TT OPTOELECTRONICS INFRARED EMITTERS MAX. [PEAK EMISSION| RISE Ve@ | WAVELENGTH MAX.| MAX. Ig tp =100mAIIf= 100mATYP. n. METERS I TYP. n. SEC.ITYP. n. SEC.) mW LEDSSC LEDS5B DETECTORS PHOTO TRANSISTORS SENSITIVITY (ma/mw/cm?) | BVcEQ| BVaco | Ip (nA) SWITCHING TYP. GE TYPE MIN. . MAX. | t, (uSEC.) te (uSEC.) 14G1 L14G2 L14G3 L14H1 L14H2 L14H3 L14H4 PHOTO DARLINGTONS 2N5777 2N5778 2N5779 2N5780 L14F1 L14F2 PHOTO SWITCHES Tye. CE(SAT) IRRADIANCE TO TRIGGER BLOCKING GE TYPE PAGE NO. (mw/em?) VOLTAGE L8 ok : 10 Lg 42 PHOTO TRANSISTOR OUTPUT ISOLATION CURRENT GE TYPE VOLTAGE (V,,) | TRANSFER . MIN. RATIO MIN. H11A1 2500 H11A2 1500 Hi1A3 2500 H11A4 1500 H11A5 1500 H11A520 5656 H11A550 5656 H11A5100 5656 H15A1 4000 Vems H15A2 4000 Vems 4N25 2500 4N25A 1775 Vams 4N26 1500 4N27 1500 4N28 500 4N35 2500 Vemus 4N36 1750 Vams 4N37 1050 Vams H74A1 1500 128 TYPICAL (uSEC.) TR UOUAAWWWWWWWNYNDN ~porpmnwryn Te AMAWWWWHRWWNHNN prmNnn VceE(saT) MAX.Light Detector planar silicon Photo-Darlington Amplifier Cd Go) Gd L14F1-114F2 The General Electric LI4F1 and L14F2 are supersensitive NPN Planar Silicon Photodarlington Amplifiers. For many applications, only the collector and emitter leads are used; however, a base lead is provided to control sensitivity and the gain of the device. The LI4F1 L14F2 are a TO-18 Style hermeti- cally sealed packages with lens cap and are designed to be used in opto- electronic sensing applications requiring very high sensitivity. absolute maximum ratings: (25C) ( unless otherwise specified) VOLTAGES DARK CHARACTERISTICS Collector to Emitter Voltage Collector to Base Voltage Emitter to Base Voltage CURRENTS Light Current DISSIPATIONS Power Dissipation (T, = 25C)* Power Dissipation (Te = 25C)** TEMPERATURES Junction Temperature Storage Temperature *Derate 2.4 mW/C above 258C ambient. **Derate 4.8 mW/C above 25 C case. VcEo Vcso VEBO 25 25 12 200 300 600 150 -65 to 150 volts volts volts mA mW mW C electrical characteristics: (25C) (unless otherwise specified) STATIC CHARACTERISTICS LIGHT CURRENT (Vor = 5V, Ht = 0.2 mW/cm?) DARK CURRENT (Vcr = 12V, Ip = 0) EMITTER-BASE BREAKDOWN VOLTAGE (Ig = 100 wA) COLLECTOR-BASE BREAKDOWN VOLTAGE (Ic = 100 WA) COLLECTOR-EMITTER BREAKDOWN VOLTAGE (Ic = 10 mA) IL Ip V(BR)EBO VeBr)cBo VBr)CEO SWITCHING CHARACTERISTICS (see Switching Circuit) SWITCHING SPEEDS (Vec = 10V, IL = 10 mA, Ry = 100 Q) DELAY TIME RISE TIME STORAGE TIME FALL TIME NOTE 1 LEAD DIAMETER IS CONTROL- LED IN THE ZONE BETWEEN 150 AND .250 FROM THE SEATING PLANE. BETWEEN .250 AND END OF LEAD A MAX, OF .021 1S HELO. NOTE 2. pees HAVING MAX . DIAMETER OFS) MEASURED IN GAGING PLANE .054+.001-.000 BELOW THE SEATING PLANE OF THE DEVICE SHALL BE WITHIN .0O7 OF TRUE POSI TION RELATIVE TOMAX. WITH TAB, NOTE 3. MEASUREO FROM MAX. Di METER OF THE ACTUAL, DEVICE ALL DIMEN. IN INCHES AND ARE REFERENCE UNLESS TOLERANCED, L14F1 L14F2 MIN. MAX. MIN. MAX 3 1 - 100 - 100 12 - 12 - 25 25 - 25 ~ 25 ~ _ 50 - 50 300 ~ 300 _ 10 - 10 250 250 TH = Radiation Flux Density. Radiation source is an unfiltered tungsten filament bulb at 2870K color temperature. NOTE: The 2870K radiation is 25% effective on the photoes i.e., a GaAs source of 0.05 mW/cm?2 is equivalent to this 0.2 mW/cm2 tungsten source, psec psec usec usecL14F1-L14F2 | TYPICAL ELECTRICAL CHARACTERISTICS 100 10 5.0 mW 8 - 6 2 5 2.0 ra 4 F 3? & . 3 10 5 (1.0 kK 3 8 x 6 3 w 5 Zz 44 a q N mw 2 z . 2 1.0 9 9. Voce 2 SV S 66 H. = .2mW/cm2 05 S 04 a NORMALIZED TO: 2 Voe = 5V 2 .02 H = .2mW/cm2 M5 5 10 15 20 25 30 35 O55 -25 25 50 75 100 125 Vee - COLLECTOR TO EMITTER - VOLTS T - TEMPERATURE -C 1. LIGHT CURRENT VS. COLLECTOR 2. RELATIVE LIGHT CURRENT VS. TO EMITTER VOLTAGE AMBIENT TEMPERATURE 10 110 0.9 100 % 0.8 90 B o7 B 80 Ww Da a E 70 0.6 a Z = 60 k 0.5 < @ 50 w 0.4 - w < 40 = 0.3 w EO = 30 i i 0,2 20 O.t 10 200 500 600 700 800 900 1000 1100 1200 290 -70 -50 -30 -10 10 30 0 70 90 \~ WAVELENGTH - NANOMETERS DEGREES 3. SPECTRAL RESPONSE CURVE 4. ANGULAR RESPONSE Vec LI4F INPUT Lepse\ YW LED ; 2 1} 3 R. OUTPUT {_, 5. TEST CIRCUIT LOAD RESISTANCE 102 NORMALIZED TO: R, = 1000 IL = 10mA Jineur PULSE l ton = ta + tr torr = ts + te TL LIGHT CURRENT - mA 6. WAVE FORMS Vee = IOV o.l 0.0t {00 Ou 1.0 10 RELATIVE SWITCHING SPEED tat te + tg + te 7. LIGHT CURRENT VS. RELATIVE SWITCHING SPEED 1336