FUJITSU SEMICONDUCTOR DATA SHEET DS04-27220-5E ASSP For Power Supply Applications 6-ch DC/DC Converter IC With Synchronous Rectifier MB3825A DESCRIPTION The MB3825A is a pulse width modulation (PWM) type 6-channel DC/DC converter IC with synchronous rectification (2-channels) designed for low voltage, high efficiency operation in high precision and high frequency applications, ideal for down conversion. The MB3825A is an ideal device offering low power consumption, compact size and light weight for products such as self-contained camcorders and digital still cameras. This product is covered by US Patent Number 6,147,477. FEATURES * * * * * * * Synchronous rectification (channels 1 and 4) High efficiency drive with power-on output enhanced by built-in speed-up circuit Wide range of operating power supply voltage : 2.5 V to 12 V Built-in high-precision reference voltage generator : 1.5 V 1% Wide operating oscillator frequency range, high frequency capability : 50 kHz to 800 kHz Wide input voltage range (all channels) : 0 V to Vcc - 0.9 V Error amplifier output for soft-start (channels 1, 2, 4) (All channels may be set for same soft-start time regardless of duty factor setting.) PACKAGE 64-pin plastic LQFP 64-pin plastic LQFP (FPT-64P-M03) (FPT-64P-M20) MB3825A 2 OUT1-5 VCC (O) 4, 5, 6 VB4 GND (O) 4, 5, 6 OUT2-4 CB1-4 CB2-4 OUT1-4 OUT1-3 CB2-3 CB1-3 GND (O) 1, 2, 3 VB3 VCC (O) 2 OUT1-2 CB2-2 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PIN ASSIGNMENT CB2-5 1 48 CB1-2 CB1-5 2 47 VB2 VB5 3 46 OUT1-1 OUT1-6 4 45 CB2-1 CB2-6 5 44 CB1-1 CB1-6 6 43 OUT2-1 VB6 7 42 VCC (O) 1, 3 OVP5, 6 8 41 VB1 IN (C) 6 9 40 IN (C) 1 +IN (E) 6 10 39 -IN (E) 1 -IN (E) 6 11 38 FB1 FB6 12 37 IN (C) 2 30 31 32 DTC3 FB3 27 VREF CTL1 26 CS 29 25 GND2 28 24 GND1 VCC 23 CTL2 22 CT CSCP 21 -IN (E) 3 20 IN (C) 3 33 RT 34 16 FB4 15 -IN (E) 5 19 +IN (E) 5 -IN (E) 4 FB2 18 -IN (E) 2 35 17 36 14 FB5 13 IN (C) 4 SCP IN (C) 5 MB3825A PIN DESCRIPTION Pin No. CH 1 CH 2 CH 3 CH 4 Symbol I/O Descriptions 38 FB1 O Channel 1 error amplifier output terminal. 39 -IN (E) 1 I Channel 1 error amplifier inverted input terminal. 40 IN (C) 1 I Channel 1 short detection comparator input terminal. 46 OUT1-1 O Channel 1 main side output terminal. 43 OUT2-1 O Channel 1 synchronous rectifier side output terminal. 44 CB1-1 45 CB2-1 41 VB1 Channel 1 output sink current setting terminal. 35 FB2 O Channel 2 error amplifier output terminal. 36 -IN (E) 2 I Channel 2 error amplifier inverted input terminal. 37 IN (C) 2 I Channel 2 short detection comparator input terminal. 50 OUT1-2 O Channel 2 output terminal. 48 CB1-2 49 CB2-2 47 VB2 Channel 2 output sink current setting terminal. 32 FB3 O Channel 3 error amplifier output terminal. 33 -IN (E) 3 I Channel 3 error amplifier inverted input terminal. 34 IN (C) 3 I Channel 3 short detection comparator input terminal. 56 OUT1-3 O Channel 3 output terminal. 54 CB1-3 55 CB2-3 52 VB3 31 DTC3 I Channel 3 dead time control terminal. 20 FB4 O Channel 4 error amplifier output terminal. 19 -IN (E) 4 I Channel 4 error amplifier inverted input terminal. 18 IN (C) 4 I Channel 4 short detection comparator input terminal. 57 OUT1-4 O Channel 4 main side output terminal. 60 OUT2-4 O Channel 4 synchronous rectifier side output terminal. 59 CB1-4 58 CB2-4 62 VB4 Channel 1 boot capacitor connection terminal. Channel 2 boot capacitor connection terminal. Channel 3 boot capacitor connection terminal. Channel 3 output sink current setting terminal. Channel 4 boot capacitor connection terminal. Channel 4 output sink current setting terminal. (Continued) 3 MB3825A Pin No. CH 5 CH 6 TriangularWave Oscillator Circuit Control Circuit Symbol I/O Descriptions 17 FB5 O Channel 5 error amplifier output terminal. 16 -IN (E) 5 I Channel 5 error amplifier inverted input terminal. 15 +IN (E) 5 I Channel 5 error amplifier non-inverted input terminal. 14 IN (C) 5 I Channel 5 short detection comparator input terminal. 64 OUT1-5 O Channel 5 output terminal. 2 CB1-5 1 CB2-5 3 VB5 8 OVP5, 6 I Channel 5, 6 output maximum voltage setting terminal. 12 FB6 O Channel 6 error amplifier output terminal. 11 -IN (E) 6 I Channel 6 error amplifier inverted input terminal. 10 +IN (E) 6 I Channel 6 error amplifier non-inverted input terminal. 9 IN (C) 6 I Channel 6 short detection comparator input terminal. 4 OUT1-6 O Channel 6 output terminal. 6 CB1-6 5 CB2-6 7 VB6 8 OVP5, 6 I 21 RT Triangular wave frequency setting resistor connection terminal. 22 CT Triangular wave frequency setting capacitor connection terminal. 30 CTL1 I Power supply control circuit. "H" level : Power supply operating mode "L" level : Standby mode Channel 5 boot capacitor connection terminal. Channel 5 output sink current setting terminal. Channel 6 boot capacitor connection terminal. Channel 6 output sink current setting terminal. Channel 5, 6 output maximum voltage setting terminal. 29 CTL2 I Channel 3 control circuit. When CTL1 terminal is "H" level "H" level : Channel 3 in operating mode "L" level : Channel 3 in OFF mode 13 SCP I Short detection comparator input terminal. 23 CSCP Short protection circuit capacitor connection terminal. 26 CS Soft-start circuit capacitor connection terminal. (Continued) 4 MB3825A (Continued) Pin No. Power Supply Circuit Symbol I/O Descriptions 28 VCC Reference voltage and control circuit power supply terminal. 42 VCC (O) 1, 3 Output circuit power supply terminal (Channel 1, 3) . 51 VCC (O) 2 Output circuit power supply terminal (Channel 2) . 63 VCC (O) 4, 5, 6 Output circuit power supply terminal (Channel 4, 5, 6) . 27 VREF O Reference voltage output terminal. 24 GND1 Ground terminal. 25 GND2 Ground terminal. 53 GND (O) 1, 2, 3 Output circuit ground terminal (Channel 1, 2, 3) . 61 GND (O) 4, 5, 6 Output circuit ground terminal (Channel 4, 5, 6) . 5 MB3825A BLOCK DIAGRAM * General view VCC(O)1, 3 42 CB1-1 44 <CH1> FB1 38 Error Amp.1 - + + 39 -IN(E)1 PWM Comp.1-1 + 45 CB2-1 Drive 1-1 - 1.5 V 46 OUT1-1 41 70 mV - 40 IN(C)1 + VB1 + SCP Comp.1 Drive 1-2 - 43 OUT2-1 PWM Comp.1-2 1.5 V A VCC(O)2 51 CB1-2 48 <CH2> FB2 35 Error Amp.2 - + + 36 -IN(E)2 PWM Comp.2 49 + CB2-2 Drive 2 - 50 OUT1-2 1.5 V 47 IN(C)2 - 37 VB2 SCP Comp.2 + 1.5 V <CH3> FB3 32 CB1-3 Error Amp.3 - 33 -IN(E)3 54 PWM Comp.3 55 + + - + Drive 3 CB2-3 56 OUT1-3 1.5 V 52 CTL2 VB3 29 IN(C)3 - 34 + SCP Comp.3 1.5 V DTC3 GND(O)1, 2, 3 53 31 VCC(O)4, 5, 6 <CH4> CB1-4 Error Amp.4 - + + 19 -IN(E)4 59 PWM Comp.4-1 58 + Drive 4-1 - 1.5 V SCP Comp.4 - 18 + CB2-4 57 OUT1-4 70 mV IN(C)4 B 63 FB4 20 62 + VB4 Drive 4-2 - 60 OUT2-4 PWM Comp.4-2 1.5 V <CH5> FB5 17 Error Amp.5 - + + 16 -IN(E)5 CB1-5 2 PWM Comp.5 + 1 Drive 5 - CB2-5 64 OUT1-5 3 14 - 15 + VB5 SCP Comp.5 0.6 V IN(C)5 +IN(E)5 <CH6> FB6 12 - + + 11 -IN(E)6 CB1-6 6 PWM Comp.6 Error Amp.6 5 + Drive 6 - CB2-6 4 OUT1-6 7 0.6 V IN(C)6 +IN(E)6 9 - 10 + VB6 SCP Comp.6 GND(O)4, 5, 6 61 OVP5, 6 8 SCP Comp. - 13 SCP VCC Comp. + 1.5 V - - - + 0.65 V 1 A CS 26 Buff Soft Start Comp. 1 A CSCP 23 -1.35 V -0.65 V -1.35 V -0.65 V - + 1.5 V SCP UVLO OSC Ref 1.5 V 22 21 27 RT CT VREF 6 VCC 28 Power ON/OFF 25 24 GND1 GND2 CTL1 30 C MB3825A * Enlarged view of A <CH1> FB1 38 39 -IN(E)1 - + + Error Amp.1 + PWM Comp.1-1 - 1.5 V 45 CB2-1 Drive 1-1 40 IN(C)1 - + 46 OUT1-1 41 70 mV SCP Comp.1 VCC(O)1, 3 42 CB1-1 44 VB1 + - Drive 1-2 43 OUT2-1 PWM Comp.1-2 1.5 V <CH2> FB2 35 36 -IN(E)2 - + + Error Amp.2 PWM Comp.2 49 + - VCC(O)2 51 CB1-2 48 CB2-2 Drive 2 50 OUT1-2 1.5 V 47 IN(C)2 37 - SCP Comp.2 VB2 + 1.5 V 7 MB3825A * Enlarged view of B <CH3> FB3 32 CB1-3 - 33 -IN(E)3 Error Amp.3 + + - + 54 PWM Comp.3 55 Drive 3 CB2-3 56 OUT1-3 1.5 V 52 CTL2 VB3 29 IN(C)3 34 - + 1.5 V DTC3 SCP Comp.3 GND(O)1, 2, 3 53 31 <CH4> FB4 20 19 -IN(E)4 CB1-4 - + + Error Amp.4 59 PWM Comp.4-1 58 + - 1.5 V Drive 4-1 70 mV IN(C)4 18 - SCP Comp.4 + 1.5 V 8 VCC(O)4, 5, 6 63 OUT1-4 62 + - PWM Comp.4-2 CB2-4 57 VB4 Drive 4-2 60 OUT2-4 MB3825A * Enlarged view of C <CH5> FB5 17 Error Amp.5 - + + 16 -IN(E)5 CB1-5 2 PWM Comp.5 + 1 Drive 5 - CB2-5 64 OUT1-5 3 14 - 15 + VB5 SCP Comp.5 0.6 V IN(C)5 +IN(E)5 <CH6> FB6 12 - + + 11 -IN(E)6 CB1-6 6 PWM Comp.6 Error Amp.6 5 + Drive 6 - CB2-6 4 OUT1-6 7 0.6 V IN(C)6 +IN(E)6 9 - 10 + VB6 SCP Comp.6 GND(O)4, 5, 6 61 OVP5, 6 8 SCP Comp. - 13 SCP VCC Comp. + 1.5 V - - - + 0.65 V 1 A CS 26 Buff Soft Start Comp. 1 A CSCP 23 -1.35 V -0.65 V -1.35 V -0.65 V - + 1.5 V SCP VCC 28 UVLO OSC 21 RT Ref 1.5 V 22 27 CT VREF Power ON/OFF CTL1 30 25 24 GND1 GND2 9 MB3825A ABSOLUTE MAXIMUM RAGINGS Parameter Power supply voltage Symbol Conditions VCC Rating Unit Min Max 17 V Output current Io OUT terminal 50 mA Output peak current Io OUT terminal, Duty 5% 200 mA Power dissipation PD Ta +25 C 800* mW Storage temperature Tstg -55 +125 C * : The packages are mounted on the epoxy board (10 cm x 10 cm) . WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. RECOMMENDED OPERATING CONDITIONS Parameter Symbol Conditions Power supply voltage VCC Reference voltage output current IOR Input voltage VIN Control input voltage VCTL Value Unit Min Typ Max 2.5 6.0 12 V -1 0 mA -IN (E) , IN (C) , OVP terminal 0 VCC - 0.9 V CTL terminal 0 12 V Output current IO Main side OUT terminal 2 20 mA Output current setting resistor RB 2.7 5.6 30 k Oscillator frequency fOSC 50 500 800 kHz Timing capacitor CT 50 100 1500 pF Timing resistor RT 20 39 82 k Soft-start capacitor CS 0.1 1.0 F CSCP 0.1 1.0 F Ta -30 +25 +85 C Short detection capacitor Operating ambient temperature WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand. 10 MB3825A ELECTRICAL CHARACTERISTICS (VCC = VCC (O) = +6 V, Ta = +25C) Parameter Symbol Pin No. Conditions VREF 27 Output voltage temperature stability VREF /VREF Input stability Load stability Under voltage lockout protection circuit block (U.V.L.O) Soft-start block Short circuit detection block Triangular wave oscillator block Unit Min Typ Max 1.485 1.500 1.515 V 27 Ta = -30 C to +85 C 0.5* % Line 27 VCC = 2.5 V to 12 V 2 10 mV Load 27 VREF = 0 mA to -1 mA 2 10 mV Short-circuit output current IOS 27 VREF = 2 V -10 -6 -1 mA Threshold voltage VTH 46 VCC = 2.1 V Hysteresis width VH 46 0.1 V Reset voltage VRST 46 1.8 2.0 V Input standby voltage VSTB 26 50 100 mV Charge current ICS 26 -1.4 -1.0 -0.6 A Threshold voltage VTH 23 0.65 0.70 0.75 V Input standby voltage VSTB 23 50 100 mV VI 23 50 100 mV Input source current ICSCP 23 -1.4 -1.0 -0.6 A Oscillator frequency fOSC 46, 50, 56, 57, 64, 4 CT = 100 pF, RT = 39 k 450 500 550 kHz Frequency stability for voltage f/fdv 46, 50, 56, 57, 64, 4 VCC = 2.5 V to 12 V 1 10 % Frequency stability for temperature f/fdt 46, 50, 56, 57, 64, 4 Ta = -30 C to +85 C 1* % Reference voltage Reference voltage block Value Input latch voltage * : Standard design value. (Continued) 11 MB3825A (VCC = VCC (O) = +6 V, Ta = +25C) Parameter Symbol Pin No VTH 38, 35, 32, 20 FB = 1.0 V VT/VT 38, 35, 32, 20 Ta = -30 C to +85 C Input bias current IB 39, 36, 33, 19 -IN = 0 V Voltage gain AV 38, 35, 32, 20 Frequency bandwidth BW 38, 35, 32, 20 VOM+ 38, 35, 32, 20 VOM- 38, 35, 32, 20 Output source current I O- 38, 35, 32, 20 Output sink current I O+ Input offset voltage VIO Threshold voltage VT temperature stability Error amplifier block (CH1 to CH4) Maximum output voltage width Input bias current Error amplifier bolck (CH5, CH6) IB Conditions Value Unit Min Typ Max 1.45 1.50 1.55 V 0.5* % -200 -20 nA DC 60 75 dB AV = 0 dB 1.0* MHz 1.45 1.55 V 20 200 mV FB = 1.0 V -2.0 -0.6 mA 38, 20 FB = 1.0 V (CH1, CH4) 60 120 A 35, 32 FB = 1.0 V (CH2, CH3) 60 130 A 17, 12 FB = 1.0 V -1 9 19 mV 15, 10 +IN = 0 V, +IN (E) terminal -400 -40 nA 16, 11 -IN = 0 V, -IN (E) terminal -200 -20 nA 8 OVP = 0 V, OVP terminal -400 -40 nA 0 VCC - 0.9 V Common mode input voltage range VCM 17, 12 Voltage gain AV 17, 12 DC 60 75 dB Frequency bandwidth BW 17, 12 AV = 0 dB 1.0* MHz Maximum output voltage width VOM+ 17, 12 1.45 1.55 V VOM- 17, 12 20 200 mV I O- 17, 12 FB = 1.0 V -2.0 -0.6 mA I O+ 17, 12 FB = 1.0 V 60 130 A VTH 46, 50, 56, 57 1.45 1.50 1.55 V -200 -20 nA Output source current Output sink current SCP Threshold voltage Comp. block (CH1 to Input bias current CH4, SCP) IB 40, 37, IN (C) = SCP = 0 V 34, 18, 13 * : Standard design value. (Continued) 12 MB3825A (VCC = VCC (O) = +6 V, Ta = +25C) Parameter SCP Comp. block (CH5, CH6) PWM Comp. block (CH1 to CH6) Dead time control block (CH3) (DTC terminal) Symbol Pin No Conditions Input offset voltage VIO 64, 4 Input bias current IIN+ Common mode input voltage range Unit Min Typ Max 0.55 0.60 0.65 V 14, 9 IN (C) = 0 V -400 -40 nA VCM 64, 4 0 VCC - 0.9 V VT0 46, 50, 56, 57, 64, 4 Duty cycle = 0% 0.55 0.65 V VT100 46, 50, 56, 57, 64, 4 Duty cycle = 100% 1.35 1.45 V IB 31 DTC = 0.4 V -1.0 -0.2 A Sink current at CTL2 = "L" IIDTC 31 DTC = 1.5 V CTL2 = 0 V 80 500 A Input voltage at CTL2 = "L" VIDTC 31 IDTC = 40 A CTL2 = 0 V 0.2 0.3 V I O- 46, 50, 56, 57, 64, 4 Duty cycle 5% -100 mA I O+ 46, 50, 56, 57, 64, 4 RB = 5.6 k 7 10 13 mA I O- 43, 60 Duty cycle 5%, VO = 2 V -70 mA I O+ 43, 60 Duty cycle 5%, VO = 1 V 70 mA VOH 43, 60 3.5 4.0 V VOL 43, 60 0 0.1 V VON 27 IC active mode 2.1 12 V VOFF 27 IC standby mode 0 0.7 V ICTL 30 CTL = 5 V 100 200 A VTH 46, 50, 56 VCC - 0.70 VCC - 0.65 VCC - 0.60 V ICCS 28 VCC terminal, CTL = 0 V 10 A ICCS (O) 42, 51, 63 VCC (O) terminal, CTL = 0 V 10 A ICC 28, 42, 51, 63 6.3 9.0 mA Threshold voltage Input bias current Main side Output source current output block (CH1 to CH6) Output sink current (Drive-1) SynchroOutput source current nous rectifier side output Output sink current block (CH1, Output voltage CH4) (Drive-2) Control block Value CTL input condition Input current VCC Comp. Threshold voltage block Standby current General Power supply current * : Standard design value. 13 MB3825A TYPICAL CHARACTERISTICS Power supply current vs. power supply voltage Reference voltage vs. power supply voltage 2.5 Ta = +25 C VCTL1, 2 = 6 V Reference voltage VREF (V) Power supply current ICC (mA) 10.0 8.0 6.0 4.0 2.0 0.0 0 5 10 15 Ta = +25 C 2.0 1.5 1.0 0.5 0.0 20 0 5 Reference voltage vs. power supply voltage 1.5 1.0 0.5 0 1 2 3 4 VCC = 6 V 1.54 VCTL1, 2 = 6 V 1.53 IO = 0 mA 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.45 -50 5 Control current ICTL1 (A) Reference voltage VREF (V) 500 Ta = +25 C VCC = 6 V 1.5 1.0 0.5 1 2 3 Control voltage VCTL1 (V) 4 0 25 50 75 100 Control current vs. control voltage Reference voltage vs. control voltage 2.0 0 -25 Ambient temperature Ta (C) Power supply voltage VCC (V) 0.0 20 1.55 Ta = +25 C 2.0 0.0 15 Reference voltage vs. ambient temperature Reference voltage VREF (V) Reference voltage VREF (V) 2.5 10 Power supply voltage VCC (V) Power supply voltage VCC (V) 5 Ta = +25 C VCC = 6 V 400 300 200 100 0 0 5 10 15 20 Control voltage VCTL1 (V) (Continued) 14 MB3825A Triangular wave upper and lower limit voltage vs. timing capacitor Control current ICTL2 (A) 500 Triangular wave upper and lower limit voltage VCT (V) Control current vs. control voltage Ta = +25 C VCC = 6 V VCTL1 = 6 V 400 300 200 100 0 0 5 10 15 1.6 Ta = +25 C VCC = 6.0 V RT = 39 k 1.4 Upper 1.2 Lower 1.0 0.8 10 20 102 Triangular wave time vs. timing capacitor Triangular wave time (s) 100 Ta = +25 C VCC = 6 V RT = 39 k 10 1 0 10 102 103 104 10 M 1M 100 k CT = 1500 pF 10 k 1k 1k 10 k 100 k 1M Triangular wave upper and lower limit voltage vs. ambient temperature 15 1.7 VCC = 6.0 V CT = 100 pF 10 RT = 39 k Triangular wave upper and lower limit voltage VCT (V) Triangular wave frequency stability (%) Ta = +25 C VCC = 6.0 V CT = 47 pF CT = 100 pF CT = 150 pF CT = 300 pF Timing resistor RT () Triangular wave frequency stability vs. ambient temperature 5 0 -5 -10 -25 104 Oscillator frequency vs. timing resistor Timing capacitor CT (pF) -15 -50 103 Timing capacitor CT (pF) CT1, CT2 oscillator frequency fOSC (Hz) Control voltage VCTL2 (V) 0 25 50 75 Ambient temperature Ta ( C) 100 VCC = 6.0 V 1.6 RT = 39 k CT = 100 pF 1.5 upper 1.4 1.3 1.2 1.1 lower 1.0 0.9 0.8 0.7 -50 -25 0 25 50 75 100 Ambient temperature Ta ( C) (Continued) 15 MB3825A Duty vs. oscillator frequency (ch1) Duty vs. oscillator frequency (ch4) 100 100 70 70 Ta = +25 C 90 VCC = 6.0 V VFB = 1.0 V 80 Duty Dtr (%) Duty Dtr (%) Ta = +25 C 90 VCC = 6.0 V VFB = 1.0 V 80 60 50 40 60 50 40 30 30 20 20 10 10 0 1k 10 k 100 k 1M 10 M Oscillator frequency fOSC (Hz) 0 1k 10 k 100 k 1M 10 M Oscillator frequency fOSC (Hz) Output sink current vs. output sink current setting resistor Output sink current IO (mA) 20 Ta = +25 C VCC = 6.0 V 18 16 14 12 10 8 6 4 2 0 0 5 10 15 20 25 30 Output sink current setting resistor RB (k) (Continued) 16 MB3825A (Continued) Error amplifier gain and phase vs. frequency (ch1) Ta = +25 C 40 180 90 AV 0 0 Phase (deg) Gain AV (dB) VCC = 6 V 20 -20 -90 -40 -180 1k 10 k 100 k 1M 4.7 k IN 240 k - + 2.4 k 10 F 4.7 k VREF CS 39 26 - + + 38 OUT 10 M Frequency f (Hz) Error amplifier gain and phase vs. frequency (ch5) 90 AV 0 0 -20 -90 -40 -180 1k 10 k 100 k 1M 3V 4.7 k IN - + 4.7 k 2.4 k 10 F 4.7 k 4.7 k VCC = 6 V 240 k 16 - 15 + 8 + 6V 17 OUT 10 M Frequency f (Hz) Power dissipation vs. ambient temperature 1000 Power dissipation PD (mW) Gain AV (dB) 20 180 Phase (deg) Ta = +25 C 40 800 600 400 200 0 -50 -25 0 25 50 75 100 Ambient temperature Ta ( C) 17 MB3825A FUNCTIONAL DESCRIPTION 1. Switching Regulator Function (1) Reference voltage circuit The reference voltage circuit generates a temperature-compensated reference voltage ( 1.500 V) using the voltage supplied from the power supply terminal (pin 28) . This voltage is used as the reference voltage for the internal circuits of the IC. The reference voltage of up to 1 mA can also be supplied to an external device from the VREF terminal (pin 27) . (2) Triangular-wave oscillator circuit By connecting a timing capacitor and a resistor to the CT (pin 22) and the RT (pin 21) terminals, it is possible to generate any desired triangular oscillator waveform (CT : amplitude 1.0 V to 1.4 V, CT1 : amplitude 0.65 V to 1.35 V in phase with CT1, and CT2 : amplitude 0.65 V to 1.35 V in inverse phase with CT) . The triangular wave is input to CT1, CT2 and the PWM comparator within the IC. (3) Error amplifier This amplifier detects the output voltage of the switching regulator and outputs a PWM control signal accordingly. It has a wide common-mode input voltage range from 0 V to VCC - 0.9 V on channels 5 and 6 allows easy setting from an external power supply, making the system suitable for DC motor speed control. By connecting a feedback resistor and capacitor from the error amplifier output terminal to the inverted input terminal, you can form any desired loop gain, for stable phase compensation. (4) PWM comparator The PWM comparators in these channels are a voltage comparator with one inverted input and one non-inverted input (channels 1, 2, 4, 5, 6) as well as one inverted input and two non-inverted inputs (channel 3) , and voltage pulse width modifier to control output duty according to input voltage. In the interval when the error amplifier output voltage is higher than the triangular waveform, the output transistor is turned on (channels 1, 2, 4, 5, 6) . In the interval when the error amplifier output voltage is lower than the triangular waveform, the output transistor is turned on (channel 1, 4 synchronous rectifier side) . In the interval when the error amplifier output voltage and DTC3 voltage are higher than the triangular waveform, the output transistor is switched on (channel 3) . (5) Output circuit The output circuits is comprised of a totem-pole configuration on both the main side and synchronous rectifier side, and can drive an external PNP transistor (main side) or N-ch MOSFET (synchronous rectifier side) . Sink current (on the main side) can be set up to 20 mA depending on the resistance of the VB terminal. 2. Channel Control Function Channel on and off levels are dependent on the voltage levels of the CTL1 terminal (pin 30) and CTL 2 terminal (pin 29) . Table 1 Channel by Channel On/Off Setting Conditions. CTL terminal voltage level CTL1 CTL2 L X H L H On/Off state of channel Power supply Channel 1 Channel 2 Channel 4 Channel 5 Channel 6 circuit OFF (standby mode) * ON * : The power supply current in standby mode is 10 A or less. 18 Channel 3 OFF ON MB3825A 3. Protective Functions (1) Timer-latch short-circuit protection circuit The short detection comparator in each channel detects the output voltage level, and when any channel output voltage falls below the short detection voltage, or the SCP terminal (pin 13) voltage falls below the reference voltage, the timer circuit starts operating and the capacitor CSCP connected to the CSCP terminal (pin 23) starts charging. When the capacitor charge reaches approximately 0.7 V, the output transistor is turned off and the idle interval becomes 100%. When actuated, this protection circuit can be reset by turning on the power supply again. (See "METHOD OF SETTING TIME CONSTANT FOR TIMER-LATCH SHORT PROTECTION CIRCUIT".) (2) Under voltage lockout protection circuit A transient state at power-on or a momentary drop of the power supply voltage causes the control IC to malfunction, resulting in system breakdown or system deterioration. By detecting the internal reference voltage with respect to the power supply voltage, this protection circuit resets the latch circuit to turn off the output transistor and set the duty (OFF) = 100%, while at the same time holding the CSCP terminal (pin 23) at the "L". The reset is cleared when the power supply voltage becomes greater than or equal to the threshold voltage level of this protection circuit. (3) Output Supply Monitor Comparator (Vcc Comp.) The output supply monitor comparator compares the output circuit power supply (VCC (O) 1, 3, VCC (O) 2, VCC (O) 4, 5, 6) to the VCC level, and operates the timer-latch short protection circuit if any of the output circuit power supplies fall below Vcc - 0.65 V. 19 MB3825A METHODS OF SETTING THE OUTPUT VOLTAGE Figure 1. CH1 to CH4 VO VO = R1 VO > R2 - + + 39 R3 -IN (E) 1 1.5 V (R1 + R2 + R3) R3 1.5 V R2 + R3 (R1 + R2 + R3) Error Amp1 1.5 V - 40 IN (C) 1 SCP Comp1 + 1.5 V Figure 2. CH5 and CH6 VO FB5 VO = 17 R1 - + + 16 R2 -IN (E)5 Error Amp5 V+IN (E) 5 (R1 + R2) R2 VOVP5, 6 > V+IN (E) 5 VO = VOVP5, 6 (R1 + R2) R2 VOVP5, 6 < V+IN (E) 5 IN (C) 5 Motor control signal 0.6 V 14 - 15 + +IN (E) 5 8 OVP5, 6 20 SCP Comp5 MB3825A METHOD OF SETTING THE OUTPUT CURRENT Figure 3 shows the configuration of the output circuits, and Figure 4 illustrates how the sink current value of the output current waveform has a constant current setting. Note that the sink current is set by the following formula * Sink current = (VB/RB) x 60 56/RB [A] Figure 3. Output circuit (main side) External PNP transistor VB RB VB VCC(O) Output ON base current speed-up 100 k Source current CB1 OUT1 10 k To PWM comparator Output OFF driver CB2 Sink current x 60 x1 GND (O) Figure 4. Output current waveform Speed-up current Sink current Output current 0 Source current (peak) t 21 MB3825A Note : Output current setting resistance RB1 to RB6 should be connected to each channel as shown in Figure 5 below. * For channel 1 and 3, connect the respective VB terminals to VCC (O) 1, 3 through the setting resistor RB. * For channel 2, connect the VB2 terminal to VCC (O) 2 through setting resistor RB2. * For channels 4 to 6, connect the respective VB terminals to VCC (O) 4, 5, 6 through setting resistor RB. Figure 5. Output sink current setting pin connections VCC(O) 1, 3 VB1 RB1 VB3 RB3 VCC(O) 2 MB3825A VB2 RB2 VCC(O) 4, 5, 6 VB4 RB4 VB5 RB5 VB6 RB6 OSCILLATOR FREQUENCY SETTING The oscillator frequency can be set by connecting a timing capacitor (CT) to the CT terminal (pin 22) and a timing resistor (RT) to the RT terminal (pin 21) . Oscillator frequency : fOSC fOSC (kHz) 22 1950000 CT (pF) *RT (k) MB3825A METHOD OF SETTING TIME CONSTANT FOR TIMER-LATCH SHORT PROTECTION CIRCUIT The short detection comparator (SCP comparator) in each of the channels constantly compares the error amplifier output level to the reference voltage and the SCP terminal (pin 13) . While the switching regulator load conditions are stable on all channels, or when the voltage level at the SCP terminal is higher than the reference voltage, the short detection comparator output remains at "L" level, transistor Q3 is turned on, and the CSCP terminal (pin 23) is held at input standby voltage (VSTB 50 mV) . If the load conditions change rapidly due to a short-circuiting of load, causing the output voltage to drop, or if the voltage at the SCP terminal falls below the reference voltage level, the output from the short detection comparator on the corresponding channel or the input at the SCP terminal goes to "H" level. This causes transistor Q3 to turn off and the external short protection capacitor CSCP connected to the CSCP terminal to charge at 1.0 A. Short Detection Time (tPE) tPE (s) 0.7 x CSCP (F) When the capacitor CSCP is charged to the threshold voltage VTH 0.7 V the SR latch is set, and the external PNP is turned off (inactive interval is set to 100%) . At this point the SR latch input is closed and the CSCP terminal is held at input latch voltage (VI 50 mV) . Figure 6. Protection timer-latch short protection circuit External PNP transistor A R1 - 40 R2 SCP Comp.1 Output stage 46 Output stage 43 IN (C) 1 OUT1-1 + 1.5 V R3 SCP Comp. - 13 SCP OUT2-1 + 1.5 V Output stage 1 A 56 OUT1-3 CS Buff 26 Q2 Soft Start Comp. Output stage - + 1 A CSCP CSCP bias bias S Q1 29 CTL2 1.5 V 23 R Timer-latch Q3 short circuit protection circuit 4 OUT1-6 28 VCC UVLO Ref Power ON/OFF 30 CTL1 27 VREF 23 MB3825A TREATMENT WITHOUT USING CSCP When you do not use the timer-latch short protection circuit, connect the CSCP terminal (pin 23) to GND with the shortest distance. Figure 7. Treatment when not using CSCP 23 CSCP 24 GND1 25 GND2 24 MB3825A METHOD OF SETTING SOFT-START TIME * Channels 1, 2, 4 To provide a soft-start by preventing current surges at power-on, soft-start capacitor (Cs) can be connected to the CS terminal (pin 26) . When the IC is started (when the CTL1 terminal (pin 30) goes to "H" level, and VCC UVLO threshold voltage) , transistors Q2 switches off and the CS terminal begins charging the external soft-start capacitors (Cs) at 1.0 A. The error amplifier makes a soft-start in a proportion to the output voltage to the CS teminal voltage regardless of the load current on the DC/DC converter. Note that the soft-start time can be calculated by the following formula. Soft-start time (output rise time) 1.5 x CS (F) . tS (s) Figure 8. Soft-start circuit A External PNP transistor FB1 38 R1 - + + 39 -IN (E)1 R2 Error Amp1 Output stage 46 Output stage 43 1.5 V R3 OUT1-1 OUT2-1 Output stage 56 OUT1-3 Output stage 4 OUT1-6 1 A CS 26 CS Buff Q2 Soft Start Comp. - + 1 A CSCP 29 1.5 V SCP CSCP Q1 CTL2 28 VCC bias 23 UVLO Ref Power ON/OFF 30 CTL1 27 VREF 25 MB3825A * Channel 3 The capacitor CDTC3 is placed between the DTC3 terminal (pin 31) and GND, so that when the CTL2 terminal (pin 29) goes from "L" to "H" level, the transistor Q4 is turned off and the output voltage is in proportion to the DTC3 terminal voltage providing the soft-start operation. As the short detection function is not turned off during soft-start operation, this setting should be made under the following condition. Channel 3 soft-start circuit time < Short detection time Figure 9. Channel 3 soft-start circuit A External PNP transistor FB3 32 - 33 -IN (E) 3 Error Amp.3 + + - + PWM Comp.3 Output stage OUT1-3 1.5 V H : ON (CH3) CTL2 L : OFF 29 34 Q4 - IN (C) 3 + To VREF 1.5 V Ra SCP Comp.3 DTC3 34 Rb 26 CDTC3 56 To CT1 To CSP To UVLO MB3825A PROCESSING WITHOUT USING CS TERMINAL If the soft-start function is not used, the CS terminal (pin 26) for channels 1, 2, and 4 should be left open. For channel 3, connect the DTC3 terminal (pin 31) to the VREF terminal (pin 27) . Figure 10. When no soft-start time is set (1, 2, 4 channel) Open 26 CS Figure 11. When no soft-start time is set (3 channel) 27 VREF 31 DTC3 27 MB3825A METHOD OF SETTING THE DEAD TIME When the device is set for step-up inverted output based on the flyback method, the output transistor is fixed to full-on state (ON-duty = 100%) at power switch-on.To prevent this problem, you may determine the voltages on the DTC3 terminal (pin 31) from the VREF voltage so you can easily set the output transistor's dead time (maximum ON-duty) independently for each channel as shown Figure.12. When the voltage on the DTC3 terminal is lower than the triangular-wave (CT1) output voltage from the oscillator, the output transistor turns off. The dead time calculation formula assuming that triangular-wave amplitude 0.7 V and triangular-wave maximum voltage 1.35 V is given below. Duty (ON) MAX Vdt - 0.65 0.7 x 100 [%] When you do not use this DTC3 terminal, connect then to VREF terminal (pin 27) as shown Figure.13.. Figure 12. When using DTC to set dead time 27 VREF Ra 31 DTC3 Vdt Rb Figure 13. When not using DTC to set dead time 27 VREF 31 DTC3 28 MB3825A APPLICATION EXAMPLE * General view VFB1 VOUT1-1 VCC(O)1, 3 42 CB1-1 44 560 pF 45 CB2-1 <CH1> 13.5 k 3.5 k VC1 10 H 4.7 F A FB1 38 0.033 F PWM Comp.1-1 Error Amp.1 - + + 39 -IN(E)1 15 k + Drive 1-1 - 1.5 V 46 OUT1-1 + Drive 1-2 - OUT2-1 VOUT2-1 10 H 4.7 F B 12 k VCC(O)2 51 CB2-2 48 560 pF 49 CB1-2 <CH2> 0.033 F FB2 35 Error Amp.2 - + + 36 -IN(E)2 15 k 30 43 PWM Comp.1-2 1.5 V 23.5 k 6.8 F U1FWJ44N 22 k VB1 + SCP Comp.1 - 2SK2316 VO1 VO1(3.2 V) 41 70 mV 40 IN(C)1 FMMT717 A 68 H PWM Comp.2 - Drive 2 + FMMT717 B OUT1-2 A 6.8 F U1FWJ44N 50 1.5 V VO2(5.05 V) 33 H 50 22 k 47 IN(C)2 VB2 SCP Amp.2 - 37 + 1.5 V C C <CH3> 42.5 k 2.5 k 0.033 F FB3 32 CB1-3 Error Amp.3 - 33 -IN(E)3 5 k 54 PWM Comp.3 Drive 3 2.2 F CB2-3 750 56 OUT1-3 22 k 1.5 V 52 CTL2 H : ON(CH3) 29 L : OFF 34 IN(C)3 30 k VO3(15 V) 1SS196 560 pF 55 + + - + 2SB1121 VB3 - + SCP Comp.3 1.5 V DTC3 GND(O)1, 2, 3 53 31 B 120 k 10 H D VCC(O)4, 5, 6 <CH4> 13.5 k 7.5 k 0.033 F FB4 20 CB1-4 9.3 k Error Amp.4 - + + 19 -IN(E)4 IN(C)4 - 18 Drive 4-1 - + D VO4(4.89 V) 33 H 560 pF 58 CB2-4 6.8 F 57 2SK2316 OUT1-4 22 k 70 mV SCP Comp.4 FMMT717 59 PWM Comp.4-1 + 1.5 V 4.7 F 63 U1FWJ44N 50 62 + VB4 Drive 4-2 - 60 OUT2-4 PWM Comp.4-2 1.5 V E E 30 k 0.033 F <CH5> FB5 17 - + + 16 -IN(E)5 15 k Error Amp.5 CB1-5 2 PWM Comp.5 FMMT717 560 pF 1 + Drive 5 - VO5(4.5 V) 47 H 2.2 F CB2-5 U1FWJ44N 100 64 OUT1-5 22 k 3 0.6 V IN(C)5 14 - 15 +IN(E)5 + VB5 SCP Comp.5 VIN (6 V) F F 30 k 0.033 F <CH6> FB6 12 - + + 11 -IN(E)6 15 k FMMT717 CB1-6 6 PWM Comp.6 Error Amp.6 560 pF 5 + Drive 6 - VO6(4.5 V) 47 H 2.2 F CB2-6 U1FWJ44N 100 4 OUT1-6 22 k 7 0.6 V IN(C)6 +IN(E)6 9 - 10 + GND(O)4, 5, 6 61 OVP5, 6 8 Over voltage threshold setting voltage - 13 SCP SCP Comp. VCC Comp. + 1.5 V - - - + 0.65 V 1 A CS 26 0.1 F Buff Soft Start Comp. 1 A CSCP 0.1 F C VB6 SCP Comp.6 23 -1.35 V -0.65 V -1.35 V -0.65 V - + 1.5 V SCP FMMT717 : ZETEX plc. 2SB1121 : SANYO Electric Co., Ltd. 2SK2316 : SANYO Electric Co., Ltd. 1SS196 : TOSHIBA CORPORATION U1FWJ44N : TOSHIBA CORPORATION 10 H VCC 4.7 F 28 UVLO OSC Ref Power ON/OFF CTL1 30 1.5 V 21 RT 39 k 22 CT 25 24 27 VREF GND1 GND2 100 pF H : ON (CH1, 2, 4 to 6) L : OFF (standby state) VCT 29 30 15 k 12 k 23.5 k B 15 k 3.5 k 13.5 k A FB1 38 IN(C)2 37 36 -IN(E)2 0.033 F FB2 35 40 IN(C)1 39 -IN(E)1 0.033 F VFB1 SCP Comp.1 SCP Amp.2 1.5 V + - 1.5 V - + + Error Amp.2 1.5 V + - 1.5 V - + + Error Amp.1 - + + - PWM Comp.2 PWM Comp.1-2 70 mV - + PWM Comp.1-1 OUT2-1 VB1 OUT1-1 22 k 47 50 VB2 OUT1-2 22 k VCC(O)2 51 CB2-2 48 560 pF 49 CB1-2 43 41 46 VCC(O)1, 3 42 CB1-1 44 560 pF 45 CB2-1 H : ON (CH1, 2, 4 to 6) L : OFF (standby state) Drive 2 <CH2> Drive 1-2 Drive 1-1 <CH1> FMMT717 10 H 4.7 F VOUT2-1 2SK2316 6.8 F 33 H B 6.8 F U1FWJ44N 68 H A U1FWJ44N VC 1 FMMT717 10 H 4.7 F 50 VO2(5.05 V) 30 VO1(3.2 V) VO1 FMMT717 : ZETEX plc. 2SB1121 : SANYO Electric Co., Ltd. 2SK2316 : SANYO Electric Co., Ltd. 1SS196 : TOSHIBA CORPORATION U1FWJ44N : TOSHIBA CORPORATION VOUT1-1 MB3825A * Enlarged view of A C 9.3 k 7.5 k 13.5 k D 5 k 2.5 k 42.5 k 31 FB4 20 DTC3 IN(C)4 18 19 -IN(E)4 0.033 F 120 k 30 k CTL2 H : ON(CH3) 29 L : OFF 34 IN(C)3 33 -IN(E)3 0.033 F FB3 32 SCP Comp.4 Error Amp.4 SCP Comp.3 1.5 V + - 1.5 V - + + 1.5 V + - 1.5 V + - Error Amp.3 PWM Comp.4-2 - + 70 mV - + PWM Comp.4-1 + + - PWM Comp.3 560 pF VB3 OUT1-3 22 k CB2-3 CB1-3 60 62 57 58 59 63 53 560 pF OUT2-4 VB4 10 H 2SK2316 FMMT717 4.7 F 2SB1121 U1FWJ44N 6.8 F 33 H D 2.2 F 1SS196 C 50 VO4(4.89 V) 750 VO3(15 V) FMMT717 : ZETEX plc. 2SB1121 : SANYO Electric Co., Ltd. 2SK2316 : SANYO Electric Co., Ltd. 1SS196 : TOSHIBA CORPORATION U1FWJ44N : TOSHIBA CORPORATION OUT1-4 22 k CB2-4 CB1-4 VCC(O)4, 5, 6 GND(O)1, 2, 3 52 56 55 54 H : ON (CH1, 2, 4 to 6) L : OFF (standby state) Drive 4-2 Drive 4-1 <CH4> Drive 3 <CH3> MB3825A * Enlarged view of B 31 32 VIN (6 V) E Over voltage threshold setting voltage 15 k 30 k F 15 k 30 k 0.1 F FB6 12 9 CSCP CS 23 26 13 SCP 8 10 OVP5, 6 +IN(E)6 IN(C)6 11 -IN(E)6 0.033 F 0.1 F 14 15 +IN(E)5 IN(C)5 16 -IN(E)5 0.033 F FB5 17 SCP 1.5 V + - SCP Comp. SCP Comp.6 Error Amp.6 SCP Comp.5 1.5 V + - + - - + + + - Soft Start Comp. 1 A Buff 1 A 0.6 V 0.6 V - + + Error Amp.5 RT 39 k UVLO - + 21 22 CT OSC PWM Comp.6 - + PWM Comp.5 Power ON/OFF 0.65 V 100 pF VCT 25 24 27 VREF GND1 GND2 Ref 1.5 V - - - + -1.35 V -0.65 V -1.35 V -0.65 V VCC Comp. Drive 6 <CH6> Drive 5 <CH5> 30 28 560 pF 22 k 560 pF CTL1 10 H 4.7 F VO6(4.5 V) U1FWJ44N 100 2.2 F 47 H F U1FWJ44N 100 2.2 F 47 H H : ON (CH1, 2, 4 to 6) L : OFF (standby state) FMMT717 FMMT717 VO5(4.5 V) FMMT717 : ZETEX plc. 2SB1121 : SANYO Electric Co., Ltd. 2SK2316 : SANYO Electric Co., Ltd. 1SS196 : TOSHIBA CORPORATION U1FWJ44N : TOSHIBA CORPORATION GND(O)4, 5, 6 VB6 OUT1-6 22 k CB2-6 CB1-6 VB5 OUT1-5 CB2-5 CB1-5 VCC 61 7 4 5 6 3 64 1 2 E MB3825A * Enlarged view of C MB3825A REFERENCE DATA Channel 1 switching operation waveform (operation at 500 kHz) VC1 (V) VIN = 6 V RL = 30 CT = 100 pF RT = 39 k 6 4 2 0 0 1 2 3 4 5 t (s) expansion VC1 (V) 3 2 1 0 0 0.4 0.8 1.2 1.6 2.0 t (s) Synchronous rectifier length 150 ns 120 ns 33 MB3825A Channel 1 main side output waveform (operation at 500 kHz) VIN = 6 V RL = 30 CT = 100 pF RT = 39 k VC1 VC1 (V) 6 4 2 0 VCT VCT (V) VFB1 (V) 1.0 VFB1 0.5 0 0 1 2 3 4 5 t (s) Channel 1 main side base current waveform (operation at 500 kHz) IOUT1-1 (mA) 60 40 IOUT1-1 VIN = 6 V RL = 30 CT = 100 pF RT = 39 k 20 0 -20 VCT -40 VCT (V) VFB1 (V) 1.0 -60 VFB1 0.5 -80 -100 0 0 1 2 3 4 5 t (s) Peak current when turned ON 42 mA Peak current when turned OFF 50 mA (Continued) 34 MB3825A (Continued) Channel 1 synchronous rectifier side output waveform (operation at 500 kHz) VC1 (V) VIN = 6 V RL = 30 CT = 100 pF RT = 39 k 6 4 2 0 VOUT2-1 (V) 6 4 2 0 0 1 2 3 4 5 t (s) Channel 1 synchronous rectifier side output waveform (operation at 500 kHz) IOUT2-1 (mA) 60 VIN = 6 V RL = 30 CT = 100 pF RT = 39 k 40 20 0 -20 -40 VOUT2-1 (V) 4 2 0 0 1 2 3 4 5 t (s) Output source current peak value 30 mA Output sink current peak value 52 mA 35 MB3825A NOTES ON USE * Take account of common impedance when designing the earth line on a printed wiring board. * Take measures against static electricity. - For semiconductors, use antistatic or conductive containers. - When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container. - The work table, tools and measuring instruments must be grounded. - The worker must put on a grounding device containing 250 k to 1 M resistors in series. * Do not apply a negative voltage - Applying a negative voltage of -0.3 V or less to an LSI may generate a parasitic transistor, resulting in malfunction. ORDERING INFORMATION Part number 36 Package MB3825APFV 64-pin plastic LQFP (FPT-64P-M03) MB3825APFF 64-pin plastic LQFP (FPT-64P-M20) Remarks MB3825A PACKAGE DIMENSION Note 1)* : These dimensions do not include resin protrusion. Note 2)Pins width and pins thickness include plating thickness. Note 3)Pins width do not include tie bar cutting remainder. 64-pin Plastic LQFP (FPT-64P-M03) 12.000.20(.472.008)SQ * 10.000.10(.394.004)SQ 48 0.1450.055 (.006.002) 33 49 32 Details of "A" part 0.08(.003) +0.20 1.50 -0.10 +.008 .059 -.004 INDEX 64 0~8 17 (Mounting height) 0.100.10 (.004.004) (Stand off) "A" LEAD No. 1 16 0.50(.020) C 0.200.05 (.008.002) 0.08(.003) M 0.500.20 (.020.008) 0.600.15 (.024.006) 0.25(.010) 2003 FUJITSU LIMITED F64009S-c-5-8 Dimensions in mm (inches) . Note : The values in parentheses are reference values. 37 MB3825A 64-pin Plastic LQFP (FPT-64P-M20) 9.000.20(.354.008)SQ 1.60(.063)MAX 7.000.20(.276.008)SQ 1.400.10 (.055.004) 0.100.10 (.004.004) 48 33 49 32 Details of "A" part 0.10(.004) (1.00(.039)) INDEX 64 17 1 16 0.40(.016) C 0.160.03 (.006.001) 0.500.20 (.020.008) "A" 3.53.5 0.127(.005) 2000 FUJITSU LIMITED F64031S-1c-1 Dimensions in mm (inches) . Note : The values in parentheses are reference values. 38 MB3825A FUJITSU LIMITED All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan. F0308 FUJITSU LIMITED Printed in Japan