Copyright © 2018 Everspin Technologies, Inc. 1MR10Q010 Revision 5.6, 6/2018
MR10Q010
High bandwidth – Read and Write at 52MB/sec
Quad I/O with the use of dual purpose pins to maintain a low pin count
Operates in both standard, single SPI mode and high speed quad SPI mode
Fast quad Read and Write with quad address input and quad I/O
Intended for next generation RAID controllers, server system logs, storage device
buers, and embedded system data and program memory
Data is non-volatile with retention greater than 20 years
Automatic data protection on power loss
Unlimited write endurance
Low-current sleep mode
Dual 3.3v VDD / 1.8v VDDQ power supply
Tamper Detect function will detect possible data modication from outside mag-
netic elds.
Quad Peripheral Interface (QPI) mode is supported to enhance system performance
for Execute in Place (XIP) operation.
MSL Level 3.
The MR10Q010 is the ideal memory solution for applications that must store and retrieve data and programs quickly
using a small number of pins, low power, and choice of a 24-ball BGA or a 16-pin SOIC package. The four I/O’s in Quad
SPI mode allow very fast reads and writes, making it an attractive alternative to conventional parallel data bus inter-
faces in next generation RAID controllers, server system logs, storage device buers, and embedded system data and
program memory.
Using Everspins patented MRAM technology, both reads and writes can occur randomly in memory with no delay
between writes.
Standard Serial Peripheral Interface (SPI), Quad SPI and Quad Peripheral Interface (QPI) modes are supported at a clock
rate up to 104MHz. XIP operation is supported for Read commands in all three modes.
The MR10Q010 Quad SPI MRAM is organized as 131,072 words of 8 bits.
16-SOIC
DESCRIPTION
1 Mb High Speed Quad SPI MRAM
RoHS
Mode Command Set Utility Commands XIP Command Operation
SPI Mode Read 40MHz. Write, Fast Read
104MHz
Write Enable/Disable, Sleep Mode, Read/Write
Status Register, Tamper Detect, Read Device ID,
Enable QPI Mode
Fast Read
Quad SPI Mode Quad I/O mode Read/Write data,
or both address and data None. Fast Read Quad Output, Fast Read
Quad Address and Data
QPI Mode Enables command instruction
entry in quad I/O mode. (2 clocks) Disable QPI Mode. Fast Read, Fast Read Quad Output,
Fast Read Quad Address and Data
Operational Overview
FEATURES
24-BGA
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
2MR10Q010 Revision 5.6, 6/2018
TABLE OF CONTENTS
Operational Overview ....................................................................................................................1
OVERVIEW ............................................................................................................................................7
Table 1 – Operational Parameters Summary ...................................................................................................... 7
Operation in 3.3v Data Bus Systems - Evaluation Board Available .............................................7
Figure 1 – MR10Q010 Block Diagram .................................................................................................................... 8
Figure 2 – System Conguration ............................................................................................................................. 9
Figure 3 – 16-SOIC Package Pin Assignments ..................................................................................................10
Table 2 – 16-SOIC Pin Functions ............................................................................................................................ 10
Figure 4 – 24-BGA Package Ball Assignments ..................................................................................................12
Table 3 – 24-BGA Ball Functions ............................................................................................................................ 12
STATUS REGISTER ............................................................................................................................. 14
Table 4 – Status Register Bit Denitions ............................................................................................................. 14
Memory Protection Modes .......................................................................................................... 15
Table 5 – Memory Protection Modes ..................................................................................................................15
Block Protection Modes ............................................................................................................... 15
Table 6 – Block Memory Write Protection ..........................................................................................................15
SPI COMMUNICATIONS PROTOCOL ................................................................................................ 16
SPI MODE COMMANDS .................................................................................................................... 16
Table 7 – SPI Mode Commands Overview ......................................................................................................... 17
SPI Mode Commands Overview .................................................................................................. 17
Read Status Register (RDSR) ........................................................................................................ 18
Figure 5 – Read Status Register (RDSR) Command Operation .................................................................. 18
Write Enable (WREN) .................................................................................................................... 19
Figure 6 Write Enable (WREN) Command Operation ................................................................................ 19
Write Disable (WRDI) .................................................................................................................... 20
Figure 7 Write Disable (WRDI) Command Operation ................................................................................ 20
Copyright © 2018 Everspin Technologies, Inc. 3MR10Q010 Revision 5.6, 6/2018
MR10Q010
Write Status Register (WRSR) ...................................................................................................... 21
Figure 8 Write Status Register (WRSR) Command Operation ................................................................21
Read Data Bytes (READ) ............................................................................................................... 22
Figure 9 – Read Data Bytes (READ) Command Operation ...........................................................................22
Fast Read Data Bytes (FREAD) ..................................................................................................... 23
Figure 10 – Fast Read Data Bytes (FREAD) Command Operation .............................................................23
Write Data Bytes (WRITE) ............................................................................................................. 24
Figure 11 Write Data Bytes (WRITE) Command Operation ......................................................................24
Enter Sleep Mode (SLEEP) ............................................................................................................ 25
Figure 12 – Enter Sleep Mode (SLEEP) Command Operation .....................................................................25
Exit Sleep Mode (WAKE) ............................................................................................................... 26
Figure 13 – Exit Sleep Mode (WAKE) Command Operation ........................................................................26
Tamper Detect (TDET) .................................................................................................................. 27
Figure 14 Tamper Detect (TDET) Command Operation ............................................................................27
Tamper Detect Exit (TDETX) ........................................................................................................ 28
Figure 15 Tamper Detect Exit (TDETX) Command Operation ................................................................. 28
Read ID (RDID) .............................................................................................................................. 29
Figure 16 – Read ID (RDID) Command Operation ...........................................................................................29
Table 8 Device ID for MR10Q010 .......................................................................................... 30
QUAD SPI MODE COMMANDS ......................................................................................................... 31
Quad SPI Mode Commands Overview ........................................................................................ 31
Table 9 – Quad SPI Mode Commands Overview .............................................................................................31
Fast Read Quad Output (FRQO) .................................................................................................. 32
Figure 17 – Fast Read Quad Output (FRQO) Command Operation .......................................................... 33
Fast Read Quad Address and Data (FRQAD) .............................................................................. 34
Figure 18 – Fast Read Quad Address and Data (FRQAD) Command Operation ..................................35
Table of Contents (Cont’d)
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
4MR10Q010 Revision 5.6, 6/2018
Fast Write Quad Data (FWQD) ...................................................................................................... 36
Figure 19 – Fast Write Quad Data (FWQD) Command Operation .............................................................36
Fast Write Quad Address and Data (FWQAD) ............................................................................. 37
Figure 20 – Fast Write Quad Address and Data (FWQAD) Command Operation ................................37
QPI MODE .......................................................................................................................................... 38
Table 10 – SPI Mode Command Structures in QPI Mode .............................................................................38
Table 11 – Quad SPI Mode Command Structures in QPI Mode .................................................................39
Enable QPI (EQPI) Command ....................................................................................................... 40
Figure 21 – Enable QPI Mode (EQPI) Command Operation .......................................................................40
Disable QPI (DQPI) Command ..................................................................................................... 41
Figure 22 – Disable QPI Mode (DQPI) Command Timing ............................................................................ 41
EXECUTE IN PLACE XIP MODE....................................................................................................... 42
Table 12 – Mode Byte Denitions to Set/Reset XIP Mode ...........................................................................42
Table 13 – XIP Mode with FREAD Command ....................................................................................................43
Figure 23 – FREAD Command- Set XIP Mode - Initial Access .....................................................................44
Figure 24 – FREAD Command - XIP Mode Set - Next Access .....................................................................45
Figure 25 – FREAD Command - XIP Mode Exit ................................................................................................. 46
Table 14 – XIP Operation with FRQO Command .............................................................................................47
Figure 26 – FRQO Command - Set XIP Mode - Initial Access ....................................................................48
Figure 27 – FRQO Command - XIP Mode Set - Next Access .......................................................................49
Figure 28 – FRQO Command - XIP Mode Exit ...................................................................................................50
Table 15 – XIP Operation with FRQAD Command ..........................................................................................51
Figure 29 – FRQAD Command - Set XIP Mode - Initial Access ..................................................................52
Figure 30 – FRQAD Command - XIP Mode Set - Next Access ....................................................................53
Figure 31 – FRQAD Command - XIP Mode Exit ................................................................................................ 54
ELECTRICAL SPECIFICATIONS ......................................................................................................... 55
Table of Contents (Cont’d)
Copyright © 2018 Everspin Technologies, Inc. 5MR10Q010 Revision 5.6, 6/2018
MR10Q010
Table 16 – Absolute Maximum Ratings ...........................................................................................................55
Table 17 – Operating Conditions ..........................................................................................................................56
Table 18 – DC Characteristics .................................................................................................................................56
Table 19 – Power Supply Characteristics ............................................................................................................57
Table 20 – Capacitance ............................................................................................................................................. 57
TIMING SPECIFICATIONS ................................................................................................................. 58
AC Measurement Conditions ....................................................................................................... 58
Table 21 – AC Measurement Conditions ............................................................................................................58
Figure 32 – Output Load for Impedance Parameter Measurements .......................................................58
Figure 33 – Output Load for all Other Parameter Measurements .............................................................58
Power Up Timing .......................................................................................................................... 59
Table 22 – Power-Up Delay Minimum Voltages and Timing ....................................................................... 59
Figure 34 – Power-Up Timing ................................................................................................................................ 60
AC Timing Parameters .................................................................................................................. 61
Table 23 – AC Timing Parameters .........................................................................................................................61
Figure 35 – Synchronous Data Timing (READ) .................................................................................................63
Figure 36 – Synchronous Data Timing Fast Read (FREAD) ...........................................................................63
Figure 37 – Synchronous Data Timing (WRITE) ...............................................................................................64
Figure 38 – Synchronous Data Timing Fast Write Quad Data and Fast Write Quad Address and
Data (FWQD and FWQAD) .............................................................................................................................. 64
Figure 39 – HOLD Timing .......................................................................................................................................65
PART NUMBERS AND ORDERING .................................................................................................... 66
Table 24 – Part Numbering System ......................................................................................................................66
Table 25 – Ordering Part Numbers .......................................................................................................................66
PACKAGE CHARACTERISTICS .......................................................................................................... 67
Table of Contents (Cont’d)
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
6MR10Q010 Revision 5.6, 6/2018
Table 26 – Thermal Resistance 16-pin SOIC .....................................................................................................67
Figure 40 – 16-SOIC Package Outline .................................................................................................................68
Figure 41 – 24 Ball BGA Package Outline .......................................................................................................... 70
HOW TO REACH US ........................................................................................................................... 72
Table of Contents (Cont’d)
Copyright © 2018 Everspin Technologies, Inc. 7MR10Q010 Revision 5.6, 6/2018
MR10Q010
The Serial Peripheral Interface, SPI, is becoming increasingly popular in system design due to the reduced
pin count of the serial interface and increasing data bandwidth oered when compared against x8 or x16
parallel interface architectures. The SPI interface has evolved from a single data line to a four data line, or
quad architecture. This interface provides a data bandwidth in excess of 50Mbytes/sec.
SPI is currently well-established in microcontroller/microprocessor based systems. The Everspin family of
single I/O SPI MRAM is popular in smart meter applications and a variety of other embedded systems. How-
ever, the 40MHz limitation with a single data I/O may be too slow for higher performance applications such
as the next generation RAID controllers, server system logs, and storage device buers .
Operating at 52MB/second for both Read and Write the Everspin 1Mb Quad I/O SPI MRAM will meet the
needs of these applications. And as a non-volatile memory with over 20 years of data retention, this SPI
memory family is equally suited for embedded system data and program memory.
The Quad Peripheral Interface, QPI, mode provides a lower overhead to load commands, which will improve
system throughput when operating in an Execute in Place, XIP, environment. This added feature will make
the device attractive in embedded applications that store program code in an external memory. QPI eec-
tively increases the eective clock rate and, when combined with Quad SPI instructions, Quad SPI memory
performance will outstrip asynchronous parallel memories.
OVERVIEW
Table 1 – Operational Parameters Summary
Density Interface Voltage
(V)
Read/
Write
Active Current
R/W (mA)
Standby
Current
(mA)
Sleep
Current
(A)
Package
1 Mb 104MHz Quad SPI 3.3v VDD
1.8v VDDQ
52MB/sec 60/100 8.0 100 16-SOIC
Operation in 3.3v Data Bus Systems - Evaluation Board Available
The Everspin MR10Q010 Quad SPI Serial MRAM requires a 3.3v VDD power supply and is designed to operate
on a 1.8v I/O bus. Adapting the MR10Q010 to operate on a 3.3v data bus can be done by interfacing it to the
bus through a level translator.
An evaluation board is available to test this adaptation of the MR10Q010 in an existing system. It can be
connected to the bus at the board position currently occupied by a SPI or Quad SPI E2PROM and operate
with the MR10Q010 I/O levels translated for operation on a 3.3v bus.
Contact Everspin for more information about the MR10Q010 3.3v evaluation board and adapting your 3.3v
bus system to operate with MR10Q010 MRAM.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
8MR10Q010 Revision 5.6, 6/2018
Figure 1 – MR10Q010 Block Diagram
SCK
WP or I/O2
HOLD or I/O3
SO or I/O1
Data I/O
Register
Instrucon Decode
Control Logic
Write Protect
Clock Generator
8
Nonvolale Status
Register
1 Mb
SPI MRAM
Array
4
CS
17
Serial I/O
Interface
SI or I/O0
Address Register
Counter
Copyright © 2018 Everspin Technologies, Inc. 9MR10Q010 Revision 5.6, 6/2018
MR10Q010
MOSI or I/O0
MISO or I/O1
(Master Out - Slave In)
SCK
SCK
CS
SPI
Micro Controller
SO
I/O1
WP
I/O2
SI
I/O0
HOLD or I/O3 (1)
CS (1)
WP or I/O2 (1)
HOLD
I/O3
SCK
CS
SO
I/O1
WP
I/O2
SI
I/O0
HOLD
I/O3
HOLD or I/O3 (2)
CS (2)
WP or I/O2 (2)
(Master In - Slave Out)
Figure 2 – System Conguration
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
10 MR10Q010 Revision 5.6, 6/2018
Table 2 – 16-SOIC Pin Functions
Signal
Name Pin SPI Mode Quad SPI
Mode 1Description
CS 7 Chip Select Chip Select
An active low chip select for the serial MRAM. When chip select is
high, the memory is powered down to minimize standby power,
inputs are ignored and the serial output pin is Hi-Z. Multiple serial
memories can share a common set of data pins by using a unique
chip select for each memory.
SO (I/O1) 8 Serial Output I/O 1
SPI Mode: The data output pin is driven during a read operation and
remains Hi-Z at all other times. SO is Hi-Z when HOLD is low. Data
transitions on the data output occur on the falling edge of SCK.
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-
dresses or data to the device on the rising edge of SCK or read data
output from the device on the falling edge of SCK.
Table continues on next page.
16-SOIC
16-SOIC
HOLD (I/O 3)
VDDQ
NC
VDD
NC
VDD
NC
VSS
NC
VSS
SCK
SI (I/O 0)
VSSQ
SO (I/O 1)
CS
WP (I/O 2)
TOP VIEW
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
Figure 3 – 16-SOIC Package Pin Assignments
Copyright © 2018 Everspin Technologies, Inc. 11 MR10Q010 Revision 5.6, 6/2018
MR10Q010
16-SOIC Pin Functions - Continued
Signal
Name Pin SPI Mode Quad SPI
Mode 1Description
WP (I/O2) 9 Write Protect I/O 2
SPI Mode: A low on the write protect input prevents write opera-
tions to the Status Register.
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-
dresses or data to the device on the rising edge of SCK or read data
output from the device on the falling edge of SCK.
VSS 11, 14 Ground Ground Power supply ground pin.
VSSQ 10 Ground Ground I/O Voltage ground pin.
SI (I/O0) 15 Serial Input I/O 0
SPI Mode: All data is input to the device through this pin. This pin
is sampled on the rising edge of SCK and ignored at other times. SI
can be tied to SO to create a single bidirectional data bus if desired.
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-
dresses or data to the device on the rising edge of SCK or read data
output from the device on the falling edge of SCK.
SCK 16 Clock Clock
Synchronizes the operation of the MRAM. The clock can operate up
to 104 MHz to shift commands, address, and data into the memory.
Inputs are captured on the rising edge of clock. Data outputs from
the MRAM occur on the falling edge of clock. The serial MRAM sup-
ports both SPI Mode 0 (CPOL=0, CPHA=0) and Mode 3 (CPOL=1,
CPHA=1). In Mode 0, the clock is normally low. In Mode 3, the clock
is normally high. Memory operation is static so the clock can be
stopped at any time.
HOLD
(I/O3)1 HOLD I/O 3
SPI Mode: A low on the HOLD pin interrupts a memory operation
for another task. When HOLD is low, the current operation is sus-
pended. The device will ignore transitions on the CS and SCK when
HOLD is low. All transitions of HOLD must occur while CS is low.
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-
dresses or data to the device on the rising edge of SCK or read data
output from the device on the falling edge of SCK.
VDD 3, 6 Power Supply Power Supply Power supply voltage from +3.0 to +3.6 volts.
VDDQ 2I/O Bus Power
Supply
I/O Bus Power
Supply I/O Bus supply voltage from +1.7 volts to +1.9 volts.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
12 MR10Q010 Revision 5.6, 6/2018
Table 3 – 24-BGA Ball Functions
Signal
Name Ball SPI Mode Quad SPI
Mode 1Description
CS C2 Chip Select Chip Select
An active low chip select for the serial MRAM. When chip select is
high, the memory is powered down to minimize standby power,
inputs are ignored and the serial output pin is Hi-Z. Multiple serial
memories can share a common set of data pins by using a unique
chip select for each memory.
SO (I/O1) D2 Serial Output I/O 1
SPI Mode: The data output pin is driven during a read operation and
remains Hi-Z at all other times. SO is Hi-Z when HOLD is low. Data
transitions on the data output occur on the falling edge of SCK.
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-
dresses or data to the device on the rising edge of SCK or read data
output from the device on the falling edge of SCK.
Table continues on next page.
Figure 4 – 24-BGA Package Ball Assignments
1 2 3 4 5
A B C D E
NCNC NC NC
NC SCK
NC
NC
NC
NC
NC
NC
NC NC NC NC
VDD
VSS
VDDQ
CS WP
IO2
SO
IO3
IO1
SO
IO0
HOLD
24-ball BGA package.
8mm x 6mm package outline.
Serial NOR Flash pinout compatible.
VDDQ on ball E4 to support 1.8v I/O.
No VSSQ ball.
Copyright © 2018 Everspin Technologies, Inc. 13 MR10Q010 Revision 5.6, 6/2018
MR10Q010
24-BGA Ball Functions - Continued
Signal
Name Ball SPI Mode Quad SPI
Mode 1Description
WP (I/O2) C4 Write Protect I/O 2
SPI Mode: A low on the write protect input prevents write opera-
tions to the Status Register.
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-
dresses or data to the device on the rising edge of SCK or read data
output from the device on the falling edge of SCK.
VSS B3 Ground Ground Power supply ground pin.
SI (I/O0) D3 Serial Input I/O 0
SPI Mode: All data is input to the device through this pin. This pin
is sampled on the rising edge of SCK and ignored at other times. SI
can be tied to SO to create a single bidirectional data bus if desired.
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-
dresses or data to the device on the rising edge of SCK or read data
output from the device on the falling edge of SCK.
SCK B2 Clock Clock
Synchronizes the operation of the MRAM. The clock can operate up
to 104 MHz to shift commands, address, and data into the memory.
Inputs are captured on the rising edge of clock. Data outputs from
the MRAM occur on the falling edge of clock. The serial MRAM sup-
ports both SPI Mode 0 (CPOL=0, CPHA=0) and Mode 3 (CPOL=1,
CPHA=1). In Mode 0, the clock is normally low. In Mode 3, the clock
is normally high. Memory operation is static so the clock can be
stopped at any time.
HOLD
(I/O3)D4 HOLD I/O 3
SPI Mode: A low on the HOLD pin interrupts a memory operation
for another task. When HOLD is low, the current operation is sus-
pended. The device will ignore transitions on the CS and SCK when
HOLD is low. All transitions of HOLD must occur while CS is low.
Quad SPI Mode: Bidirectional I/O to serially write instructions, ad-
dresses or data to the device on the rising edge of SCK or read data
output from the device on the falling edge of SCK.
VDD B4 Power Supply Power Supply Power supply voltage from +3.0 to +3.6 volts.
VDDQ E4 I/O Bus Power
Supply
I/O Bus Power
Supply I/O Bus supply voltage from +1.7 volts to +1.9 volts.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
14 MR10Q010 Revision 5.6, 6/2018
The status register consists of the 8 bits shown in Table 3 below.
The Status Register Write Disable bit (SRWD, Bit 7) is used in conjunction with the Write Enable Latch (WEL,
bit 1) and the Write Protection pin (WP) to provide hardware memory block protection. Their usage for
memory block protection is dened in Table 5 – Memory Protection Modes” . The Status Register Write Dis-
able bit is non-volatile and will remain set whenever power is removed from the memory. The WEL bit (Bit 7)
is volatile and set by the Write Enable command. It is set to “0” at power up and reset to “0” when recovering
from a loss of power.
The status of memory block protection is indicated by the states of bits BP0 and BP1 (Bits 2 and 3) and are
also dened in Table 5 – Memory Protection Modes” on page 15. BP0 and BP1 are non-volatile and re-
main set if power is removed from the memory.
The QPI Mode bit (Bit 6) indicates whether the memory is in QPI mode or not. Its value is set when the En-
able QPI (EQPI) or Disable QPI (DQPI) commands are invoked. Logic “1” indicates QPI mode is enabled. The
QPI Mode Bit is volatile and set to “0” at power up and reset to “0” when recovering from a loss of power.
The fast writing speed of the MR10Q010 does not require write status bit information (Normally Bit 0). The
state of reserved bits 4, 5, and 0 can be modied by the user but do not aect memory operation.
All bits in the status register are pre-set at the factory to the “0” state.
Non-reserved Status Register bits are non-volatile with the exception of the WEL and QPI Mode which are
reset to 0 upon power cycling.
STATUS REGISTER
Table 4 – Status Register Bit Denitions
Bit Denitions:
7 - SRWD - Status Register Write Disable
6 - QPI Mode bit. Logic 1 = The device is in QPI Mode. Set by the Enable QPI (page 40) and Disable QPI Commands (page
41). Cannot be modied by the Write Status Register Command (page 21). Reset to “0” upon any power cycling.
5 - R2 - Reserved bit 2
4 - R1 - Reserved bit 1
3 - BP1 - Block Protect bit 1
2 - BP0 - Block Protect bit 0
1 - WEL - Write Enable Latch bit. Set by the Write Enable (page 19) Command. Reset to “0” upon any power cycling.
0 - R0 - Reserved bit 0. This is the Write in Progress bit for many memory devices. For MR10Q010, the Write in progress bit (bit
0) is not written by the memory because there is no write delay with MRAM.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SRWD
(Non volatile)
QPI Mode
(Volatile) R2 R1 BP1
(Non-Volatile)
BP0
(Non-Volatile)
WEL
(Volatile) R0
Copyright © 2018 Everspin Technologies, Inc. 15 MR10Q010 Revision 5.6, 6/2018
MR10Q010
WEL SRWD WP Protected Blocks Unprotected Blocks Status
Register
0 X X Protected Protected Protected
1 0 X Protected Writable Writable
1 1 Low Protected Writable Protected
1 1 High Protected Writable Writable
Table 5 – Memory Protection Modes
Table 6 – Block Memory Write Protection
The memory enters hardware block protection when the WP input is low and the Status Register Write Dis-
able (SRWD) Bit is set to 1. The memory leaves hardware block protection only when the WP pin goes high.
While WP is low, the write protection blocks for the memory are determined by the status register bits BP0
and BP1 and cannot be modied without taking the WP signal high again.
If the WP signal is high (independent of the status of SRWD Bit), the memory is in software protection mode.
This means that block write protection is controlled solely by the status register BP0 and BP1 block write pro-
tect bits and this information can be modied using the WRSR command.
Status Register Memory Contents
BP1 BP0 Protected Area Unprotected Area
0 0 None All Memory
0 1 Upper Quarter Lower Three-Quarters
1 0 Upper Half Lower Half
1 1 All None
Block Protection Modes
When WEL is reset to 0, writes to all blocks and the status register are protected. When WEL is set to 1, BP0
and BP1 determine which memory blocks are protected. While SRWD is reset to 0 and WEL is set to 1, status
register bits BP0 and BP1 can be modied. Once SRWD is set to 1, WP must be high to modify SRWD, BP0 and
BP1.
Memory Protection Modes
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
16 MR10Q010 Revision 5.6, 6/2018
SPI MODE COMMANDS
All memory transactions start when CS is brought low, selecting the memory. The rst byte is an 8-bit com-
mand code in hexadecimal. The subsequent 24 bits entered are address input. Following the address input
(except for the FREAD command) the device will read/write data beginning at the address entered.
For the FREAD command the Mode Byte must be entered following the address. The Mode Byte will either
set or reset the XIP mode. See ”Execute in Place (XIP) Mode” on page 42.
There is only one command performed per CS active period. CS must go inactive before another command
can be accepted. Note: To avoid partial or aborted accesses, memory access must remain active (CS low) for
a multiple of 8 clocks from CS going low (the end of a byte.)
At power up, the default operational mode is SPI mode.
SPI COMMUNICATIONS PROTOCOL
The MR10Q010 can be operated in either SPI Mode 0 (CPOL=0, CPHA =0) or SPI Mode 3 (CPOL=1, CPHA=1).
For both modes, inputs are captured on the rising edge of the clock and data outputs occur on the falling
edge of the clock. When not conveying data, SCK remains low for Mode 0; while in Mode 3, SCK is high.
The memory determines the mode of operation (Mode 0 or Mode 3) based upon the state of the SCK when
CS falls.
All memory transactions start when CS is brought low to the memory. The rst byte is a command code.
Depending upon the command, subsequent bytes of address are input. Data is either input or output.
There is only one command performed per CS active period. CS must go inactive before another command
can be accepted. To ensure proper part operation according to specications, it is necessary to terminate
each access by raising CS at the end of a byte (a multiple of 8 clock cycles from CS dropping to avoid partial
or aborted accesses.
Copyright © 2018 Everspin Technologies, Inc. 17 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Name Operation Code Description
RDSR Read Status Register 05h Returns the contents of the 8 Status Register bits.
WREN Write Enable 06h Sets the Write Enable Latch (WEL) bit in the status register to 1.
WRDI Write Disable 04h Sets the Write Enable Latch (WEL) bit in the status register to 0.
WRSR Write Status Register 01h Writes new values to the entire Status Register.
READ Read Data Bytes 03h Continuously reads data bytes starting at an initial address specied.
FREAD 1Fast Read Data Bytes 0Bh High-speed READ with XIP operation option.
WRITE Write Data Bytes 02h Continuously writes data bytes starting at an address specied.
SLEEP Enter Sleep Mode B9h Initiates Sleep Mode.
WAKE Exit Sleep Mode ABh Terminates Sleep Mode.
TDET Tamper Detect 17h Returns 4 data bytes indicating corrupted or uncorrupted memory.
RDID Read ID 4Bh Returns the Everspin device ID assigned by JEDEC.
Table 7 – SPI Mode Commands Overview
SPI Mode Commands Overview
Notes:
1. FREAD has the option of using XIP operational mode. See “Execute in Place (XIP) Mode” on page 42 for details of XIP mode
with the FREAD command.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
18 MR10Q010 Revision 5.6, 6/2018
The Status Register can be read at any time to check the status of the Write Enable Latch Bit, status register
Write Protect Bit, QPI mode, and the block write protect bits. The RDSR command is entered by driving CS
low, sending the command code, and then driving CS high.
See Table 3 – Status Register Bit Denitions” on page 11 for Status Register Bit denitions.
Read Status Register (RDSR)
Figure 5 – Read Status Register (RDSR) Command Operation
SCK
SI
SO
CS
Status Register Bits
High Impedance High Z
10 2 3 4 5 6 7 8 9 10 11 12 13 14 15
00000101
76543210
Instruction (05h)
Mode 3
Mode 0
Clock Number 2
Name Operation 0 - 7 18 - 15 16 - 23 24 - 31 32 - 39 40 - n
RDSR Read Status Register 05h S7-S0 3- - - -
Notes:
1. Clocks 0 - 7 are the command byte.
2. See AC Timing Parameters on page 61 for timing requirements.
3. See Table 3 – Status Register Bit Denitions” on page 11 for status register bit denitions.
Copyright © 2018 Everspin Technologies, Inc. 19 MR10Q010 Revision 5.6, 6/2018
MR10Q010
The Write Enable (WREN) command sets the Write Enable Latch Bit (WEL) in the status register (Bit 1). The
Write Enable Latch must be set prior to writing in the status register or the memory. The WREN command is
entered by driving CS low, sending the command code, and then driving CS high.
See Table 3 – Status Register Bit Denitions” on page 11 for Status Register Bit denitions.
Write Enable (WREN)
Figure 6 – Write Enable (WREN) Command Operation
SI
SO
CS
Instruction (06h)
High Impedance
Mode 3
Mode 0
Mode 3
Mode 0
10 234567
00000110
SCK
Clock Number 1
Name Operation 0 - 7 28 - 15 16 - 23 24 - 31 32 - 39 40 - n
WREN Write Enable 06h - - - - -
Notes:
1. See AC Timing Parameters on page 61 for timing requirements.
2. Clocks 0 - 7 are the command byte.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
20 MR10Q010 Revision 5.6, 6/2018
Figure 7 – Write Disable (WRDI) Command Operation
Write Disable (WRDI)
SCK
SI
SO
CS
Instruction (04h)
High Impedance
Mode 3
Mode 0
Mode 3
Mode 0
10 234567
00000100
The Write Disable (WRDI) command resets the Write Enable Latch (WEL) bit in the status register (bit 1) to 0.
This prevents writes to status register or memory. The WRDI command is entered by driving CS low, sending
the command code, and then driving CS high.
The Write Enable Latch (WEL) is reset to 0 on power-up or when the WRDI command is completed.
See Table 3 – Status Register Bit Denitions” on page 11 for Status Register bit denitions.
Clock Number 1
Name Operation 0 - 7 28 - 15 16 - 23 24 - 31 32 - 39 40 - n
WRDI Write Disable 04h - - - - -
Notes:
1. See AC Timing Parameters on page 61 for timing requirements.
2. Clocks 0 - 7 are the command byte.
Copyright © 2018 Everspin Technologies, Inc. 21 MR10Q010 Revision 5.6, 6/2018
MR10Q010
The Write Status Register (WRSR) command allows new values for certain bits to be written to the Status
Register. The WRSR command cannot be executed unless the Write Enable Latch (WEL) has been set to 1 by
executing a WREN command while pin WP the SRWD Bit correspond to values that make the status register
writable as seen in Table 5 on page 15.
QPI Mode Bit, Bit 6, and the WEL Bit, Bit 0, are set by other commands and cannot be changed by this com-
mand.
The WRSR command is entered by driving CS low, sending the command code and status register write data
byte, and then driving CS high.
Figure 8 – Write Status Register (WRSR) Command Operation
Write Status Register (WRSR)
SCK
SI
SO
CS
Status Register In
High Impedance
Instruction (01h)
0000000176 (DC) 54321
MSB
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Mode 3
Mode 0
0 (DC)
1
Clock Number
Name Operation 0 - 7 18 - 15 216 - 23 24 - 31 32 - 39 40 - n
WRSR Write Status Register 01h S7-S0 - - - -
Notes:
1. Clocks 0 - 7 are the command byte.
2. Neither the QPI Mode Bit, Bit 6, or the WEL Bit, bit 0, can be changed by this command.
Notes:
1. Neither the QPI Mode Bit, Bit 6, or the WEL Bit, bit 0, can be changed by this command. Treat as Don’t Care.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
22 MR10Q010 Revision 5.6, 6/2018
The Read Data Bytes (READ) command allows data bytes to be continuously read starting at an initial ad-
dress specied by the 24-bit address entry. The data bytes are read out sequentially from memory until the
read operation is terminated by bringing CS high. The entire memory can be read in a single command.
The address counter will roll over to 0000H when the address reaches the top of memory.
The READ command is entered by driving CS low and sending the command code. The memory drives the
read data bytes on the SO pin. Reads continue as long as the memory is clocked. (Maximum READ clock
frequency 40MHz.) The command is terminated by bringing CS high.
Figure 9 – Read Data Bytes (READ) Command Operation
Read Data Bytes (READ)
SCK
SI
SO
CS
24-Bit Address
High Impedance
Instruction (03h)
Data Out 1
Data Out 2
0 0 0 0 0 0 1 1 212223 3
765432107
210
MSB
0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39
Data Clocked Out Continuously until CS high.
Mode 3
Mode 0
Clock Number
Name Operation 0 - 7 18 - 15 16 - 23 24 - 31 32 - 39 40 - n
READ Read Data Bytes 03h A23-A16 A15-A8 A7-A0 D7-D0, until CS high
Notes:
1. Clocks 0 - 7 are the command byte.
2. For timing details, see “Figure 35 – Synchronous Data Timing (READ)” on page 63.
Copyright © 2018 Everspin Technologies, Inc. 23 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Fast Read Data Bytes (FREAD)
The Fast Read Data Bytes FREAD command is similar to the READ command except that the device can be
operated at the highest frequency (fSCK = 104MHz ) and the command has an XIP operation option. For
more detail on the XIP option, see Table 13 – XIP Mode with FREAD Command” on page 43.
The FREAD command is entered by driving CS low and sending the command code. The memory drives the
read data bytes on the SO pin. Reads continue as long as the memory is clocked. The command is termi-
nated by bringing CS high.
Figure 10 – Fast Read Data Bytes (FREAD) Command Operation
SCK
CS
012345678910 28 29 30 31
SI
24-Bit AddressInstruction (0Bh)
0 0 0 0 1 0 1 1 212223 3 2 1 0
MSB
SO High Impedance
LSB
CS
SCK
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
SI
Mode Bits Set /Reset XIP Mode
SO High Impedance
7 6 5 4 3 2 1 0
Data Out 1
7 6 5 4 3 2 1 0
Data Out 2
7
Mode 3
Mode 0
0M5 M4M7 M6 M3 M2 M1 M0
Data Clocked Out Continuously until CS high.
Clock Number
Name Operation 0 - 7 18 - 15 16 - 23 24 - 31 32 - 39 40 - n
FREAD Fast Read Data Bytes 0Bh A23-A16 A15-A8 A7-A0 Mode bits 2
(7-0)
D7-D0, until
CS high
Notes:
1. Clocks 0 - 7 are the command byte.
2. Mode Byte to Set/Reset XIP operation. Set/Continue XIP Mode = EFh. Reset XIP Mode FFh (exit XIP). See “Execute in Place
(XIP) Mode” on page 42 for more detailed information on XIP operation with FREAD.
3. For timing details, see “Figure 36 – Synchronous Data Timing Fast Read (FREAD)” on page 63.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
24 MR10Q010 Revision 5.6, 6/2018
Figure 11 – Write Data Bytes (WRITE) Command Operation
The Write Data Bytes (WRITE) command allows data bytes to be written starting at an address specied by
the 24-bit address. The data bytes are written sequentially in memory until the write operation is terminat-
ed by bringing CS high. The entire memory can be written in a single command. The address counter will
roll over to 0000h when the address reaches the top of memory.
MRAM is a random access memory rather than a page, sector, or block organized memory so it is ideal for
both program and data storage. Unlike EEPROM or Flash Memory, MRAM can write data bytes continuously
at its maximum rated clock speed without write delays or data polling. Back to back WRITE commands to
any random location in memory can be executed without write delay.
The WRITE command is entered by driving CS low, sending the command code, and then sequential write
data bytes. Writes continue as long as the memory is clocked. The command is terminated by bringing CS
high.
Write Data Bytes (WRITE)
SCK
SI
SO
CS
24-Bit Address
High Impedance
Instruction (02h)
00000010232221 321076543210
MSB MSB
0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39
Mode 3
Mode 0
Data Byte 1
SCK
SI
SO
CS
Data Byte 3
High Impedance
Data Byte NData Byte 2
34 210 76543210
MSB
76543210765
MSB
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
Clock Number
Name Operation 0 - 7 18 - 15 16 - 23 24 - 31 32 - 39 40 - n
WRITE Write Data Bytes 02h A23-A16 A15-A8 A7-A0 D7-D0, until CS high
Notes:
1. Clocks 0 - 7 are the command byte.
2. For timing details see “Figure 37 – Synchronous Data Timing (WRITE)” on page 64.
Copyright © 2018 Everspin Technologies, Inc. 25 MR10Q010 Revision 5.6, 6/2018
MR10Q010
The Enter Sleep Mode (SLEEP) command turns o all MRAM power regulators in order to reduce the overall
chip standby power to 15 μA typical. The SLEEP command is entered by driving CS low, sending the com-
mand code, and then driving CS high. The standby current is achieved after time, tDP. See Table 23 – AC
Timing Parameters” on page 61 for the tDP value.
If power is removed when the part is in sleep mode, upon power restoration, the part enters normal standby.
The only valid command following SLEEP mode entry is a WAKE command.
Figure 12 – Enter Sleep Mode (SLEEP) Command Operation
Enter Sleep Mode (SLEEP)
SCK
SI
SO
CS
Standby CurrentActive Current
Mode 3
Mode 0
Sleep Mode Current
Instruction (B9h)
10111001
01234567
DP
t
Clock Number
Name Operation 0 - 7 18 - 15 16 - 23 24 - 31 32 - 39 40 - n
SLEEP Enter Sleep Mode B9h - - - - -
Notes:
1. Clocks 0 - 7 are the command byte.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
26 MR10Q010 Revision 5.6, 6/2018
Figure 13 – Exit Sleep Mode (WAKE) Command Operation
Exit Sleep Mode (WAKE)
SCK
SI
SO
CS
Sleep Mode Current Standby Current
Instruction (ABh)
10101 011
01234567
RDP
t
Mode 3
Mode 0
The Exit Sleep Mode (WAKE) command turns on internal MRAM power regulators to allow normal operation.
The WAKE command is entered by driving CS low, sending the command code, and then driving CS high.
The memory returns to standby mode after tRDP. See Table 23 – AC Timing Parameters on page 61 for
the tRPD value.
The CS pin must remain high until the tRDP period is over. WAKE must be executed after sleep mode entry
and prior to any other command when the device is in Sleep mode.
Clock Number
Name Operation 0 - 7 18 - 15 16 - 23 24 - 31 32 - 39 40 - n
WAKE Exit Sleep Mode ABh - - - - -
Notes:
1. Clocks 0 - 7 are the command byte.
Copyright © 2018 Everspin Technologies, Inc. 27 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Tamper Detect (TDET)
The Tamper Detect command is used to check whether the memory contents have been corrupted by ex-
posure to external magnetic elds. The command is invoked by entering the command code followed by
the 8-bit Mode Byte. The device reads dedicated pre-programmed memory bits located around the memory
physical array. The contents of these bits are compared to reference bits that are hard programmed into the
device via a metal mask. The result of the comparison is returned in 32 status bits of data on SO beginning
after the last Mode Byte clock.
All 0’s in the 32 TDET status bits indicates that the tamper check bits are correct against the reference bits
and the memory has not been corrupted. Presence of any 1’s in the 32-bit string indicates that at least one
of the check bits does not match its reference bit and the memory contents have likely been corrupted.
Following CS high, any new command can be entered on the next access, except another TDET command.
If it is necessary to immediately enter another TDET command, a Tamper Detect Exit (TDETX) command must
be issued rst to reset the device for another Tamper Detect sequence.
Figure 14 – Tamper Detect (TDET) Command Operation
TDET Status Bits
CS
SCK
SI
SO
Instruction (4Bh)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 44 45 460
Mode Bits
0 1 0 0 11 0 1
T31 T30
T29
T3 T2 T1 T0
47
High Impedance High-Z
Don’t Care
M7 M6 M5 M4 M3 M2 M1 M0
1 1 1 1 1 1 1 1
1
Don’t Care
Clock Number
Name Operation 0 - 7 18 - 15 16 - 47 48 - n
TDET Tamper Detect 17h Mode Byte
bits 7 - 0 3T31 - T0 2CS high
Notes:
1. Clocks 0 - 7 are the command byte.
2. 32 Tamper Detect indication bits. Any 1’s present in the 32-bit string indicate probable corruption of the memory contents.
3. In the TDET command operation, the Mode Byte is used as a time delay to read the check and reference bits. The Mode Byte
must be set to FFh.
Notes:
1. In the TDET command operation, the Mode Byte must be set to FFh.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
28 MR10Q010 Revision 5.6, 6/2018
Figure 15 – Tamper Detect Exit (TDETX) Command Operation
Clock Number
Name Operation 0 - 7 18 - n 2
TDETX Tamper Detect Exit 07h CS high. Any command can be entered on next access.
Notes:
1. Clocks 0 - 7 are the command byte.
2. After CS goes high any other command can be given on the next access.
Tamper Detect Exit (TDETX)
After running a TDET command, any other command can be run as the next command, except another TDET
command. If another TDET command is to be run, then the Tamper Detect Exit (TDETX) command must
be run rst to reset the device. This is necessary only if immediately running another TDET command. See
Tamper Detect (TDET)” on page 27.
Copyright © 2018 Everspin Technologies, Inc. 29 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Read ID (RDID)
The Read Device ID command (RDID) returns 40 bits of information that identify the Everspin device. The
command is invoked with CS low, and sending command code 4Bh on the Serial Input (SI) pin. See “Fig-
ure 16 – Read ID (RDID) Command Operation below. After 8 clocks for the Mode Byte, 40 bits of data
uniquely identifying the Everspin device are returned on the Serial Out (SO) pin. See Table 8 – Device ID for
MR10Q010”. If CS remains low after reading the 40 ID bits, additional clocks with CS low will return zeros on
SO until CS goes high.
Figure 16 – Read ID (RDID) Command Operation
Device ID Data Bits
CS
SCK
SI
SO
Instruction (4Bh)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 50 51 520
Mode Bits
010010
Bit 39 Bit 38 Bit 37 Bit 36 Bit 35 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
5453
High Impedance High-Z
Don’t Care
55
1
Mode 3
Mode 0
1 1
M7 M6 M5 M4 M3 M2 M1 M0
1 1 1 1 1 1 1 1
Notes:
1. Clocks 0 - 7 are the command byte.
2. In the RDID command operation, the Mode Byte is used as a time delay to read the device ID bits. The Mode Byte must be
set to FFh.
3. For the Everspin device ID codes, see Table 8 – Device ID for MR10Q010” on page 30.
Clock Number
Name Operation 0 - 7 18 - 15 16 - 23 24 - 31 32 - 39 40 - n
RDID Read ID 4Bh Mode Byte 2
Bits 7 - 0 Device ID 3 Clocks 16 - 55
Notes:
1. In the RDID command operation, the Mode Byte must be set to FFh.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
30 MR10Q010 Revision 5.6, 6/2018
Complete Hexadecimal and Binary Device ID for MR10Q010
Hexadecimal 076B111111
Binary 0000_0111_0110_1011_0001_0001_0001_0001_0001_0001
RDID Device ID for MR10Q010
Bit # 39 - 24 23 - 20 19 - 16 15 - 12 11 - 8 7 - 4 3 - 0
Meaning Manufacturers ID
(JEP 106AH) Technology Interface Speed Density Voltage Die Rev
MR10Q010 6Bh, eighth bank Toggle
MRAM Quad IO SPI 104MHz 1 Mb 3.3v VDD /
1.8v VDDQ
A
Binary 0000_0111_0110_1011 0001 0001 0001 0001 0001 0001
Table 8 – Device ID for MR10Q010
Copyright © 2018 Everspin Technologies, Inc. 31 MR10Q010 Revision 5.6, 6/2018
MR10Q010
QUAD SPI MODE COMMANDS
Quad SPI commands allow data to be transferred to or from the device at least four times the rate of conven-
tional SPI mode. When using Quad SPI commands the DI and DO pins become bidirectional IO0 and IO1, and
the WP and HOLD pins become IO2 and IO3 respectively. Address and data information can be input to the
device on four IO’s and data output can be read from four IO’s, oering a signicant improvement in continu-
ous and random access transfers. XIP mode operation is available for FRQO and FRQAD commands.
Name Operation Code Description
FRQO 1Fast Read Quad Output 6Bh Initial address entry on IO0, returns data continuously in Quad SPI
Mode on all four I/O. Has XIP operation option.
FWQD Fast Write Quad Data 32h Initial address entry on IO0, writes data continuously in Quad SPI
Mode on all four I/O.
FRQAD 1Fast Read Quad Address
and Data EBh Initial address entry on all four IO’s, returns data continuously in
quad mode on all four I/O’s. Has XIP operation option.
FWQAD Fast Write Quad Address
and Data 12h Initial address entry on all four IO’s, writes data continuously in quad
mode on all four I/O’s.
Table 9 – Quad SPI Mode Commands Overview
Quad SPI Mode Commands Overview
Notes:
1. XIP mode option. See “Execute in Place (XIP) Mode on page 42 for details of how to use FRQD and FRQAD in XIP mode.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
32 MR10Q010 Revision 5.6, 6/2018
Fast Read Quad Output (FRQO)
The Fast Read Quad Output (6Bh) command is similar to the Fast Read Output except that a data byte is
output on the four I/O pins, requiring only two clocks. An XIP mode is available for this command. See
Table 14 – XIP Operation with FRQO Command” on page 47 for more information about XIP mode op-
eration. The I/O pins should be high impedance prior to the falling edge of the rst Mode clock. The FRQO
command is entered by driving CS low and sending the command code. The memory drives the read data
bytes on the IO pins. Reads continue as long as the memory is clocked. The command is terminated by
bringing CS high.
Commmand Operation and Timing next page.
Copyright © 2018 Everspin Technologies, Inc. 33 MR10Q010 Revision 5.6, 6/2018
MR10Q010
SCK
CS
012345678910 28 29 30 31
24-Bit AddressInstruction (6Bh)
01101011 212223 3210
MSB LSB
Mode 3
Mode 0
IO0
IO1
High Impedance
IO2
IO3
SCK
CS
31 32 33 34 35 36 37 38 39 40 41
Mode Bits
IO0
0
IO1
IO2
IO3
IO switches from Input to Output
404 0 4 0 4 0
515 1 5 1 5 1
626 2 6 2 6 2
737 3 7 3 7 3
4
5
6
7
Byte 1 Byte 2 Byte 3 Byte 4
(Low)
LSB
High
High
M0M4
M1M5
M2M6
M3M7
Data Clocked Out Continuously until CS high.
Set / Reset XIP
1
1
Note:
1. The I/O pins should be high impedance prior to the falling edge of the second mode clock.
Figure 17 – Fast Read Quad Output (FRQO) Command Operation
Clock Number
Name Title 0 - 7 18 - 15 16 - 23 24 - 31 32 - 33 34 - 35 36 - n
FRQO Fast Read Quad Output 6Bh A23-A16 A15 - A8 A7- A0 M7- M0 2D7 - D0, until CS high 3
Notes:
1. Clocks 0 - 7 are the command byte. All commands and address bits on I/O0.
2. Mode Byte. See “Execute in Place (XIP) Mode” on page 42 for more information on XIP operation with FRQO.
3. Quad Mode data output. I/O0 switches from Input to Output. I/O1-3 active outputs until CS returns high. tCSH must be ob-
served for valid output when bringing CS high.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
34 MR10Q010 Revision 5.6, 6/2018
Fast Read Quad Address and Data (FRQAD)
The Fast Read Quad Address and Data (FRQAD) command is similar to the FRQO command except that the
address bits are loaded into the four I/O’s, requiring six clocks instead of 24. The data bytes also are read
from the four I/O’s as shown in Figure 18 below. An XIP operating mode is available for this command. See
Table 15 – XIP Operation with FRQAD Command” on page 51 for more information on the XIP operating
mode for this command. The FRQAD command is entered by driving CS low and sending the command
code. The memory drives the read data bytes on the IO pins. Reads continue as long as the memory is
clocked. The command is terminated by bringing CS high.
Commmand Operation and Timing next page.
Copyright © 2018 Everspin Technologies, Inc. 35 MR10Q010 Revision 5.6, 6/2018
MR10Q010
SCK
CS
01234567
Instruction (EBh)
11101011
Mode 3
Mode 0
IO0
SCK
CS
13 14 15 16 17 18 19 20 21 22 23
Mode
Bits
IO0
0
IO1
IO2
IO3
1620 8 4 0
(Low)
A23 - 16 A15 - 8 A7 - 0
24-Bit Address
131721 9 5 1
141822 10 6 2
151923 11 7 3
High Impedance
High
High
IO switches from Input to Output
515 1 5 1 5 1
626 2 6 2 6 2
737 3 7 3 7 3
5
6
7
Byte 1 Byte 2 Byte 3 Byte 4
404 0 4 0 4 04
IO1
IO2
IO3
12
1
2
3
8 9 10 11 12 13 14 15
Mode Bits
M0M4
M1M5
M2M6
M3M7
Data Clocked Out Continuously until CS high.
1
Note:
1. The I/O pins should be high impedance prior to the falling edge of the second mode clock.
Figure 18 – Fast Read Quad Address and Data (FRQAD) Command Operation
Notes:
1. Clocks 0 - 7 are the command byte. All commands and address bits on I/O0.
2. Mode Byte. See “Execute in Place (XIP) Mode” on page 42 for more information on XIP operation with FRQAD.
3. Quad Mode data output. I/O0 switches from Input to Output. I/O1-3 active outputs until CS returns high. tCSH must be ob-
served for valid output when bringing CS high.
4. For timing details, see “Figure 38 – Synchronous Data Timing Fast Write Quad Data and Fast Write Quad Address and Data
(FWQD and FWQAD)” on page 64.
Clock Number
Name Description 0 - 7 18 - 13 414- 15 216 - 17 18 - n
FRQAD Fast Read Quad Address
and Data EBh A23 - A0 M7 - M0 2D7 - D0 every two clocks until CS high 3
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
36 MR10Q010 Revision 5.6, 6/2018
Fast Write Quad Data (FWQD)
The Fast Write Quad Data FWQD command provides a high speed write capability to the memory using four
I/O’s for data input. The FWQD command can operate at the highest frequency, fSCK = 104MHz.
The FWQD command is entered by driving CS low and sending the command code (32h). Data is input on
all four I/O’s and Writes continue as long as the memory is clocked. The command is terminated by bringing
CS high.
Figure 19 – Fast Write Quad Data (FWQD) Command Operation
SCK
CS
01234567
Mode 3
Mode 0
8 9 10 29 30 31
SCK
CS
31 32 33 34 35 36 37 38 39
(Low)
IO0
IO1
IO2
IO3
Data Bytes
515 1 5 1 5 1
626 2 6 2 6 2
737 3 7 3 7 3
5
6
7
Byte 1 Byte 2 Byte 3 Byte 4
404 0 4 0 4 04
Byte n
Instruction (32h)
00110010
IO
0
24-Bit Address
High Impedance
High
High
IO
1
IO
2
IO
3
2223 21 210
0
Data Writes Continuously until CS high.
Notes:
1. Clocks 0 - 7 are the command byte. All commands and address bits on I/O0.
2. Quad Mode address input. I/O0 remains input. I/O1-3 active inputs until CS returns high.
3. For timing details, see “Figure 38 – Synchronous Data Timing Fast Write Quad Data and Fast Write Quad Address and Data
(FWQD and FWQAD)” on page 64.
Clock Number
Name Title 0 - 7 18 - 15 16 - 23 24 - 31 32 - 33 34 - 35 36 - n
FWQD Fast Write Quad Data 32h A23-A16 A15 - A8 A7- A0 D7 - D0 every two clocks until CS
high 2
Copyright © 2018 Everspin Technologies, Inc. 37 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Fast Write Quad Address and Data (FWQAD)
The Fast Write Quad Address and Data Command (FWQAD) provides a very fast write at both the highest
frequency and fewest clock cycles. The 24-bit address is input on all four I/O’s, reducing the number of clock
cycles. The data bytes to be written are also input on all four I/O’s following the address bits. The FWQAD
command can operate at the highest frequency, fSCK = 104MHz.
The FWQAD command is entered by driving CS low and sending the command code (12h). Data are input
on all four I/O’s and Writes continue as long as the memory is clocked. The command is terminated by bring-
ing CS high.
Figure 20 – Fast Write Quad Address and Data (FWQAD) Command Operation
SCK
CS
01234567
Instruction (12h)
00010010
Mode 3
Mode 0
IO
0
SCK
CS
13 14 15 16 17 18 19 20 21
1620 8 4 0
(Low)
A23 - 16 A15 - 8 A7 - 0
24-Bit Address
131721 9 5 1
141822 10 6 2
151923 11 7 3
High Impedance
High
High
IO
1
IO
2
IO
3
12
8 9 10 11 12 13
IO
0
IO
1
IO
2
IO
3
Data Bytes
515 1 5 1 5 1
626 2 6 2 6 2
737 3 7 3 7 3
5
6
7
Byte 1 Byte 2 Byte 3 Byte 4
404 0 4 0 4 04
Byte n
Data Writes Continuously until CS high.
Clock Number
Name Description 0 - 7 18 - 13 414 - 15 216 - n
FWQAD Fast Write Quad Address
and Data 12h A23 - A0 D7 - D0 every two clocks until CS high 2
Notes:
1. Clocks 0 - 7 are the command byte. All commands and address bits on I/O0.
2. Quad Mode address input. I/O0 remains input. I/O1-3 active inputs until CS returns high.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
38 MR10Q010 Revision 5.6, 6/2018
QPI MODE
QPI Mode is designed to reduce command entry overhead in an XIP environment. QPI mode allows the
instruction code to be entered on all four I/Os, which reduces the number of clock cycles required for com-
mand entry to two from eight. Otherwise, all SPI or Quad SPI commands operate normally.
In SPI or Quad SPI mode device operation is determined by which command is entered. To operate in QPI
Mode, the device must be specically placed into QPI Mode by invoking the Enable QPI Command. When
in QPI Mode, the Status Register Bit 6 is set to 1 and will reset to 0 when either power is removed from the
device or the QPI Mode is exited with an DQPI command.
At power up, QPI mode is disabled.
Table 10 – SPI Mode Command Structures in QPI Mode
Clock Number
Name Description 0 - 1 12 - 9 10 - 17 18 - 25 26 - 33 34 - n
RDSR Read Status Register 05h S7-S0 - - - -
WREN Write Enable 06h - - - - -
WRDI Write Disable 04h - - - - -
WRSR Write Status Register 01h S7-S0 - - - -
READ Read Data Bytes 03h A23-A16 A15-A8 A7-A0 D7-D0 until CS high
FREAD Fast Read Data Bytes 08h A23-A16 A15-A8 A7-A0 M7 - M0 2 D7-D0 until
CS high
WRITE Write Data Bytes 02h A23-A16 A15-A8 A7-A0 D7-D0 until CS high
SLEEP Enter Sleep Mode B9h - - - - -
WAKE Exit Sleep Mode ABh - - - - -
TDET Tamper Detect 17h M7 - M0 3 T7 - T0
RDID Read ID 4Bh M7 - M0 3 Device ID 40 bits
DQPI Disable QPI FFh -----
Notes:
1. Clocks 0 - 1 are the command bits while in QPI mode.
2. M7 - M0 is the Mode Byte to Set/Reset XIP Mode. Set XIP Mode = EFh; Reset XIP Mode = FFh.
3. Mode Byte must be FFh for TDET and RDID.
Copyright © 2018 Everspin Technologies, Inc. 39 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Clock Number
Name Description 0 - 1 12 - 9 10 - 17 18 - 25 26 - 27 28 - n
DQPI Disable QPI FFh -----
FRQO Fast Read Quad
Output 6Bh A23-A16 A15-A8 A7-A0 M7 - M0 2 D7-D0 until
CS high
FWQD Fast Write Quad Data 32h A23-A16 A15-A8 A7-A0 D7-D0 until CS high
Clock Number
Name Description 0 - 1 12 - 3 4 - 5 6 - 7 8 - 9 10 - n
FRQAD Fast Read Quad Ad-
dress and Data EBh A23-A16 A15-A8 A7-A0 M7 - M0 2D7-D0 until
CS high
FWQAD Fast Write Quad Ad-
dress and Data 12h A23-A16 A15-A8 A7-A0 D7-D0 until CS high
Table 11 – Quad SPI Mode Command Structures in QPI Mode
Notes:
1. Clocks 0 - 1 are the command bits while in QPI mode.
2. Mode Byte. Set/Reset XIP operating mode. See “Execute in Place (XIP) Mode” on page 42.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
40 MR10Q010 Revision 5.6, 6/2018
Enable QPI (EQPI) Command
Figure 21 – Enable QPI Mode (EQPI) Command Operation
The Enable QPI command is used to enter the device into QPI mode. The command code, 38h, is entered
on the DI pin. The command is entered by driving CS low and sending the command code. The command is
terminated by driving CS high. When in QPI Mode, the Status Register Bit 6 is set to “1” and the device stays
in QPI mode until a power-on reset or the Disable QPI command is entered.
SCK
CS
01234567
Instruction (38h)
001110 0
Mode 3
Mode 0
SI
High Impedance
SO
0
Clock Number
Name Description 0 - 7 18 9 - n
EQPI Enable QPI Mode 38h CS high In QPI Mode
Notes:
1. Clocks 0 - 7 are the command byte.
Copyright © 2018 Everspin Technologies, Inc. 41 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Disable QPI (DQPI) Command
Figure 22 – Disable QPI Mode (DQPI) Command Timing
The Disable QPI command is used to exit QPI mode and return to the standard SPI/Quad SPI mode and set
the Status Register Bit 6 to “0”.
The command code FFh is entered on all four IO’s in just two clock cycles as shown below. The command is
entered by driving CS low and sending the command code. The command is terminated by driving CS high.
SCK
CS
0 1
Instruction (FFh)
Mode 3
Mode 0
1 1
IO
3
1 1
IO
0
1 1
IO
2
1 1
IO
1
Clock Number
Name Description 0 - 1 12 9 - n
DQPI Disable QPI Mode FFh CS high Now in SPI / Quad SPI Mode
Notes:
1. Clocks 0 - 1 are the command byte on all four I/O.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
42 MR10Q010 Revision 5.6, 6/2018
EXECUTE IN PLACE XIP MODE
Execute in Place (XIP) mode provides faster read operations by not requiring a command code for each
new starting address during consecutive reads. This improves random access time and eliminates the need
to shadow code onto RAM for fast execution. The read commands supported in XIP mode are FREAD (SPI
Mode), FRQO, and FRQAD (both Quad SPI Mode commands).
XIP may be run when in QPI mode. Entering or exiting XIP mode will not aect other aspects of QPI mode
operation. The device will stay in QPI mode until QPI is disabled with the DQPI command.
XIP mode for these commands is Set or Reset by entering the Mode Byte as shown in Table 12 – Mode Byte
Denitions to Set/Reset XIP Mode” on page 42 below.
In XIP Mode it is possible to perform a series of reads beginning at dierent addresses without having to
load the command code for every new starting address / CS cycle. XIP can be entered or exited during
these commands at any time and in any sequence. If it is necessary to perform another operation, not
supported by XIP, such as a write, then XIP must be exited before the new command code is entered for the
desired operation.
Table 12 – Mode Byte Denitions to Set/Reset XIP Mode
XIP Operation Hex M7 M6 M5 M4 M3 M2 M1 M0
Set/Continue EF 1 1101111
Reset/Stop (Default) FF 1 1111111
Copyright © 2018 Everspin Technologies, Inc. 43 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Initial Command Clock Number
SPI Mode 0 - 7 18 - 31 32 - 39 40 - 47 48 - n
QPI Mode 0 - 1 13 - 26 27 - 34 35 - 42 43 - n
FREAD Fast Read Data Bytes 0Bh A23-A0 M7 - M0 2D7 - D0 Read Next Byte
24-bit Address Set XIP
Mode 3
Read Data
Byte Repeat until CS goes high.
Table 13 – XIP Mode with FREAD Command
Notes:
1. Command code eight bits.
2. Mode Byte will Set/Reset the XIP mode. See Table 12 – Mode Byte Denitions to Set/Reset XIP Mode” on page 42 above
for the Set/Reset XIP mode bit denitions.
3. If the XIP mode is not Set on the initial command, the command operates in normal SPI Mode until CS high. And, on the next
new address, the FREAD the command must be reentered. If XIP Mode has been Set during this initial command entry, the
command still operates normally until CS goes high. But on the next CS low, the device remains in FREAD Command mode.
No command is entered and the initial read address is entered on the rst clock. See the table below.
If XIP Set - Next CS Low Clock Number
Either SPI or QPI Mode 0 - 23 1 24 - 31 32 - 39 40 - n
FREAD Fast Read Data Bytes A23-A0 M7 - M0 D7 - D0 Read Next Byte
If XIP Mode is Set, the Command need
not be reentered. Initial 24-bit ad-
dress entry begins on the rst clock.
24-bit Address Set/Reset XIP
Mode
Read Data
Byte Repeat until CS goes high.
Notes:
1. In XIP mode, the last command code sent remains in eect. The starting address is entered beginning on the rst clock after
CS low.
2. If XIP Mode is Reset, the device is out of XIP mode and any command may be entered on the next access.
MR10Q010 Revision 5.6, 6/2018
Copyright © 2018 Everspin Technologies, Inc. 44
MR10Q010
SCK
CS
012345678910 28 29 30 31
SI
24-Bit AddressInstruction (0Bh)
0 0 0 0 1 0 1 1 212223 3 2 1 0
MSB
SO High Impedance
LSB
CS
SCK
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
SI
EFh Set XIP Mode
SO High Impedance
7 6 5 4 3 2 1 0
Read Data Byte
7 6 5 4 3 2 1 0
Read Next Byte
Mode 3
Mode 0
0
Data Clocked Out Continuously until CS high.
11101111
LSB
1
Figure 23 – FREAD Command- Set XIP Mode - Initial Access
Note:
1. Initial FREAD access, XIP mode set for next access.
MR10Q010 Revision 5.6, 6/2018
Copyright © 2018 Everspin Technologies, Inc. 45
MR10Q010
Figure 24 – FREAD Command - XIP Mode Set - Next Access
SCK
CS
012 20 21 22 23
SI
24-Bit Address
212223 3 2 1 0
MSB
SO High Impedance
LSB
CS
SCK
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SI
EFh Continue XIP Mode
SO High Impedance
7 6 5 4 3 2 1 0
Read Data Byte
7 6 5 4 3 2 1 0
Read Next Byte
Mode 3
Mode 0
0
Data Clocked Out Continuously until CS high.
11101111
LSB
1
Note:
1. Continue FREAD in XIP Mode after this access.
MR10Q010 Revision 5.6, 6/2018
Copyright © 2018 Everspin Technologies, Inc. 46
MR10Q010
Figure 25 – FREAD Command - XIP Mode Exit
SCK
CS
012 20 21 22 23
SI
24-Bit Address
212223 3 2 1 0
MSB
SO High Impedance
LSB
CS
SCK
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SI
FFh Exit XIP Mode
SO High Impedance
7 6 5 4 3 2 1 0
Read Data Byte
7 6 5 4 3 2 1 0
Read Next Byte
Mode 3
Mode 0
0
Data Clocked Out Continuously until CS high.
11111111
LSB
1
Note:
1. XIP Mode code FFh: Reset XIP Mode. After this access a comnmand must be entered on the next access. Any new command may be en-
tered, including the original command.
Copyright © 2018 Everspin Technologies, Inc. 47 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Table 14 – XIP Operation with FRQO Command
Initial Command Clock Number
Quad SPI Mode 0 - 7 18 - 31 32 - 33 34 - 35 36 - n
QPI Mode 0 - 1 12 - 25 26 - 27 28 - 29 30 - n
FRQO Fast Read Quad
Output 6Bh A23-A0 M7 - M0 2D7 - D0 Read Next Byte
24-bit Address Set XIP
Mode 3
Read Data
Byte Repeat until CS goes high.
Notes:
1. Command code eight bits.
2. Mode Byte entered Set/Reset the XIP mode. See Table 12 – Mode Byte Denitions to Set/Reset XIP Mode” on page 42
above for the Set/Reset XIP mode bit denitions.
3. If the XIP mode is not set on the initial command, the command operates in normal SPI Mode until CS high. And, on the next
FRQO the command must be reentered. If XIP has been set during this initial command entry, the command still operates
normally until CS goes high. But on the next CS low, the device remains in FRQO Command mode, and the initial read ad-
dress is entered on the rst clock. See the table below.
If XIP Set - Next CS Low
Either Quad SPI or QPI Mode 0 - 23 24 - 25 26 - 27 28 - n
FRQO Set Fast Read Quad
Output A23-A0 M7 - M0 D7 - D0 Read Next Byte
If XIP Mode is Set, the Command
need not be reentered. Initial 24-bit
address entry begins on the rst
clock.
24-bit Address Set/Reset XIP
Mode Read Data Byte Repeat until CS goes high.
Notes:
1. In XIP operating mode, the last command code sent remains in eect and no command entry is required on the next access.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
48 MR10Q010 Revision 5.6, 6/2018
Figure 26 – FRQO Command - Set XIP Mode - Initial Access
SCK
CS
012345678910 28 29 30 31
24-Bit AddressInstruction (6Bh)
01101011 212223 3210
MSB LSB
Mode 3
Mode 0
IO
0
IO
1
High Impedance
IO
2
IO
3
SCK
CS
31 32 33 34 35 36 37 38 39 40 41
EFh
IO
0
0
IO
1
IO
2
IO
3
IO switches from Input to Output
404 0 4 0 4 0
515 1 5 1 5 1
626 2 6 2 6 2
737 3 7 3 7 3
4
5
6
7
Byte 1 Byte 2 Byte 3 Byte 4
(Low)
LSB
High
High
Data Clocked Out Continuously until CS high.
Set XIP
Mode
2
1,2
10
11
11
11
Notes:
1. Initial access, XIP Mode Byte set for next access.
2. The I/O pins should be high impedance prior to the falling edge of the second mode clock.
Copyright © 2018 Everspin Technologies, Inc. 49 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Figure 27 – FRQO Command - XIP Mode Set - Next Access
SCK
CS
23 24 25 26 27 28 29 30 31 32 33
EFh
IO0
0
IO1
IO2
IO3
IO switches from Input to Output
404 0 4 0 4 0
515 1 5 1 5 1
626 2 6 2 6 2
737 3 7 3 7 3
4
5
6
7
Byte 1 Byte 2 Byte 3 Byte 4
(Low)
LSB
Data Clocked Out Continuously until CS high.
Set (Continue)
XIP
Mode
2
1,2
10
11
11
11
SCK
CS
012 20 21 22 23
24-Bit Address
212223 3 2 1 0
MSB LSB
Mode 3
Mode 0
IO0
IO1
High Impedance
IO2
IO3
High
High
Notes:
1. Next access, set to continue XIP Mode.
2. The I/O pins should be high impedance prior to the falling edge of the second mode clock.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
50 MR10Q010 Revision 5.6, 6/2018
Figure 28 – FRQO Command - XIP Mode Exit
SCK
CS
012 20 21 22 23
24-Bit Address
212223 3 2 1 0
MSB LSB
Mode 3
Mode 0
IO0
IO1
High Impedance
IO2
IO3
High
High
SCK
CS
FFh
IO0
0
IO1
IO2
IO3
IO switches from Input to Output
404 0 4 0 4 0
515 1 5 1 5 1
626 2 6 2 6 2
737 3 7 3 7 3
4
5
6
7
Byte 1 Byte 2 Byte 3 Byte 4
(Low)
LSB
Data Clocked Out Continuously until CS high.
Reset
XIP
Mode
2
1,2
11
11
11
11
23 24 25 26 27 28 29 30 31 32 33
Notes:
1. XIP Mode Byte FFh. Exit XIP Mode.
2. The I/O pins should be high impedance prior to the falling edge of the second mode clock.
3. After this access a command must be entered on the next access. Any new command may be entered, including the original
command.
Copyright © 2018 Everspin Technologies, Inc. 51 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Table 15 – XIP Operation with FRQAD Command
Initial Command Clock Number
Quad SPI Mode 0 - 7 18 - 13 14 - 15 16 - 17 18 - n
QPI Mode 0 - 1 12 - 7 8 - 9 10 - 11 12 - n
FRQAD Fast Read Quad Ad-
dress and Data EBh A23-A0 M7 - M0 2D7 - D0 Read Next Byte
24-bit Address Set XIP
Mode 3
Read Data
Byte Repeat until CS goes high.
Notes:
1. Command code eight bits.
2. Mode Byte entered Set/Reset the XIP mode. See Table 12 – Mode Byte Denitions to Set/Reset XIP Mode” on page 42
above for the Set/Reset XIP mode bit denitions.
3. If the XIP mode is not set on the initial command, the command operates in normal SPI Mode until CS high. And, on the next
FRQAD the command must be reentered. If XIP has been set during this initial command entry, the command still operates
normally until CS goes high. But on the next CS low, the device remains in FREAD Command mode, and the initial read ad-
dress is entered on the rst clock. See the table below.
If XIP Set - Next CS Low
Either Quad SPI or QPI Mode 0 - 5 6 - 7 8 - 9 10 - n
FRQAD Set Fast Read Quad Ad-
dress and Data A23-A0 M7 - M0 D7 - D0 Read Next Byte
If XIP Mode is Set, the Command
need not be reentered. Initial 24-bit
address entry begins on the rst
clock.
24-bit Address Set/Reset XIP
Mode Read Data Byte Repeat until CS goes high.
Notes:
1. In XIP operating mode, the last command code sent remains in eect and no command entry is required on the next access.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
52 MR10Q010 Revision 5.6, 6/2018
Figure 29 – FRQAD Command - Set XIP Mode - Initial Access
SCK
CS
01234567
Instruction (EBh)
11101011
Mode 3
Mode 0
IO
0
SCK
CS
13 14 15 16 17 18 19 20 21 22 23
EFh
Set XIP
Mode
IO
0
0
IO
1
IO
2
IO
3
1620 8 4 0
(Low)
A23 - 16 A15 - 8 A7 - 0
24-Bit Address
131721 9 5 1
141822 10 6 2
151923 11 7 3
High Impedance
High
High
IO switches from Input to Output
515 1 5 1 5 1
626 2 6 2 6 2
737 3 7 3 7 3
5
6
7
Byte 1 Byte 2 Byte 3 Byte 4
404 0 4 0 4 04
IO
1
IO
2
IO
3
12
1
2
3
8 9 10 11 12 13
Data Clocked Out Continuously until CS high.
1
10
11
11
11
2
Notes:
1. Initial access, XIP Mode Byte set for next access.
2. The I/O pins should be high impedance prior to the falling edge of the second mode clock.
Copyright © 2018 Everspin Technologies, Inc. 53 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Figure 30 – FRQAD Command - XIP Mode Set - Next Access
SCK
CS
Mode 3
Mode 0
IO01620 8 4 0
A23 - 16 A15 - 8 A7 - 0
24-Bit Address
131721 9 5 1
141822 10 6 2
151923 11 7 3
IO1
IO2
IO3
12
012345
CS
EFh
Set (Continue)
XIP Mode
IO0
0
IO1
IO2
IO3
(Low)
IO switches from Input to Output
515 1 5 1 5 1
626 2 6 2 6 2
737 3 7 3 7 3
5
6
7
Byte 1 Byte 2 Byte 3 Byte 4
404 0 4 0 4 04
1
2
3
Data Clocked Out Continuously until CS high.
1
10
11
11
11
2
SCK
5 6 7 8 9 10 11 12 13 14 15
Notes:
1. Next access, set to continue XIP Mode.
2. The I/O pins should be high impedance prior to the falling edge of the second mode clock.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
54 MR10Q010 Revision 5.6, 6/2018
Figure 31 – FRQAD Command - XIP Mode Exit
SCK
CS
Mode 3
Mode 0
IO
0
1620 8 4 0
A23 - 16 A15 - 8 A7 - 0
24-Bit Address
131721 9 5 1
141822 10 6 2
151923 11 7 3
IO
1
IO
2
IO
3
12
012345
SCK
CS
FFh
Reset (Exit)
XIP Mode
IO
0
0
IO
1
IO
2
IO
3
(Low)
IO switches from Input to Output
515 1 5 1 5 1
626 2 6 2 6 2
737 3 7 3 7 3
5
6
7
Byte 1 Byte 2 Byte 3 Byte 4
404 0 4 0 4 04
1
2
3
Data Clocked Out Continuously until CS high.
1
11
11
11
11
2
5 6 7 8 9 10 11 12 13 14 15
Notes:
1. XIP Mode Byte FFh. Exit XIP Mode.
2. The I/O pins should be high impedance prior to the falling edge of the second mode clock.
3. After this access a command must be entered on the next access. Any new command may be entered, including the original
command.
Copyright © 2018 Everspin Technologies, Inc. 55 MR10Q010 Revision 5.6, 6/2018
MR10Q010
This device contains circuitry to protect the inputs against damage caused by high static voltages or electric
elds. However, it is advised that normal precautions be taken to avoid application of any voltage greater
than maximum rated voltages to these high-impedance (Hi-Z) circuits.
The device also contains protection against external magnetic elds. Precautions should be taken to avoid
application of any magnetic eld more intense than the maximum eld intensity specied in the maximum
ratings.
Symbol Parameter Conditions Value Unit
VDD Supply voltage 1-0.5 to 4.0 V
VDDQ I/O Bus Supply voltage 1 -0.5 to 2.4 V
VIN Voltage on any pin 1-0.5 to VDDQ + 0.5 V
IOUT Output current per pin ±20 mA
TBIAS Temperature under bias Commercial Grade -45 to 95 °C
Tstg Storage Temperature -55 to 150 °C
TLead Lead temperature during solder (3 minute max) 260 °C
Hmax_write Maximum magnetic eld during write Write 12,000 A/m
Hmax_read
Maximum magnetic eld during read or
standby Read or Standby 12,000 A/m
Notes:
1. All voltages are referenced to VSS. The DC value of VIN must not exceed actual applied VDD by more than 0.5V. The AC value of
VIN must not exceed applied VDD by more than 2V for 10ns with IIN limited to less than 20mA.
Table 16 – Absolute Maximum Ratings
ELECTRICAL SPECIFICATIONS
Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to
recommended operating conditions. Exposure to excessive voltages or magnetic elds could aect device reliability.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
56 MR10Q010 Revision 5.6, 6/2018
Symbol Parameter Conditions Min Typical Max Unit
VDD Power supply voltage 3.0 3.3 3.6 V
VDDQ I/O Bus Power supply voltage 1.7 1.8 2.0 V
VIH Input high voltage 1.4 VDDQ + 0.2 V
VIL Input low voltage -0.2 0.4 V
TA
Ambient temperature
under bias
Commercial Grade 0 70 °C
Industrial Grade -40 85 °C
Extended Grade -40 105 °C
Table 17 – Operating Conditions
Symbol Parameter Conditions Min Max Unit
IIL Input leakage current - ±2 μA
IOL Output leakage current - ±2 μA
VOL Output low voltage IOL = 4mA - 0.4 V
VOH Output high voltage IOH = -100μA 1.4 - V
Table 18 – DC Characteristics
Copyright © 2018 Everspin Technologies, Inc. 57 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Symbol Parameter Conditions Typical Max Unit
IDDR Active Read Current
SPI @ 1 MHz 5.0 11 mA
SPI @ 40 MHz 12 17 mA
Quad SPI @
104MHz - 60 mA
IDDW Active Write Current
@ 1 MHz 9.0 25 mA
@ 40 MHz 28 42 mA
Quad SPI @
104MHz - 100 mA
IDDQ Active VDDQ Current Note 1 - 3 mA
ISB1
AC Standby Current (CS High = VIH. No other
restrictions on other inputs.) f ≤104MHz - 8 mA
ISB1Q
AC Standby Current on VDDQ supply (CS High =
VIH. No other restrictions on other inputs.) f ≤104MHz - 1 mA
ISB2 CMOS Standby Current (CS High) f = 0 MHz - 3 mA
ISB2Q
CMOS Standby Current on VDDQ Supply (CS
High) f = 0 MHz - 10 μA
IZZ Standby Sleep Mode Current (CS High) Sleep Mode - 100 μA
Table 19 – Power Supply Characteristics
Symbol Parameter Typical Max Unit
CIn Control input capacitance 1- 6 pF
CI/O Input/Output capacitance 1- 8 pF
Notes:
1. ƒ = 1.0 MHz, dV = 3.0 V, TA = 25 °C, periodically sampled rather than 100% tested.
Table 20 – Capacitance
Note
1. IDDQ Conditions: Quad SPI at 104MHz, VDDQ = 2.0v, VIH = 1.8v, VIL = 0v.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
58 MR10Q010 Revision 5.6, 6/2018
Table 21 – AC Measurement Conditions
Figure 32 – Output Load for Impedance Parameter Measurements
Figure 33 – Output Load for all Other Parameter Measurements
Parameter Value Unit
Logic input timing measurement reference level 0.9 V
Logic output timing measurement reference level 0.9 V
Logic input pulse levels 0 to 1.6 V
Input rise/fall time 2 ns
Output load for low and high impedance parameters See Figure 32
Output load for all other timing parameters See Figure 33
TIMING SPECIFICATIONS
Output
VL = VDCQ /2
RL = 50Ω
Output
1.8V
R1
R230 pF
AC Measurement Conditions
Copyright © 2018 Everspin Technologies, Inc. 59 MR10Q010 Revision 5.6, 6/2018
MR10Q010
To provide protection for data during initial power up, power loss or brownout, whenever VDD falls below
VWIDD or VDDQ falls below VWIDDQ the device cannot be selected (CS is restricted from going low) and the
device is inhibited from Read or Write operations. See Table 22 – Power-Up Delay Minimum Voltages and
Timing below.
Power Up Delay Time
During initial power up or when recovering from brownout or power loss, a power up delay time (tPU)
must be added to the time required for voltages to rise to their specied minimum voltages (VDD(min) and
VDDQ(min)) before normal operations may commence. This time is required to insure that the device internal
voltages have stabilized. See Table 22 – Power-Up Delay Minimum Voltages and Timing below.
tPU is measured from the time that both VDD and VDDQ have reached their specied minimum voltages. See
“Figure 34 – Power-Up Timing” for an illustration of the timing.
During initial startup or power loss recovery the CS pin should always track VDDQ (up to VDDQ + 0.2 V) or
VIH, whichever is lower, and remain high for the total startup time, tPU. In most systems, this means that CS
should be pulled up to VDDQ with a resistor. Any logic that drives other inputs or IOs should hold the signals
at VDDQ until normal operation can commence.
Symbol Parameter Min Unit
VWIDD Write Inhibit Voltage 2.2 V
VWIDDQ I/O Write Inhibit Voltage 1.2 V
tPU Power Up Delay Time 400 μs
Table 22 – Power-Up Delay Minimum Voltages and Timing
Power Up Timing
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
60 MR10Q010 Revision 5.6, 6/2018
Figure 34 – Power-Up Timing
BROWNOUT or
POWER LOSS
VDDQ min
NORMAL
OPERATION
tPU
STARTUP
TIME
INITIAL
POWER ON
VDD min
VWIDD
VWIQQ
VDDQ
VDD
READ/WRITE operations
inhibited
NORMAL
OPERATION
RECOVER
TIME
t
PU
READ/WRITE operations
inhibited
Note: CS may not be enabled until tPU startup or recovery time is met.
Copyright © 2018 Everspin Technologies, Inc. 61 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Symbol Parameter Min Typical Max Unit
fSCK
SCK Clock Frequency for all instructions except READ - - 104 MHz
SCK Clock freq for READ - - 40 MHz
tRI Input Rise Time - - 50 ns
tRF Input Fall Time - - 50 ns
tWH SCK High Time except READ 4 - - ns
tWHR SCK High Time READ 11 - - ns
tWL SCK Low Time except READ 4 - - ns
tWLR SCK Low Time READ 12 - - ns
Synchronous Data Timing see Figures 35, 36, 37, 38
tCSS CS Setup Time 5 - - ns
tCSH CS Hold Time 5 - - ns
tSU Data In Setup Time 2 - - ns
tH Data In Hold Time 5 - - ns
tVOutput Valid - - 7 ns
tHO Output Hold Time 1.5 - - ns
tCS CS High Time at end of all Cycles except Writes 10 - - ns
tCSW CS High Time at end of Write Cycles 50 - - ns
Table 23 – AC Timing Parameters
AC Timing Parameters
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
62 MR10Q010 Revision 5.6, 6/2018
Symbol Parameter Min Typical Max Unit
HOLD Timing see Figure 39
tHD HOLD Setup Time 2 - - ns
tCD HOLD Hold Time 2 - - ns
tLZ HOLD to Output Low Impedance - - 12 ns
tHZ HOLD to Output High Impedance - - 7 ns
Other Timing Specications
tWPS WP Setup To CS Low 5 - - ns
tWPH WP Hold From CS High 5 - - ns
tDP Sleep Mode Entry Time - - 3 μs
tRDP Sleep Mode Exit Time - - 400 μs
tDIS Output Disable Time - - 7 ns
AC Timing Parameters - Continued
Copyright © 2018 Everspin Technologies, Inc. 63 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Figure 35 – Synchronous Data Timing (READ)
Figure 36 – Synchronous Data Timing Fast Read (FREAD)
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
64 MR10Q010 Revision 5.6, 6/2018
Figure 37 – Synchronous Data Timing (WRITE)
Figure 38 – Synchronous Data Timing Fast Write Quad Data and
Fast Write Quad Address and Data (FWQD and FWQAD)
SCK
CS
SI
CSS
t
SU
tH
t
WH
tWL
t
CSH
t
CSW
t
SCK
CS
I/O
CSS
t
SU
tH
t
WH
tWL
t
CSH
t
CSW
t
Copyright © 2018 Everspin Technologies, Inc. 65 MR10Q010 Revision 5.6, 6/2018
MR10Q010
SCK
SO
CS
HOLD
HD
t
HZ
t
CD
tCD
t
LZ
t
HD
t
Figure 39 – HOLD Timing
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
66 MR10Q010 Revision 5.6, 6/2018
PART NUMBERS AND ORDERING
Table 24 – Part Numbering System
Memory Interface Density Revision Temp Package Ship Grade
Example Ordering Part Number MR 10Q 010 C SC R
MRAM (Toggle) MR
104MHz Quad SPI Family 10Q
1 Mb 010
4 Mb 040
16Mb 160
No Revision Blank
Revision A A
Revision B B
Commercial 0 to 70°C Blank
Industrial -40 to 85°C C
16-pin SOIC SC
Tray Blank
Tape and Reel R
Customer Samples CS
Mass Production Blank
Extended -40 to 105°C V
24-ball BGA MB
Table 25 – Ordering Part Numbers
Temp Grade Temperature Package Shipping Container Order Part Number
Commercial 0 to 70°C
16-SOIC Trays MR10Q010SC
Tape and Reel MR10Q010SCR
24-BGA Trays MR10Q010MB
Tape and Reel MR10Q010MBR
Industrial -40 to 85°C
16-SOIC Trays MR10Q010CSC
Tape and Reel MR10Q010CSCR
24-BGA Trays MR10Q010CMB
Tape and Reel MR10Q010CMBR
Extended -40 to 105°C
16-SOIC Trays MR10Q010VSC
Tape and Reel MR10Q010VSCR
24-BGA Trays MR10Q010VMB
Tape and Reel MR10Q010VMBR
Copyright © 2018 Everspin Technologies, Inc. 67 MR10Q010 Revision 5.6, 6/2018
MR10Q010
PACKAGE CHARACTERISTICS
Table 26 – Thermal Resistance 16-pin SOIC
Velocity TA 1 PD 2TJ Max 3 ΘJA4ΘJB 5 ΘJC 6
m/s °C W °C °C/W
0
25 0.792
71.0 58.1
30.6 31.6
1 64.5 49.9
2 62.8 47.7
3 61.8 46.4
Notes:
1. TA - Ambient temperature.
2. PD - Power dissipation at maximum VDD and IDDW.
3. TJ Max - Maximum junction temperature reached at maximum power dissipation.
4. ΘJA - Junction to ambient.
5. ΘJB - Junction to board.
6. ΘJC - Junction to package case.
All thermal resistance values are estimated by simulation.
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
68 MR10Q010 Revision 5.6, 6/2018
Figure 40 – 16-SOIC Package Outline
Dimensions next page.
E
b
e
D
A
A2
A1
LD
E1
C
LL1
Copyright © 2018 Everspin Technologies, Inc. 69 MR10Q010 Revision 5.6, 6/2018
MR10Q010
16-SOIC Package Outline - Dimensions
Symbol JEDEC MS - 013 (AA)
issue (mm)
Everspin POD 16L SOIC PKG OUTLINE
DWG. 300 MIL (mm)
Ref MIN NOM MAX MIN NOM MAX
A - - 2.65 2.46 2.56 2.64
A1 0.10 - 0.30 0.127 0.22 0.29
A2 2.05 - - 2.29 2.34 2.39
b 0.31 - 0.51 0.35 0.41 0.51
c 0.20 - 0.33 0.23 0.25 0.32
D 10.30 BSC 10.21 10.34 10.46
E 10.30 BSC 10.16 10.31 10.63
E1 7.50 BSC 7.44 7.52 7.59
L 0.40 - 1.27 0.61 0.81 1.02
L1 1.40 REF N/A
e 1.27 BSC 1.27 BSC
Θ -
MR10Q010 Revision 5.6, 6/2018
Copyright © 2018 Everspin Technologies, Inc. 70
MR10Q010
Figure 41 – 24 Ball BGA Package Outline
Copyright © 2018 Everspin Technologies, Inc. 71 MR10Q010 Revision 5.6, 6/2018
MR10Q010
Revision Date Description of Change
1.7 February 26, 2013 Initial Release Preliminary.
1.8 March 7, 2013 Revision to Table 5. Revision to HOLD timing Table 15. Corrected package illustration.
1.9 May 14, 2013 Added QPI Commands.
2.0 October 24, 2013 Removed QPI Commands, TDET and reference to XIP. These features will be released in a
future product revision.
3.0 April 17, 2014
Major revision. Complete restructure of command section. Added QPI Mode, TDET,
TDETX commands and XIP operating mode commands, instructions and timing diagrams.
Removed Preliminary watermark from all pages. Removed Max and Typical values for
VWIDD and VWIDDQ.
4.0 December 17,
2014
Added ISB1Q, ISB2, ISB2Q, IDDQ values. Revisions to Command Descriptions for FRQO and
FRQAD. Revisions to Note 3 for Command Timing Diagrams for FRQO and FRQAD. Added
package thermal resistance table. IDD values in Table 8 have been updated.
4.1 March 20, 2015 Revised Table 23: tCS updated. tV (min) now unspecied. tHO (min) revised to 1.5ns.
4.2 May 19, 2015 Revised Everspin contact information.
4.3 June 11, 2015 Corrected Japan Sales Oce telephone number.
5.0 August 12, 2015 Added 6x8mm 24-ball BGA package outline and dimensions.
5.1 January 26, 2017 Table 23: Revised tWHR = 11ns; tWLR = 12ns. 16-SOIC package options released to MP.
24-BGA now qualied.
5.2 February 1, 2017 Figures 35 and 36 - Synchronous Data Timing. Added timing detail for tV and tHO.
5.3 December 4, 2017 Figure 40 updated with new dimensions
5.4 January 26, 2018 Added extended temperature range to the data sheet.
5.5 March 15, 2018 Added extended range to Table 17
5.6 June 1, 2018 Updated table 24
REVISION HISTORY
Copyright © 2018 Everspin Technologies, Inc.
MR10Q010
72 MR10Q010 Revision 5.6, 6/2018
Information in this document is provided solely to enable system and soft-
ware implementers to use Everspin Technologies products. There are no
express or implied licenses granted hereunder to design or fabricate any
integrated circuit or circuits based on the information in this document.
Everspin Technologies reserves the right to make changes without further
notice to any products herein. Everspin makes no warranty, representa-
tion or guarantee regarding the suitability of its products for any particu-
lar purpose, nor does Everspin Technologies assume any liability arising
out of the application or use of any product or circuit, and specically
disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters, which may be provided in
Everspin Technologies data sheets and/or specications can and do vary
in dierent applications and actual performance may vary over time. All
operating parameters including Typicals” must be validated for each cus-
tomer application by customers technical experts. Everspin Technologies
does not convey any license under its patent rights nor the rights of oth-
ers. Everspin Technologies products are not designed, intended, or au-
thorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or
for any other application in which the failure of the Everspin Technologies
product could create a situation where personal injury or death may oc-
cur. Should Buyer purchase or use Everspin Technologies products for any
such unintended or unauthorized application, Buyer shall indemnify and
hold Everspin Technologies and its ocers, employees, subsidiaries, ali-
ates, and distributors harmless against all claims, costs, damages, and ex-
penses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Everspin Technologies
was negligent regarding the design or manufacture of the part. Everspin™
and the Everspin logo are trademarks of Everspin Technologies, Inc. All
other product or service names are the property of their respective owners.
Copyright © 2018 Everspin Technologies, Inc.
HOW TO REACH US
Contact Information:
How to Reach Us:
Home Page:
www.everspin.com
World Wide Information Request
WW Headquarters - Chandler, AZ
5670 W. Chandler Blvd., Suite 100
Chandler, Arizona 85226
Tel: +1-877-480-MRAM (6726)
Local Tel: +1-480-347-1111
Fax: +1-480-347-1175
support@everspin.com
orders@everspin.com
sales@everspin.com
Europe, Middle East and Africa
Everspin Europe Support
support.europe@everspin.com
Japan
Everspin Japan Support
support.japan@everspin.com
Asia Pacic
Everspin Asia Support
support.asia@everspin.com