400 MHz to 4000 MHz
½ Watt RF Driver Amplifier
Data Sheet
ADL5324
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 020629106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2012 Analog Devices, Inc. All rights reserved.
FEATURES
Operation from 400 MHz to 4000 MHz
Gain of 14.6 dB at 2140 MHz
OIP3 of 43.1 dBm at 2140 MHz
P1dB of 29.1 dBm at 2140 MHz
Noise figure of 3.8 dB
Dynamically adjustable bias
Adjustable power supply bias: 3.3 V to 5 V
Low power supply current: 62 mA to 133 mA
No bias resistor needed
Operating temperature range of 40°C to +105°C
SOT-89 package, MSL-1 rated
ESD rating of ±3 kV (Class 2)
APPLICATIONS
Wireless infrastructure
Automated test equipment
ISM/AMR applications
FUNCTIONAL BLOCK DIAGRAM
GND
12
BIAS
3
GND
ADL5324
(2)
RFIN RFOUT
10562-001
Figure 1.
GENERAL DESCRIPTION
The ADL5324 incorporates a dynamically adjustable biasing
circuit that allows for the customization of OIP3 and P1dB
performance from 3.3 V to 5 V, without the need for an external
bias resistor. This feature gives the designer the ability to tailor
driver amplifier performance to the specific needs of the design.
This feature also creates the opportunity for dynamic biasing of
the driver amplifier where a variable supply is used to allow for
full 5 V biasing under large signal conditions, and then reduced
supply voltage when signal levels are smaller and lower power
consumption is desirable. This scalability reduces the need to
evaluate and inventory multiple driver amplifiers for different
output power requirements, from 25 dBm to 29 dBm output
power levels.
The ADL5324 is also rated to operate across the wide temperature
range of 40°C to +105°C for reliable performance in designs
that experience higher temperatures, such as power amplifiers.
The ½ W driver amplifier also covers the wide frequency range
of 400 MHz to 4000 MHz, and only requires a few external
components to be tuned to a specific band within that wide range.
This high performance broadband RF driver amplifier is well
suited for a variety of wired and wireless applications, including
cellular infrastructure, ISM band power amplifiers, defense
equipment, and instrumentation equipment. A fully populated
evaluation board is available.
The ADL5324 also delivers excellent ACPR vs. output power and
bias voltage. The driver can deliver greater than 17 dBm of output
power at 2140 MHz, while achieving an ACPR of −55 dBc at 5 V. If
the bias is reduced to 3.3 V, the 55 dBc ACPR output power
only minimally reduces to 15 dBm.
10562–055
–85
–80
–75
–70
–65
–60
–55
–50
–45
–40
–35
–30
–20 –15 –10 –5 0 5 10 15 20 25
ACPR @ 5MHz CARRIER OFFSET (d Bc)
POUT (d Bm)
SOURCE
V
CC
=3.3V
V
CC
= 5V
Figure 2. ACPR vs. Output Power, Single Carrier W-CDMA,
TM1-64 at 2140 MHz
ADL5324 Data Sheet
Rev. B | Page 2 of 20
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Typical Scattering Parameters ..................................................... 5
Absolute Maximum Ratings ............................................................ 6
Thermal Resistance ...................................................................... 6
ESD Caution .................................................................................. 6
Pin Configuration and Function Descriptions ............................. 7
Typical Performance Characteristics ..............................................8
High Temperature Operation ................................................... 12
Applications Information .............................................................. 13
Basic Layout Connections ......................................................... 13
Soldering Information and Recommended PCB Land Pattern. 13
Matching Procedure ................................................................... 15
W-CDMA ACPR Performance ................................................ 16
Evaluation Board ............................................................................ 17
Outline Dimensions ....................................................................... 20
Ordering Guide .......................................................................... 20
REVISION HISTORY
9/12Rev. A to Rev. B
Changes to Figure 27 ...................................................................... 11
Changed Figure 30 Tex t Reference to Figure 33 Text Reference ... 12
Changed Table 7 Text Reference to Table 6 ................................. 15
Changed Table 9 Text Reference to Table 10 and Table 10 Text
Reference to Table 11 ..................................................................... 17
Changes to Figure 44 ...................................................................... 18
8/12Rev. 0 to Rev. A
Change 5 V Supply Current from 140 mA to 133 mA and 5 V
Power Dissipation from 700 mW to 665 mW, Table 1 ................. 4
Changes to Supply Current from 140 mA to 133 mA ............... 13
3/12Revision 0: Initial Version
Data Sheet ADL5324
Rev. B | Page 3 of 20
SPECIFICATIONS
VSUP = 5 V and TA = 25°C, unless otherwise noted.
Table 1.
3.3 V 5 V
Parameter Test Conditions/Comments Min Typ Max Min Typ Max Unit
FREQUENCY = 457 MHz
Gain 17.2 18.4 dB
vs. Frequency ±37 MHz +0.0/−0.4 +0.0/−0.2 dB
vs. Temperature 40°C ≤ T
A
≤ +85°C ±0.6 ±0.6 dB
vs. Supply 3.15 V to 3.45 V, 4.75 V to 5.25 V ±0.3 ±0.07 dB
Output 1 dB Compression Point 24.2 28.0 dBm
Output Third-Order Intercept ∆f = 1 MHz, P
OUT
= 10 dBm per tone 30.1 40.1 dBm
Noise Figure 5.6 6.8 dB
FREQUENCY = 748 MHz
Gain 16.5 17.5 dB
vs. Frequency ±20 MHz +0.0/−0.2 +0.0/−0.2 dB
vs. Temperature 40°C ≤ T
A
≤ +85°C ±0.4 ±0.4 dB
vs. Supply 3.15 V to 3.45 V, 4.75 V to 5.25 V ±0.2 ±0.06 dB
Output 1 dB Compression Point
24.2
28.0
dBm
Output Third-Order Intercept ∆f = 1 MHz, P
OUT
= 10 dBm per tone 36.0 45.8 dBm
Noise Figure 4.0 5.2 dB
FREQUENCY = 915 MHz
Gain
1
15.8 16.0 16.8 17.6 dB
vs. Frequency ±46 MHz ±0.1 +0.1/−0.3 dB
vs. Temperature 40°C ≤ T
A
≤ +85°C ±0.4 ±0.4 dB
vs. Supply 3.15 V to 3.45 V, 4.75 V to 5.25 V ±0.2 ±0.06 dB
Output 1 dB Compression Point 24.2 27.7 dBm
Output Third-Order Intercept ∆f = 1 MHz, P
OUT
= 10 dBm per tone 39.3 45.6 dBm
Noise Figure 4.1 5.1 dB
FREQUENCY = 1935 MHz
Gain 13.9 15.0 dB
vs. Frequency ±55 MHz +0.0/−0.1 +0.0/−0.1 dB
vs. Temperature 40°C ≤ T
A
≤ +85°C ±0.5 ±0.5 dB
vs. Supply 3.15 V to 3.45 V, 4.75 V to 5.25 V ±0.2 ±0.07 dB
Output 1 dB Compression Point 23.2 27.2 dBm
Output Third-Order Intercept ∆f = 1 MHz, P
OUT
= 10 dBm per tone 34.6 45.5 dBm
Noise Figure 3.1 3.6 dB
FREQUENCY = 2140 MHz
Gain
1
13.6 13.5 14.6 15.7 dB
vs. Frequency ±30 MHz +0.1/−0.0 ±0.1 dB
vs. Temperature 40°C T
A
≤ +85°C ±0.6 ±0.6 dB
vs. Supply 3.15 V to 3.45 V, 4.75 V to 5.25 V ±0.2 ±0.06 dB
Output 1 dB Compression Point 25.3 29.1 dBm
Output Third-Order Intercept
∆f = 1 MHz, POUT = 10 dBm per tone
34.4
43.1
dBm
Noise Figure 3.2 3.8 dB
ADL5324 Data Sheet
Rev. B | Page 4 of 20
3.3 V 5 V
Parameter Test Conditions/Comments Min Typ Max Min Typ Max Unit
FREQUENCY = 2630 MHz
Gain1 12.1 11.8 13.3 14.6 dB
vs. Frequency ±60 MHz ±0.1 +0.0/−0.2 dB
vs. Temperature 40°C ≤ T
A
≤ +85°C ±0.7 ±0.7 dB
vs. Supply 3.15 V to 3.45 V, 4.75 V to 5.25 V ±0.2 ±0.07 dB
Output 1 dB Compression Point 23.6 27.8 dBm
Output Third-Order Intercept ∆f = 1 MHz, P
OUT
= 10 dBm per tone 32.4 42.0 dBm
Noise Figure 3.6 4.3 dB
FREQUENCY = 3600 MHz
Gain 11.0 12.0 dB
vs. Frequency ±100 MHz +0.0/−0.7 +0.0/−0.8 dB
vs. Temperature
−40°C TA ≤ +85°C
±1.0
±1.0
dB
vs. Supply 3.15 V to 3.45 V, 4.75 V to 5.25 V ±0.2 ±0.05 dB
Output 1 dB Compression Point 25.0 28.5 dBm
Output Third-Order Intercept ∆f = 1 MHz, P
OUT
= 10 dBm per tone 29.3 36.6 dBm
Noise Figure 3.8 4.4 dB
POWER INTERFACE Pin RFOUT
Supply Voltage 3.15 3.3 3.45 4.75 5 5.25 V
Supply Current 62 133 mA
vs. Temperature 40°C ≤ T
A
+85°C +4/−6 +5/−7 mA
Power Dissipation VSUP = 5 V 205 665 mW
1 Guaranteed maximum and minimum specified limits on this parameter are based on six sigma calculations.
Data Sheet ADL5324
Rev. B | Page 5 of 20
TYPICAL SCATTERING PARAMETERS
VSUP = 5 V and TA = 25°C; the effects of the test fixture have been de-embedded up to the pins of the device.
Table 2.
Freq (MHz)
S11 S21 S12 S22
Magnitude (dB) Angle (°) Magnitude (dB) Angle (°) Magnitude (dB) Angle (°) Magnitude (dB) Angle (°)
400 0.73518 178.582 13.3917 135.7023 34.6804 12.40754 3.04567 175.7277
500 0.6682 178.6472 12.83594 125.9539 34.2707 8.733014 3.13245 175.9202
600 0.69026 176.9348 12.14674 117.8626 34.1019 6.416618 3.13132 176.4634
700 0.73622 175.8152 11.44082 111.0321 34.0009 5.053048 3.11375 177.3131
800
0.78026
175.0847
10.7709
105.1552
33.9042
3.90523
3.08891
178.3368
900 0.8238 174.5898 10.17296 99.91559 33.7964 3.162531 3.05337 179.4021
1000 0.8703 174.2026 9.636511 95.21821 33.6656 2.580227 3.01719 179.377
1100 0.9211 173.9872 9.182607 91.01039 33.5057 2.111382 2.98741 177.773
1200 0.97114 173.3143 8.797653 86.68882 33.3176 1.186726 2.94972 176.469
1300 1.05332 172.9788 8.493785 82.89921 33.0916 0.689198 2.9749 174.745
1400 1.13807 172.418 8.268673 79.01047 32.8261 0.26086 2.99624 173.189
1500 1.23342 171.5538 8.117951 74.96804 32.5253 1.43036 3.02533 171.783
1600 1.34406 170.302 8.030017 70.69309 32.1979 3.08241 3.04592 170.675
1700 1.47125 168.6736 7.998348 66.16438 31.8306 5.10232 3.05748 169.736
1800 1.61396 166.5204 8.012977 61.23666 31.4647 7.75224 3.08106 169.23
1900
1.78541
163.8113
8.0503
55.89288
31.0967
10.9203
3.12034
169.149
2000 1.98158 160.6247 8.103461 50.12853 30.7409 14.671 3.15588 169.657
2100 2.19535 157.0149 8.162658 43.95115 30.4109 19.0255 3.18172 170.862
2200 2.43367 153.0489 8.207579 37.39437 30.1134 23.849 3.19212 172.621
2300 2.68863 148.8413 8.231765 30.52801 29.872 29.1849 3.17831 174.879
2400 2.95983 144.5491 8.231791 23.39294 29.6822 35.0026 3.13204 177.553
2500 3.25472 140.354 8.199665 16.05117 29.5353 41.1796 3.05541 179.4875
2600 3.56594 136.4445 8.141897 8.510386 29.4496 47.7908 2.94631 176.2481
2700 3.90734 133.0736 8.052657 0.787456 29.4307 54.7743 2.79325 172.8794
2800 4.28173 130.4779 7.925075 7.06584 29.451 62.1914 2.57604 169.6831
2900 4.69306 128.952 7.778394 15.0835 29.5362 69.9289 2.31023 166.7304
3000 5.13012 128.7774 7.590076 23.2924 29.673 78.1809 2.00734 164.1571
3100 5.54712 130.3019 7.355608 31.6367 29.8658 86.8436 1.69231 162.0214
3200 5.86482 133.6487 7.062082 40.2413 30.1507 96.2073 1.37649 160.0906
3300 5.98131 138.5443 6.680613 48.9518 30.5191 106.08 1.0663 158.4485
3400 5.80159 144.0974 6.20792 57.556 30.9857 116.217 0.80053 157.172
3500 5.34159 149.2672 5.63213 65.9828 31.5373 126.686 0.58238 156.1642
3600
4.7127
153.2749
4.988874
73.9355
32.1461
137.413
0.41604
155.491
3700 4.03208 155.8906 4.279792 81.4065 32.7942 148.125 0.30331 155.1641
3800 3.37391 157.3335 3.543499 88.1911 33.4212 158.775 0.23714 155.0734
3900 2.79798 157.8681 2.803935 94.5028 33.9833 169.303 0.20674 155.156
4000 2.30194 157.7622 2.085365 100.344 34.3781 179.983 0.20598 155.3378
ADL5324 Data Sheet
Rev. B | Page 6 of 20
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Rating
Supply Voltage, VSUP 6.5 V
Input Power (50 Ω Impedance) 20 dBm
Internal Power Dissipation (Paddle Soldered) 1.9 W
Maximum Junction Temperature 150°C
Operating Temperature Range −40°C to +105°C
Storage Temperature Range −65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
Table 4 lists the junction-to-air thermal resistance (θJA) and the
junction-to-paddle thermal resistance (θJC) for the ADL5324.
Table 4. Thermal Resistance
Package Type θ
JA
1 θ
JC
2 Unit
3-Lead SOT-89 37 9 °C/W
1Measured on Analog Devices evaluation board. For more information about
board layout, see the Soldering Information and Recommended PCB Land
Pattern section.
2Based on simulation with JEDEC standard JESD51.
ESD CAUTION
Data Sheet ADL5324
Rev. B | Page 7 of 20
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
RFIN
GND
RFOUT
1
2
3
GND
ADL5324
TOP VIEW
(Not to Scale) (2)
10562-002
Figure 3. Pin Configuration
Table 5. Pin Function Descriptions
Pin No. Mnemonic Description
1 RFIN RF Input. This pin requires a dc blocking capacitor.
2 GND Ground. Connect this pin to a low impedance ground plane.
Note that the paddle, which is exposed, encompasses Pin 2 and the tab at the top side of the package. It should be
soldered to a low impedance ground plane for electrical grounding and thermal transfer.
3
RFOUT
RF Output and Supply Voltage. DC bias is provided to this pin through an inductor that is connected to the
external power supply. The RF path requires a dc blocking capacitor.
ADL5324 Data Sheet
Rev. B | Page 8 of 20
TYPICAL PERFORMANCE CHARACTERISTICS
50
0
869 884 900 915 930 946 961
NOISE FIGURE, GAIN, P1DB, OIP3 (dB, dBm)
FREQUENCY (MHz)
5
10
15
20
25
30
35
40
45 OIP3 (dBm)
P1d B ( dBm)
GAIN (d B)
NF ( dB)
10562-015
Figure 4. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,
869 MHz to 961 MHz
17.5
15.5
16.0
16.5
17.0
869 884 900 915 930 946 961
GAIN (d B)
FREQUENCY (MHz)
–40°C
+25°C
+85°C
10562-016
Figure 5. Gain vs. Frequency and Temperature, 869 MHz to 961 MHz
0
–10
–15
–5
–40
869 961
S-PARAMETERS (dB)
FREQUENCY (MHz)
–30
–35
–25
–20
884 900 915 930 946
S11
S12
S22
10562-017
Figure 6. Input Return Loss (S11), Output Return Loss (S22), and Reverse
Isolation (S12) vs. Frequency, 869 MHz to 961 MHz
–40°C
–40°C
35
25
869 884 900 915 930 946 961
P1d B ( dBm)
OIP3 (dBm)
FREQUENCY (MHz)
+25°C
+85°C
+85°C
30
32
34
36
38
40
42
44
46
48
50
26
27
28
29
30
31
32
33
34
+25°C
10562-018
Figure 7. OIP3 and P1dB vs. Frequency and Temperature,
869 MHz to 961 MHz
55
35–5 0 5 10 15 20
OIP3 (dBm)
POUT PER TONE ( dBm)
37
39
41
43
45
47
49
51
53
869MHz
915MHz
961MHz
10562-019
Figure 8. OIP3 vs. POUT and Frequency, 869 MHz to 961 MHz
7
3
869 961
NOISE FIGURE (dB)
FREQUENCY (MHz)
5
4
6
884 900 915 930 946
+85°C
+25°C
–40°C
10562-020
Figure 9. Noise Figure vs. Frequency and Temperature,
869 MHz to 961 MHz
Data Sheet ADL5324
Rev. B | Page 9 of 20
50
0
2110 2120 2130 2140 2150 2160 2170
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
FREQUENCY (MHz)
5
10
15
20
25
30
35
40
45 OIP3 (dBm)
P1d B ( dBm)
GAIN (d B)
NF ( dB)
10562-027
Figure 10. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,
2110 MHz to 2170 MHz
16.0
15.5
15.0
14.5
14.0
13.5
13.0
2110 2120 2130 2140 2150 2160 2170
GAIN (d B)
FREQUENCY (MHz)
10562-028
–40°C
+25°C
+85°C
Figure 11. Gain vs. Frequency and Temperature, 2110 MHz to 2170 MHz
0
–10
–15
–5
–40
2110 2170
S-PARAMETERS (dB)
FREQUENCY (MHz)
–30
–35
–25
–20
2120 2130 2140 2150 2160
S12
10562-029
S11
S22
Figure 12. Input Return Loss (S11), Output Return Loss (S22), and Reverse
Isolation (S12) vs. Frequency, 2110 MHz to 2170 MHz
–40°C
–40°C
35
25
2110 2120 2130 2140 2150 2160 2170
P1d B ( dBm)
OIP3 (dBm)
FREQUENCY (MHz)
+85°C
+85°C
28
30
32
34
36
38
40
42
44
46
48
26
27
28
29
30
31
32
33
34
10562-030
+25°C
+25°C
Figure 13. OIP3 and P1dB vs. Frequency and Temperature,
2110 MHz to 2170 MHz
10562-031
2110MHz
2140MHz
2170MHz
50
48
30
42
40
38
36
34
32
44
46
–5 0 5 10 15 20
OIP3 (dBm)
POUT PER TONE ( dBm)
Figure 14. OIP3 vs. POUT and Frequency, 2110 MHz to 2170 MHz
10562-032
6
5
2
2110 2170
NOISE FIGURE (dB)
FREQUENCY (MHz)
3
4
2120 2130 2140 2150 2160
–40°C
+25°C
+85°C
Figure 15. Noise Figure vs. Frequency and Temperature,
2110 MHz to 2170 MHz
ADL5324 Data Sheet
Rev. B | Page 10 of 20
10562-033
50
0
2570 2690
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
FREQUENCY (MHz)
5
10
15
20
25
30
35
40
45
2590 2610 2630 2650 2670
OIP3 (dBm)
P1d B ( dBm)
GAIN (d B)
NF ( dB)
Figure 16. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,
2570 MHz to 2690 MHz
14.5
14.0
13.5
13.0
12.5
12.0
11.5
2570 2590 2610 2630 2650 2670 2690
GAIN (d B)
FREQUENCY (MHz)
10562-034
–40°C
+25°C
+85°C
Figure 17. Gain vs. Frequency and Temperature, 2570 MHz to 2690 MHz
0
–10
–15
–5
–40
2570 2690
S-PARAMETERS (dB)
FREQUENCY (MHz)
–30
–35
–25
–20
2590 2610 2630 2650 2670
S12
10562-035
S11
S22
Figure 18. Input Return Loss (S11), Output Return Loss (S22), and Reverse
Isolation (S12) vs. Frequency, 2570 MHz to 2690 MHz
–40°C
–40°C
34
24
25
2570 2590 2610 2630 2650 2670 2690
P1d B ( dBm)
OIP3 (dBm)
FREQUENCY (MHz)
+85°C
+85°C
28
30
32
34
36
38
40
42
44
46
48
26
27
28
29
30
31
32
33
10562-036
+25°C
+25°C
Figure 19. OIP3 and P1dB vs. Frequency and Temperature,
2570 MHz to 2690 MHz
10562-037
2570MHz
2630MHz
2690MHz
50
48
30
42
40
38
36
34
32
44
46
–5 0 5 10 15 20
OIP3 (dBm)
POUT PER TONE ( dBm)
Figure 20. OIP3 vs. POUT and Frequency, 2570 MHz to 2690 MHz
10562-038
7
6
3
2570 2690
NOISE FIGURE (dB)
FREQUENCY (MHz)
4
5
2590 2610 2630 2650 2670
–40°C
+25°C
+85°C
Figure 21. Noise Figure vs. Frequency and Temperature,
2570 MHz to 2690 MHz
Data Sheet ADL5324
Rev. B | Page 11 of 20
10562-045
30
25
20
15
10
5
041.2 41.6 42.0 42.4 42.8 43.643.2 44.0 44.4 44.8
PERCE NTAGE ( %)
OIP3 (dBm)
Figure 22. OIP3 Distribution at 2140 MHz
10562-046
50
45
25
30
35
40
20
15
10
5
028.2 28.4 28.6 28.8 29.0 29.2 29.4 29.6 29.8 30.0
PERCE NTAGE ( %)
P1d B ( dBm)
Figure 23. P1dB Distribution at 2140 MHz
40
35
30
0
5
10
15
20
25
14.3 14.4 14.5 14.6 14.7 14.8 14.9 15.0 15.1 15.2
PERCE NTAGE ( %)
GAIN (d B)
10562-047
Figure 24. Gain Distribution at 2140 MHz
10562-048
25
20
15
10
5
03.45 3.50 3.55 3.60 3.65 3.70 3.75 3.853.80 3.90
PERCE NTAGE ( %)
NOISE FIGURE (dB)
Figure 25. Noise Figure Distribution at 2140 MHz
200
100
–40 –20 020 40 60 80
SUPP LY CURRENT (mA)
TEMPERATURE (°C)
10562-049
110
120
130
140
150
160
170
180
190
5V
4.75V
5.25V
Figure 26. Supply Current vs. Supply Voltage and Temperature, 5 V
(Using 2140 MHz Matching Components)
100
0
–40 –20 020 40 60 80
SUPP LY CURRENT (mA)
TEMPERATURE (°C)
10562-064
10
20
30
40
50
60
70
80
90
3.3V
3.15V
3.45V
Figure 27. Supply Current vs. Supply Voltage and Temperature, 3.3 V
(Using 2140 MHz Matching Components)
ADL5324 Data Sheet
Rev. B | Page 12 of 20
HIGH TEMPERATURE OPERATION
The ADL5324 has excellent performance at temperatures above 85°C. At 105°C, the gain and P1dB decrease by 0.2 dB, the OIP3 decreases by
0.1 dB, and the noise figure increases by 0.31 dB compared with the data at 85°C. Figure 28 through Figure 33 show the performance at 105°C.
12.0
12.5
13.0
13.5
GAIN (d B)
14.0
14.5
15.0
2110 2120 2130 2140
FREQUENCY (MHz)
2150 2160 2170
25°C
85°C
105°C
10562-134
Figure 28. Gain vs. Frequency and Temperature, 5 V Supply, 2140 MHz
23
28
33
38
43
48
23
25
27
29
31
33
2110 2120 2130 2140 2150 2160 2170
OIP3 (dBm)
P1d B ( dBm)
25°C
85°C
105°C
FREQUENCY (MHz)
OIP3
P1dB
10562-135
Figure 29. OIP3 and P1dB vs. Frequency and Temperature,
5 V Supply, 2140 MHz
2
3
4
5
6
2110 2120 2130 2140
FREQUENCY (MHz)
NOISE FIGURE (dB)
2150 2160 2170
25°C
85°C
105°C
10562-136
Figure 30. Noise Figure vs. Frequency and Temperature, 5 V Supply,
2140 MHz
GAIN (d B)
2110 2120 2130 2140
FREQUENCY (MHz)
2150 2160 2170
25°C
85°C
105°C
10562-137
12.0
12.5
13.0
13.5
14.0
14.5
15.0
Figure 31. Gain vs. Frequency and Temperature, 3.3 V Supply, 2140 MHz
23
28
33
38
43
48
23
25
27
29
31
33
2110 2120 2130 2140 2150 2160 2170
OIP3 (dBm)
P1d B ( dBm)
25°C
85°C
105°C
FREQUENCY (MHz)
OIP3
P1dB
10562-138
Figure 32. OIP3 and P1dB vs. Frequency and Temperature, 3.3 V Supply,
2140 MHz
2
3
4
5
6
2110 2120 2130 2140
FREQUENCY (MHz)
NOISE FIGURE (dB)
2150 2160 2170
25°C
85°C
105°C
10562-139
Figure 33. Noise Figure vs. Frequency and Temperature, 3.3 V Supply,
2140 MHz
Data Sheet ADL5324
Rev. B | Page 13 of 20
APPLICATIONS INFORMATION
BASIC LAYOUT CONNECTIONS
The basic connections for operating the ADL5324 are shown
in Figure 34. Table 6 lists the required matching components.
Capacitors C1, C2, and C3 are Murata GRM615 series (0402
size) High Q capacitors and C7 is a Murata GRM155 series
(0402 size). Inductor L1 is a Coilcraft 0603CS series (0603 size).
For all frequency bands, the placement of C1 and C2 are critical.
The placement of C3 becomes critical for the following bands:
1880 MHz to 1990 MHz, 2110 MHz to 2170 MHz, 2300 MHz to
2400 MHz, 2570 MHz to 2690 MHz. and 3500 MHz to 3600 MHz.
For operation from 420 MHz to 494 MHz, 728 MHz to 768 MHz,
and 869 MHz to 960 MHz, R2 is replaced with a Coilcraft (0402
size) High Q inductor. Table 7 lists the recommended component
placement for various frequencies.
A 5 V dc bias is supplied through L1, which is connected to
RFOUT (Pin 3). In addition to C4, 10 nF and 10 µF power supply
decoupling capacitors are also required. The typical current
consumption for the ADL5324 is 133 mA.
RFIN
GND
GND
RFOUT
12
(2)
3
ADL5324
C6 10µF
C5 10nF
C4 100pF
L1
15nH
VSUP
GND
RFIN C7
20pF
C2
3
2.2pF
RFOUT
C1
3
2pF
C3
3
2.4pF λ1
2
λ2
2
1
SEE THE RECOMME NDE D COMPONENT S FO R BAS IC CONNE CTIONS TABLE
FOR FRE QUENCY-SPECI F I C COMPONENTS.
2
SEE TABLE 6 FOR RE COMME NDE D COMPONENT SPACING.
3
C1, C2, AND C3 ARE MURATA HI GH Q CAPACITORS G RM 615 S E RIES .
R1
0Ω R2
0Ω
10562-050
Figure 34. Basic Connections
SOLDERING INFORMATION AND RECOMMENDED
PCB LAND PATTERN
Figure 35 shows the recommended land pattern for the ADL5324.
To minimize thermal impedance, the exposed paddle on the
SOT-89 package underside is soldered to a ground plane along
with Pin 2. If multiple ground layers exist, they should be
stitched together using vias. For more information on land
pattern design and layout, refer to the Application Note AN-772,
A Design and Manufacturing Guide for the Lead Frame Chip
Scale Package (LFCSP).
This land pattern, on the ADL5324 evaluation board, provides
a measured thermal resistance (θJA) of 37°C/W. To measure θJA,
the temperature at the top of the SOT-89 package is found with
an IR temperature gun. Thermal simulation suggests a junction
temperature 10°C higher than the top of package temperature.
With additional ambient temperature and I/O power
measurements, θJA could be determined.
0.86mm
10562-051
5.56mm 0.20mm
1.80mm
1.27mm
0.62mm
3.48mm
1.50mm 3.00mm
Figure 35. Recommended Land Pattern
ADL5324 Data Sheet
Rev. B | Page 14 of 20
Table 6. Recommended Components for Basic Connections
Function/
Component
420 MHz to
494 MHz
728 MHz to
768 MHz
800 MHz to
960 MHz
1880 MHz to
1990 MHz
2110 MHz to
2170 MHz
(Default)
2300 MHz to
2400 MHz
2560 MHz to
2690 MHz
3500 MHz to
3700 MHz
AC Coupling
Capacitors
C3 = 0402 10 pF 10pF1 10 pF1 2.4 pF1 2.4 pF1 2.4 pF1 2pF1 1pF1
C7 = 0402 20 pF 20 pF 20 pF 20 pF 20 pF 20 pF 20 pF1 20 pF
Power Supply
Bypassing
Capacitors
C4 = 0402 100 pF 100 pF 100 pF 100 pF 100 pF 100 pF 100 pF 100 pF
C5 = 0603 10 nF 10 nF 10 nF 10 nF 10 nF 10 nF 10 nF 10 nF
C6 = 1206 10 µF 10 µF 10 µF 10 µF 10 µF 10 µF 10 µF 10 µF
DC Bias Inductor
120 nH
18 nH
18 nH
15 nH
15 nH
15 nH
15 nH
15 nH
L1 = 0603CS
Tuning
Capacitors
C1 = 0402 20 pF1 8 pF1 8 pF1 2.4 pF1 2.0 pF1 1.5 pF1 1.0 pF1 0.5 pF1
C2 = 0402 6.2 pF1 3.9 pF1 3.6 pF1 2.4 pF1 2.2 pF1 2.0 pF1 2.0 pF1 0.75 pF1
Jumpers
R1 = 0402 2 Ω 2 Ω 2 Ω 0 Ω 0 Ω 0 Ω 0 Ω 0 Ω
R2 = 0402 5.6 nH2 2.4 nH3 2.4 nH3 0 Ω 0 Ω 0 Ω 0 Ω 4.7 nH3
Power Supply
Connections
VSUP Red test loop
GND Black test loop
1 Murata High Q capacitor.
2 Add a 1.6 nH at input (see Figure 41).
3 Coilcraft 0402CS series.
Table 7. Matching Component Spacing
Frequency (MHz) λ1 (mils) λ2 (mils)
420 to 494 419 438
728 to 768 311 422
869 to 961 207 413
1880 to 1990
75
239
2110 to 2170
65
193
2300 to 2400 71 176
2570 to 2690 245 132
3500 to 3700 316 125
Data Sheet ADL5324
Rev. B | Page 15 of 20
MATCHING PROCEDURE
The ADL5324 is designed to achieve excellent gain and OIP3
performance. To achieve this, both input and output matching
networks must present specific impedance to the device. The
matching components listed in Table 6 were chosen to provide
−10 dB input return loss while maximizing OIP3.
The load-pull plots (see Figure 36 and Figure 37) show the load
impedance points on the Smith chart where optimum OIP3, gain,
and output power can be achieved. These load impedance values
(that is, the impedance that the device sees when looking into
the output matching network) are listed in Table 8 and Table 9
for maximum gain and maximum OIP3, respectively. The contours
show how each parameter degrades as it is moved away from
the optimum point.
From the data shown in Table 8 and Table 9, it becomes clear that
maximum gain and maximum OIP3 do not occur at the same
impedance. This can also be seen on the load-pull contours in
Figure 36 and Figure 37. Thus, output matching generally involves
compromising between gain and OIP3. In addition, the load-
pull plots demonstrate that the quality of the output impedance
match must be compromised to optimize gain and/or OIP3. In
most applications where line lengths are short and where the
next device in the signal chain presents a low input return loss,
compromising on the output match is acceptable.
To adjust the output match for operation at a different frequency,
or if a different trade-off between OIP3, gain, and output
impedance is desired, a four-step procedure is recommended.
For example, to optimize the ADL5324 for optimum OIP3 and
gain at 750 MHz, use the following steps:
1. Install the recommended tuning components for an 869 MHz
to 970 MHz tuning band, but do not install C1 and C2.
2. Connect the evaluation board to a vector network analyzer
so that input and output return loss can be viewed
simultaneously.
3. Starting with the recommended values and positions for
C1 and C2, adjust the positions of these capacitors along the
transmission line until the return loss and gain are acceptable.
In this case, push-down capacitors mounted on small sticks
can be used as an alternative to soldering. If moving the
component positions does not yield satisfactory results,
then increase or decrease the values of C1 and C2 (in this
case, the values are most likely increased because the user
is tuning for a lower frequency.
4. Repeat Step 3 as necessary. Once the desired gain and return
loss are realized, measure OIP3. Most likely, it will be
necessary to go back and forth between return loss/gain and
OIP3 measurements (probably compromising most on output
return loss) until an acceptable compromise is achieved.
10562-053
Fixed Load Pull
Freq = 2. 1400 G Hz
ZSource_2nd (Ohms) : 50.00 + j 0. 00
ZSource_3rd (O hms) : 50.00 + j 0. 00
Gt max = 16.06 dB
at 2. 97 – j 2.70 Ohm s
10 contour s, 0.50 dB step
(11. 50 t o 16. 00 dB)
Ip3 max = 44.18 dBm
at 9. 44 + j 9.65 O hms
10 contour s, 1.00 dBm step
(35. 00 t o 44. 00 dBm)
Specs: OFF
Load
Label:
ADL5324_2P14_LP7
Figure 36. Load-Pull Contours, 2140 MHz
10562-054
Fixed Load Pull
Freq = 2. 6300 G Hz
ZSource (Ohm s) : 49. 84 + j 4.33
ZSource_2nd ( O hm s) : 37. 79 + j 3.28
ZSource_3rd (O hms) : 39.74 + j 10. 00
Gt max = 13.83 dB
at 4. 27 – j 1.99 Ohm s
10 contour s, 0.50 dB step
(9. 00 t o 13. 50 dB)
Ip3 max = 45.19 dBm
at 2. 84 + j 5.89 O hms
10 contour s, 1.00 dBm step
(36. 00 t o 45. 00 dBm)
Specs: OFF
Load
Label:
ADL5324_2p63ghZ_LP3
26.37 + j30.90
Figure 37. Load-Pull Contours, 2600 MHz
Table 8. Load Conditions for GainMAX
Frequency (MHz)
ΓLoad
(Magnitude) ΓLoad (°) Gain
MAX
(dB)
2140 0.888 −173.55 16.1
2630 0.0843 −175.41 13.83
Table 9. Load Conditions for OIP3 MAX
Frequency (MHz)
ΓLoad
(Magnitude) ΓLoad (°) IP3
MAX
(dBm)
2140 0.654 +163.28 44.18
2630
0.894
+166.52
45.19
ADL5324 Data Sheet
Rev. B | Page 16 of 20
W-CDMA ACPR PERFORMANCE
Figure 38 shows a plot of adjacent channel power ratio (ACPR) vs.
POUT for the ADL5324. The signal type used is a single W-CDMA
carrier (Test Model 1-64) at 2140 MHz. This signal is generated
by a very low ACPR source. ACPR is measured at the output by
a high dynamic range spectrum analyzer, which incorporates an
instrument noise correction function.
The ADL5324 achieves an ACPR of −79 dBc at 0 dBm output,
at which point device noise and not distortion is beginning to
dominate the power in the adjacent channels. At an output power
of 10 dBm, ACPR is still very low at −72 dBc, making the device
particularly suitable for PA driver applications.
10562–155
–85
–80
–75
–70
–65
–60
–55
–50
–45
–40
–35
–30
–20 –15 –10 –5 0 5 10 15 20 25
ACPR @ 5MHz CARRIER OFFSET (d Bc)
POUT (d Bm)
SOURCE
VCC =3.3V
VCC = 5V
Figure 38. ACPR vs. Output Power, Single Carrier W-CDMA,
TM1-64, at 2140 MHz
Data Sheet ADL5324
Rev. B | Page 17 of 20
EVALUATION BOARD
The schematic of the ADL5324 evaluation board is shown in
Figure 39. This evaluation board uses 25 mil wide traces and is
made from FR4 material. The evaluation board comes tuned for
operation in the 2110 MHz to 2170 MHz tuning band. Tuning
options for other frequency bands are also provided in Table 10.
The recommended placement for these components is provided
in Table 11. The inputs and outputs should be ac-coupled with
appropriately sized capacitors. dc bias is provided to the amplifier
via an inductor connected to the RFOUT pin. A bias voltage of
5 V is recommended.
RFIN
GND
GND
RFOUT
12
(2)
3
ADL5324
C6 10µF
C5 10nF
C4 100pF
L1
15nH
VSUP
GND
RFIN C7
20pF
C2
3
2.2pF
RFOUT
C3
1
2.4pF
C1
2
2pF
λ1
4
λ2
4
1
MURAT A HIGH Q CAPACI TOR GRM615CO G2R4B50 O R E QUIV ALENT .
2
MURAT A HIGH Q CAPACI TOR GRM615CO G020B50 O R E QUIV ALENT .
3
MURAT A HIGH Q CAPACI TOR GRM615CO G2R2B50 O R E QUIV ALENT .
4
SEE TABLE 10 FOR RE COMME NDE D COMPONENT SPACING.
R1
0Ω R2
0Ω
10562-056
Figure 39. Evaluation Board, 2110 MHz to 2170 MHz
R2
0
R1
0Ω
C3
2.4pF
100pF
L1
15nH
C7
20pF
C2
2.2pF
193mils
65mils
C1
2pF
10562-057
Figure 40. Evaluation Board Layout and Default Component Placement for
2110 MHz to 2170 MHz
Table 10. Recommended Components for Basic Connections
Function/
Component
420 MHz to
494 MHz
728 MHz to
768 MHz
800 MHz to
960 MHz
1880 MHz to
1990 MHz
2110 MHz to
2170 MHz
(Default)
2300 MHz to
2400 MHz
2560 MHz to
2690 MHz
3500 MHz to
3700 MHz
AC Coupling
Capacitors
C3 = 0402 10 pF 10pF1 10 pF 2.4 pF1 2.4 pF1 2.4 pF1 2pF1 1pF1
C7 = 0402 20 pF 20 pF 20 pF 20 pF 20 pF 20 pF 20 pF1 20 pF
Power Supply
Bypassing
Capacitors
C4 = 0402 100 pF 100 pF 100 pF 100 pF 100 pF 100 pF 100 pF 100 pF
C5 = 0603 10 nF 10 nF 10 nF 10 nF 10 nF 10 nF 10 nF 10 nF
C6 = 1206 10 µF 10 µF 10 µF 10 µF 10 µF 10 µF 10 µF 10 µF
DC Bias Inductor 120 nH 18 nH 18 nH 15 nH 15 nH 15 nH 15 nH 15 nH
L1 = 0603CS
Tuning Capacitors
C1 = 0402 20 pF1 8 pF1 8 pF1 2.4 pF1 2.0 pF1 1.5 pF1 1.0 pF1 0.5 pF1
C2 = 0402 6.2 pF1 3.9 pF1 3.6 pF1 2.4 pF1 2.2 pF1 2.0 pF1 2.0 pF1 0.75 pF1
Jumpers
R1 = 0402 2 Ω 2 Ω 2 Ω 0 Ω 0 Ω 0 Ω 0 Ω 0 Ω
R2 = 0402 5.6 nH
2
2.4 nH
3
2.4 nH
3
0 Ω 0 Ω 0 Ω 0 Ω 4.7 nH
3
Power Supply
Connections
VSUP
Red test loop
GND
Black test loop
1 Murata High Q capacitor.
2 Add a 1.6 nH at input (see Figure 41).
3 Coilcraft 0402CS series.
ADL5324 Data Sheet
Rev. B | Page 18 of 20
Table 11. Recommended Component Spacing on Evaluation Board
Frequency (MHz) λ1 (mils) λ2 (mils)
420 to 494 419 438
728 to 768 311 422
869 to 961 207 413
1880 to 1990 75 239
2110 to 2170 65 193
2300 to 2400 71 176
2570 to 2690 245 132
3500 to 3700 316 125
438 mils
C7
20pF
C2
6.2pF
L2
5.6nH
R1
2Ω
100 pF
248 mils
C3
10pF
C1
20pF L1
120nH
311 mils
L3
1.6nH
419 mils
10562-042
Figure 41. Evaluation Board Layout and Component Placement,
420 MHz to 494 MHz Operation
422 mils
C7
20pF
C2
3.9pF
L2
2.4nH
R1
2Ω
100pF
C3
10pF
C1
8pF L1
18nH
311 mils
10562-043
Figure 42. Evaluation Board Layout and Component Placement,
728 MHz to 768 MHz Operation
413mils
100pF
C3
10pF C1
8pF 207mils
R1
2Ω
L1
18nH C7
20pF
C2
3.6pF
L2
2.4nH
10562-060
Figure 43. Evaluation Board Layout and Component Placement,
869 MHz to 961 MHz Operation
10562-061
239milsC7
20pF
C2
2.4pF
R2
0
R1
0
100pF
75mils
C3
2.4pF
C1
2.4pF
L1
15nH
Figure 44. Evaluation Board Layout and Component Placement,
1880 MHz to 1990 MHz Operation
Data Sheet ADL5324
Rev. B | Page 19 of 20
176mils
100pF
R1
0Ω
C3
2.4pF
71mils
C1
1.5pF
L1
15nH
C7
20pF
R2
0Ω
C2
2.0pF
10562-062
Figure 45. Evaluation Board Layout and Component Placement,
2300 MHz to 2400 MHz Operation
132mils
100pF
245mils
R1
0Ω C1
1.0pF
C3
2.0pF
R2
0Ω
C7
20pF
C2
2.0pF
L1
15nH
10562-063
Figure 46. Evaluation Board Layout and Component Placement,
2560 MHz to 2690 MHz Operation
125 mils
C7
20pF
C2
0.75pF
L2
4.7nH
R1
0Ω
100pF
C3
1.0pF
C1
0.5pF L1
15nH
316 mils
10562-148
Figure 47. Evaluation Board Layout and Component Placement,
3500 MHz to 3700 MHz Operation
ADL5324 Data Sheet
Rev. B | Page 20 of 20
OUTLINE DIMENSIONS
*COMPLIANT TO JEDEC STANDARDS TO-243 WITH THE
EXCEPTION OF DIMENSIONS INDICATED BY AN ASTERISK.
4.25
3.94
4.60
4.40
*1.75
1.55
1.50 TYP
3.00 TYP
END VIEW
2.60
2.30
1.20
0.75
1 2
(2)
3
2.29
2.14
*0.56
0.36 *0.52
0.32
1.60
1.40
0.44
0.35
12-18-2008-B
Figure 48. 3-Lead Small Outline Transistor Package [SOT-89]
(RK-3)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
ADL5324ARKZ-R7 −40°C to +105°C 3-Lead SOT-89, 7“ Tape and Reel RK-3
ADL5324-EVALZ Evaluation Board
1 Z = RoHS Compliant Part.
©2012 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D10562-0-9/12(B)
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Analog Devices Inc.:
ADL5324ARKZ-R7 ADL5324-EVALZ