SYNC setup to REFCLK rising edge t5 1.5 ns
SYNC hold from REFCLK rising edge t6 1.0 ns
Figure 40 SMII - 100BASE-TX Transmit Timing
Table 62 SMII - 100BASE-TX Transmit Timing Parameters
Parameter Sym Min Typ1 Max Units Test
Conditions
SYNC setup to REFCLK rising edge and
TxData setup to REFCLK rising edge t1 1.5 ns
SYNC hold from REFCLK rising edge and
TxData hold from REFCLK rising edge t2 1.0 ns
TxEN sampled to start of /J/ t3 11 18 BT2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
Table 61 SMII - 100BASE-TX Receive Timing Parameters (Sheet 2 of 2)
Parameter Sym Min Typ1 Max Units Test Conditions
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
TxData
TPFO
t1
t2
t3
SYNC
t1t2
REFCLK
Page 200Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Figure 41 SMII - 100BASE-FX Receive Timing
Table 63 SMII - 100BASE-FX Receive Timing Parameters
Parameter Sym Min Typ1 Max Units Test Conditions
RxData output delay from REFCLK
rising edge t1 1.5 5 ns Minimum CL = 5 pF
Maximum CL = 20 pF
RxData Rise/Fall Time t2 1 ns
Receive start of /J/ to CRS asserted t3 18 26 BT2Synchronous
sampling of SMII
Receive start of /T/ to CRS
de-asserted t4 23 27 BT2Synchronous
sampling of SMII
SYNC setup to REFCLK rising edge t5 1.5 ns
SYNC hold from REFCLK rising edge t6 1.0 ns
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
Figure 42 SMII - 100BASE-FX Transmit Timing
REFCLK
RxData
TPFI
t3
t1t2
t4
t6t5
SYNC
TxData
TPFO
t1
t2
t3
SYNC
t1t2
REFCLK
Page 201Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Table 64 SMII - 100BASE-FX Transmit Timing Parameters
Parameter Sym Min Typ1 Max Units Test Conditions
SYNC setup to REFCLK rising edge and
TxData setup to REFCLK rising edge t1 1.5 ns
SYNC hold from REFCLK rising edge
and TxData hold from REFCLK rising
edge
t2 1.0 ns
TxEN sampled to start of /J/ t3 10 17 BT2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
Figure 43 SMII - 10BASE-T Receive Timing
Table 65 SMII - 10BASE-T Receive Timing Parameters (Sheet 1 of 2)
Parameter Sym Min Typ1 Max Units Test Conditions
RxData output delay from
REFCLK rising edge t1 1.5 5 ns Minimum CL = 5 pF
Maximum CL = 20 pF
RxData Rise/Fall Time t2 1 ns
Receive Start-of-Frame to CRS
asserted t3 17 21 BT3Synchronous sampling of SMII2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. Assumes each SMII segment is sampled for CRS.
3. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
REFCLK
RxData
TPFI
t3
t1t2
t4
t6t5
SYNC
Page 202Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Receive Start-of-Idle to CRS
de-asserted t4 17 18 BT3Synchronous sampling of SMII2
SYNC setup to REFCLK rising
edge t5 1.5 ns
SYNC hold from REFCLK rising
edge t6 1.0 ns
Figure 44 SMII - 10BASE-T Transmit Timing
Table 66 SMII-10BASE-T Transmit Timing Parameters
Parameter Sym Min Typ1 Max Units Test
Conditions
SYNC setup to REFCLK rising edge and
TxData setup to REFCLK rising edge t1 1.5 ns
SYNC hold to REFCLK rising edge and
TxData hold from REFCLK rising edge t2 1.0 ns
TxEN sampled to start-of-frame t3 10 14 BT2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
Table 65 SMII - 10BASE-T Receive Timing Parameters (Sheet 2 of 2)
Parameter Sym Min Typ1 Max Units Test Conditions
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. Assumes each SMII segment is sampled for CRS.
3. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
TxData
TPFO
t1
t2
t3
SYNC
t1t2
REFCLK
Page 203Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Figure 45 SS-SMII - 100BASE-TX Receive Timing
Table 67 SS-SMII - 100BASE-TX Receive Timing Parameters
Parameter Sym Min Typ1 Max Units Test Conditions
REFCLK rising edge to RxCLK
rising edge t1 1.5 ns
RxData/RxSYNC output delay from
RxCLK rising edge t2 1.5 5 ns Minimum CL = 5pF
Maximum CL = 40pF
RxData/RxSYNC Rise/Fall time t3 1.0 ns
Receive start of /J/ to CRS asserted t4 21 27 BT2
Receive start of /T/ to CRS
de-asserted t5 25 30 BT2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
Figure 46 SS-SMII - 100BASE-TX Transmit Timing
t2
RxCLK
REFCLK
t1
RxData
TPFI
t4
t3
t5
RxSYNC t3t3
TxData
TPFO
t1
t2
t3
TxSYNC
t1t2
TxCLK
Page 204Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Table 68 SS-SMII - 100BASE-TX Transmit Timing
Parameter Sym Min Typ1 Max Units Test
Conditions
TxSYNC setup to TxCLK rising edge and
TxData setup to TxCLK rising edge t1 1.5 ns
TxSYNC hold from TxCLK rising edge and
TxData hold to TxCLK rising edge t2 1.0 ns
TxEN sampled to start of /J/ t3 11 18 BT2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
Figure 47 SS-SMII - 100BASE-FX Receive Timing
Table 69 SS-SMII - 100BASE-FX Receive Timing Parameters
Parameter Sym Min Typ1 Max Units Test Conditions
REFCLK rising edge to RxCLK rising edge t1 1.5 ns
RxData/RxSYNC output delay from RxCLK
rising edge t2 1.5 5 ns Minimum CL = 5pF
Maximum CL = 40pF
RxData/RxSYNC Rise/Fall time t3 1 ns
Receive start of /J/ to CRS asserted t4 18 23 BT2
Receive start of /T/ to CRS de-asserted t5 21 26 BT2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
t2
RxCLK
REFCLK
t1
RxData
TPFI
t4
t3
t5
RxSYNC t3t3
Page 205Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Figure 48 SS-SMII - 100BASE-FX Transmit Timing
Table 70 SS-SMII - 100BASE-FX Transmit Timing Parameters
Parameter Sym Min Typ1 Max Units Test Conditions
TxSYNC setup to TxCLK rising edge and
TxData setup to TxCLK rising edge t1 1.5 ns
TxSYNC hold from TxCLK rising edge and
TxData hold to TxCLK rising edge t2 1.0 ns
TxData to TPFO Latency t3 11 13 BT2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
Figure 49 SS-SMII - 10BASE-T Receive Timing
TxData
TPFO
t1
t2
t3
TxSYNC
t1t2
TxCLK
t2
RxCLK
REFCLK
t1
RxData
TPFI
t4
t3
t5
RxSYNC
Page 206Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Table 71 SS-SMII - 10BASE-T Receive Timing Parameters
Parameter Sym Min Typ1 Max Units Test Conditions
REFCLK rising edge to RxCLK rising
edge t1 1.5 ns
RxData/RxSYNC output delay from
RxCLK rising edge t2 1.5 5 ns Minimum CL = 5pF
Maximum CL = 40pF
RxData/RxSYNC Rise/Fall time t3 1 ns
Receive Start-of-Frame to CRS asserted t4 10 11 BT3Synchronous sampling of
SMII2
Receive Start-of-Idle to CRS de-asserted t5 18 21 BT3Synchronous sampling of
SMII2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. Assumes each SMII segment is sampled for CRS.
3. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
Figure 50 SS-SMII - 10BASE-T Transmit Timing
Table 72 SS-SMII - 10BASE-T Transmit Timing Parameters
Parameter Sym Min Typ1 Max Units Test
Conditions
TxSYNC setup to TxCLK rising edge and
TxData setup to TxCLK rising edge t1 1.5 ns
TxSYNC hold to TxCLK rising edge and TxData
hold from TxCLK rising edge t2 1.0 ns
TxData to TPFO Latency t3 10 14 BT2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
TxData
TPFO
t1
t2
t3
TxSYNC
t1t2
TxCLK
Page 207Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Figure 51 RMII - 100BASE-TX Receive Timing
Table 73 RMII - 100BASE-TX Receive Timing Parameters
Parameter Sym Min Typ1 Max Units Test
Conditions
RxData<1:0>, CRS_DV, RXER setup to REFCLK
rising edge3t1 4 14 ns
RxData<1:0>, CRS_DV, RXER hold from REFCLK
rising edge3t2 2 14 ns
Receive start of /J/ to CRS_DV asserted t3 16 21 BT2
Receive start of /T/ to CRS_DV de-asserted t4 20 27 BT2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
3. Values and conditions from RMII Specification, Rev. 1.2.
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
Figure 52 RMII - 100BASE-TX Transmit Timing
REFCLK
RxData[1:0]
TPFI
t1t2
t3
CRS_DV
t4
REFCLK
TxData(1:0)
TPFO
t3
t1t2
TxEN
t1t2
Page 208Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Table 74 RMII - 100BASE-TX Transmit Timing Parameters
Parameter Sym Min Typ1 Max Units Test
Conditions
TxData<1:0>/TxEN setup to REFCLK rising edge t1 4 ns
TxData<1:0>/TxEN hold from REFCLK rising
edge t2 2 ns
TxEN sampled to TPFO out (Tx latency) t3 12 17 BT2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
Figure 53 RMII - 100BASE-FX Receive Timing
Table 75 RMII - 100BASE-FX Receive Timing Parameters
Parameter Sym Min Typ1 Max Units Test
Conditions
RxData<1:0>, CRS_DV, RXER setup to REFCLK
rising edge3t1 4 14 ns
RxData<1:0>, CRS_DV, RXER hold from
REFCLK rising edge3t2 2 14 ns
Receive start of /J/ to CRS_DV asserted t3 14 18 BT2
Receive start of /T/ to CRS_DV de-asserted t4 18 25 BT2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
3. Values and conditions from RMII Specification, Rev. 1.2.
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
REFCLK
RxData[1:0]
TPFI
t1t2
t3
CRS_DV
t4
Page 209Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Figure 54 RMII - 100BASE-FX Transmit Timing
Table 76 RMII - 100BASE-FX Transmit Timing Parameters
Parameter Sym Min Typ1 Max Units Test
Conditions
TxData<1:0>/TxEN setup to REFCLK rising edge t1 4 ns
TxData<1:0>/TX-EN hold from REFCLK rising
edge t2 2 ns
TxEN sampled to TPFO out (Tx latency) t3 10 12 BT2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
Figure 55 RMII - 10BASE-T Receive Timing
REFCLK
TxData(1:0)
TPFO
t3
t1t2
TxEN
t1t2
REFCLK
RxData[1:0]
TPFI
t1t2
t3
CRS_DV
t4
Page 210Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Table 77 RMII - 10BASE-T Receive Timing Parameters
Parameter Sym Min Typ1 Max Units Test
Conditions
RxData<1:0>, CRS_DV setup to REFCLK rising
edge3t1 4 14 ns
RxData<1:0>, CRS_DV hold from REFCLK rising
edge3t2 2 14 ns
TPFI in to CRS_DV asserted t3 1.5 3 4 BT2
TPFI quiet to CRS_DV de-asserted t4 12 15 16 BT2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
3. Values and conditions from RMII Specification, Rev. 1.2.
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
Figure 56 RMII - 10BASE-T Transmit Timing
Table 78 RMII - 10BASE-T Transmit Timing Parameters
Parameter Sym Min Typ1 Max Units Test
Conditions
TxData<1:0>/TxEN setup to REFCLK rising edge t1 4 ns
TxData<1:0>/TxEN hold from REFCLK rising
edge t2 2 ns
TxEN sampled to TPFO out (Tx latency) t3 8.5 14 BT2
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using
100BASE-TX or 100BASE-FX).
Note: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default
configuration of 00 (32 bits of initial fill).
REFCLK
TxData(1:0)
TPFO
t3
t1t2
TxEN
t1t2
Page 211Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Figure 57 Auto-Negotiation and Fast Link Pulse Timing
Figure 58 Fast Link Pulse Timing
Table 79 Auto-Negotiation and Fast Link Pulse Timing Parameters
Parameter Sym Min Typ1 Max Units Test Conditions
Clock/Data pulse width t1 100 ns
Clock pulse to Data pulse t2 55.5 69.5 s–
Clock pulse to Clock pulse t3 111 139 s–
FLP burst width t4 2 ms
FLP burst to FLP burst t5 8 24 ms
Clock/Data pulses per burst 17 33 ea
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
TPFOP
t1 t1
t2
t3
Clock Pulse Data Pulse Clock Pulse
TPFOP
t4
t5
FLP Burst FLP Burst
Page 212Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Figure 59 MDIO Write Timing (MDIO Sourced by MAC)
Figure 60 MDIO Read Timing (MDIO Sourced by PHY)
Table 80 MDIO Timing Parameters
Parameter Sym Min Typ1 Max Units Test Conditions
MDIO setup before MDC, sourced by
STA t1 10 ns
MDIO hold after MDC,
sourced by STA t2 10 ns
MDC to MDIO output delay, sourced by
PHY t3 0 40 ns
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.
t1
MDC
MDIO
t2
t3
MDC
MDIO
Page 213Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
6.0 Test Specifications
Figure 61 Power-Up Timing
Table 81 Power-Up Timing Parameters
Parameter Sym Min Typ1 Max Units Test Conditions
Voltage Threshold v1 2.1 V
Power-up recovery time tPDR 100 ms
Software power-down2tSPDR 20 ms
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.
2. The minimum time required between bringing up consecutive ports powered down by Register bit 0.11, or a
software or hardware reset.
Figure 62 RESET_L Recovery Timing
Table 82 RESET_L Recovery Timing Parameters
Parameter Sym Min Typ1 Max Units Test Conditions
Reset pulse width tPW 10 ns
Reset recovery delay tRcdly 0.4 ms
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.
VCC
MDIO,etc
v1
tPDR
RESET
MDIO,etc
tPW
tRcdly
Page 214Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
7.0 Register Definitions
The LXT9785/LXT9785E register set includes multiple 16-bit registers and 18 registers per
port. Tab l e 83 presents a complete register listing. Table 84, Control Register (Address 0),
on page 215 through Tab le 1 01 , Cable Diagnostics Register (Address 29, Hex 1D), on
page 231 define individual registers and Table 102, Register Bit Map, on page 232 provides
a consolidated memory map of all registers.
Base registers (0 through 8) are defined in accordance with the “Reconciliation Sublayer
and Media Independent Interface” and “Physical Layer Link Signaling for 10/100 Mbps
Auto-Negotiation” sections of the IEEE 802.3 standard.
Additional registers (16 through 21, 25, 27, and 29) are defined in accordance with the IEEE
802.3 standard for adding unique device functions.
The BGA15 package on some registers has different default values. Some
LXT9785/LXT9785E features are not available on the BGA15 package. These differences
are called out in the register description and in the table notes in individual register tables.
Table 83 Register Set (Sheet 1 of 2)
Address Register Name Bit Assignments
0Control Register (Address 0) Refer to Table 84 on page 215
1Status Register (Address 1) Refer to Table 85 on page 216
2PHY Identification Register 1 (Address 2) Refer to Table 86 on page 217
3PHY Identification Register 2 (Address 3) Refer to Table 87 on page 217
4Auto-Negotiation Advertisement Register (Address 4) Refer to Table 88 on page 218
5Auto-Negotiation Link Partner Base Page Ability Register
(Address 5) Refer to Table 89 on page 219
6Auto-Negotiation Expansion Register (Address 6) Refer to Table 90 on page 220
7Auto-Negotiation Next Page Transmit Register (Address 7) Refer to Table 91 on page 220
8Auto-Negotiation Link Partner Next Page Receive Register
(Address 8) Refer to Table 92 on page 221
9 1000BASE-T/100BASE-T2 Control Not Implemented
10 1000BASE-T/100BASE-T2 Status Not Implemented
15 Extended Status Not Implemented
16 Port Configuration Register (Address 16, Hex 10) Refer to Table 93 on page 222
17 Quick Status Register (Address 17, Hex 11) Refer to Table 94 on page 223
18 Interrupt Enable Register (Address 18, Hex 12) Refer to Table 95 on page 224
19 Interrupt Status Register (Address 19, Hex 13) Refer to Table 96 on page 225
20 LED Configuration Register (Address 20, Hex 14) Refer to Table 97 on page 226
21 Receive Error Count Register (Address 21, Hex 15) Refer to Table 98 on page 228
22-24 Reserved N/A
25 RMII Out-of-Band Signaling Register (Address 25, Hex 19) Refer to Table 99 on page 228
26 Reserved N/A
27 Trim Enable Register (Address 27, Hex 1B) Refer to Table 100 on page 229
Page 215Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
28 Reserved N/A
29 Cable Diagnostics Register (Address 29, Hex 1D) Refer to Table 101 on page 231
30 - 31 Reserved N/A
Table 84 Control Register (Address 0) (Sheet 1 of 2)
Bit Name Description Type1Default
15 RESET_L 0 = Normal operation
1 = PHY reset
R/W
SC 02
146Loopback
0 = Disable loopback mode
1 = Enable loopback mode
Not recommended to enable auto-negotiation
while in internal loopback operation. R/W 0
13 Speed Selection
0.6
1
1
0
0
0.13
1 = Reserved
0 = 1000 Mbps (not allowed)
1 = 100 Mbps
0 = 10 Mbps
R/W LSHR3,4
12 Auto-Negotiation
Enable
0 = Disable auto-negotiation process
1 = Enable auto-negotiation process R/W LSHR3,4
11 Power-Down
0 = Normal operation
1 = Power-down R/W LSHR3,5
10 Isolate
0 = Normal operation
1 = Electrically isolate PHY from RMII/SMII/SS-SMII
interfaces
R/W 0
9Restart
Auto-Negotiation
0 = Normal operation
1 = Restart auto-negotiation process
R/W
SC 0
8 Duplex Mode 0 = Half-duplex
1 = Full-duplex R/W LSHR3,4
1. R/W = Read/Write, SC = Self Clearing when operation complete.
2. During a hardware reset, all LHR information is latched in from the pins. During a software reset (0.15), the
LSHR information is not re-read from the pins. This information reverts back to the information that was read
in during the hardware reset. During a hardware rest, register information is unavailable from 1 ms after
de-assertion of the reset. During a software reset (0.15) the registers are available for reading. The reset bit
should be polled to see when the part has completed reset.
3. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as
the pin(s) are latched at startup or hardware reset.
4. Default value of Register bits 0.12, 0.13, and 0.8 are determined by the CFG pins as described in Table 42,
Global Hardware Configuration Settings, on page 152.
5. Default value of Register bit 0.11 is determined by the LINKHOLD configuration pin.
6. Link Status is reported in 10 Mbps mode as down and in 100 Mbps mode as up in loopback mode.
Register bits 17.12 (Receive Status/Link Change) and 17.13 (Transmit Status) are not updated in 10 Mbps
loopback mode.
Table 83 Register Set (Sheet 2 of 2)
Address Register Name Bit Assignments
Page 216Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
7 Collision Test
This bit is ignored by the LXT9785/LXT9785E
0 = Disable COL signal test
1 = Enable COL signal test
R/W 0
6Speed Selection
1000 Mbps
0.6
1
1
0
0
0.13
1 = Reserved
0 = 1000 Mbps (not allowed)
1 = 100 Mbps
0 = 10 Mbps
R/W 0
5:0 Reserved Write as 0, ignore on Read R/W 000000
Table 85 Status Register (Address 1) (Sheet 1 of 2)
Bit Name Description Type1,2 Default
15 100BASE-T4 0 = PHY not able to perform 100BASE-T4
1 = PHY able to perform 100BASE-T4 R0
14 100BASE-X
Full-Duplex
0 = PHY not able to perform full-duplex 100BASE-X
1 = PHY able to perform full-duplex 100BASE-X R1
13 100BASE-X
Half-Duplex
0 = PHY not able to perform half-duplex 100BASE-X
1 = PHY able to perform half-duplex 100BASE-X R1
12 10 Mbps Full-Duplex
0 = PHY not able to operate at 10 Mbps in full-duplex
mode
1 = PHY able to operate at 10 Mbps in full-duplex mode
R1
11 10 Mbps Half-Duplex
0 = PHY not able to operate at 10 Mbps in half-duplex
1 = PHY able to operate at 10 Mbps in half-duplex
mode
R1
10 100BASE-T2
Full-Duplex
0 = PHY not able to perform full-duplex 100BASE-T2
1 = PHY able to perform full-duplex 100BASE-T2 R0
9100BASE-T2
Half-Duplex
0 = PHY not able to perform half-duplex 100BASE-T2
1 = PHY able to perform half-duplex 100BASE-T2 R0
8 Extended Status 0 = No extended status information in Register 15
1 = Extended status information in Register 15 R0
7 Reserved Write as 0, ignore on Read R 0
6MF Preamble
Suppression
0 = PHY will not accept management frames with
preamble suppressed
1 = PHY accepts management frames with preamble
suppressed
R0
1. R = Read Only
2. Bits that Latch High (LH) or Latch Low (LL) automatically clear when read.
Table 84 Control Register (Address 0) (Sheet 2 of 2)
Bit Name Description Type1Default
1. R/W = Read/Write, SC = Self Clearing when operation complete.
2. During a hardware reset, all LHR information is latched in from the pins. During a software reset (0.15), the
LSHR information is not re-read from the pins. This information reverts back to the information that was read
in during the hardware reset. During a hardware rest, register information is unavailable from 1 ms after
de-assertion of the reset. During a software reset (0.15) the registers are available for reading. The reset bit
should be polled to see when the part has completed reset.
3. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as
the pin(s) are latched at startup or hardware reset.
4. Default value of Register bits 0.12, 0.13, and 0.8 are determined by the CFG pins as described in Table 42,
Global Hardware Configuration Settings, on page 152.
5. Default value of Register bit 0.11 is determined by the LINKHOLD configuration pin.
6. Link Status is reported in 10 Mbps mode as down and in 100 Mbps mode as up in loopback mode.
Register bits 17.12 (Receive Status/Link Change) and 17.13 (Transmit Status) are not updated in 10 Mbps
loopback mode.
Page 217Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
5Auto-Negotiation
complete
0 = Auto-negotiation not complete
1 = Auto-negotiation complete R0
4 Remote Fault 0 = No remote fault condition detected
1 = Remote fault condition detected R/LL 0
3Auto-Negotiation
Ability
0 = PHY is not able to perform auto-negotiation
1 = PHY is able to perform auto-negotiation R1
2 Link Status 0 = Link is down
1 = Link is up R/LL 0
1 Jabber Detect 0 = Jabber condition not detected
1 = Jabber condition detected R/LH 0
0 Extended Capability 0 = Basic register capabilities
1 = Extended register capabilities R1
Table 86 PHY Identification Register 1 (Address 2)
Bit Name Description Type1Default
15:0 PHY ID Number The PHY identifier composed of bits 3 through 18 of the
OUI R 0013 hex
1. R = Read Only
Table 87 PHY Identification Register 2 (Address 3)
Bit Name Description Type1Default
15:10 PHY ID Number The PHY identifier composed of bits 19 through 24 of the
OUI R 011110
9:4 Manufacturer’s
Model Number 6 bits containing manufacturer’s part number R 001111
3:1
Manufacturer’s
Revision
Number
3 bits containing manufacturer’s revision number R XXX2
0 Model Variant
0 = LXT9785
1 = LXT9785/LXT9785E RX
2
1. R = Read Only
2. Refer to the Identification Information section in the Cortina Systems® LXT9785/LXT9785E Specification
Update.
Table 85 Status Register (Address 1) (Sheet 2 of 2)
Bit Name Description Type1,2 Default
1. R = Read Only
2. Bits that Latch High (LH) or Latch Low (LL) automatically clear when read.
Page 218Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
Figure 63 PHY Identifier Bit Mapping
Table 88 Auto-Negotiation Advertisement Register (Address 4) (Sheet 1 of 2)
Bit Name Description Type1Default
15 Next Page
0 = Port has no ability to send manual next pages
1 = Port has ability to send manual next pages
Note: This bit should only be set to manually control the
auto-negotiation process. It is not needed and should be
cleared for DTE Discovery.
R/W 0
14 Reserved Write as 0, ignore on Read R 0
136Remote Fault 0 = No remote fault
1 = Remote fault R/W 0
12 Reserved Write as 0, ignore on Read R/W 0
11 Asymmetric
Pause
Pause operation defined in Clause 40 and 27
0 = Port is not Pause capable
1 = Port can only send Pause
R/W 0
10 Pause5
0 = Pause operation disabled
1 = Port can send and receive Pause
Note: Default for the BGA15 package is 0.
R/W LSHR2,3
9 100BASE-T4
0 = 100BASE-T4 capability is not available
1 = 100BASE-T4 capability is available
(The LXT9785/LXT9785E does not support 100BASE-T4 but
allows this bit to be set to advertise in the auto-negotiation
sequence for 100BASE-T4 operation. An external
100BASE-T4 transceiver could be switched in if this capability
is desired.)
R/W 0
1. R/W = Read/Write, R = Read Only
2. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as
the pin(s) are latched at startup or hardware reset.
3. The default setting of Register bit 4.10 is determined by the PAUSE pin. The BGA15 package does not have
a Pause hardware configuration pin and has a default of 0.
4. Default settings for bits 4.5:8 are determined by CFG pins as described in Table 42, Global Hardware
Configuration Settings, on page 152.
5. Pause operation is only valid for full-duplex modes.
6. If Register bit 4.13 is set to advertise a fault, Register bit 1.4 will be set. Register bit 4.13 is set or cleared
only through the MDC/MDIO interface and is not cleared upon completion of auto-negotiation.
Note: Restart the auto-negotiation process whenever Register 4 is written/modified.
f
abc
123
Organizationally Unique Identier
rs
18 19
000000000001 001
051
1
PHY ID Register #1 (Address 2)
x
24
011110
943051
X
PHY ID Register #2 (Address 3)
10
0
I/G
50
Manufacturer's
Model Number
30
0
0013
0002B7
XXXXXXXXX
7B2000
The Cortina OUI is 00207B hex.
Model
Variant
1
Revision
Number
Page 219Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
8100BASE-TX
Full-Duplex
0 = Port is not 100BASE-TX full-duplex capable.
1 = Port is 100BASE-TX full-duplex capable R/W LSHR2,4
7100BASE-TX
Half-Duplex
0 = Port is not 100BASE-TX half-duplex capable
1 = Port is 100BASE-TX half-duplex capable R/W LSHR2,4
610BASE-T
Full-Duplex
0 = Port is not 10BASE-T full-duplex capable
1 = Port is 10BASE-T full-duplex capable R/W LSHR2,4
510BASE-T
Half-Duplex
0 = Port is not 10BASE-T half-duplex capable
1 = Port is 10BASE-T half-duplex capable R/W LSHR2,4
4:0 Selector Field,
S<4:0>
<00001> = IEEE 802.3
<00010> = IEEE 802.9 ISLAN-16T
<00000> = Reserved for future auto-negotiation development
<11111> = Reserved for future auto-negotiation development
Unspecified or reserved combinations should not be
transmitted
R/W 00001
Table 89 Auto-Negotiation Link Partner Base Page Ability Register (Address 5)
(Sheet 1 of 2)
Bit Name Description Type1Default2
15 Next Page 0 = Link partner has no ability to send multiple pages
1 = Link partner has ability to send multiple pages R0
14 Acknowledge
0 = Link partner has not received Link Code Word from the
the LXT9785/LXT9785E
1 = Link partner has received Link Code Word from the
LXT9785/LXT9785E.
R0
13 Remote Fault 0 = No remote fault
1 = Remote fault R0
12 Reserved Write as 0, ignore on Read R 0
11 Asymmetric
Pause
Pause operation defined in Clause 40 and 27
0 = Link partner is not Pause capable
1 = Link partner can only send Pause
R0
10 Pause 0 = Link partner is not Pause capable
1 = Link partner can send and receive Pause R0
9 100BASE-T4 0 = Link partner is not 100BASE-T4 capable
1 = Link partner is 100BASE-T4 capable R0
8100BASE-TX
Full-Duplex
0 = Link partner is not 100BASE-TX full-duplex capable
1 = Link partner is 100BASE-TX full-duplex capable R0
7 100BASE-TX 0 = Link partner is not 100BASE-TX capable
1 = Link partner is 100BASE-TX capable R0
1. R = Read Only
2. Default value at the start of auto-negotiation code word transmission.
Table 88 Auto-Negotiation Advertisement Register (Address 4) (Sheet 2 of 2)
Bit Name Description Type1Default
1. R/W = Read/Write, R = Read Only
2. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as
the pin(s) are latched at startup or hardware reset.
3. The default setting of Register bit 4.10 is determined by the PAUSE pin. The BGA15 package does not have
a Pause hardware configuration pin and has a default of 0.
4. Default settings for bits 4.5:8 are determined by CFG pins as described in Table 42, Global Hardware
Configuration Settings, on page 152.
5. Pause operation is only valid for full-duplex modes.
6. If Register bit 4.13 is set to advertise a fault, Register bit 1.4 will be set. Register bit 4.13 is set or cleared
only through the MDC/MDIO interface and is not cleared upon completion of auto-negotiation.
Note: Restart the auto-negotiation process whenever Register 4 is written/modified.
Page 220Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
610BASE-T
Full-Duplex
0 = Link partner is not 10BASE-T full-duplex capable
1 = Link partner is 10BASE-T full-duplex capable R0
5 10BASE-T 0 = Link partner is not 10BASE-T capable
1 = Link partner is 10BASE-T capable R0
4:0 Selector Field
S<4:0>
<00001> = IEEE 802.3
<00010> = IEEE 802.9 ISLAN-16T
<00000> = Reserved for future auto-negotiation development
<11111> = Reserved for future auto-negotiation development
Unspecified or reserved combinations shall not be transmitted
R 00000
Table 90 Auto-Negotiation Expansion Register (Address 6)
Bit Name Description Type1Default
15:5 Reserved Write as 0, ignore on Read R 0x000
4Parallel
Detection Fault
0 = Parallel detection fault has not occurred
1 = Parallel detection fault has occurred
R/
LH 0
3Link Partner
Next Page Able
0 = Link partner is not next page able
1 = Link partner is next page able R0
2 Next Page Able 0 = Local device is not next page able
1 = Local device is next page able R1
1 Page Received
Indicates that a new page has been received and the
received code word has been loaded into Register 5 or
Register 8 as specified in clause 28 of 802.3.
0 = Three identical and consecutive link code words have
not been received from link partner
1 = Three identical and consecutive link code words have
been received from link partner
R/
LH 0
0Link Partner
A/N Able
0 = Link partner is not auto-negotiation able
1 = Link partner is auto-negotiation able R0
1. R = Read Only, LH = Latching High – cleared when read
Table 91 Auto-Negotiation Next Page Transmit Register (Address 7) (Sheet 1 of 2)
Bit Name Description Type1Default
15 Next Page
(NP)
0 = Last page
1 = Additional next pages follow R/W 0
14 Reserved Write as 0, ignore on Read. R 0
13 Message Page
(MP)
0 = Unformatted page
1 = Message page R/W 1
1. R/W = Read Write, R = Read Only
Table 89 Auto-Negotiation Link Partner Base Page Ability Register (Address 5)
(Sheet 2 of 2)
Bit Name Description Type1Default2
1. R = Read Only
2. Default value at the start of auto-negotiation code word transmission.
Page 221Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
12 Acknowledge 2
(ACK2)
0 = Cannot comply with message
1 = Complies with message R/W 0
11 Toggle
(T)
0 = Previous value of the transmitted link code word equalled
logic one
1 = Previous value of the transmitted link code word equalled
logic zero
R0
10:0
Message/Unfor
matted Code
Field
MP = 0: Code interpreted as “unformatted page”
MP = 1: Code interpreted as “message page” R/W 0000000
0001
Table 92 Auto-Negotiation Link Partner Next Page Receive Register (Address 8)
Bit Name Description Type1Default2
15 Next Page
(NP)
0 = Link partner has no additional next pages to send
1 = Link partner has additional next pages to send R0
14 Acknowledge
(ACK)
0 = Link partner has not received Link Code Word from the
LXT9785/LXT9785E
1 = Link partner has received Link Code Word from the
LXT9785/LXT9785E
R0
13 Message Page
(MP)
0 = Page sent by the link partner is an unformatted page
1 = Page sent by the link partner is a message page R0
12 Acknowledge 2
(ACK2)
0 = Link partner cannot comply with the message
1 = Link partner complies with the message R0
11 Toggle
(T)
0 = Previous value of the transmitted Link Code Word
equalled logic one
1 = Previous value of the transmitted Link Code Word
equalled logic zero
R0
10:0 Message/Unform
atted Code Field
MP = 1: Code interpreted as message page
MP = 0: Code interpreted as unformatted page R 0x000
1. R = Read Only
2. Default value at the start of auto-negotiation code word transmission.
Table 91 Auto-Negotiation Next Page Transmit Register (Address 7) (Sheet 2 of 2)
Bit Name Description Type1Default
1. R/W = Read Write, R = Read Only
Page 222Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
Table 93 Port Configuration Register (Address 16, Hex 10)
Bit Name Description Type 1Default
15 Reserved Write as 0, ignore on Read R/W 0
14 Link Disable
0 = Normal operation
1 = Force link pass (sets appropriate registers and LEDs
to pass)
Note: Setting this bit in 100 Mbps mode by-passes the
descrambler lock requirement to establish link and forces
the link to the link-good state. Setting this bit produces
unreliable results if the descrambler is not locked,
R/W 0
13 Transmit Disable 0 = Normal operation
1 = Disable twisted-pair transmitter R/W 0
12 Bypass Scramble
(100BASE-TX)
0 = Normal operation
1 = Bypass scrambler and descrambler R/W 0
11 Reserved Write as 0, ignore on Read R/W 0
10 Jabber
(10BASE-T)
0 = Normal operation
1 = Jabber function is enabled; however, jabber status
reporting to Register bit 1.1 is disabled
R/W 0
9 Reserved Write as 0, ignore on Read. R/W 0
8TP Loopback
(10BASE-T)
0 = Normal operation
1 = Disable twisted-pair loopback during half-duplex
operation
Note: Valid function in SMII and S-SMII modes only.
R/W 1
7 Reserved Write as 1, ignore on Read R/W 1
6 Reserved Write as 0, ignore on Read R/W 0
5 Preamble Enable 10 Mbps
0 = No preamble (default)
1 = Preamble enabled
Note: Default for BGA15 package is 0. R/W LSHR2,4
100 Mbps No effect N/A
4 Reserved Write as 0, ignore on Read R/W 0
3 Reserved Write as 0, ignore on Read R/W 0
2
Far End Fault
Transmission
Enable
0 = Disable Far End Fault transmission
1 = Enable Far End Fault transmission R/W 1
Invalid for BGA15 Write as '0', ignore on Read (BGA15).
1 Reserved Write as 0, ignore on Read. R/W 0
0
Fiber Select50 = Select twisted-pair mode for this port
1 = Select fiber mode for this port R/W LSHR2,3
Reserved for
BGA15
Write as '0', ignore on Read (BGA15).
Note: Default for BGA15 is 0.
1. R/W = Read/Write
2. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as
the pin(s) are latched at startup or hardware reset.
3. The default value of Register bit 16.0 is determined by the G_FX/TP_L pin.
If G_FX/TP_L is tied Low, the default value of Register bit 16.0 = 0. If G_FX/TP_L is not tied Low, the default
value of Register bit 16.0 = 1. The BGA15 package does not have a G_FX/TP_L hardware configuration pin.
4. The default value of Register bit 16.5 is determined by the PREASEL pin. The BGA15 package does not
have a PREASEL hardware configuration pin and has a default of 0.
5. The BGA15 package does not support fiber. Default for the BGA15 package is 0.
6. NA means the bits do not have a default value and may initially contain any value.
Page 223Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
Table 94 Quick Status Register (Address 17, Hex 11) (Sheet 1 of 2)
Bit Name Description Type 1Default
2
15 Reserved Write as 0, ignore on Read R 0
14 10/100 Mode
0 = The LXT9785/LXT9785E is operating in 10 Mbps
mode
1 = The LXT9785/LXT9785E is operating in 100 Mbps
mode
Note: The status is valid for TX and FX operation.
R0
13 Transmit Status 0 = The LXT9785/LXT9785E is not transmitting a packet
1 = The LXT9785/LXT9785E is transmitting a packet
R
LH 0
12 Receive Status/
Link Change
0 = No change in link or received frame since last read.
1 = Change in the link (link up or link down) or a reception
of a frame.
R
LH 0
11 Collision Status
0 = A collision is not occurring
1 = A collision is occurring
Note: This bit is set when jabber is detected, regardless
of duplex. Status is valid only when link is up.
R
LH 0
10 Link 0 = Link is down
1 = Link is up R0
9 Duplex Mode 0 = Half-duplex
1 = Full-duplex R0
8 Auto-Negotiation
0 = The LXT9785/LXT9785E is in manual mode
1 = The LXT9785/LXT9785E is in auto-negotiation mode
This signal is based upon Register bit 0.12.
RNote 3
7Auto-Negotiation
Complete
0 = Auto-negotiation process is not complete
1 = Auto-negotiation process is complete R0
6 FIFO Error 0 = No FIFO error occurred
1 = FIFO error occurred (overflow or underflow)
R
LH 0
5 Polarity
0 = Polarity is not reversed
1 = Polarity is reversed
Note: During 100 Mbps operation, this bit is not valid and
may vary. Auto MDIX activity may increase the
variability.
R0
1. R = Read Only, LH = Latching High – cleared when read.
2. The default values are updated on completion of reset and reflect the status or change in status at that time.
Cortina recommends that the register status be read on completion of reset.
3. The default value is determined by the default value of Register bit 0.12.
4. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as
the pin(s) are latched at startup or hardware reset.
5. Default values are set by the hardware configuration PAUSE pin. The BGA15 package does not have a
Pause hardware configuration pin. The default for the BGA15 package is 0.
Page 224Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
4 Pause
0 = The LXT9785/LXT9785E is not Pause capable
1 = The LXT9785/LXT9785E is pause capable
Note: This bit is not affected by Register bit 4.10.
Note: The default for the BGA15 package is 0.
RLSHR
4,5
3Error
0 = No error occurred
1 = Error Occurred (remote fault, RxERCntFUL, FIFO
error, jabber, parallel detect fault)
Note: The register is cleared when the registers that
generated the error condition are read.
R0
2:0 Reserved Write as 0, ignore on Read. R 0
Table 95 Interrupt Enable Register (Address 18, Hex 12) (Sheet 1 of 2)
Bit Name Description Type 1 Default
15:142RxFIFO Initial Fill
00 = Reserved
01 = Low, 16 bits
10 = Normal, 32 bits (default)
11 = Jumbo packets, 128 bits
R/W LSHR4,5
13
SFD Frame
Alignment3
(RxDV asserts
with CRS when
enabled)
10 Mbps
When Register bit 16.5 = 1, preamble is not
suppressed.
R/W 0
0 = Disabled
1 = Enabled
When Register bit 16.5 = 0, SFD is always
aligned, and preamble is suppressed.
100 Mbps
0 = Disabled
1 = Enabled R/W 0
When enabled, all but one byte of preamble
is suppressed.
12:9 Reserved Write as 0, ignore on Read R/W 0000
8CNTRMSK
Mask for Counter Full
0 = Do not allow event to cause interrupt
1 = Enable event to cause interrupt
R/W 0
1. R/W = Read/Write
2. In 10 Mbps operation, Register bit 18.13 = 1 cannot be used when Register bits 18.15:14 = “11” and in RMII
mode, Registers bits 18.15:14 = “11” or “10” cannot be used because the minimum Inter Gap Packet
becomes less than specified in the *IEEE 802.3 specification.
3. SFD Frame Alignment is applicable to SMII and SS-SMII only.
4. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as
the pin(s) are latched at startup or hardware reset
5. Default values are set by hardware configuration pins FIFOSEL1 and FIFOSEL0 (see Table 17, Receive
FIFO Depth Considerations, on page 57).
Table 94 Quick Status Register (Address 17, Hex 11) (Sheet 2 of 2)
Bit Name Description Type 1Default
2
1. R = Read Only, LH = Latching High – cleared when read.
2. The default values are updated on completion of reset and reflect the status or change in status at that time.
Cortina recommends that the register status be read on completion of reset.
3. The default value is determined by the default value of Register bit 0.12.
4. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as
the pin(s) are latched at startup or hardware reset.
5. Default values are set by the hardware configuration PAUSE pin. The BGA15 package does not have a
Pause hardware configuration pin. The default for the BGA15 package is 0.
Page 225Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
7ANMSK
Mask for Auto-Negotiate Complete
0 = Do not allow event to cause interrupt
1 = Enable event to cause interrupt
R/W 0
6 SPEEDMSK
Mask for Speed Interrupt
0 = Do not allow event to cause interrupt
1 = Enable event to cause interrupt
R/W 0
5 DUPLEXMSK
Mask for Duplex Interrupt
0 = Do not allow event to cause interrupt
1 = Enable event to cause interrupt
R/W 0
4 LINKMSK
Mask for Link Status Interrupt
0 = Do not allow event to cause interrupt
1 = Enable event to cause interrupt
R/W 0
3 ISOLMSK
Mask for Isolate Interrupt
0 = Do not allow event to cause interrupt
1 = Enable event to cause interrupt
R/W 0
2 Reserved Write as 0, ignore on Read R/W 0
1INTEN 0 = Disable interrupts on this port
1 = Enable interrupts on this port R/W 0
0 TINT 0 = Normal operation
1 = Test force interrupt on MDINT_L R/W 0
Table 96 Interrupt Status Register (Address 19, Hex 13) (Sheet 1 of 2)
Bit Name Description Type 1 Default2
15:9 Reserved Write as 0, ignore on Read R 0
8 RxERCntFUL
RxER Counter Full Status.
0 = The internal counters have not reached maximum values
1 = One of the internal counters has reached its maximum
value
R/LH 0
7ANDONE
Auto-Negotiation Status.
0 = Auto-negotiation has not completed
1 = Auto-negotiation has completed
R/LH N/A
6 SPEEDCHG
Speed Change Status.
0 = A speed change has not occurred since last reading this
register
1 = A speed change has occurred since last reading this
register
R/LH 0
1. R = Read Only, LH = Latching High – cleared when read
2. The default values are updated on completion of reset and reflect the status or change in status at that time.
Cortina recommends that the register status be read on completion of reset.
Table 95 Interrupt Enable Register (Address 18, Hex 12) (Sheet 2 of 2)
Bit Name Description Type 1 Default
1. R/W = Read/Write
2. In 10 Mbps operation, Register bit 18.13 = 1 cannot be used when Register bits 18.15:14 = “11” and in RMII
mode, Registers bits 18.15:14 = “11” or “10” cannot be used because the minimum Inter Gap Packet
becomes less than specified in the *IEEE 802.3 specification.
3. SFD Frame Alignment is applicable to SMII and SS-SMII only.
4. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as
the pin(s) are latched at startup or hardware reset
5. Default values are set by hardware configuration pins FIFOSEL1 and FIFOSEL0 (see Table 17, Receive
FIFO Depth Considerations, on page 57).
Page 226Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
5DUPLEXCHG
Duplex Change Status.
0 = A duplex change has not occurred since last reading this
register
1 = A duplex change has occurred since last reading this
register
R/LH 0
4LINKCHG
Link Status Change Status.
0 = A link change has not occurred since last reading this
register
1 = A link change has occurred since last reading this register
R/LH 0
3 Isolate
MII Isolate Change Status.
0 = An Isolate change has not occurred since last reading
this register
1 = An Isolate change has occurred since last reading this
register
R/LH 0
2 MDINT 0 = Interrupt not pending
1 = Interrupt pending R/LH 0
1:0 Reserved Reserved R 0
Table 97 LED Configuration Register (Address 20, Hex 14) (Sheet 1 of 2)
Bit Name Description Type1Default
15:12
LED1
Programming
bits
0000 =Display Speed Status (Continuous, Default)
0001 =Display Transmit Status (Stretched)
0010 =Display Receive Status/Link Change (Stretched)
0011 =Display Collision Status (Stretched)
0100 =Display Link Status (Continuous)
0101 =Display Duplex Status (Continuous)
0110 =Display Isolate Status (Continuous)
0111 = Display Receive or Transmit Activity (Stretched)
1000 =est mode- turn LED on (Continuous)
1001 =Test mode- turn LED off (Continuous)
1010 =Test mode- blink LED fast (Continuous)
1011 =Test mode- blink LED slow (Continuous)
1100 =Display Link and Receive Status combined2
(Stretched)3
1101 =Display Link and Activity Status/Link Change
combined2 (Stretched)3
1110 = Display Duplex and Collision Status combined4
(Stretched)3
1111 = Display Link and RxER Status combined2 (Blink)
R/W 0000
1. R/W = Read/Write
2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up.
The secondary LED driver (Receive, Activity, or Error) causes the LED to change state (blink).
3. Combined event LED settings are not affected by Pulse Stretch Register bit 20.1. These display settings are
stretched regardless of the value of 20.1.
4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full-duplex.
Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs.
Table 96 Interrupt Status Register (Address 19, Hex 13) (Sheet 2 of 2)
Bit Name Description Type 1 Default2
1. R = Read Only, LH = Latching High – cleared when read
2. The default values are updated on completion of reset and reflect the status or change in status at that time.
Cortina recommends that the register status be read on completion of reset.
Page 227Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
11:8
LED2
Programming
bits
0000 =Display Speed Status
0001 =Display Transmit Status
0010 =Display Receive Status/Link Change
0011 =Display Collision Status
0100 =Display Link Status
0101 =Display Duplex Status
0110 =Display Isolate Status
0111 = Display Receive or Transmit Activity
1000 =Test mode- turn LED on
1001 =Test mode- turn LED off
1010 =Test mode- blink LED fast
1011 =Test mode- blink LED slow
1100 =Display Link and Receive Status/Link Change
combined2 (Stretched)3
1101 =Display Link and Activity Status combined2 (Default)
(Stretched)3
1110 = Display Duplex and Collision Status combined4
(Stretched)3
1111 = Display Link and RxER Status combined 2 (Blink)
R/W 1101
7:4
LED3
Programming
bits
0000 =Display Speed Status
0001 =Display Transmit Status
0010 =Display Receive Status/Link Change
0011 =Display Collision Status
0100 =Display Link Status
0101 =Display Duplex Status
0110 =Display Isolate Status
0111 = Display Receive or Transmit Activity
1000 =Test mode- turn LED on
1001 =Test mode- turn LED off
1010 =Test mode- blink LED fast
1011 =Test mode- blink LED slow
1100 =Display Link and Receive Status/Link Change
combined2 (Stretched)3
1101 = Display Link and Activity Status combined2 (Stretched)3
1110 = Display Duplex and Collision Status combined4
(Default) (Blink)3
1111 = Display Link and RxER Status combined 2 (Blink)
R/W 1110
3:2 LEDFREQ
00 = Stretch LED events to 30 ms
01 = Stretch LED events to 60 ms
10 = Stretch LED events to 100 ms
11 = Reserved
R/W 00
1PULSE-STRE
TCH
0 = Disable pulse stretching of all LEDs3
1 = Enable pulse stretching of all LEDs
Note: Receive activity LEDs are initially active based upon
carrier sense.
R/W 1
0 Reserved Write as 0, ignore on Read R/W 0
Table 97 LED Configuration Register (Address 20, Hex 14) (Sheet 2 of 2)
Bit Name Description Type1Default
1. R/W = Read/Write
2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up.
The secondary LED driver (Receive, Activity, or Error) causes the LED to change state (blink).
3. Combined event LED settings are not affected by Pulse Stretch Register bit 20.1. These display settings are
stretched regardless of the value of 20.1.
4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full-duplex.
Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs.
Page 228Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
Table 98 Receive Error Count Register (Address 21, Hex 15)
Bit Name Description Type1Default
15:0 Receive Error
Count
A 16-bit counter value indicating the number of times a
receive packet with errors occurred. Only one event gets
counted per packet. When maximum count is reached, the
16-bit counter remains full until cleared.
R/
LH 0x0000
1. R = Read Only, LH = Latching High – cleared when read
Note: Cortina recommends reading this register once every time link is established to clear the register.
Table 99 RMII Out-of-Band Signaling Register (Address 25, Hex 19)
Bit Name Description Type1Default
BGA15
15:0 Reserved for
BGA15 Write as 0, ignore on Read. R/W 0x0000
PQFP and BGA23
15:7 Reserved Write as 0, ignore on Read R/W 0x000
6:4 BIT1
These three bits select which status information is
available on the RxData(1) bit of the RMII bus.
000 =Link
001 =Speed
010 =Duplex
011 = Auto-negotiation complete
100 =Polarity reversed
101 =Jabber detected
110 = Interrupt pending
111 = Reserved
R/W 000
3:1 BIT0
These three bits select which status information is
available on the RxData(0) bit of the RMII bus.
000 =Link
001 =Speed
010 =Duplex
011 = Auto-negotiation complete
100 =Polarity reversed
101 =Jabber detected
110 = Interrupt pending
111 = Reserved
R/W 000
0 PROGRMII
0 = Disable Out-of-Band signaling.
1 = Enable programmable RMII Out-of-Band signaling.
When enabled, Register bits 6:1 specify which
status bits are available on the RMII RxData data
bus.
Note: Out-of-Band signaling is disabled when the
Isolate mode is enabled by setting Register bit 0.10.
R/W 0
1. R/W = Read/Write
Note: The BGA15 package does not support RMII operation.
Page 229Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
Table 100 Trim Enable Register (Address 27, Hex 1B) (Sheet 1 of 2)
Bit Name Description Type5Default
15:13 Reserved Write as 0, ignore on Read R N/A
12 Reserved Write as 0, ignore on Read. R/W 0
11:10
Per-Port
Rise Time
Control
00 = 3.3 ns
01 = 3.6 ns
10 = 3.9 ns
11 = 4.2 ns
Note: Values represent nominal load conditions.
R/W LSHR1,2
9AMDIX_EN
0 = Disable auto MDI/MDIX
1 = Enable auto MDI/MDIX R/W LSHR1,3
8MDIX
0 = MDI, transmit on pair A (TPFINn/TPFIPn) and receive on
pair B (TPFONn/TPFOPn)
1 = MDIX transmit on pair B (TPFONn/TPFOPn) and receive
on pair A (TPFINn/TPFIPn)
Note: Manual MDI/MDIX selection (This bit is ignored when
Register bit 27.9 = 1).
Note: BGA15 does not support the MDIX hardware
configuration.
R/W LSHR1,4
7Analog
Loopback
0 = Disable analog loopback
1 = Enable analog loopback (twisted-pair transmit outputs are
active)
Note: In fiber mode, SD for the port must be asserted.
R/W 0
6 Dis_EN
DTE Discovery Process Enable.
0 = Disable DTE discovery process
1 = Enable DTE discovery process
Restart auto-negotiation after writing to this bit to ensure proper
operation.
R/W 0
5 Reserved Write as 0, ignore on Read. R/W 0
4 Power_EN
Power Enable (Requires Auto-Negotiation Enable Register
bit 0.12 = 1).
0 = Remote-Power DTE not discovered; process may not be
complete.
1 = Potential Remote-Power DTE discovered; indication to
turn on power over the cable.
R0
3 SLP_Det
Standard Link Partner Detected.
0 = Standard link partner not discovered; process may not be
complete.
1 = Standard link partner discovered; indication not to turn on
power over the cable.
Note: This bit is only valid while link is down.
R, LH 0
1. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as
the pin(s) are latched at startup or hardware reset.
2. Default values for Register bits 27.11:10 are determined by the TxSLEW pins.
3. Default value for Register bit 27.9 is determined by the AMDIX_EN pin.
4. Default value for Register bit 27.8 is determined by the MDIX pin. BGA15 does not support the MDIX
hardware configuration. The BGA15 default = 0.
5. R/W = Read/Write, R = Read Only, LH = Latching High – cleared when read.
Page 230Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
2LFIT
Expired
Link Fail Inhibit Timer expiration indicator. Valid only when
SLP_Det = 1.
0 = Link Fail Inhibit Timer has not expired or standard link
partner not discovered
1 = Link Fail Inhibit Timer expired with a standard link partner
detected since last register read or link establishment
R, LH 0
1:0 Reserved Write as 0, ignore on Read. R 00
Table 100 Trim Enable Register (Address 27, Hex 1B) (Sheet 2 of 2)
Bit Name Description Type5Default
1. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as
the pin(s) are latched at startup or hardware reset.
2. Default values for Register bits 27.11:10 are determined by the TxSLEW pins.
3. Default value for Register bit 27.9 is determined by the AMDIX_EN pin.
4. Default value for Register bit 27.8 is determined by the MDIX pin. BGA15 does not support the MDIX
hardware configuration. The BGA15 default = 0.
5. R/W = Read/Write, R = Read Only, LH = Latching High – cleared when read.
Page 231Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
7.0 Register Definitions
Table 101 Cable Diagnostics Register (Address 29, Hex 1D)
Bit Name Description Type1Default2
15:14 Reserved Write as 01, ignore on read R/W 01
13:11 Start-Test
000 =Do not perform cable fault test (Default)
101 =Perform long cable fault test only
110 = Perform short cable fault test only
Once Register bit 29.9 is set, the Start-Test
bits will clear when read.
Any other combination of the Register bit
settings are reserved and should not be used.
R/W
LH 000
10 CD_EN
0 = Normal operation
1 = Enable cable diagnostic tests. Forces link
to drop.
R/W 0
9 Test_Done
0 = Testing is still in progress
1 = Testing is complete
The Line Fault Counter and Fault_Type bits
are valid.
R
LH 0
8 Fault_Type 0 = Open condition has been detected
1 = Short Condition has been detected
R
LH 0
7:0 Line Fault Counter
“FF” if no line fault is found, or
Distance to fault, approximately 1 m * counter
value (refer to Section 4.13, Cable
Diagnostics Overview, on page 181 for
details).
(Valid only when Test_Done bit is set.)
R
LH 0x00
1. R/W = Read/Write, R = Read only, LH = Latching High, cleared when read
2. Recommended default value.
Page 232Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Table 102 Register Bit Map (Sheet 1 of 2)
Reg
Title
Bit Fields
Ad
dr
B15 B1
4B13 B1
2
B1
1
B1
0B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
Control Register (Address 0)
Contro
l
Rese
t
Loo
pba
ck
Spee
d
Selec
t
A/N
Ena
ble
Pow
er
Do
wn
Isola
te
Re-st
art
A/N
Dup
lex
Mod
e
CO
L
Test
Spee
d
Sele
ct
Reserved 0
Status Register (Address 1)
Status 100B
ase-T
4
100
Bas
e-X
Full-
Dupl
ex
100B
ase-X
Half-
Duple
x
10
Mbp
s
Full-
Dupl
ex
10
Mbp
s
Half
-
Dup
lex
100
Base
-T2
Full-
Dupl
ex
100B
ase-T
2
Half-
Duple
x
Ext
end
ed
Stat
us
Res
erve
d
MF
Prea
mble
Supp
ress
A/N
Com
plete
Rem
ote
Fault
A/N
Abilit
y
Link
Statu
s
Jabb
er
Dete
ct
Ext
end
ed
Cap
abili
ty
1
PHY ID Registers (Address 2 and 3)
PHY ID
115 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 2
PHY
ID2 PHY ID No MFR Model No MFR Rev No
Mo
del
Vari
ant
3
Auto-Negotiation Advertisement Register (Address 4)
A/N
Advert
ise
Next
Page
Res
erve
d
Rem
ote
Fault
Res
erve
d
Asy
mm
Pau
se
Paus
e
100B
ase-T
4
100
Bas
e-T
X
Full-
Dup
lex
100
Bas
e-T
X
10Ba
se-T
Full-
Dupl
ex
10B
ase-
T
IEEE Selector Field 4
Auto-Negotiation Link Partner Base Page Ability Register (Address 5)
A/N
Link
Ability
Next
Page Ack
Rem
ote
Fault
Res
erve
d
Asy
mm
Pau
se
Paus
e
100B
ase-T
4
100
Bas
e-T
X
Full-
Dup
lex
100
Bas
e-T
X
10Ba
se-T
Full-
Dupl
ex
10B
ase-
T
IEEE Selector Field 5
Auto-Negotiation Expansion Register (Address 6)
A/N
Expan
sion
Reserved
Bas
e
Pag
e
Paral
lel
Dete
ct
Fault
Link
Partn
er
Next
Page
Able
Next
Page
Able
Pag
e
Rec
eive
d
Link
Part
ner
A/N
Abl
e
6
Auto-Negotiation Next Page Transmit Register (Address 7)
A/N
Next
Page
Txmit
Next
Page
Res
erve
d
Mess
age
Page
Ack
2
Tog
gle Message / Unformatted Code Field 7
Auto-Negotiation Link Partner Next Page Ability Register (Address 8)
A/N
Link
Next
Page
Next
Page Ack
Mess
age
Page
Ack
2
Tog
gle Message / Unformatted Code Field 8
Port Configuration Register (Address 16)
Page 233Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
Port
Config
Rese
rved
Link
Disa
ble
Txmit
Disab
le
Byp
ass
Scra
mbl
er
(100
BAS
E-T
X)
Byp
ass
4B/
5B
(10
0BA
SE-
TX)
Jabb
er
(10T
)
SQE
(10T)
TP
Loo
pba
ck
(10
T)
Res
erve
d
Rese
rved
PRE
_EN
Rese
rved
Rese
rved
Far
End
Fault
Enab
le
Res
erve
d
Fib
er
Sel
ect
1
6
Quick Status Register (Address 17)
Quick
Status
Rese
rved
10/1
00
Mod
e
Trans
mit
Statu
s
Rec
eive
r
Stat
us
Colli
sion
Stat
us
Link
Duple
x
Mode
Aut
o-N
eg
Aut
o-N
eg
Co
mpl
ete
FIFO
Error
Pola
rity
Paus
eError Rese
rved
Res
erve
d
Res
erv
ed
1
7
Interrupt Enable Register (Address 18)
Interr
upt
Enable
Reserved
Cou
nter
Mas
k
Aut
o-N
eg
Mas
k
Spee
d
Mask
Dupl
ex
Mas
k
Link
Mask
Isolat
e
Mask
Rese
rved
Inter
rupt
Ena
ble
Test
Inte
rrup
t
1
8
Interrupt Status Register (Address 19)
Interr
upt
Status
Reserved
RxE
R
Cou
nter
Full
Aut
o-N
eg
Don
e
Spee
d
Chan
ge
Dupl
ex
Cha
nge
Link
Chan
ge
Isolat
e
Chan
ge
MD
Interr
upt
Res
erve
d
Res
erv
ed
1
9
LED Configuration Register (Address 20)
LED
Config LED1 LED2 LED3 LED Freq
Puls
e
Stret
ch
Res
erv
ed
2
0
Receive Error Count Register (Address 21)
Rcv
Error
Count
Receive Error Count 2
1
Programmable RMII Out-of-Band Signaling Register (Register 25)
RMII
OOB
Signali
ng
Reserved Bit 1 Bit 0
Pro
gra
m
RMI
I
2
5
Trim Enable Register (Address 27)
Trim
Enable Reserved
Per Port
Rise Time
Control
AMDI
X_EN
MDI
X
Ana
log
Loo
pba
ck
Dis_
EN
Loop
Back
Spe
ed
Up
Ena
ble
Pow
er_E
N
SLP_
Det
LFIT
Expir
ed
Reserved 2
7
Cable Diagnostics Register (Address 29)
Cable
Diagno
stics
Reserved Start-Test CD_E
N
Test-
Done
Faul
t_
Typ
e
Line Fault Counter
2
9
Table 102 Register Bit Map (Sheet 2 of 2)
Reg
Title
Bit Fields
Ad
dr
B15 B1
4B13 B1
2
B1
1
B1
0B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
Page 234Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
8.0 Package Specifications
8.0 Package Specifications
Page 235Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
8.0 Package Specifications
Figure 64 208-Pin PQFP Plastic Package Specification
Dim
Millimeters
Min Max
A - 4.10
A1 0.25 -
A2 3.20 3.60
b 0.17 0.27
D 30.30 30.90
D127.70 28.30
E 30.30 30.90
E127.70 28.30
e .50 BASIC
L 0.50 0.75
L11.30 REF
q
2 16°
3 16°
208-Pin Plastic Quad Flat Package
Part Number LXT9785HC, LXT9785EHC, LXT9785HE
Commercial Temperature Range (0 C to 70 C)
Extended Temperature Range (-40 C to +85 C)
e
/
2
A
1
A
2
L
A
b
L
1
3
2
D
D
1
E
E
1
e
Page 236Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
8.0 Package Specifications
Figure 65 241-Ball BGA23 Package Specifications - Top/Side Views (LXT9785BC)
Pin A1 I.D.
Pin A1 corner
D
D1
EE1
Top View
AA2
A1
c
Side View
241_pkg1.vsd
14.70 REF
14.70 REF
45° Chamfer
(4 places)
30°
Seating Plane
Page 237Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
8.0 Package Specifications
Figure 66 241-Ball BGA23 Package Specifications - Bottom View (LXT9785BC)
Table 103 241-Ball BGA23 Package Dimensions (Sheet 1 of 2)
Symbol Min Nominal Max Units
A 2.19 2.38 2.57 mm
A1 0.50 0.60 0.70 mm
A2 1.12 1.17 1.22 mm
D 22.90 23.00 23.10 mm
D1 19.30 19.50 19.70 mm
E 22.90 23.00 23.10 mm
E1 19.30 19.50 19.70 mm
e 1.27 (solder ball pitch) mm
I 1.34 REF. mm
J 1.34 REF. mm
M 17 x 17 Matrix mm
Note: All dimensions and tolerances conform to ANSI Y14.5-1982. Dimension is measured at maximum
solder ball diameter parallel to primary datum (-C-). Primary datum (-C-) and seating plane are defined
by the spherical crowns of the solder balls.
Pin A1 corner
b
e
21016 357911131517 1
4681214
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
241 BGA
Bottom View
J
le
Page 238Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
8.0 Package Specifications
b 0.60 0.75 0.90 mm
c 0.52 0.56 0.60 mm
e 1.27 mm
Figure 67 196-Ball BGA15 Package Specs - Top/Side Views (LXT9785MBC)
Table 103 241-Ball BGA23 Package Dimensions (Sheet 2 of 2)
Symbol Min Nominal Max Units
Note: All dimensions and tolerances conform to ANSI Y14.5-1982. Dimension is measured at maximum
solder ball diameter parallel to primary datum (-C-). Primary datum (-C-) and seating plane are defined
by the spherical crowns of the solder balls.
Page 239Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
8.0 Package Specifications
Figure 68 196-Ball BGA15 Package – Bottom View (LXT9785MBC)
Table 104 196-Ball BGA15 Package Dimensions (LXT9785MBC)
Symbol Min Nominal Max Units
A 1.62 1.81 2.00 mm
A1 0.30 0.40 0.50 mm
A2 0.80 0.85 0.90 mm
D 14.90 15.00 15.10 mm
D1 12.80 13.00 13.20 mm
E 14.90 15.00 15.10 mm
E1 12.80 13.00 13.20 mm
e 1.00 (solder ball pitch) mm
I 1.00 REF. mm
J 1.00 REF. mm
M 14 x 14 Matrix mm
b 0.40 0.50 0.60 mm
c 0.52 0.56 0.60 mm
e 1.00 mm
Note: All dimensions and tolerances conform to ANSI Y14.5-1982.Dimension is measured at maximum solder
ball diameter parallel to primary datum (-C-). Primary datum (-C-) and seating plane are defined by the
spherical crowns of the solder balls.
Page 240Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
8.1 Top Label Markings
8.1 Top Label Markings
Figure 69 shows a sample PBGA package for the LXT9785/LXT9785E (Part numbers:
FWLXT9785BC.C2V, FWLXT9785BC.D0 [241-Pin]).
Notes:
1. In contrast to the Pb-Free (RoHS-compliant) PBGA package, the non-RoHS-compliant
package does not have the “e1” symbol in the last line of the package label.
2. Further information regarding RoHS and lead-free components can be obtained from
your local Cortina representative.
Earlier versions of the silicon may be marked as either Intel* or Level One Communications*
as shown in the examples in Figure 70 and Figure 71.
Figure 69 Example of Top Marking Information Labeled as Cortina Systems, Inc.
AAAOOOAAA
AywwX00a
Country of Origin
Device Name
FPO Traceability Code
Figure 70 Example of Top Marking Information Labeled as Intel Corporation*
Pin 1
PRLXT9785C C2
XXXXXXXX
Part Number
FPO Number
BSMC
Bottom Side Mark Code
Pb-Free Indication
B5944-01
e1e1
FV
Page 241Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
8.1 Top Label Markings
Figure 71 Example of Top Marking Information Labeled as Level One Communications*
YYWW
LXT9785xx
xxxxxxxxx
Date Code
Trace Code
Part#
LOT#
xxxx
Page 242Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
9.0 Ordering Information
9.0 Ordering Information
Table 105 and Figure 72 provide product ordering information.
Table 105 Product Information
Number Revision Package Type Pin Count RoHS Compliant
FWLXT9785BC.D0 D0 PBGA 241 No
PRLXT9785BC.D0 D0 PBGA 241 Yes
FWLXT9785EBC.D0 D0 PBGA 241 No
PRLXT9785EBC.D0 D0 PBGA 241 Yes
FWLXT9785BC.C2V C2V PBGA 241 No
PRLXT9785BC.C2V C2V PBGA 241 Yes
FWLXT9785EBC.C2V C2V PBGA 241 No
PRLXT9785EBC.C2V C2V PBGA 241 Yes
GDLXT9785MBC.D0 D0 PBGA 196 No
LULXT9785MBC.D0 D0 PBGA 196 Yes
HBLXT9785HC.D0 D0 HQFP 208 No
WBLXT9785HC.D0 D0 HQFP 208 Yes
HBLXT9785EHC.D0 D0 HQFP 208 No
WBLXT9785EHC.D0 D0 HQFP 208 Yes
HBLXT9785HE.D0 D0 HQFP 208 No
WBLXT9785HE.D0 D0 HQFP 208 Yes
HBLXT9785EHC.C2V C2V HQFP 208 No
WBLXT9785EHC.C2V C2V HQFP 208 Yes
HBLXT9785HC.C2V C2V HQFP 208 No
WBLXT9785HC.C2V C2V HQFP 208 Yes
HBLXT9785HE.C2V C2V HQFP 208 No
WBLXT9785HE.C2V C2V HQFP 208 Yes
Page 243Cortina Systems® LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers
LXT9785/LXT9785E
Datasheet
249241, Revision 12.0
04 November 2011
9.0 Ordering Information
Figure 72 Ordering Information - Sample
Temperature Range
A
C
E
= Ambient (0 - 55° C)
= Commercial (0 - 70° C)
= Extended (-40 - +85° C)
Product Revision
xn = 2 Alphanumeric characters
FW A6
CB9785E
LXT
Internal Package Designator
L
P
N
Q
H
T
B
E
K
= LQFP
= PLCC
= DIP
= PQFP
= QFP with heat spreader
= TQFP
= BGA
= TBGA
= HSBGA (BGA with heat slug)
Product Prefix
LXT
IXF
= PHY layer device
= Formatting device (MAC)
Package Designator
DJ
FA
FL
FW
HB
HD
HG
S
GC
N
= LQFP
= TQFP
= PBGA (<1.0 mm pitch)
= PBGA (1.27mm pitch)
= QFP with heat spreader
= QFP with heat slug
= SOIC
= QFP
= TBGA
= PLCC
xxxx = 3-5 Digit Alphanumeric Product Code
SE001
Qualification
Q
S
= Pre-production material
= Production material
Build Format
E000
E001
= Tray
= Tape and reel
1. LXT9785 = Nominal device
LXT9785E = DTE detection feature
LXT9785MBC = 196 ball BGA with DTE detection feature
~ End of Document ~
For additional product and ordering information:
www.cortina-systems.com
TM