www.irf.com 1
8/12/11
IRF6894MPbF
IRF6894MTRPbF
DirectFET®plus MOSFET with Schottky Diode
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
Fig 1. Typical On-Resistance vs. Gate Voltage
Typical values (unless otherwise specified)
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 1.18mH, RG = 50Ω, IAS = 26A.
Notes:
MX
SQ SX ST MQ MX MT MP
Description
The IRF6894MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a SO-8 and less than 0.7 mm profile. The DirectFET package is
compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection
soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package
allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6894MPbF balances industry leading on-state resistance while minimizing gate charge along with low gate resistance to reduce both
conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further reducing
the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters
that power high current loads such as the latest generation of microprocessors. The IRF6894MPbF has been optimized for parameters that
are critical in synchronous buck converter’s Sync FET sockets.
l RoHs Compliant Containing No Lead and Bromide
l Integrated Monolithic Schottky Diode
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible
l Low Package Inductance
l Optimized for High Frequency Switching
lIdeal for CPU Core DC-DC Converters
l Optimized for Sync. FET socket of Sync. Buck Converter
l Low Conduction and Switching Losses
l Compatible with existing Surface Mount Techniques
l 100% Rg tested
l Footprint compatible to DirectFET
2 4 6 8 10 12 14 16 18 20
VGS, Gate -to -Source Voltage (V)
0.0
1.0
2.0
3.0
4.0
Typical R
DS(on)
(mΩ)
ID = 33A
TJ = 25°C
TJ = 125°C
PD - 97633A
ISOMETRIC
V
DSS
V
GS
R
DS(on)
R
DS(on)
25V max ±16V max 0.9mΩ@ 10V 1.4mΩ@ 4.5V
Absolute Maximum Ratin
g
s
Parameter Units
V
DS
Drain-to-Source Voltage V
V
GS
Gate-to-Source Voltage
I
D
@ T
A
= 25°C Continuous Drain Current, V
GS
@ 10V
e
I
D
@ T
A
= 70°C Continuous Drain Current, V
GS
@ 10V
e
A
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V
f
I
DM
Pulsed Drain Current
g
E
AS
Single Pulse Avalanche Energy
h
mJ
I
AR
Avalanche Current
g
A
410
Max.
25
160
260
±16
25
32
26
0 1020304050607080
QG Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
VGS, Gate-to-Source Voltage (V)
VDS= 20V
VDS= 13V
VDS= 5V
ID= 26A
Q
g tot
Q
gd
Q
gs2
Q
rr
Q
oss
V
gs(th)
26nC 9.8nC 2.8nC 56nC 31nC 1.6V
IRF6894MTRPbF
2www.irf.com
Pulse width 400μs; duty cycle 2%.
Notes:
D
S
G
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage 25 ––– ––– V
ΔΒV
DSS
/ΔT
J
Breakdown Voltage Temp. Coefficient ––– 0.02 ––– V/°C
R
DS(on)
Static Drain-to-Source On-Resistance ––– 0.9 1.3 mΩ
––– 1.4 1.8
V
GS(th)
Gate Threshold Voltage 1.1 1.6 2.1 V V
DS
= V
GS
, I
D
= 100μA
ΔV
GS(th)
/ΔT
J
Gate Threshold Voltage Coefficient ––– -4.3 ––– mV/°C V
DS
= V
GS
, I
D
= 10mA
I
DSS
Drain-to-Source Leakage Current ––– ––– 500 μA
I
GSS
Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 255 ––– ––– S
Q
g
Total Gate Charge ––– 26 39
Q
gs1
Pre-Vth Gate-to-Source Charge ––– 6.6 –––
Q
gs2
Post-Vth Gate-to-Source Charge ––– 2.8 ––– nC
Q
gd
Gate-to-Drain Charge ––– 9.8 –––
Q
godr
Gate Charge Overdrive ––– 6.8 ––– See Fig.15
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)––– 12.6 –––
Q
oss
Output Charge ––– 31 ––– nC
R
G
Gate Resistance ––– 0.3 –––
Ω
t
d(on)
Turn-On Delay Time ––– 16 –––
t
r
Rise Time ––– 42 –––
t
d(off)
Turn-Off Delay Time ––– 20 ––– ns
t
f
Fall Time ––– 14 –––
C
iss
Input Capacitance ––– 4160 –––
C
oss
Output Capacitance ––– 1310 ––– pF
C
rss
Reverse Transfer Capacitance ––– 290 –––
Diode Characteristics
Parameter Min. Typ. Max. Units
I
S
Continuous Source Current
(Body Diode) A
I
SM
Pulsed Source Current
(Body Diode)
g
V
SD
Diode Forward Voltage ––– ––– 0.75 V
t
rr
Reverse Recovery Time ––– 28 42 ns
Q
rr
Reverse Recovery Charge ––– 56 84 nC
V
DS
= 13V
V
GS
= 4.5V, I
D
= 26A
i
V
GS
= 16V
V
GS
= -16V
V
DS
= 20V, V
GS
= 0V
Conditions
V
GS
= 0V, I
D
= 1.0mA
I
D
= 10mA ( 25°C-125°C)
V
GS
= 10V, I
D
= 33A
i
V
DS
= 13V
I
D
= 26A
V
DD
= 13V, V
GS
= 4.5V
i
V
DS
= 16V, V
GS
= 0V
MOSFET symbol
R
G
= 1.8Ω
V
DS
=13V, I
D
=26A
Conditions
See Fig.17
ƒ = 1.0MHz
V
GS
= 4.5V
I
D
= 26A
V
GS
= 0V
di/dt = 340A/μs
i
T
J
= 25°C, I
S
= 26A, V
GS
= 0V
i
showing the
integral reverse
p-n junction diode.
T
J
= 25°C, I
F
=26A
––– ––– 33
––– ––– 260
IRF6894MTRPbF
www.irf.com 3
Used double sided cooling , mounting pad with large heatsink.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Notes:
Rθ is measured at TJ of approximately 90°C.
Surface mounted on 1 in. square Cu
(still air).
Mounted to a PCB with
small clip heatsink (still air)
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
1E-006 1E-005 0.0001 0.001 0.01 0.1 110 100
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
100
Thermal Response ( Z
thJA )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
Absolute Maximum Ratin
g
s
Parameter Units
P
D
@T
A
= 25°C Power Dissipation
el
W
P
D
@T
A
= 70°C Power Dissipation
el
P
D
@T
C
= 25°C Power Dissipation
f
T
P
Peak Soldering Temperature °C
T
J
Operating Junction and
T
STG
Storage Temperature Range
Thermal Resistance
Parameter Typ. Max. Units
R
θJA
Junction-to-Ambient
el
––– 60
R
θJA
Junction-to-Ambient
jl
12.5 ––
R
θJA
Junction-to-Ambient
kl
20 ––– °C/W
R
θJC
Junction-to-Case
f
––– 2.3
R
θJ-PCB
Junction-to-PCB Mounted 1.0 –––
Linear Derating Factor
e
W/°C
0.017
270
-40 to + 150
Max.
54
2.1
1.3
IRF6894MTRPbF
4www.irf.com
Fig 5. Typical Output CharacteristicsFig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.8V
BOTTOM 2.5V
60μs PULSE WIDTH
Tj = 25°C
2.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.8V
BOTTOM 2.5V
60μs PULSE WIDTH
Tj = 150°C
2.5V
1.5 2.0 2.5 3.0 3.5
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VDS = 15V
60μs PULSE WIDTH
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.6
0.8
1.0
1.2
1.4
1.6
Typical RDS(on) (Normalized)
ID = 33A VGS = 10V
VGS = 4.5V
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance(pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
025 50 75 100 125 150 175 200
ID, Drain Current (A)
0.0
1.0
2.0
3.0
4.0
5.0
Typical RDS(on) (
mΩ)
TJ = 25°C Vgs = 3.5V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 12V
Vgs = 15V
IRF6894MTRPbF
www.irf.com 5
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage Fig 11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy vs. Drain Current
0.1 0.4 0.7 1.0
VSD, Source-to-Drain Voltage (V)
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VGS = 0V
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
Typical VGS(th) Gate threshold Voltage (V)
ID = 10mA
25 50 75 100 125 150
TC , Case Temperature (°C)
0
20
40
60
80
100
120
140
160
180
ID, Drain Current (A)
25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
0
400
800
1200
1600
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 1.9A
2.7A
BOTTOM 26A
0.01 0.1 1 10 100
VDS , Drain-toSource Voltage (V)
0.01
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
TA = 25°C
Tj = 150°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100μsec
DC
IRF6894MTRPbF
6www.irf.com
Fig 15a. Gate Charge Test Circuit Fig 15b. Gate Charge Waveform
Fig 16b. Unclamped Inductive Waveforms
tp
V
(BR)DSS
I
AS
Fig 16a. Unclamped Inductive Test Circuit
Fig 17b. Switching Time Waveforms
Fig 17a. Switching Time Test Circuit
R
G
I
AS
0.01
Ω
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Vds
Vgs
Id
Vgs(th)
Qgs1
Qgs2QgdQgodr
1K
VCC
DUT
0
L
S
20K
VDS
90%
10%
VGS
t
d(on) trtd(off) tf
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
VGS
+
-
VDD
IRF6894MTRPbF
www.irf.com 7
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
*** VGS = 5V for Logic Level Devices
***
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
**
*
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
DirectFET®plus Board Footprint, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET®plus .
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
D
D
G
S
S
IRF6894MTRPbF
8www.irf.com
DirectFET®plus Part Marking
DirectFET®plus Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET®plus. This
includes all recommendations for stencil and substrate designs.
GATE MARKING
PART NUMBER
LOGO
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
IMPERIAL
MIN
0.246
0.189
0.152
0.014
0.027
0.027
0.054
0.032
0.015
0.035
0.090
0.021
0.001
0.003
MIN
6.25
4.80
3.85
0.35
0.68
0.68
1.38
0.80
0.38
0.88
2.28
0.535
0.020
0.08
MAX
6.35
5.05
3.95
0.45
0.72
0.72
1.42
0.84
0.42
1.01
2.41
0.595
0.080
0.17
CODE
A
B
C
D
E
F
G
H
J
K
L
M
R
P
METRIC
DIMENSIONS
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.056
0.033
0.017
0.039
0.095
0.023
0.003
0.007
IRF6894MTRPbF
www.irf.com 9
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/2011
DirectFET®plus Tape & Reel Dimension (Showing component orientation).
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM CODE
A
B
C
D
E
F
G
H
IMPERIAL
MIN
0.311
0.154
0.469
0.215
0.201
0.256
0.059
0.059
MAX
8.10
4.10
12.30
5.55
5.30
6.70
N.C
1.60
MIN
7.90
3.90
11.90
5.45
5.10
6.50
1.50
1.50
METRIC
DIMENSIONS
MAX
0.319
0.161
0.484
0.219
0.209
0.264
N.C
0.063
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6894MTRPBF). For 1000 parts on 7"
reel, order IRF6894MTR1PBF
REEL DIMENSIONS
MAX
N.C
N.C
0.520
N.C
N.C
0.724
0.567
0.606
IMPERIAL
MIN
330.0
20.2
12.8
1.5
100.0
N.C
12.4
11.9
STANDARD OPTION (QTY 4800)
CODE
A
B
C
D
E
F
G
H
MAX
N.C
N.C
13.2
N.C
N.C
18.4
14.4
15.4
MIN
12.992
0.795
0.504
0.059
3.937
N.C
0.488
0.469
METRIC
MIN
6.9
0.75
0.53
0.059
2.31
N.C
0.47
0.47
TR1 OPTION (QTY 1000)
MAX
N.C
N.C
12.8
N.C
N.C
13.50
12.01
12.01
MIN
177.77
19.06
13.5
1.5
58.72
N.C
11.9
11.9
METRIC
MAX
N.C
N.C
0.50
N.C
N.C
0.53
N.C
N.C
IMPERIAL