WARP2 SERIES IGBT WITH
ULTRAFAST SOFT RECOVERY DIODE
IRGP35B60PD-EP
08/06/08
Features
NPT Technology, Positive Temperature Coefficient
Lower VCE(SAT)
Lower Parasitic Capacitances
Minimal Tail Current
HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode
Tighter Distribution of Parameters
Higher Reliability
Benefits
Parallel Operation for Higher Current Applications
Lower Conduction Losses and Switching Losses
Higher Switching Frequency up to 150KHz
E
G
n-channel
C
VCES = 600V
VCE(on) typ. = 1.85V
@ VGE = 15V IC = 22A
Equivalent MOSFET
Parameters
RCE(on) typ. = 84m
ID (FET equivalent) = 35A
Applications
Telecom and Server SMPS
PFC and ZVS SMPS Circuits
Uninterruptable Power Supplies
Consumer Electronics Power Supplies
SMPS IGBT
Absolute Maximum Ratings
Parameter Max. Units
VCES Collector-to-Emitter Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 60
IC @ TC = 100°C Continuous Collector Current 34
ICM Pulse Collector Current (Ref. Fig. C.T.4) 120
ILM Clamped Inductive Load Current
d
120 A
IF @ TC = 25°C Diode Continous Forward Current 40
IF @ TC = 100°C Diode Continous Forward Current 15
IFRM Maximum Repetitive Forward Current
e
60
VGE Gate-to-Emitter Voltage ±20 V
PD @ TC = 25°C Maximum Power Dissipation 308 W
PD @ TC = 100°C Maximum Power Dissipation 123
TJOperating Junction and -55 to +150
TSTG Storage Temperature Range °C
Soldering Temperature for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter Min. Typ. Max. Units
RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) ––– ––– 0.41 °C/W
RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 1.7
RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––
RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– –– 40
Weight –– 6.0 (0.21) ––– g (oz)
Lead-Free
TO-247AD
1www.irf.com
PD - 96169
IRGP35B60PD-EP
2www.irf.com
Notes:
RCE(on) typ. = equivalent on-resistance = VCE(on) typ./ IC, where VCE(on) typ.= 1.85V and IC =22A. ID (FET Equivalent) is the equivalent MOSFET ID
rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions.
VCC = 80% (VCES), VGE = 15V, L = 28 µH, RG = 22 Ω.
Pulse width limited by max. junction temperature.
Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06.
Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES.
Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions Ref.Fig
V(BR)CES Collector-to-Emitter Breakdown Voltage 600 V VGE = 0V, IC = 500µA
V(BR)CES/TJTemperature Coeff. of Breakdown Voltage —0.78—V/°C
VGE = 0V, IC = 1mA (25°C-125°C)
RG Internal Gate Resistance 1.7 1MHz, Open Collector
—1.852.15 IC = 22A, VGE = 15V 4, 5,6,8,9
VCE(on) Collector-to-Emitter Saturation Voltage 2.25 2.55 V IC = 35A, VGE = 15V
—2.372.80 IC = 22A, VGE = 15V, TJ = 125°C
—3.003.45 IC = 35A, VGE = 15V, TJ = 125°C
VGE(th) Gate Threshold Voltage 3.0 4.0 5.0 V IC = 250µA 7,8,9
VGE(th)/TJ Threshold Voltage temp. coefficient -10 mV/°C VCE = VGE, IC = 1.0mA
gfe Forward Transconductance 36 S VCE = 50V, IC = 22A, PW = 8s
ICES Collector-to-Emitter Leakage Current 3.0 375 µA VGE = 0V, VCE = 600V
—0.35—mA
VGE = 0V, VCE = 600V, TJ = 12C
VFM Diode Forward Voltage Drop 1.30 1.70 V IF = 15A, VGE = 0V 10
—1.201.60 IF = 15A, VGE = 0V, TJ = 125°C
IGES Gate-to-Emitter Leakage Current ±100 nA VGE = ±20V, VCE = 0V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Ref.Fig
Qg Total Gate Charge (turn-on) 160 240 IC = 22A 17
Qgc Gate-to-Collector Charge (turn-on) 55 83 nC VCC = 400V CT1
Qge Gate-to-Emitter Charge (turn-on) 21 32 VGE = 15V
Eon Turn-On Switching Loss 220 270 IC = 22A, VCC = 390V CT3
Eoff Turn-Off Switching Loss 215 265 µJ VGE = +15V, RG = 3.3, L = 200µH
Etotal Total Switching Loss 435 535 TJ = 25°C
f
td(on) Turn-On delay time 26 34 IC = 22A, VCC = 390V CT3
trRise time 6.0 8.0 ns VGE = +15V, RG = 3.3, L = 200µH
td(off) Turn-Off delay time 110 122 TJ = 25°C
f
tfFall time 8.0 10
Eon Turn-On Switching Loss 410 465 IC = 22A, VCC = 390V CT3
Eoff Turn-Off Switching Loss 330 405 µJ VGE = +15V, RG = 3.3, L = 200µH 11,13
Etotal Total Switching Loss 740 870 TJ = 12C
f
WF1,WF2
td(on) Turn-On delay time 26 34 IC = 22A, VCC = 390V CT3
trRise time 8.0 11 ns VGE = +15V, RG = 3.3, L = 200µH 12,14
td(off) Turn-Off delay time 130 150 TJ = 12C
f
WF1,WF2
tfFall time 12 16
Cies Input Capacitance 3715 VGE = 0V 16
Coes Output Capacitance 265 VCC = 30V
Cres Reverse Transfer Capacitance 47 pF f = 1Mhz
Coes eff. Effective Output Capacitance (Time Related)
g
—135 VGE = 0V, VCE = 0V to 480V 15
Coes eff. (ER) Effective Output Capacitance (Ener
gy
Related)
g
—179
TJ = 15C, IC = 120A 3
RBSOA Reverse Bias Safe Operating Area FULL SQUARE VCC = 480V, Vp =600V CT2
Rg = 22, VGE = +15V to 0V
trr Diode Reverse Recovery Time 42 60 ns TJ = 25°C IF = 15A, VR = 200V, 19
—74120 TJ = 125°C di/dt = 200As
Qrr Diode Reverse Recovery Charge 80 180 nC TJ = 2C IF = 15A, VR = 200V, 21
220 600 TJ = 125°C di/dt = 200A/µs
Irr Peak Reverse Recovery Current 4.0 6.0 A TJ = 25°C IF = 15A, VR = 200V, 19,20,21,22
—6.510 TJ = 125°C di/dt = 200As CT5
Conditions
IRGP35B60PD-EP
www.irf.com 3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 3 - Reverse Bias SOA
TJ = 150°C; VGE =15V
Fig. 4 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 5 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
0 20 40 60 80 100 120 140 160
TC (°C)
0
10
20
30
40
50
60
70
IC (A)
10 100 1000
VCE (V)
1
10
100
1000
IC A)
012345
VCE (V)
0
10
20
30
40
50
60
70
ICE (A)
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
012345
VCE (V)
0
10
20
30
40
50
60
70
ICE (A)
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
012345
VCE (V)
0
10
20
30
40
50
60
70
ICE (A)
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
0 20 40 60 80 100 120 140 160
TC (°C)
0
50
100
150
200
250
300
350
Ptot (W)
IRGP35B60PD-EP
4www.irf.com
Fig. 8 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = 125°C
Fig. 12 - Typ. Switching Time vs. IC
TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3; VGE = 15V.
Diode clamp used: 30ETH06 (See C.T.3)
Fig. 11 - Typ. Energy Loss vs. IC
TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3; VGE = 15V.
Diode clamp used: 30ETH06 (See C.T.3)
Fig. 10 - Typ. Diode Forward Characteristics
tp = 80µs
Fig. 7 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
0 5 10 15 20
VGE (V)
0
100
200
300
400
500
600
700
800
ICE (A)
TJ = 25°C
TJ = 125°C
TJ = 125°C
TJ = 25°C
0 5 10 15 20
VGE (V)
1
2
3
4
5
6
7
8
9
10
VCE (V)
ICE = 11A
ICE = 22A
ICE = 35A
0 5 10 15 20
VGE (V)
1
2
3
4
5
6
7
8
9
10
VCE (V)
ICE = 11A
ICE = 22A
ICE = 35A
0 5 10 15 20 25 30 35 40
IC (A)
0
100
200
300
400
500
600
700
800
Energy (µJ)
EOFF
EON
010 20 30 40
IC (A)
1
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
1
10
100
0.8 1.2 1.6 2.0 2.4
FM
F
I nstant aneous Forward Current - I (A)
Forward Voltage Drop - V (V)
T = 150°C
T = 125°C
T = 25°C
J
J
J
IRGP35B60PD-EP
www.irf.com 5
Fig. 14 - Typ. Switching Time vs. RG
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 22A; VGE = 15V
Diode clamp used: 30ETH06 (See C.T.3)
Fig. 13 - Typ. Energy Loss vs. RG
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 22A; VGE = 15V
Diode clamp used: 30ETH06 (See C.T.3)
Fig. 16- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 15- Typ. Output Capacitance
Stored Energy vs. VCE
Fig. 17 - Typical Gate Charge vs. VGE
ICE = 22A
Fig. 18 - Normalized Typ. VCE(on)
vs. Junction Temperature
IC = 22A, VGE= 15V
-50 0 50 100 150 200
TJ (°C)
0.8
1.0
1.2
1.4
Normalized VCE(on) (V)
010 20 30 40 50
RG ()
0
100
200
300
400
500
600
700
800
Energy (µJ)
EON
EOFF
010 20 30 40 50
RG ()
1
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
020 40 60 80 100
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
0 50 100 150 200
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE (V)
400V
0 100 200 300 400 500 600 700
VCE (V)
0
5
10
15
20
25
30
Eoes (µJ)
IRGP35B60PD-EP
6www.irf.com
Fig. 20 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Reverse Recovery vs. dif/dt
Fig. 21 - Typical Stored Charge vs. dif/dt Fig. 22 - Typical di(rec)M/dt vs. dif/dt,
20
40
60
80
100
100 1000
f
di /dt - (As)
t - (ns)
rr
I = 30A
I = 15A
I = 5.0A
F
F
F
V = 200V
T = 125°C
T = 25°C
R
J
J
1
10
100
100 1000
f
di /dt - (A/µs)
I - (A)
IRRM
I = 5.0A
I = 15A
I = 30A
F
F
F
V = 200V
T = 125°C
T = 25°C
R
J
J
0
200
400
600
800
100 1000
f
di /dt - (As)
RR
Q - (nC)
I = 30A
I = 15A
I = 5.0A
F
F
F
V = 200V
T = 125°C
T = 25°C
R
J
J
100
1000
100 1000
f
di /dt - (A/µs)
di(rec)M/dt - (A/µs)
I = 5.0A
I = 15A
I = 30A
F
F
F
V = 200V
T = 125°C
T = 25°C
R
J
J
IRGP35B60PD-EP
www.irf.com 7
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.363 0.000112
0.864 0.001184
0.473 0.032264
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.139 0.000257
0.077 0.001418
0.194 0.020178
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
IRGP35B60PD-EP
8www.irf.com
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
L
Rg
80 V DUT
480 V
1K
VCC
DU T
0
L
Fig.C.T.4 - Resistive Load Circuit
Rg
VCC
DUT
R =
V
CC
I
CM
Fig.C.T.3 - Switching Loss Circuit
Fig. C.T.5 - Reverse Recovery Parameter
Test Circuit
REVERSE RECOVERY CIRCUIT
IRFP250
D.U.T.
L = 70µH
V = 200V
R
0.01
G
D
S
dif/dt
ADJUST
PFC diode L
Rg
VCC
DUT /
DRIVER
IRGP35B60PD-EP
www.irf.com 9
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 25°C using Fig. CT.3
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 25°C using Fig. CT.3
Fig. WF3 - Reverse Recovery Waveform and
Definitions
4. Qrr - Area under curve defined by trr
and IRRM
trr X IRRM
Qrr =
2
5. di(rec)M/dt - Peak rate of change of
current during tb portion of trr
t
a
t
b
t
rr
Q
rr
I
F
I
RRM
I
RRM
0.5
di(rec)M/dt
0.75 I
RRM
5
4
3
2
0
1
di /dt
f
1. dif/dt - Rate of change of current
through zero crossing
2. IRRM - Peak reverse recovery current
3. trr - Reverse recovery time measured
from zero crossing point of negative
going IF to point where a line passing
through 0.75 IRRM and 0.50 IRRM
extrapolated to zero current
-50
0
50
100
150
200
250
300
350
400
450
9.00 9.20 9.40 9.60
Time (µs)
V
CE
(V)
-5
0
5
10
15
20
25
30
35
40
45
I
CE
(A)
TEST CURRENT
90% test current
5% VCE
10% test current
Eon Loss
tr
-50
0
50
100
150
200
250
300
350
400
450
-0.20 0.00 0.20 0.40 0.60 0.80
Time(µs)
V
CE
(V)
-5
0
5
10
15
20
25
30
35
40
45
I
CE
(A)
90% ICE
5% VCE
5% ICE
Eoff Loss
tf
IRGP35B60PD-EP
10 www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/2008
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
TO-247AD Part Marking Information
$66(0%/< <($5 
$66(0%/('21::
,17+($66(0%/</,1(+
(;$03/( 7+,6,6$1,5*3%.'(
/27&2'(
:,7+$66(0%/< 3$57180%(5
'$7(&2'(
,17(51$7,21$/
5(&7,),(5
/2*2
+

:((.
/,1(+
/27&2'(
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)