
IRGP35B60PD-EP
2www.irf.com
Notes:
RCE(on) typ. = equivalent on-resistance = VCE(on) typ./ IC, where VCE(on) typ.= 1.85V and IC =22A. ID (FET Equivalent) is the equivalent MOSFET ID
rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions.
VCC = 80% (VCES), VGE = 15V, L = 28 µH, RG = 22 Ω.
Pulse width limited by max. junction temperature.
Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06.
Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES.
Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions Ref.Fig
V(BR)CES Collector-to-Emitter Breakdown Voltage 600 — — V VGE = 0V, IC = 500µA
∆V(BR)CES/∆TJTemperature Coeff. of Breakdown Voltage —0.78—V/°C
VGE = 0V, IC = 1mA (25°C-125°C)
RG Internal Gate Resistance — 1.7 — Ω1MHz, Open Collector
—1.852.15 IC = 22A, VGE = 15V 4, 5,6,8,9
VCE(on) Collector-to-Emitter Saturation Voltage — 2.25 2.55 V IC = 35A, VGE = 15V
—2.372.80 IC = 22A, VGE = 15V, TJ = 125°C
—3.003.45 IC = 35A, VGE = 15V, TJ = 125°C
VGE(th) Gate Threshold Voltage 3.0 4.0 5.0 V IC = 250µA 7,8,9
∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -10 — mV/°C VCE = VGE, IC = 1.0mA
gfe Forward Transconductance — 36 — S VCE = 50V, IC = 22A, PW = 80µs
ICES Collector-to-Emitter Leakage Current — 3.0 375 µA VGE = 0V, VCE = 600V
—0.35—mA
VGE = 0V, VCE = 600V, TJ = 125°C
VFM Diode Forward Voltage Drop — 1.30 1.70 V IF = 15A, VGE = 0V 10
—1.201.60 IF = 15A, VGE = 0V, TJ = 125°C
IGES Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V, VCE = 0V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Ref.Fig
Qg Total Gate Charge (turn-on) — 160 240 IC = 22A 17
Qgc Gate-to-Collector Charge (turn-on) — 55 83 nC VCC = 400V CT1
Qge Gate-to-Emitter Charge (turn-on) — 21 32 VGE = 15V
Eon Turn-On Switching Loss — 220 270 IC = 22A, VCC = 390V CT3
Eoff Turn-Off Switching Loss — 215 265 µJ VGE = +15V, RG = 3.3Ω, L = 200µH
Etotal Total Switching Loss — 435 535 TJ = 25°C
f
td(on) Turn-On delay time — 26 34 IC = 22A, VCC = 390V CT3
trRise time — 6.0 8.0 ns VGE = +15V, RG = 3.3Ω, L = 200µH
td(off) Turn-Off delay time — 110 122 TJ = 25°C
f
tfFall time — 8.0 10
Eon Turn-On Switching Loss — 410 465 IC = 22A, VCC = 390V CT3
Eoff Turn-Off Switching Loss — 330 405 µJ VGE = +15V, RG = 3.3Ω, L = 200µH 11,13
Etotal Total Switching Loss — 740 870 TJ = 125°C
f
WF1,WF2
td(on) Turn-On delay time — 26 34 IC = 22A, VCC = 390V CT3
trRise time — 8.0 11 ns VGE = +15V, RG = 3.3Ω, L = 200µH 12,14
td(off) Turn-Off delay time — 130 150 TJ = 125°C
f
WF1,WF2
tfFall time — 12 16
Cies Input Capacitance — 3715 — VGE = 0V 16
Coes Output Capacitance — 265 — VCC = 30V
Cres Reverse Transfer Capacitance — 47 — pF f = 1Mhz
Coes eff. Effective Output Capacitance (Time Related)
g
—135— VGE = 0V, VCE = 0V to 480V 15
Coes eff. (ER) Effective Output Capacitance (Ener
Related)
g
—179—
TJ = 150°C, IC = 120A 3
RBSOA Reverse Bias Safe Operating Area FULL SQUARE VCC = 480V, Vp =600V CT2
Rg = 22Ω, VGE = +15V to 0V
trr Diode Reverse Recovery Time — 42 60 ns TJ = 25°C IF = 15A, VR = 200V, 19
—74120 TJ = 125°C di/dt = 200A/µs
Qrr Diode Reverse Recovery Charge — 80 180 nC TJ = 25°C IF = 15A, VR = 200V, 21
— 220 600 TJ = 125°C di/dt = 200A/µs
Irr Peak Reverse Recovery Current — 4.0 6.0 A TJ = 25°C IF = 15A, VR = 200V, 19,20,21,22
—6.510 TJ = 125°C di/dt = 200A/µs CT5
Conditions