DS1, 2003-07-02
Addendum
Revision History: Previous Version:
Major Changes:
QuadFALC®
Quad E1/T1/J1 Framer and Line Interface Component
for Long- and Short-Haul Applications
PEF 22554 HT/E, Version 2.1
Addendum 1 DS1, 2003-07-02
Abstract
This document is an Addendum to the PEF 22554 HT/E, QuadFALC®, Version 2.1 Data
Sheet DS1, release date 2002-09. It describes data that has to be changed or added.
1 Referenced Standards
Page 5, Related Documentation
In addition to the standards listed in the Data Sheet, the device complies also with:
ITU-T G.705
ITU-T G.733
ITU-JT G.733
Revision History: Previous Version: -/-
Major Changes: -/-
QuadFALC® V2.1
PEF 22554 HT/E
Logic Symbol for BGA Package
Addendum 2 DS1, 2003-07-02
2 Logic Symbol for BGA Package
Page 23, Chapter 1.2, Logic Symbol
Due to the slight difference (number of power supply and ground connections) between
the TQFP package and the BGA package, a separate drawing is provided for the BGA.
Figure 1 Logic Symbol (TQFP Package)
VDD(5:1)
VSS(6:1)
QuadFALC
®
PEF 22554 V2.1
P-TQFP-144
F0263_TQFP_22554
VDDR(4:1)
VSSR(4:1)
RL1/RDIP/ROID(4:1)
RL2/RDIN/RCLK(4:1)
VDDX(4:1)
VSSX(4:1)
XL1/XDOP/XIOD(4:1)
XL2/XDON/XFM(4:1)
TDI
TMS
TCK
TRS
TDO
SCLKR(4:1)
RDO(4:1)
RPA(4:1)
RPB(4:1)
RPC(4:1)
RPD(4:1)
SCLKX(4:1)
XDI(4:1)
XPA(4:1)
XPB(4:1)
XPC(4:1)
XPD(4:1)
VSEL
VDDC(2:1)
D(15:0)
A(9:0)
CS
WR/RW
RD/DS
BHE/BLE
ALE
DBW
IM
RES
INT
RCLK(4:1)
MCLK
SYNC
SEC/FSC
Microprocessor Interface
Transmit
System
Interface
Receive
System
Interface
Transmit
Line
Interface
Receive
Line
Interface
Boundary
Scan
Interface
VDDP(2:1)
VSSP
QuadFALC® V2.1
PEF 22554 HT/E
Logic Symbol for BGA Package
Addendum 3 DS1, 2003-07-02
Figure 1A Logic Symbol (BGA Package)
VDD(9:1)
VSS(10:1)
QuadFALC
®
PEF 22554 V2.1
P-BGA-160
F0263_BGA_22554
VDDR(4:1)
VSSR(4:1)
RL1/RDIP/ROID(4:1)
RL2/RDIN/RCLK(4:1)
VDDX(8:1)
VSSX(8:1)
XL1/XDOP/XIOD(4:1)
XL2/XDON/XFM(4:1)
TDI
TMS
TCK
TRS
TDO
SCLKR(4:1)
RDO(4:1)
RPA(4:1)
RPB(4:1)
RPC(4:1)
RPD(4:1)
SCLKX(4:1)
XDI(4:1)
XPA(4:1)
XPB(4:1)
XPC(4:1)
XPD(4:1)
VSEL
VDDC(2:1)
D(15:0)
A(9:0)
CS
WR/RW
RD/DS
BHE/BLE
ALE
DBW
IM
RES
INT
RCLK(4:1)
MCLK
SYNC
SEC/FSC
Microprocessor Interface
Transmit
System
Interface
Receive
System
Interface
Transmit
Line
Interface
Receive
Line
Interface
Boundary
Scan
Interface
VDDP(2:1)
VSSP
QuadFALC® V2.1
PEF 22554 HT/E
JTAG Ball Names
Addendum 4 DS1, 2003-07-02
3 JTAG Ball Names
Page 52, Chapter 2.2, Pin Definitions and Functions
The BGA ball numbers are missing for the JTAG pins. They are as shown below.
Table 5 Pin Definitions - Miscellaneous
Pin No. Ball No. Symbol Input
Output
Supply
Function
Boundary Scan/Joint Test Access Group (JTAG)
131 B6 TRS I + PU Test Reset for Boundary Scan
(active low). If not connected, an internal
pullup transistor ensures high input level.
If the JTAG boundary scan is not used, this
pin must be connected to RES or VSS.
112 D11 TDI I + PU Test Data Input for Boundary Scan
If not connected an internal pullup
transistor ensures high input level.
141 D5 TMS I + PU Test Mode Select for Boundary Scan
If not connected an internal pullup
transistor ensures high input level.
140 C4 TCK I + PU Test Clock for Boundary Scan
If not connected an internal pullup
transistor ensures high input level.
113 C11 TDO O Test Data Output for Boundary Scan
QuadFALC® V2.1
PEF 22554 HT/E
Boundary Scan
Addendum 5 DS1, 2003-07-02
4 Boundary Scan
4.1 JTAG Instructions
Page 63, Chapter 3.4.2, Boundary Scan Interface
The TAP controller instruction codes 01010101B and 01010100B have been added. Both
are reserved for device tests and shall not be used.
4.2 JTAG ID
Page 427, Chapter 11.4.2, JTAG Boundary Scan Interface
The correct Boundary Scan IDCODE field is:
0001 0000 0000 1000 1110 0000 1000 0011 (Version = 1H, Part Number = 008EH)
5 RCLK Clock Multiplexing
Page 65/124, Chapter 4.1/5.1, Receive Path in E1 or T1/J1 Mode
Some details have been added to the figure showing the clock multiplexing options for
RCLK.
Figure 17/46 Receive Clock Selection (E1/T1/J1)
A
A
A
A
B
DCO-R channel 1
DCO-R channel 2
DCO-R channel 3
DCO-R channel 4
RCLK1
recovered clock channel 1
F0131_2
A: controlled by
CMR1.DRSS(1:0)
B: controlled by
GPC1.R1S(1:0)
C: controlled by
CMR1.RS(1:0)
C
C
C
C
RCLK2
RCLK3
RCLK4
recovered clock channel 2
recovered clock channel 3
recovered clock channel 4
QuadFALC® V2.1
PEF 22554 HT/E
Bipolar Violation Detection
Addendum 6 DS1, 2003-07-02
6 Bipolar Violation Detection
Page 68, Chapter 4.1.6, Receive Line Coding in E1 Mode
The HDB3 line code or the AMI coding is provided for the data received from the ternary
or the dual rail interface. All code violations that do not correspond to zero substitution
rules are detected, resulting in an increment of the 16-bit code violation counter. If a bit
error causes a code violation that leads to a valid substitution pattern, this code violation
is neither detected nor counted and the substitution pattern is replaced by the
corresponding zero pattern.
In case of the optical interface a selection between the NRZ code and the CMI Code
(1T2B) with HDB3 or AMI postprocessing is provided. If CMI code is selected the receive
route clock is recovered from the data stream. The CMI decoder does not correct any
errors. In case of NRZ coding data is latched with the falling edge of signal RCLKI. The
HDB3 code is used along with double violation detection or extended code violation
detection (selectable by FMR0.EXZE). In AMI code all code violations are detected. The
detected errors increment the code violation counter (16 bits length).
Page 127, Chapter 5.1.6, Receive Line Coding in T1/J1 Mode
The B8ZS line code or the AMI (ZCS, zero code suppression) coding is provided for the
data received from the ternary or the dual rail interface. All code violations that do not
correspond to zero substitution rules are detected, resulting in an increment of the 16-bit
code violation counter. If a bit error causes a code violation that leads to a valid
substitution pattern, this code violation is neither detected nor counted and the
substitution pattern is replaced by the corresponding zero pattern. The detected errors
increment the code violation counter (16 bits length).
QuadFALC® V2.1
PEF 22554 HT/E
Signaling Marker Diagrams
Addendum 7 DS1, 2003-07-02
7 Signaling Marker Diagrams
Page 180/181, Chapter 5.5.2, Transmit System Interface
The following diagrams have been modified for clarity.
Figure 71 1.544 MHz Transmit Signaling Highway (T1/J1)
F0137
A B C D
4 5 6 7 0 1 2 3 4 5 6 7
TS24 TS1 TS2
A B C D
0 1 2 3 4 5 6 7
TS24
XSI G
XDI
SCLKX
SYPX
T
125 µs
T = Time slot offset (RC0, RC1)
F = FS/DL-bit (XDI only)
ABCD = ESF signaling bits for time slots 1...24
read only during last frame of a multiframe,
ABAB = F12 signaling bits for time slots 1...24
read only during last frame of a multiframe (bit positions 4/5)
0 1 2 3 4 5 6 7
A B C DA B C D
F F
ESF
F12
A B A B A B A BXSI G A B A BA B A B
QuadFALC® V2.1
PEF 22554 HT/E
Signaling Marker Diagrams
Addendum 8 DS1, 2003-07-02
Figure 72 Signaling Marker for CAS/CAS-CC Applications (T1/J1)
F0267_1
RDO
XDI
RMFB
XMFB
RDO
XDI
RSIGM
1)
XSIGM
RDO
XDI
RSIGM
1)
XSIGM
FS/
DL
1 2 3 4 5 6 7 8 9 19 20 21 22 23 24
FS/
DL
124
FS/
DL
1 2 3 4 5 6 19 20 21 22 23 24
FS/
DL
1
Notes:
1) RSIGM and XSIGM are programmed to mark only channel 24 in this example (via
RTR(4:1) and TTR(4:1)).
A: Channel Translation Mode 0
B: Channel Translation Mode 1
Frame 1 Frame 6 Frame 12 Frame 1
Multiframe n (F12 for example)
QuadFALC® V2.1
PEF 22554 HT/E
Clock Mode Selection
Addendum 9 DS1, 2003-07-02
8 Clock Mode Selection
Page 194/200, Chapter 6.3 and Chapter 7.3, Device Initialization E1 and T1/J1
The following text has been added:
The clock mode must be programmed according to the selected MCLK frequency before
any XL1/2 output is enabled (while the outputs are not yet activated by selection of the
line coding). Otherwise the output pulse width might not match the pulse mask
requirements.
Page 277, Chapter 9.2 and Page 384, Chapter 10.2, Clock Mode Register
programming for E1 and T1/J1
The following text has been added/corrected (for E1 and T1/J1 operation):
Attention: Write operations to GCM5 and/or GCM6 register initiate a PLL reset (see
below) and must be performed before any port configuration is done. If
this is not possible set LIM01.DRS (if not set) of every channel
separately before writing to these registers and reset LIM01.DRS (if it
was not set before) after these write operations.
9 Device Initialization
Page 192, Table 46, Initial Values after Reset (E1)
The second row shall read:
2.048 8.192 MHz system clocking rate...
Page 194, Table 47, Initialization Parameters (E1)
The row “Framing additions” shall read:
RC0RC1.ASY4, RC0RC1.SWD
10 HDLC Handling
Page 221/321, Chapter 9.2/10.2, Register bit CMDR.RMC
Confirmation from CPU to QuadFALC that the current frame or data block has been
fetched following an RPF or RME interrupt, thus the occupied space in the RFIFO can
be released. While the FIFO is empty, RMC must not be set. If RMC is given while RFIFO
is already cleared, the next incoming data block is cleared instantly, although interrupts
are generated. This might lead to incorrect software behaviour.
QuadFALC® V2.1
PEF 22554 HT/E
Port RMFB Configuration
Addendum 10 DS1, 2003-07-02
11 Port RMFB Configuration
Page 269/375, Chapter 9.2/10.2, Register Description, PC(4:1)
The following text has been added:
RMFB is only valid, if the receive buffer is not bypassed.
12 Port RSIG Configuration
Page 270/376, Chapter 9.2/10.2, Register Description, PC(4:1)
The following text has been added:
RSIG is only valid, if the receive buffer is not bypassed.
13 Port XMFS Configuration
Page 270/376, Chapter 9.2/10.2, Register Description, PC(4:1)
The following text has been added:
The activity level of port XMFS can be selected to be active high or active low by
programming PC5.CXMFS. This bit must not be set, if XMFS is not enabled as an input.
XMFS input selection is done by programming one of the Transmit Multifunction Ports,
using registers PC4(4:1).XPC(3:0).
Note: XMFS must not be used together with SYPX on different Multifunction Ports.
14 Port RFSP Configuration
Page 376, Chapter 10.2, Register Description, PC(4:1) in T1/J1 mode
The description of register bit PC(4:1).RPC(2:0) = 111 in T1/J1 mode shall read as:
“This marker is active low for 488 648 ns with a frequency of 8 kHz.”
QuadFALC® V2.1
PEF 22554 HT/E
Absolute Maximum Ratings
Addendum 11 DS1, 2003-07-02
15 Absolute Maximum Ratings
Page 420, Chapter 11.1, Absolute Maximum Ratings
The allowed voltage range has been increased. The following values and the text below
the table have changed:
Attention: Absolute Maximum Ratings are stress ratings only, and functional
operation and reliability under conditions beyond those defined in the
normal operating conditions is not guaranteed. Stresses above the
maximum ratings are likely to cause permanent damage to the device
while extended exposure to conditions outside the operating range
may have an impact on component life time.
Parameter Symbol Limit Values Unit
IC supply voltage (pads, digital) VDD 0.3 0.5 to 3.6 4.5 V
IC supply voltage (core, digital) VDDC – 0.3 to 2.4 V
IC supply voltage PLL (analog) VDDP 0.3 0.5 to 3.6 4.5 V
IC supply voltage receive (analog) VDDR 0.3 0.5 to 3.6 4.5 V
IC supply voltage transmit (analog) VDDX 0.3 0.5 to 3.6 4.5 V
Voltage on any pin with respect to ground1)
1) except VDDC and VRL1/RL2
VPAD 0.3 0.5 to 3.6 4.5 V
Voltage on RL1/RL2 with respect to ground VRL1/RL2 – 0.8 to 4.5 V
QuadFALC® V2.1
PEF 22554 HT/E
DC Characteristics
Addendum 12 DS1, 2003-07-02
16 DC Characteristics
Page 422/423, Chapter 11.3, DC Characteristics
The transmitter output maximum leakage value and receiver maximum input voltage
have been changed.
Parameter Symbol Limit Values Unit Notes
Min. Max.
Transmitter leakage
current
ITL 15.0
30.0 µAXL1/2=VDDX;
XPM2.XLT = 1
15.0
30.0 µAXL1/2=VSSX;
XPM2.XLT = 1
Receiver peak voltage of a
mark (at RL1 or RL2)
VR12 -0.45
-0.751) 3.8
4.11)
1) Limit values must only be applied during T1 pulse over-/undershoot according to ANSI T1.403-1999.
V RL1, RL2;
RZ signals only2)
2) RZ = return to zero
Receiver differential peak
voltage of a mark
(between RL1 and RL2)
VRVDDR
+0.3
4.00
4.631)
VRL1, RL2;
RZ signals only2)
QuadFALC® V2.1
PEF 22554 HT/E
System Interface Marker Timing (Receive)
Addendum 13 DS1, 2003-07-02
17 System Interface Marker Timing (Receive)
Page 437, Chapter 11.4.6, AC Characteristics, System Interface
The timing figure has been modified for clarity. The timing values have been corrected.
Figure 99 System Interface Marker Timing (Receive)
Table 79 System Interface Marker Timing Parameter Values
No. Parameter Limit Values Unit
Min. Typ. Max.
SCLKR Input Mode
1 RDO delay 0 35 ns
2 RSIGM, RMFB, DLR, RFM1), FREEZE, RSIG
marker delay
1) Timing for RMF is valid only for active high polarity selection.
045ns
SCLKR Output Mode
1A RDO delay -55
0
9-20
20
ns
2A RSIGM, RMFB, DLR, RFM1), FREEZE, RSIG
marker delay
-55
0
9-20
20
ns
SCLKR can be input or output.
data valid
F0011
SCLKR
data valid
RDO
RSIG
RSIGM
DLR
RFM
RMFB
FREEZE
positive edge timing
1)
positive edge timing
1)
1)
active edge can be programmed to be positive or negative
1(A) 2(A)
2(A)1(A)
negative edge timing
1)
negative edge timing 1)
possible negative delay values are not explicitely drawn
QuadFALC® V2.1
PEF 22554 HT/E
SYPR/SYPX Timing
Addendum 14 DS1, 2003-07-02
18 SYPR/SYPX Timing
Page 438/439, Chapter 11.4.6, AC Characteristics, System Interface
The output timing has been corrected as shown in the table below.
Figure 100 SYPR/SYPX Marker Timing
Table 80 SYPR/SYPX Timing Parameter Values
No. Parameter Limit Values Unit
Min. Typ. Max.
SCLKR Input Mode
1SCLKR period (t1) 61 648 ns
2 SYPR/SYPX inactive setup time 1 x t1ns
3 SYPR/SYPX setup time 5 ns
4 SYPR/SYPX hold time 15 ns
5 XMFS inactive setup time 1 x t1ns
6 XMFS setup time 5 ns
7 XMFS hold time 15 ns
SCLKR Output Mode
1A SCLKR period (t1) 61 648 ns
2A SYPR/SYPX inactive setup time 1 x t1ns
F0012
SCLKR
SCLKX
1(A)
2(A)
3(A)
inactive active low
SYPR
SYPX
5(A)
6(A)
inactive active low
XMFS
active edge
4(A)
7(A)
QuadFALC® V2.1
PEF 22554 HT/E
SYPR/SYPX Timing
Addendum 15 DS1, 2003-07-02
SCLKR Output Mode
3A SYPR/SYPX setup time 10
0
ns
4A SYPR/SYPX hold time 0
10
ns
5A XMFS inactive setup time 1 x t1ns
6A XMFS setup time 10
0
ns
7A XMFS hold time 0
10
ns
Table 80 SYPR/SYPX Timing Parameter Values (cont’d)
No. Parameter Limit Values Unit
Min. Typ. Max.
QuadFALC® V2.1
PEF 22554 HT/E
Marker Output Timing Parameters
Addendum 16 DS1, 2003-07-02
19 Marker Output Timing Parameters
Page 440, Chapter 11.4.6, AC Characteristics, System Interface
The output timing has been corrected as shown in the table below.
Figure 101 System Interface Marker Timing
Table 81 System Interface Marker Timing Parameter Values
No. Parameter Limit Values Unit
Min. Typ. Max.
SCLKR Input Mode
1 XMFB, DLX, XSIGM delay 100 ns
SCLKR Output Mode
1A XMFB, DLX, XSIGM delay 09-20
20
ns
F0013
SCLKR
SCLKX
XMFB
DLX
XSIGM
active edge
1)
1)
active edge can be programmed to be positive or negative
1(A)
QuadFALC® V2.1
PEF 22554 HT/E
XDI/XSIG Timing Parameters
Addendum 17 DS1, 2003-07-02
20 XDI/XSIG Timing Parameters
Page 441, Chapter 11.4.6, AC Characteristics, System Interface
The timing has been corrected as shown in the table below.
Figure 101 XDI/XSIG Marker Timing
Table 81 XDI/XSIG Timing Parameter Values
No. Parameter Limit Values Unit
Min. Typ. Max.
SCLKR Input Mode
1 XDI setup time 5 ns
2 XDI hold time 15 ns
3 XSIG setup time 5 ns
4 XSIG hold time 15 ns
SCLKR Output Mode
1A XDI setup time 10
0
ns
2A XDI hold time 20
10
ns
F0014
SCLKR
SCLKX
1(A)
XDI
active edge
1)
1)
active edge can be programmed to be positive or negative
3(A)
XSIG
2(A)
4(A)
QuadFALC® V2.1
PEF 22554 HT/E
SYNC Input Timing Parameters
Addendum 18 DS1, 2003-07-02
21 SYNC Input Timing Parameters
Page 446, Chapter 11.4.6, AC Characteristics, System Interface
The input timing has been relaxed as shown in the table below.
Figure 107 SYNC Timing
22 Typographical Errata
Page 57, Table 7: “BHE” should read “BHE
Page 57, Table 8: “BLE” should read “BLE
Page 256/361, FLLB = 1:
The line loopback code is transmitted in unframed mode. LLB code does not overwrite
the FS/DL-bits.
3A XSIG setup time 10
0
ns
4A XSIG hold time 20
10
ns
Table 87 SYNC Timing Parameter Values
No. Parameter Limit Values Unit
Min. Typ. Max.
1 SYNC high time 30
122
%
ns
2 SYNC low time 30
122
%
ns
Table 81 XDI/XSIG Timing Parameter Values (cont’d)
No. Parameter Limit Values Unit
Min. Typ. Max.
F0125
SYNC
1 2