Features
Wide bandwidth[1]:
17 MHz (HCPL-4562)
9 MHz (HCNW4562)
High voltage gain[1]:
2.0 (HCPL-4562)
3.0 (HCNW4562)
Low GV temperature coecient: -0.3%/°C
Highly linear at low drive currents
High-speed AlGaAs emitter
Safety approval:
UL Recognized
– 3750 V rms for 1 minute (5000 V rms for 1 minute for
HCPL-4562#020 and HCNW4562) per UL 1577
CSA Approved
IEC/EN/DIN EN 60747-5-2 Approved
– VIORM = 1414 Vpeak for HCNW4562
Available in 8-pin DIP and widebody packages
Applications
Video isolation for the following standards/formats:
NTSC, PAL, SECAM, S-VHS, ANALOG RGB
Low drive current feedback element in switching
power supplies, e.g., for ISDN networks
A/D converter signal isolation
Analog signal ground isolation
High voltage insulation
CAUTION: It is advised that normal static precautions be taken in handling and assembly
of this component to prevent damage and/or degradation which may be induced by ESD.
7
1
2
3
45
6
8
NC
ANODE
CATHODE
NC
V
CC
V
B
V
O
GND
HCPL-4562 Functional Diagram
HCPL-4562, HCNW4562
High Bandwidth, Analog/Video Optocouplers
Data Sheet
Description
The HCPL-4562 and HCNW4562 optocouplers provide
wide bandwidth isolation for analog signals. They are ideal
for video isolation when combined with their application
circuit (Figure 4). High linearity and low phase shift are
achieved through an AlGaAs LED combined with a high
speed detector. These single channel optocouplers are
available in 8-Pin DIP and Widebody package
congurations.
Functional Diagram
2
HCPL-4562 Schematic
I
F
8
6
5GND
V
CC
2
3
V
O
I
CC
V
F
I
O
ANODE
CATHODE
+
7
V
B
I
B
Schematic
To order, choose a part number from the part number
column and combine with the desired option from the
option column to form an order entry.
Example 1:
HCPL-4562-520E to order product of Gull Wing Surface
Mount package in Tape and Reel packaging with UL 5000
Vrms/1 minute rating and RoHS compliant.
Example 2:
HCNW4562 to order product of 8-Pin Widebody DIP
package in Tube packaging with IEC/EN/DIN EN 60747-5-
2 VIORM = 1414 Vpeak Safety Approval and UL 5000 Vrms/1
minute rating and non RoHS compliant.
Option datasheets are available. Contact your Avago sales
representative or authorized distributor for information.
Remarks: The notation ‘#XXX’ is used for existing products,
while (new) products launched since July 15, 2001 and
RoHS compliant will use ‘–XXXE.
Selection Guide
Single Channel Packages
8-Pin DIP Widebody
(300 Mil) (400 Mil)
HCPL-4562 HCNW4562
Ordering Information
HCPL-4562 is UL Recognized with 3750 Vrms for 1 minute per UL1577 unless otherwise specied. HCNW4562 is UL
Recognized with 5000 Vrms for 1 minute per UL1577.
Option
Part RoHS non RoHS Surface Gull Tape UL 5000 Vrms/ IEC/EN/DIN
Number Compliant Compliant Package Mount Wing & Reel 1 Minute rating EN 60747-5-2 Quantity
-000E no option 300 mil DIP-8 50 per tube
-300E #300 X X 50 per tube
-500E #500 X X X 1000 per reel
HCPL-4562
-020E #020 X 50 per tube
-320E #320 X X X 50 per tube
-520E #520 X X X X 1000 per reel
-060E #060 X[1] 50 per tube
-000E no option 400 mil X X[2] 42 per tube
HCNW4562
-300E #300 Widebody X X X X[2] 42 per tube
-500E #500 DIP-8 X X X X X[2] 750 per reel
Notes:
1. IEC/EN/DIN EN 60747-5-2 VIORM = 630 Vpeak Safety Approval.
2. IEC/EN/DIN EN 60747-5-2 VIORM = 1414 Vpeak Safety Approval.
3
Package Outline Drawings
8-Pin DIP Package (HCPL-4562)
8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-4562)
1.080 ± 0.320
(0.043 ± 0.013) 2.54 ± 0.25
(0.100 ± 0.010)
0.51 (0.020) MIN.
0.65 (0.025) MAX.
4.70 (0.185) MAX.
2.92 (0.115) MIN.
5° TYP. 0.254 + 0.076
- 0.051
(0.010+ 0.003)
- 0.002)
7.62 ± 0.25
(0.300 ± 0.010)
6.35 ± 0.25
(0.250 ± 0.010)
9.65 ± 0.25
(0.380 ± 0.010)
1.78 (0.070) MAX.
1.19 (0.047) MAX.
A XXXXZ
YYWW
DATE CODE
DIMENSIONS IN MILLIMETERS AND (INCHES).
5678
4321
OPTION CODE*
UL
RECOGNITION
UR
TYPE NUMBER
* MARKING CODE LETTER FOR OPTION NUMBERS
"L" = OPTION 020
OPTION NUMBERS 300 AND 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
3.56 ± 0.13
(0.140 ± 0.005)
0.635 ± 0.25
(0.025 ± 0.010) 12° NOM.
9.65 ± 0.25
(0.380 ± 0.010)
0.635 ± 0.130
(0.025 ± 0.005)
7.62 ± 0.25
(0.300 ± 0.010)
5
6
7
8
4
3
2
1
9.65 ± 0.25
(0.380 ± 0.010)
6.350 ± 0.25
(0.250 ± 0.010)
1.016 (0.040)
1.27 (0.050)
10.9 (0.430)
2.0 (0.080)
LAND PATTERN RECOMMENDATION
1.080 ± 0.320
(0.043 ± 0.013)
3.56 ± 0.13
(0.140 ± 0.005)
1.780
(0.070)
MAX.
1.19
(0.047)
MAX.
2.54
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
0.254 + 0.076
- 0.051
(0.010+ 0.003)
- 0.002)
4
8-Pin Widebody DIP Package (HCNW4562)
8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW4562)
5
6
7
8
4
3
2
1
11.15 ± 0.15
(0.442 ± 0.006)
1.78 ± 0.15
(0.070 ± 0.006)
5.10
(0.201)MAX.
1.55
(0.061)
MAX.
2.54 (0.100)
TYP.
DIMENSIONS IN MILLIMETERS (INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
7° TYP. 0.254 + 0.076
- 0.0051
(0.010+ 0.003)
- 0.002)
11.00
(0.433)
9.00 ± 0.15
(0.354 ± 0.006)
MAX.
10.16 (0.400)
TYP.
A
HCNWXXXX
YYWW
DATE CODE
TYPE NUMBER
0.51 (0.021) MIN.
0.40 (0.016)
0.56 (0.022)
3.10 (0.122)
3.90 (0.154)
1.00 ± 0.15
(0.039 ± 0.006)
7° NOM.
12.30 ± 0.30
(0.484 ± 0.012)
0.75 ± 0.25
(0.030 ± 0.010)
11.00
(0.433)
5
6
7
8
4
3
2
1
11.15 ± 0.15
(0.442 ± 0.006)
9.00 ± 0.15
(0.354 ± 0.006)
1.3
(0.051)
13.56
(0.534)
2.29
(0.09)
LAND PATTERN RECOMMENDATION
1.78 ± 0.15
(0.070 ± 0.006)
4.00
(0.158)MAX.
1.55
(0.061)
MAX.
2.54
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
0.254 + 0.076
- 0.0051
(0.010+ 0.003)
- 0.002)
MAX.
5
Solder Reow Temperature Prole
Regulatory Information
The devices contained in this data sheet have been approved by the following organizations:
IEC/EN/DIN EN 60747-5-2
Approved under:
IEC 60747-5-2:1997 + A1:2002
EN 60747-5-2:2001 + A1:2002
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01
(HCNW4562 only)
Recommended Pb-Free IR Prole
0
TIME (SECONDS)
TEMPERATURE (°C)
200
100
50 150100 200 250
300
0
30
SEC.
50 SEC.
30
SEC.
160°C
140°C
150°C
PEAK
TEMP.
245°C
PEAK
TEMP.
240°C
PEAK
TEMP.
230°C
SOLDERING
TIME
200°C
PREHEATING TIME
150°C, 90 + 30 SEC.
2.5°C ± 0.5°C/SEC.
3°C + 1°C/–0.5°C
TIGHT
TYPICAL
LOOSE
ROOM
TEMPERATURE
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.
217 °C
RAMP-DOWN
6 °C/SEC. MAX.
RAMP-UP
3 °C/SEC. MAX.
150 - 200 °C
*260 +0/-5 °C
t 25 °C to PEAK
60 to 150 SEC.
20-40 SEC.
TIME WITHIN 5 °C of ACTUAL
PEAK TEMPERATURE
t
p
t
s
PREHEAT
60 to 180 SEC.
t
L
T
L
T
smax
T
smin
25
T
p
TIME
TEMPERATURE
NOTES:
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.
T
smax
= 200 °C, T
smin
= 150 °C
Note: Non-halide flux should be used.
* Recommended peak temperature for widebody
400 mils package is 245°C
Note: Non-halide ux should be used.
UL
Recognized under UL 1577, Component Recognition
Program, File E55361.
CSA
Approved under CSA Component Acceptance Notice #5,
File CA 88324.
6
Insulation and Safety Related Specications
8-Pin DIP Widebody
(300 Mil) (400 Mil)
Parameter Symbol Value Value Units Conditions
Minimum External L(101) 7.1 9.6 mm Measured from input terminals to
Air Gap (External output terminals, shortest distance
Clearance) through air.
Minimum External L(102) 7.4 10.0 mm Measured from input terminals to
Tracking (External output terminals, shortest distance
Creepage) path along body.
Minimum Internal 0.08 1.0 mm Through insulation distance,
Plastic Gap conductor to conductor, usually the
(Internal Clearance) direct distance between the photo-
emitter and photodetector inside the
optocoupler cavity.
Minimum Internal NA 4.0 mm Measured from input terminals to
Tracking (Internal output terminals, along internal cavity.
Creepage)
Tracking Resistance CTI 200 200 Volts DIN IEC 112/VDE 0303 Part 1
(Comparative
Tracking Index)
Isolation Group IIIa IIIa Material Group
(DIN VDE 0110, 1/89, Table 1)
Option 300 - surface mount classication is Class A in accordance with CECC 00802.
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (HCNW4562 ONLY)
Description Symbol Characteristic Units
Installation classication per DIN VDE 0110/1.89, Table 1
for rated mains voltage ≤ 600 V rms I-IV
for rated mains voltage ≤ 1000 V rms I-III
Climatic Classication 55/85/21
Pollution Degree (DIN VDE 0110/1.89) 2
Maximum Working Insulation Voltage VIORM 1414 Vpeak
Input to Output Test Voltage, Method b*
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec, VPR 2652 Vpeak
Partial Discharge < 5 pC
Input to Output Test Voltage, Method a*
VIORM x 1.5 = VPR, Type and sample test, VPR 2121 Vpeak
tm = 60 sec, Partial Discharge < 5 pC
Highest Allowable Overvoltage*
(Transient Overvoltage, tini = 10 sec) VIOTM 8000 Vpeak
Safety Limiting Values
(Maximum values allowed in the event of a failure,
also see Figure 17, Thermal Derating curve.)
Case Temperature TS 150 °C
Input Current IS,INPUT 400 mA
Output Power PS,OUTPUT 700 mW
Insulation Resistance at TS, VIO = 500 V RS ≥ 109 Ω
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN
60747-5-2, for a detailed description.
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in
application.
7
Absolute Maximum Ratings
Parameter Symbol Device Min. Max. Units Note
Storage Temperature TS -55 125 °C
Operating Temperature TA -40 85 °C
Average Forward Input Current IF(avg) HCPL-4562 12 mA
HCNW4562 25
Peak Forward Input Current IF(PEAK) HCPL-4562 18.6 mA
HCNW4562 40
Eective Input Current IF(EFF) HCPL-4562 12.9 mA rms
Reverse LED Input Voltage (Pin 3-2) VR HCPL-4562 1.8 V
HCNW4562 3
Input Power Dissipation PIN HCNW4562 40 mW
Average Output Current (Pin 6) IO(AVG) 8 mA
Peak Output Current (Pin 6) IO(PEAK) 16 mA
Emitter-Base Reverse Voltage (Pin 5-7) V
EBR 5 V
Supply Voltage (Pin 8-5) VCC -0.3 30 V
Output Voltage (Pin 6-5) VO -0.3 20 V
Base Current (Pin 7) IB 5 mA
Output Power Dissipation PO 100 mW 2
Lead Solder Temperature TLS HCPL-4562 260 °C
HCNW4562 260 °C
Reow Temperature Prole TRP Option See Package Outline
300 Drawings Section
1.6 mm Below Seating Plane, 10 Seconds up to
Seating Plane, 10 Seconds
Recommended Operating Conditions
Parameter Symbol Device Min. Max. Units Note
Operating Temperature TA HCPL-4562 -10 70 °C
Quiescent Input Current IFQ HCPL-4562 6 mA
HCNW4562 10
Peak Input Current IF(PEAK) HCPL-4562 10 mA
HCNW4562 17
8
Electrical Specications (DC)
TA = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFQ) unless otherwise specied.
Parameter Symbol Device Min. Typ.* Max. Units Test Conditions Fig. Note
Base Photo IPB 13 31 65 µA IF = 10 mA V
PB ≥ 5 V 2, 6
Current HCPL-4562 19.2 IF = 6 mA
IPB ∆IPB/ -0.3 %/°C 2 mA < IF < 10 mA, 2
Temperature ∆T VPB ≥ 5 V
Coecient
IPB HCPL-4562 0.25 % 2 mA < IF < 10 mA 2, 6 3
Nonlinearity HCNW4562 0.15 6 mA < IF < 14 mA
Input Forward VF HCPL-4562 1.1 1.3 1.6 V IF = 5 mA 5
Voltage HCNW4562 1.2 1.6 1.8 IF = 10 mA
Input Reverse BVR HCPL-4562 1.8 5 V IR = 10 µA
Breakdown HCNW4562 3 IR = 100 µA
Voltage
Transistor hFE 60 160 IC = 1 mA,
Current Gain VCE = 1.25 V
Current CTR HCPL-4562 45 % VCE = 1.25 V, 8, 9 4
Transfer Ratio HCNW4562 52 VPB ≥ 5 V
DC Output VOUT HCPL-4562 4.25 V GV = 2, VCC = 9 V 4,
Voltage HCNW4562 5.0 15
9
Small Signal Characteristics (AC)
TA = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFO) unless otherwise specied.
Parameter Symbol Device Min. Typ.* Max. Units Test Conditions Fig. Note
Voltage Gain GV HCPL-4562 0.8 2.0 4.2 VIN = 1 VP-P 1 6
(0.1 MHz) HCNW4562 3.0
GV Temperature ∆GV/∆T -0.3 %/°C VIN = 1 VP-P
, 1, 11
Coecient fREF = 0.1 MHz
Base Photo ∆iPB HCPL-4562 1.1 3.0 -dB VIN = 1 VP-P
, 3, 10,
Current (6 MHz) HCNW4562 0.36 fREF = 0.1 MHz 12
Variation
-3 dB Frequency iPB HCPL-4562 6 15 MHz VIN = 1 VP-P
, 3, 10, 7
(iPB) (-3 dB) HCNW4562 13 fREF = 0.1 MHz 12
-3 dB Frequency GV HCPL-4562 6 17 MHz VIN = 1 VP-P
, 1, 11 7
(GV) (-3 dB) HCNW4562 9 fREF = 0.1 MHz
Gain Variation ∆GV HCPL-4562 1.1 3.0 -dB TA = 25°C V
IN = 1 VP-P
, 1, 11
(6 MHz) HCNW4562 0.54 f REF = 0.1 MHz
HCPL-4562 0.8 TA = -10°C
1.5 TA = 70°C
∆GV HCPL-4562 1.15 -dB VIN = 1 VP-P
,
(10 MHz) HCNW4562 2.27 fREF = 0.1 MHz
Dierential HCPL-4562 ±1.0 % IFac = 0.7 mA p-p, 3, 7 8
Gain at IFdc = 3 to 9 mA
f = 3.58 MHz HCNW4562 ±0.9 IFac = 1 mA p-p,
IFdc = 7 to 13 mA
Dierential HCPL-4562 ±1 deg. IFac = 0.7 mA p-p, 3, 7 9
Phase at IFdc = 3 to 9 mA
f = 3.58 MHz HCNW4562 ±0.6 IFac = 1 mA p-p,
IFdc = 7 to 13 mA
Total Harmonic THD HCPL-4562 2.5 % VIN = 1 VP-P
, 4 10
Distortion HCNW4562 0.75 f = 3.58 MHz, GV = 2
Output Noise VO(noise) 950 µV rms 10 Hz to 10 MHz 1
Voltage
Isolation Mode IMRR HCPL-4562 122 dB f = 120 Hz, GV = 2 14 11
Rejection Ratio HCNW4562 119
10
Notes:
1. When used in the circuit of Figure 1 or Figure 4; GV = VOUT/VIN; IFQ = 6 mA (HCPL-4562), IFQ = 10 mA (HCNW4562).
2. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C (HCPL-4562).
3. Maximum variation from the best t line of IPB vs. IF expressed as a percentage of the peak-to-peak full scale output.
4. CURRENT TRANSFER RATIO (CTR) is dened as the ratio of output collector current, IO, to the forward LED input current, IF, times 100%.
5. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
6. Flat-band, small-signal voltage gain.
7. The frequency at which the gain is 3 dB below the at-band gain.
8. Dierential gain is the change in the small-signal gain of the optocoupler at 3.58 MHz as the bias level is varied over a given range.
9. Dierential phase is the change in the small-signal phase response of the optocoupler at 3.58 MHz as the bias level is varied over a given
range.
10. TOTAL HARMONIC DISTORTION (THD) is dened as the square root of the sum of the square of each harmonic distortion component. The THD
of the isolated video circuit is measured using a 2.6 kΩ load in series with the 50 Ω input impedance of the spectrum analyzer.
11. ISOLATION MODE REJECTION RATIO (IMRR), a measure of the optocoupler’s ability to reject signals or noise that may exist between input and
output terminals, is dened by 20 log10 [(VOUT/VIN)/(VOUT/VIM)], where VIM is the isolation mode voltage signal.
12. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥4500 V rms for 1 second (leakage detec-
tion current limit, II-O ≤5 µA). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related
Characteristics Table, if applicable.
13. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥6000 V rms for 1 second (leakage detec-
tion current limit, II-O ≤5 µA). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related
Characteristics Table, if applicable.
Package Characteristics
All Typicals at TA = 25°C
Parameter Sym. Device Min. Typ. Max. Units Test Conditions Fig. Note
Input-Output VISO HCPL-4562 3750 V rms RH ≤50%, 5, 12
Momentary HCNW4562 5000 t = 1 min., 5, 13
Withstand HCPL-4562 5000 TA = 25°C 5, 13
Voltage* (Option 020)
Input-Output RI-O HCPL-4562 1012 Ω VI-O = 500 Vdc 5
Resistance HCNW4562 1012 1013 TA = 25°C
1011 TA = 100°C
Input-Output CI-O HCPL-4562 0.6 pF f = 1 MHz 5
Capacitance HCNW4562 0.5 0.6
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage
rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if applicable), your equipment level safety
specication or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage, publication number 5963-2203E.
11
Figure 1. Gain and bandwidth test circuit
Figure 2. Base photo current test circuit Figure 3. Base photo current frequency response test circuit
Figure 4. Recommended isolated video interface circuit
162 Ω (HCPL-4562)
90.9 Ω (HCNW4562)
162 Ω (HCPL-4562)
90.9 Ω (HCNW4562)
12
Figure 5. Input current vs. forward voltage
Figure 6. Base photo current vs. input current
Figure 7. Small-signal response vs. input current
HCPL-4562 fig 5a
IF – INPUT FORWARD VOLTAGE – mA
1.0
0.01
VF – FORWARD VOLTAGE – V
1.51.1
1.0
1.2
10
100
0.1
VF
IF
1.3
HCPL-4562
1.4
+
TA = 70 °C
TA = 25 °C
TA = -10 °C
HCPL-4562 fig 6a
I
PB
– BASE PHOTO CURRENT – µA
0
0
I
F
– INPUT CURRENT – mA
204
70
122 8 10 16
80
30
20
50
186 14
T
A
= 25 °C
V
PB
> 5 V
HCPL-4562
60
40
10
HCPL-4562 HCNW4562
HCNW4562
HCNW4562
13
Figure 8. Current transfer ratio vs. temperature
Figure 9. Current transfer ratio vs. input current
Figure 10. Base photo current variation vs. bias conditions
HCPL-4562 fig 8a
NORMALIZED CURRENT TRANSFER RATIO
-10
0.86
T – TEMPERATURE – °C
7010
1.02
400 20 30 50
1.04
0.94
0.92
0.98
60
HCPL-4562
1.00
0.96
0.88
NORMALIZED
T
A
= 25 °C
I
F
= 6.0 mA
V
CE
= 1.25 V
V
PB
> 5 V
0.90
HCPL-4562 fig 9a
CTR – NORMALIZED CURRENT TRANSFER RATIO
0
0.50
I
F
– INPUT CURRENT – mA
204
1.00
122 8 10 16
1.10
0.70
0.60
0.90
186 14
V
CE
= 5.0 V
NORMALIZED
T
A
= 25 °C
I
F
= 6 mA
V
CE
= 1.25 V
V
PB
> 5 V
0.80
V
CE
= 1.25 V
V
CE
= 0.4 V
HCPL-4562
HCPL-4562 fig 10a
i
PB
– BASE PHOTO CURRENT VARIATION – dB
1
-2.7
I
FQ
– QUIESCENT INPUT CURRENT – mA
123
-1.1
62 4 5 7
-0.9
-1.9
-2.1
-1.5
8
HCPL-4562
-1.3
-1.7
-2.5
T
A
= 25 °C
F
REF
= 0.1 MHz
-2.3
9 10 11
FREQUENCY = 6 MHz
FREQUENCY = 10 MHz
HCNW4562
HCNW4562
HCNW4562
14
Figure 11. Normalized voltage gain vs. frequency
Figure 12. Normalized base photo current vs. frequency
Figure 13. Phase vs. frequency
HCPL-4562 fig 13a
– PHASE – DEGREES
0
-250
f – FREQUENCY – MHz
20
-25
62 4
0
-150
-175
-100
8
HCPL-4562
-75
-125
-225
VIDEO INTERFACE
CIRCUIT PHASE
SEE FIGURE 4
-200
10 12
-50
14 16 18
TA = 25 °C
IPB PHASE
SEE FIGURE 3
HCPL-4562 fig 12a
NORMALIZED BASE PHOTO CURRENT – dB
0.01
-4.5
f – FREQUENCY – KHz
100,000
0
100.1 1.0
0.5
-2.5
-3.0
-1.5
100
HCPL-4562
-1.0
-2.0
-4.0
NORMALIZED
T
A
= 25 °C
f = 0.1 MHz
-3.5
1000 10,000
-0.5
HCPL-4562 fig 11a
NORMALIZED VOLTAGE GAIN – dB
0.01
-7
f – FREQUENCY – KHz
100,000
2
100.1 1.0
3
-3
-4
-1
100
HCPL-4562
0
-2
-6
NORMALIZED
T
A
= 25 °C
f = 0.1 MHz
-5
1000 10,000
T
A
= -10 °C
T
A
= 70 °C
1
T
A
= 25 °C
HCNW4562
HCNW4562
HCNW4562
15
Figure 17. Thermal derating curve, dependence of
safety limiting value with case temperature per IEC/
EN/DIN EN 60747-5-2
Figure 14. Isolation mode rejection ratio vs. frequency
Figure 15. DC output voltage vs. transistor current gain
Figure 16. Output buer stage for low imped-
ance loads
HCPL-4562 fig 16
I
CQ4
= 2 mA
R
9
Q
3
R
10
R
11
Q
4
Q
5
R
12
V
OUT
V
CC
LOW
IMPEDANCE
LOAD
ADDITIONAL
BUFFER
STAGE
OUTPUT POWER – P
S
, INPUT CURRENT – I
S
0
0
T
S
– CASE TEMPERATURE – °C
175
HCPL-4562 fig 17b
1000
50
400
12525 75 100 150
600
800
200
100
300
500
700
900 P
S
(mW)
I
S
(mA)
HCNW4562
HCPL-4562 fig 14a
IMRR – ISOLATION MODE REJECTION RATIO – dB
0.01
0
f – FREQUENCY – KHz
10,0000.1
150
60
90
1.0
HCPL-4562
30
10
120
100 1000
TA = 25 °C
-20 dB/DECADE SLOPE
Gv
vOUT
/
vIM
IMRR = 20 LOG10
HCPL-4562 fig 15a
VO – DC OUTPUT VOLTAGE – V
50
3.0
hFE – TRANSISTOR CURRENT GAIN
450150
5.5
100 250 350
6.0
4.0
3.5
5.0
400200 300
4.5
HCPL-4562
HCNW4562
HCNW4562
16
Conversion from HCPL-4562 to HCNW4562
In order to obtain similar circuit performance when
converting from the HCPL-4562 to the HCNW4562,
it is recommended to increase the Quiescent Input
Current, IFQ, from 6 mA to 10 mA. If the application circuit
in Figure 4 is used, then potentiometer R4 should be
adjusted appropriately.
Design Considerations of the Application Circuit
The appÏication circuit in Figure 4 incorporates
several features that help maximize the bandwidth
performance of the HCPL-4562/HCNW4562. Most
important of these features is peaked response of the
detector circuit that helps extend the frequency range
over which the voltage gain is relatively constant. The
number of gain stages, the overall circuit topology, and
the choice of DC bias points are all consequences of
the desire to maximize bandwidth performance.
To use the circuit, rst select R1 to set VE for the desired
LED quiescent current by:
Figure 15 shows the dependency of the DC output
voltage on hFEX.
For 9 V < VCC < 12 V, select the value of R11 such that
VEGVVER10
IF Q = (1)
R4(IPB /IF) R7R9
iF p-p VIN/R 4( 2)
iF p-p iPB p-p VINp-p
= (3)
IF Q IP B Q VE
iF(p-p) VINp-p
F actor ( MF ) : = ( 4)
2 IF Q 2 VE
R9
VO= VCC VB E [V B E X - ( IPB Q - IB X Q) R 7] (5)
R10
GVVER10
IPB Q ( 6)
R7R9
VCC - 2 VB E
IB X Q ( 7)
R6hF E X
VO4.25 V
ICQ4 9.0 mA (8)
R11 470
R91
*(9)
R10 1
1 + s R 9CCQ 2R
11 fT 4
VOUT IPB R7R9
GV (10)
VIN IFR4R10
IPB
where typically IF
p-p
4
( p-p)
p-p
p-p p-p
p-p
Q4
3
4
= 0.0032
+
VEGVVER10
IF Q = (1)
R4(IPB /IF) R7R9
iF p-p VIN/R 4( 2)
iF p-p iPB p-p VINp-p
= (3)
IF Q IP B Q VE
iF(p-p) VINp-p
F actor ( MF ) : = ( 4)
2 IF Q 2 VE
R9
VO= VCC VB E [V B E X - ( IPB Q - IB X Q) R 7] (5)
R10
GVVER10
IPB Q ( 6)
R7R9
VCC - 2 VB E
IB X Q ( 7)
R6hF E X
VO4.25 V
ICQ4 9.0 mA (8)
R11 470
R91
*(9)
R10 1
1 + s R 9CCQ 2R
11 fT 4
VOUT IPB R7R9
GV (10)
VIN IFR4R10
IPB
where typically IF
p-p
4
( p-p)
p-p
p-p p-p
p-p
Q4
3
4
= 0.0032
+
VEGVVER10
IF Q = (1)
R4(IPB /IF) R7R9
iF p-p VIN/R 4( 2)
iF p-p iPB p-p VINp-p
= (3)
IF Q IP B Q VE
iF(p-p) VINp-p
F actor ( MF ) : = ( 4)
2 IF Q 2 VE
R9
VO= VCC VB E [V B E X - ( IPB Q - IB X Q) R 7] (5)
R10
GVVER10
IPB Q ( 6)
R7R9
VCC - 2 VB E
IB X Q ( 7)
R6hF E X
VO4.25 V
ICQ4 9.0 mA (8)
R11 470
R91
*(9)
R10 1
1 + s R 9CCQ 2R
11 fT 4
VOUT IPB R7R9
GV (10)
VIN IFR4R10
IPB
where typically IF
p-p
4
( p-p)
p-p
p-p p-p
p-p
Q4
3
4
= 0.0032
+
VEGVVER10
IF Q = (1)
R4(IPB /IF) R7R9
iF p-p VIN/R 4( 2)
iF p-p iPB p-p VINp-p
= (3)
IF Q IP B Q VE
iF(p-p) VINp-p
F actor ( MF ) : = ( 4)
2 IF Q 2 VE
R9
VO= VCC VB E [V B E X - ( IPB Q - IB X Q) R 7] (5)
R10
GVVER10
IPB Q ( 6)
R7R9
VCC - 2 VB E
IB X Q ( 7)
R6hF E X
VO4.25 V
ICQ4 9.0 mA (8)
R11 470
R91
*(9)
R10 1
1 + s R 9CCQ 2R
11 fT 4
VOUT IPB R7R9
GV (10)
VIN IFR4R10
IPB
where typically IF
p-p
4
( p-p)
p-p
p-p p-p
p-p
Q4
3
4
= 0.0032
+
VEGVVER10
IF Q = (1)
R4(IPB /IF) R7R9
iF p-p VIN/R 4( 2)
iF p-p iPB p-p VINp-p
= (3)
IF Q IP B Q VE
iF(p-p) VINp-p
F actor ( MF ) : = ( 4)
2 IF Q 2 VE
R9
VO= VCC VB E [V B E X - ( IPB Q - IB X Q) R 7] (5)
R10
GVVER10
IPB Q ( 6)
R7R9
VCC - 2 VB E
IB X Q ( 7)
R6hF E X
VO4.25 V
ICQ4 9.0 mA (8)
R11 470
R91
*(9)
R10 1
1 + s R 9CCQ 2R
11 fT 4
VOUT IPB R7R9
GV (10)
VIN IFR4R10
IPB
where typically IF
p-p
4
( p-p)
p-p
p-p p-p
p-p
Q4
3
4
= 0.0032
+
VEGVVER10
IF Q = (1)
R4(IPB /IF) R7R9
iF p-p VIN/R 4( 2)
iF p-p iPB p-p VINp-p
= (3)
IF Q IP B Q VE
iF(p-p) VINp-p
F actor ( MF ) : = ( 4)
2 IF Q 2 VE
R9
VO= VCC VB E [V B E X - ( IPB Q - IB X Q) R 7] (5)
R10
GVVER10
IPB Q ( 6)
R7R9
VCC - 2 VB E
IB X Q ( 7)
R6hF E X
VO4.25 V
ICQ4 9.0 mA (8)
R11 470
R91
*(9)
R10 1
1 + s R 9CCQ 2R
11 fT 4
VOUT IPB R7R9
GV (10)
VIN IFR4R10
IPB
where typically IF
p-p
4
( p-p)
p-p
p-p p-p
p-p
Q4
3
4
= 0.0032
+
VEGVVER10
IF Q = (1)
R4(IPB /IF) R7R9
iF p-p VIN/R 4( 2)
iF p-p iPB p-p VINp-p
= (3)
IF Q IP B Q VE
iF(p-p) VINp-p
F actor ( MF ) : = ( 4)
2 IF Q 2 VE
R9
VO= VCC VB E [V B E X - ( IPB Q - IB X Q) R 7] (5)
R10
GVVER10
IPB Q ( 6)
R7R9
VCC - 2 VB E
IB X Q ( 7)
R6hF E X
VO4.25 V
ICQ4 9.0 mA (8)
R11 470
R91
*(9)
R10 1
1 + s R 9CCQ 2R
11 fT 4
VOUT IPB R7R9
GV (10)
VIN IFR4R10
IPB
where typically IF
p-p
4
( p-p)
p-p
p-p p-p
p-p
Q4
3
4
= 0.0032
+
VEGVVER10
IF Q = (1)
R4(IPB /IF) R7R9
iF p-p VIN/R 4( 2)
iF p-p iPB p-p VINp-p
= (3)
IF Q IP B Q VE
iF(p-p) VINp-p
F actor ( MF ) : = ( 4)
2 IF Q 2 VE
R9
VO= VCC VB E [V B E X - ( IPB Q - IB X Q) R 7] (5)
R10
GVVER10
IPB Q ( 6)
R7R9
VCC - 2 VB E
IB X Q ( 7)
R6hF E X
VO4.25 V
ICQ4 9.0 mA (8)
R11 470
R91
*(9)
R10 1
1 + s R 9CCQ 2R
11 fT 4
VOUT IPB R7R9
GV (10)
VIN IFR4R10
IPB
where typically IF
p-p
4
( p-p)
p-p
p-p p-p
p-p
Q4
3
4
= 0.0032
+
VEGVVER10
IF Q = (1)
R4(IPB /IF) R7R9
iF p-p VIN/R 4( 2)
iF p-p iPB p-p VINp-p
= (3)
IF Q IP B Q VE
iF(p-p) VINp-p
F actor ( MF ) : = ( 4)
2 IF Q 2 VE
R9
VO= VCC VB E [V B E X - ( IPB Q - IB X Q) R 7] (5)
R10
GVVER10
IPB Q ( 6)
R7R9
VCC - 2 VB E
IB X Q ( 7)
R6hF E X
VO4.25 V
ICQ4 9.0 mA (8)
R11 470
R91
*(9)
R10 1
1 + s R 9CCQ 2R
11 fT 4
VOUT IPB R7R9
GV (10)
VIN IFR4R10
IPB
where typically IF
p-p
4
( p-p)
p-p
p-p p-p
p-p
Q4
3
4
= 0.0032
+
For a constant value VINp-p, the circuit topology
(adjusting the gain with R4) preserves linearity by
keeping the modulation factor (MF) dependent only
on VE.
Modulation
For a given GV, VE, and VCC, DC output voltage will vary
only with hFEX.
Where:
and,
The voltage gain of the second stage (Q3) is
approximately equal to:
Increasing R11 (R11 includes the parallel combination of
R11 and the load impedance) or reducing R9 (keeping
R9/R10 ratio constant) will improve the bandwidth.
If it is necessary to drive a low impedance load,
bandwidth may also be preserved by adding an
additional emitter following the buffer stage (Q5 in
Figure 16), in which case R11 can be increased to
set ICQ4 2 mA.
Finally, adjust R4 to achieve the desired voltage gain.
Denition:
GV = Voltage Gain
IFQ = Quiescent LED forward current
iFp-p = Peak-to-peak small signal LED forward
current
VINp-p = Peak-to-peak small signal input voltage
iPBp-p = Peak-to-peak small signal
base photo current
IPBQ = Quiescent base photo current
VBEX = Base-Emitter voltage of HCPL-4562/
HCNW4562 transistor
IBXQ = Quiescent base current of HCPL-4562/
HCNW4562 transistor
hFEX = Current Gain (IC/IB) of HCPL-4562/
HCNW4562 transistor
VE = Voltage across emitter degeneration
resistor R4
fT4 = Unity gain frequency of Q5
CCQ3 = Eective capacitance from collector of Q3
to ground
For product information and a complete list of distributors, please go to our website: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.
Data subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0571EN
AV02-1361EN - June 23, 2008