Clock operation M41T93
22/56 DocID12615 Rev 8
3.4 Clock calibration
The M41T93 oscillator is designed for use with a 12.5 pF crystal load capacitance. When
the calibration circuit is properly employed, accuracy improves to better than ±1 ppm at
25 °C.
The M41T93 design provides the following two methods for clock error correction.
3.4.1 Digital calibration (periodic counter correction)
This method employs the use of periodic counter correction by adjusting the ratio of the
100 Hz divider stage to the 512 Hz divider stage. Under normal operation, the 100Hz divider
stage outputs precisely 100 pulses for every 512 pulses of the 512 Hz input stage to provide
the input frequency to the fraction of seconds clock register. By adjusting the number of
512 Hz input pulses used to generate 100 output pulses, the clock can be sped up or
slowed down, as shown in Figure 13 on page 29.
When a non-zero value is loaded into the five calibration bits (DC4 – DC0) found in the
digital calibration register (08h) and the sign bit is 1, (indicating positive calibration), the
100 Hz stage outputs 100 pulses for every 511 input pulses instead of the normal 512. Since
the 100 pulses are now being output in a shorter window, this has the effect of speeding up
the clock by 1/512 seconds for each second the circuit is active. Similarly, when the sign bit
is 0, indicating negative calibration, the block outputs 100 pulses for every 513 input pulses.
Since the 100 pulses are then being output in a longer window, this has the effect of slowing
down the clock by 1/512 seconds for each second the circuit is active.
The amount of calibration is controlled by using the value in the calibration register (N) to
generate the adjustment in one second increments. This is done for the first N seconds
once every eight minutes for positive calibration, and for N seconds once every sixteen
minutes for negative calibration (see Table 4 on page 24).
For example, if the calibration register is set to '100010,' then the adjustment will occur for
two seconds in every minute. Similarly, if the calibration register is set to '000011,' then the
adjustment will occur for 3 seconds in every alternating minute.
The digital calibration bits (DC4 – DC0) occupy the five lower order bits in the digital
calibration register (08h). These bits can be set to represent any value between 0 and 31 in
binary form. The sixth bit (DCS) is a sign bit; '1' indicates positive calibration, '0' indicates
negative calibration. Calibration occurs within an 8-minute (positive) or 16-minute (negative)
cycle. Therefore, each calibration step has an effect on clock accuracy of +4.068 or –2.034
ppm. Assuming that the oscillator is running at exactly 32,768 Hz, each of the 31 increments
in the calibration byte would represent +10.7 or –5.35 seconds per month, which
corresponds to a total range of +5.5 or –2.75 minutes per month.
One method of determining the amount of digital calibration required is to use the frequency
test output (FT) of the device (see Section 3.14: IRQ/FT/OUT pin, frequency test, interrupts
and the OUT bit on page 38 for more information on enabling the FT output).
When FT is enabled, a 512 Hz signal is output on the IRQ/FT/OUT pin. This signal can be
measured using a highly accurate timing device such as a frequency counter. The
measured value is then compared to 512 Hz and the oscillator error in ppm is then
determined.
The user should keep in mind that changes in the digital calibration value will not affect the
signal measured on the FT pin. While the analog calibration circuit does affect the oscillator,