2011-08-16
1
BCW60, BCX70
1
2
3
NPN Silicon AF Transistors
For AF input stages and driver applications
High current gain
Low collector-emitter saturation voltage
Low noise between 30 Hz and 15 kHz
Complementary types: BCW61, BCX71 (PNP)
Pb-free (RoHS compliant) package
Qualified according AEC Q101
Type Marking Pin Configuration Package
BCW60B
BCW60C
BCW60D
BCW60FF
BCX70G
BCX70H
BCX70J
BCX70K
ABs
ACs
ADs
AFs
AGs
AHs
AJs
AKs
1=B
1=B
1=B
1=B
1=B
1=B
1=B
1=B
2=E
2=E
2=E
2=E
2=E
2=E
2=E
2=E
3=C
3=C
3=C
3=C
3=C
3=C
3=C
3=C
SOT23
SOT23
SOT23
SOT23
SOT23
SOT23
SOT23
SOT23
2011-08-16
2
BCW60, BCX70
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage
BCW60, ...60FF
BCX70
VCEO
32
45
V
Collector-base voltage
BCW60, ...60FF
BCX70
VCBO
32
45
Emitter-base voltage VEBO 6
Collector current IC100 mA
Peak collector current, tp 10 ms ICM 200
Peak base current IBM 200
Total power dissipation
TS 71 °C
Ptot 330 mW
Junction temperature Tj150 °C
Storage temperature Tst
g
-65 ... 150
Thermal Resistance
Parameter Symbol Value Unit
Junction - soldering point1) RthJS 240 K/W
1For calculation of RthJA please refer to Application Note AN077 (Thermal Resistance Calculation)
2011-08-16
3
BCW60, BCX70
Electrical Characteristics at T
A
= 25°C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
DC Characteristics
Collector-emitter breakdown voltage
IC = 10 mA, IB = 0 , BCW60, ...60FF
IC = 10 mA, IB = 0 , BCX70
V(BR)CEO
32
45
-
-
-
-
V
Collector-base breakdown voltage
IC = 10 µA, IE = 0 , BCW60, ...60FF
IC = 10 µA, IE = 0 , BCX70
V(BR)CBO
32
45
-
-
-
-
Emitter-base breakdown voltage
IE = 1 µA, IC = 0
V(BR)EBO 6 - -
Collector-base cutoff current
VCB = 32 V, IE = 0 , BCW60, ...60FF
VCB = 45 V, IE = 0 , BCX70
VCB = 32 V, IE = 0 , TA= 150 °C, BCW60, ...60FF
VCB = 45 V, IE = 0 , TA = 150 °C, BCX70
ICBO
-
-
-
-
-
-
-
-
0.02
0.02
20
20
µA
Emitter-base cutoff current
VEB = 4 V, IC = 0
IEBO - - 20 nA
DC current gain-
IC = 10 µA, VCE = 5 V, hFE-grp. G
IC = 10 µA, VCE = 5 V, hFE-grp. B/ H
IC = 10 µA, VCE = 5 V, hFE-grp. C/ J/ FF
IC = 10 µA, VCE = 5 V, hFE-grp. D/ K
IC = 2 mA, VCE = 5 V, hFE-grp. G
IC = 2 mA, VCE = 5 V, hFE-grp. B/ H
IC = 2 mA, VCE = 5 V, hFE-grp. C/ J/ FF
IC = 2 mA, VCE = 5 V, hFE-grp. D/ K
IC = 50 mA, VCE = 1 V, hFE-grp. G
IC = 50 mA, VCE = 1 V, hFE-grp. B/ H
IC = 50 mA, VCE = 1 V, hFE-grp. C/ J/ FF
IC = 50 mA, VCE = 1 V, hFE-grp. D/ K
hFE
20
20
40
100
120
180
250
380
50
70
90
100
140
200
300
460
170
250
350
500
-
-
-
-
-
-
-
-
220
310
460
630
-
-
-
-
-
2011-08-16
4
BCW60, BCX70
DC Electrical Characteristics
Parameter Symbol Values Unit
min. typ. max.
Characteristics
Collector-emitter saturation voltage1)
IC = 10 mA, IB = 0.25 mA
IC = 50 mA, IB = 1.25 mA
VCEsat
-
-
0.12
0.2
0.25
0.55
V
Base emitter saturation voltage1)
IC = 10 mA, IB = 0.25 mA
IC = 50 mA, IB = 1.25 mA
VBEsat
-
-
0.7
0.83
0.85
1.05
Base-emitter voltage1)
IC = 10 µA, VCE = 5 V
IC = 2 mA, VCE = 5 V
IC = 50 mA, VCE = 1 V
VBE(ON)
-
0.58
-
0.52
0.65
0.78
-
0.7
-
1Pulse test: t < 300µs; D < 2%
2011-08-16
5
BCW60, BCX70
AC Characteristics
Transition frequency
IC = 20 mA, VCE = 5 V, f = 100 MHz
fT- 250 - MHz
Collector-base capacitance
VCB = 10 V, f = 1 MHz
Ccb - 0.95 - pF
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz
Ceb - 9 -
Short-circuit input impedance
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. G
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. B/ H
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. C/ J /FF
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. D/ K
h11e
-
-
-
-
2.7
3.6
4.5
7.5
-
-
-
-
k
Open-circuit reverse voltage transf. ratio
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. G
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. B /H
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. C/ J/ FF
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. D/ K
h12e
-
-
-
-
1.5
2
2
3
-
-
-
-
10-4
Short-circuit forward current transf. ratio
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. G
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. B/ H
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. C/ J/ FF
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. D/ K
h21e
-
-
-
-
200
260
330
520
-
-
-
-
-
Open-circuit output admittance
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. G
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. B/ H
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. C/ J/ FF
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. D/ K
h22e
-
-
-
-
18
24
30
50
-
-
-
-
µS
Noise figure
IC = 200 µA, VCE = 5 V, f = 1 kHz,
f = 200 Hz, RS = 2 k, hFE-grp. B - K
IC = 200 µA, VCE = 5 V, f = 1 kHz,
f = 200 Hz, RS = 2 k, hFE-grp. FF
F
-
-
2
1
-
2
dB
Equivalent noise voltage
IC = 200 µA, VCE = 5 V, RS = 2 k,
f = 10...50 Hz , hFE-grp. FF
Vn- - 0.135 µV
2011-08-16
6
BCW60, BCX70
DC current gain hFE = ƒ(IC)
VCE = 5 V
10
EHP00334BCW 60/BCX 70
-2 2
10mA
0
10
3
10
5
5
10
-1
10
0
10
1
C
FE
h
Ι
1
10
2
10
˚C
100
5
25
˚C
-50
˚C
Collector-emitter saturation voltage
IC = ƒ(VCEsat), hFE = 10
0
10
EHP00332BCW 60/BCX 70
CEsat
V
V 0.5
-1
10
0
10
1
2
10
5
5
Ι
C
mA
0.1 0.2 0.3 0.4
˚C
100
25
˚C
-50
˚C
Base-emitter saturation voltage
IC = ƒ(VBEsat), hFE = 40
0
10
EHP00331BCW 60/BCX 70
BE sat
V
0.6 V 1.2
-1
10
0
10
1
2
10
5
5
Ι
C
mA
0.2 0.4 0.8
˚C
25
100
˚C
-50
˚C
Collector current IC = ƒ(VBE)
VCE = 5V
0
10
EHP00333BCW 60/BCX 70
BE
V
0.5 V 1.0
-2
10
-1
10
0
2
10
5
5
Ι
C
mA
5
1
10
˚C
100 25 -50
˚C ˚C
2011-08-16
7
BCW60, BCX70
Collector cutoff current ICBO = ƒ(TA)
VCB = VCEmax
0
10
EHP00335BCW 60/BCX 70
A
T
150
-1
4
10
Ι
CBO
nA
50 100
0
10
1
10
3
10
˚C
typ
max
10
2
Transition frequency fT = ƒ(IC)
VCE = parameter in V, f = 2 GHz
10
EHP00330BCW 60/BCX 70
-1 2
10mA
1
10
3
10
5
100101
102
C
T
fMHz
Ι
Collector-base capacitance Ccb = ƒ(VCB)
Emitter-base capacitance Ceb = ƒ(VEB)
0 4 8 12 16 V22
VCB(VEB
0
1
2
3
4
5
6
7
8
9
10
pF
12
CCB(CEB)
CCB
CEB
Total power dissipation Ptot = ƒ(TS)
0 15 30 45 60 75 90 105 120 °C 150
TS
0
30
60
90
120
150
180
210
240
270
300
mW
360
Ptot
2011-08-16
8
BCW60, BCX70
Permissible Pulse Load
Ptotmax/PtotDC = ƒ(tp)
10
EHP00328BCW 60/BCX 70
-6
0
10
5
D
=
5
10
1
5
10
2
3
10
10
-5
10
-4
10
-3
10
-2
10
0
s
0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
tp
=
DT
tp
T
totmax
tot
P
DC
P
p
t
h parameter he = ƒ(IC) normalized
VCE = 5V
10
EHP00336BCW 60/BCX 70
-1 1
10mA
-1
10
2
10
5
5
100
100
C
e
h
Ι
1
10
5
CE
V
= 5 V
11e
h
h12e
h21e
h22e
5
h parameter he = ƒ(VCE) normalized
IC = 2mA
0
0
EHP00337BCW 60/BCX 70
CE
V
30
10 20
0.5
1.0
1.5
2.0
h
e
V
Ι
C
= 2 mA
h
11e
21e
h
12e
h
22e
h
Noise figure F = ƒ(VCE)
IC = 0.2mA, RS = 2k , f = 1kHz
10
EHP00338BCW 60/BCX 70
-1 2
10V
5
100101
F
10
15
20
dB
0
CE
V
2011-08-16
9
BCW60, BCX70
Noise figure F = ƒ(f)
VCE = 5V, ZS = ZSopt
10
EHP00339BCW 60/BCX 70
-2 2
10kHz
5
10
-1
10
0
F
1
10
10
15
20
dB
f
0
Noise figure F = ƒ(IC)
VCE = 5V, f = 120Hz
10
EHP00340BCW 60/BCX 70
-3 1
10mA
5
10-2 10-1
F
0
10
10
15
20
dB
0
Ι
C
S
R
= 1 M
ΩΩ
100 k
10 k
1 k
500
Noise figure F = ƒ(IC)
VCE = 5V, f = 1kHz
10
EHP00341BCW 60/BCX 70
-3 1
10mA
5
10-2 10-1
F
0
10
10
15
20
dB
0
Ι
C
= 1 M
S
R
100 k
10 k
1 k
500
Noise figure F = ƒ(IC)
VCE = 5V, f = 10kHz
10
EHP00342BCW 60/BCX 70
-3 1
10mA
5
10-2 10-1
F
0
10
10
15
20
dB
0
Ι
C
= 1 M
RS
100 k
10 k
500
1 k
2011-08-16
10
BCW60, BCX70
Package SOT23
Package Outline
Foot Print
Marking Layout (Example)
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
EH
s
BCW66
Type code
Pin 1
0.8
0.9 0.91.3
0.8 1.2
0.25
M
BC
1.9
-0.05
+0.1
0.4
±0.1
2.9
0.95
C
B
0...8˚
0.2 A
0.1 MAX.
10˚ MAX.
0.08...0.15
1.3
±0.1
10˚ MAX.
M
2.4
±0.15
±0.1
1
A
0.15 MIN.
1)
1) Lead width can be 0.6 max. in dambar area
12
3
3.15
4
2.65
2.13
0.9
8
0.2
1.15
Pin 1
Manufacturer
2005, June
Date code (YM)
2011-08-16
11
BCW60, BCX70
Edition 2009-11-16
Published by
Infineon Technologies AG
81726 Munich, Germany
2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee
of conditions or characteristics. With respect to any examples or hints given herein,
any typical values stated herein and/or any information regarding the application of
the device, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation, warranties of non-infringement of
intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices,
please contact the nearest Infineon Technologies Office (<www.infineon.com>).
Warnings
Due to technical requirements, components may contain dangerous substances.
For information on the types in question, please contact the nearest Infineon
Technologies Office.
Infineon Technologies components may be used in life-support devices or systems
only with the express written approval of Infineon Technologies, if a failure of such
components can reasonably be expected to cause the failure of that life-support
device or system or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body or
to support and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be
endangered.