Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw1
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise
customers to obtain the latest version of relevant information to verify before placing orders.
6-Channel DC/DC Converter Control IC
Supports for Synchronous Rectification
(CH1, CH2, and CH5)
Supports for Down or Up-Down Zeta Conversions
(CH1 and APW7095 CH2)
Supports for Up, Flyback, or Up-Down SEPIC
Conversions (APW7095A CH2, CH3, APW7095
CH4, CH5, and CH6)
Supports for Inverting Conversion
(APW7095A CH4)
Low Start-up Voltage : 1.4V (CH6)
Power Supply Voltage Range
- CH1 to CH5 : 3.0V to 6.5V
- CH6 : 2.4V to 6.5V
1% Reference Voltage Accuracy
Wide Operating Frequency 100kHz to 1MHz
Soft-Start Function (CH1 to 6)
Power Good (PGOOD) Indicator for CH1
Low Shutdown Current
Output Short-Circuit Detections
Lead Free and Green Devices Available
(RoHS Compliant)
The APW7095/A is a 6-channel, frequency-settable, volt-
age-mode, DC/DC control IC providing a complete power
supply solution for high-performance portable digital
cameras. The APW7095/A uses pulse-width-modulation
(PWM) and synchronous rectification for high efficiency
step-up, step-down, up-down, and inverting converters
with free input and output settings in 2 or 4-cell AA, 1-cell
lithium-ion (Li+), and dual-battery designs. The APW7095/
A incorporates error amplifiers, output short-circuit
detection, under-voltage lockout, soft-start, and output
switch control into a chip. The AP7095/A improves
performance, component count, and size compared to
conventional multi-channel controllers.
The APW7095/A has a power-good indicator (PGOOD)
that signals when CH1 output is within ±10% of the set
voltage by monitoring IN1 pin.
The APW7095/A is available in compact 48-pin plastic
LQFP and TQFN packages.
FeaturesGeneral Description
Applications
Digital Camera
Camcorder
Hand-Held Instrument
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw2
APW7095/A Package Code
QD : LQFP7x7-48 QB : TQFN7x7-48
Operating Ambient Temperature Range
E : -30 to 85 C
Handling Code
TB : Tape & Box TR : Tape & Reel
Assembly Material
L : Lead Free Device G : Halogen and Lead Free Device
°
Handling Code
Temperature Range
Package Code
XXXXX - Date Code
APW7095 QD/QB : APW7095
XXXXX
APW7095A QD/QB : APW7095A
XXXXX XXXXX - Date Code
Assembly Material
Ordering and Marking Information
Pin Configuration
35
34
33
32
31
30
29
28
27
26
25
48
47
46
45
44
43
42
41
40
39
38
37
13
14
15
16
17
18
19
20
21
22
23
24
APW7095/A
1
2
3
4
5
6
7
8
9
10
11
12
36 SWOUT
CIN6
OUT1-1
OUT1-2
OUT2-1
OUT2-2
OUT3
PVCC
OUT4
PGND
OUT5-1
OUT5-2
OUT6
PGOOD
FB2
DTC2
IN1
FB1
DTC1
RT
CT
VB
IN3
FB3
DTC3
IN2
CTL5
CTL4
CTL3
CTL1,2
CTL
VCC
CSCP
GND
VREF
CS
DTC4
INS4
SWIN
FB6
IN6
DTC5
FB5
IN5
INA4
OUTA4
FB4
IN4
IC APW7095 APW7095A
CH1
Synchronous
Step-down Synchronous
Step-down
CH2
Synchronous
Up-down Synchronous
Step-up
CH3
Step-up Step-up
CH4
Step-up Inverting
CH5
Synchronous
Step-up Synchronous
Step-up
CH6
Step-up Step-up
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for
MSL classification at lead-free peak reflow temperature. ANPEC defines Green to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw3
Absolute Maximum Ratings
Symbol
Parameter Rating Unit
VCC VCC Supply Voltage (VCC to GND) -0.3 ~ 7 V
VPVCC PVCC Supply Voltage (PVCC to GND) -0.3 ~ 7 V
IN1~6, INA4, INS4, DTC1~5 Input Voltages -0.3 ~ VCC+0.3 V
CTL, CTL1~5, SWIN Input Voltages -0.3 ~ 7 V
PGOOD Pull High Voltage -0.3 ~ 7 V
Maximum Junction Temperature 150 oC
TSTG Storage Temperature -65 ~ 150 oC
TSDR Maximum Lead Soldering Temperature, 10 Seconds 260 oC
Thermal Characteristics
Symbol
Parameter Typical Value Unit
θJA Junction-to-Ambient Resistance in Free Air
48-pin Plastic LQFP
TQFN
80 oC/W
Recommended Operating Conditions
APW7095/A
Symbol
Parameter Conditions Min.
Typ.
Max.
Unit
VCC Start-up Power Supply Voltage CH6 1.4
- 6.5 V
CH6 2.4
5.0
6.5
VCC Operating Voltage CH1 to CH5 3.0
5.0
6.5 V
IREF Reference Voltage Output Current VREF Pin -1 - 0 mA
IB VB Output Current VB Pin -0.5
- 0 mA
IN1 to IN5, INA4, INS4 Pins 0 - VCC
VIN Input Voltage IN6 Pin 0 - VCC V
VCTL Control Voltage CTL Pin 0 - 6.5 V
OUT Pin (CH1 to CH5) - 2 15
OUT Pin (CH6) - 2 15
IO Output Current
SWOUT Pin - 1 4
mA
FOSC Oscillator Frequency 100
500
1000
kHz
CT Timing Capacitor 47
100
560 pF
RT Timing Resistor 8.2
18
100 k
CS CH1 to CH5 - 0.027
1.0
CCIN6 Soft-Start Capacitor CH6 - 0.47
1.0 µF
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw4
APW7095/A
Symbol
Parameter Conditions Min.
Typ.
Max.
Unit
CSCP Short Detection Capacitor - 0.1
1.0 µF
CVB VB Pin Capacitor 0.082
0.1
- µF
TA Operating Ambient Temperature -30
25
85 oC
Electrical Characteristics
APW7095/A
Symbol
Parameter Test Conditions Min. Typ. Max. Unit
ICCS VCC Standby Current CTL = 0V - - 10
IPVCC PVCC Standby Current CTL = 0V - - 10 µA
ICC VCC Nominal Supply Current CTL, CTL1 to CTL5 = 5V - 1.8 5 mA
UNDER VOLTAGE LOCKOUT
VTH Threshold Voltage Rising VCC 2.5 2.7 2.9
VH Hysteresis Width - 0.2 -
VRST
CH1 to
CH5 Reset Voltage Falling VCC 1.2 1.3 1.4
VTH CH6 Threshold Voltage Rising VCC 1.25 1.4 1.55
V
REFERENCE VOLTAGE
VREF Reference Voltage IREF = 0mA 2.46 2.49 2.51 V
VREF/
VREF Output Voltage Temperature
Stability TA = -30°C to 85°C - 0.5 - %
Line Input Stability VCC = 3.0V to 6.5V -10 - 10 mV
Load Load Stability IREF = 0mA to 1mA -10 - 10 mV
IOS Short-Circuit Output Current VREF = 2V -25 -18 -1 mA
SOFT-START
VSTB Input Standby Voltage - 50 100 mV
ICS Soft-Start Charge Current -1.4 -1.0 -0.6 µA
SHORT-CIRCUIT DETECTION
VTH Threshold Voltage 0.65 0.70 0.75 V
VSTB Input Standby Voltage - 50 100 mV
VI Input Latch Voltage - 50 100 mV
ICSCP Input Source Current -1.4 -1.0 -0.6 µA
TRIANGULAR WAVE OSCILLATOR
fOSC Oscillator Frequency CT=100pF, RT=18k,VB=2V 450 500 550 kHz
f/fdv Frequency Stability for Voltage VCC = 3V to 6.5V - 1 10 %
f/fdt Frequency Stability for Temperature TA = -30°C to 85°C - 1 - %
ERROR AMPLIFIER (CH1 to CH5)
VTH Threshold Voltage FB = 1.45V 1.23 1.25 1.27 V
VT/
VT VT Temperature Stability TA = -30°C to 85°C - 0.5 - %
Refer to the typical application circuit. These specifications apply over, VCC = 5V and TA = -30 to 85°C, unless
otherwise specified. Typical values refer to TA = 25°C.
Recommended Operating Conditions (Cont.)
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw5
Electrical Characteristics (Cont.)
APW7095/A
Symbol Parameter Test Conditions Min. Typ. Max. Unit
ERROR AMPLIFIER (CH1 to CH5) (Cont.)
IB Input Bias Current IN = 0V (CH1 to CH5) -50 - - nA
AV Voltage Gain DC 60 100 - dB
BW Frequency Bandwidth AV = 0dB - 1.0 - MHz
VOH Maximum Output Voltage 4.9 4.99 - V
VOL Minimum Output Voltage - 3 50 mV
ISOURCE Output Source Current FB = 1.45V - -25 -10 mA
ISINK Output Sink Current FB = 1.45V 5 16 - mA
ERROR AMPLIFIER (CH6)
VTH Threshold Voltage FB = 0.55V 1.24 1.26 1.28 V
VTH/
VTH VTH Temperature Stability TA = -30°C to 85°C - 0.5 - %
IB Input Bias Current IN6 = 0V -50 - - nA
AV Voltage Gain DC 60 75 - dB
BW Frequency Bandwidth AV = 0dB - 1.0 - MHz
VOH Maximum Output Voltage 4.9 4.99 - V
VOL Minimum Output Voltage - 3 50 mV
ISOURCE Output Source Current FB = 0.55V - -50 -10 mA
ISINK Output Sink Current FB = 0.55V 60 120 - µA
INVERTED A MPLIFIER (CH4)
VIO Input Offset Voltage OUT = 1.25V -10 0 10 mV
IB Input Bias Current IN = 0V -50 - - nA
AV Voltage Gain DC 60 100 - dB
BW Frequency Bandwidth AV = 0dB - 1.0 - MHz
VOH Maximum Output Voltage 4.9 4.99 - V
VOL Minimum Output Voltage - 3 50 mV
ISOURCE Output Source Current OUT = 1.25V - -26 -1.0 mA
ISINK Output Sink Current OUT = 1.25V 5 16 - mA
SHORT DETECT COMPARATOR (CH1 to CH5)
VTH Threshold Voltage CH1 to CH5 0.97 1.00 1.03 V
IN = 0V (CH1 to CH3, CH5) -50 - -
IB Input Bias Current INS4 = 0V (CH4) -50 - - nA
SHORT DETECT COMPARATOR (CH6)
VTH Threshold Voltage 0.8 0.9 1.0 V
PWM COMPARATOR (CH1 to CH5)
VT0 Duty = 0% 1.0 1.1 -
VT100 Threshold Voltage Duty = 100% - 1.8 1.9 V
IDTC Input Current DTC = 0.4V (CH1 to CH5) -50 - - nA
Refer to the typical application circuit. These specifications apply over, VCC=5V and TA= -30 to 85°C, unless other-
wise specified. Typical values refer to TA =25°C.
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw6
Electrical Characteristics (Cont.)
Refer to the typical application circuit. These specifications apply over, VCC=5V and TA= -30 to 85°C, unless other-
wise specified. Typical values refer to TA =25°C.
APW7095/A
Symbol Parameter Test Conditions Min. Typ. Max.
Unit
PWM COMPARATOR (CH6)
VT0 Duty = 0% 0.2 0.3 -
VTmax Threshold Voltage Duty = Max. - 0.74 0.84 V
Dtr Maximum Duty Cycle CT = 100pF, RT = 18k 70 80 90 %
PWM CONTROLLER DRIVER FOR P-MOS (CH1, CH2, CH5)
ISOURCE Output Source Current Duty 5%, OUT = 0V - -130 -80
ISINK Output Sink Current Duty 5%, OUT = 5V 100 160 - mA
ROH OUT = -15mA - 18 30
ROL Output ON Resistance OUT = 15mA - 10 20
PWM CONTROLLER DRIVER FOR N-MOS (CH1, CH2, CH5, CH6)
ISOURCE Output Source Current Duty 5%, OUT = 0V - -130 -80
ISINK Output Sink Current Duty 5%, OUT = 5V 100 160 - mA
ROH OUT = -15mA - 18 30
ROL Output ON Resistance OUT = 15mA - 10 20
PWM CONTROLLER DRIVER FOR P-MOS (CH3, CH4)
ISOURCE Output Source Current Duty 5%, OUT = 0V - -290 -180
ISINK Output Sink Current Duty 5%, OUT = 5V 300 470 - mA
ROH OUT = -15mA - 7 15
ROL Output ON Resistance OUT = 15mA - 4 10
OUTPUT SWITCH CONTROL (SW)
VIH SWOUT = Llevel 1.2 - 6.5
VIL SW Input Voltage SWOUT = Hlevel 0 - 0.5 V
ISWIN Input Current SWIN = 5V - 2.5 20 µA
ISOURCE Output Source Current SWOUT = 0V - -7 - mA
ISINK Output Sink Current SWOUT = 5V - 19 - mA
ROH OUT = -4mA - 325 400
ROL Output ON Resistance OUT = 4mA - 85 150
POWER GOOD
VTH IN1 Upper Threshold Voltage Rising IN1 - 110 - %
VTH IN1 Lower Threshold Voltage Rising IN1 - 94 - %
Upper/Lower Hysteresis - 2 - %
VPGOOD PGOOD Output Voltage IPGOOD = 4mA - 0.17 0.8 V
CONTROL BLOCK (CTL, CT1 to CT5)
VIH Active Mode 1.5 - 6.5
VIL CTL Input Voltage Standby Mode 0 - 0.5 V
ICTL Input Current CTL = 5V - 2.6 20 µA
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw7
Pin Description
PIN
NO. NAME I/O FUNCTION
1 SWOUT O Output Switch Control Circuit Output Pin.
2 SWIN I Output Switch Control Circuit Input Pin.
3 FB6 O CH6 Error Amplifier Output Pin.
4 IN6 I CH6 Inverted Input Pin of Error Amplifier.
5 CIN6 I CH6 Soft-Start Capacitor Connection Pin.
Leave this pin Opento disable the soft-start function.
6 DTC5 I CH5 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not used.
7 FB5 O CH5 Error Amplifier Output Pin.
8 IN5 I CH5 Inverted Input Pin of Error Amplifier.
9 INA4 I CH4 Inverting Amplifier Input Pin.
10 OUTA4 O CH4 Inverting Amplifier Output Pin.
Connect this pin to INA4 when the inverting amplifier is not used.
11 FB4 O CH4 Error Amplifier Output Pin.
12 IN4 I CH4 Inverted Input Pin of Error Amplifier.
13 INS4 I CH4 Inverted Input Pin of Short Detection Comparator.
14 DTC4 I CH4 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not used.
15 CS - CH1 to CH5 Soft-Start Capacitor Connection Pin.
Leave this pin Opento disable the soft-start function.
16 VREF O Reference Voltage Output Pin.
17 GND P Reference Voltage and Control Circuit Ground Pin.
18 CSCP - Short-Circuit Detection Capacitor Connection Pin.
Connect this pin to GND with the shortest distance to disable the timer-latch short-
circuit
protection circuit.
19 VCC P Reference Voltage and Control Circuit Power Supply Pin.
20 CTL I Power Supply and CH6 Control Pin.
HLevel: Operation Mode.
LLevel: Standby Mode
21 CTL1,2 I CH1 and CH2 Control Pin.
HLevel: Operation Mode.
LLevel: OFF Mode
22 CTL3 I CH3 Control Pin.
HLevel: Operation Mode.
LLevel: OFF Mode
23 CTL4 I CH4 Control Pin.
HLevel: Operation Mode.
LLevel: OFF Mode
24 CTL5 I CH5 Control Pin.
H” Level: Operation Mode.
LLevel: OFF Mode
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw8
Pin Description (Cont.)
PIN
NO. NAME I/O FUNCTION
25 RT - Oscillator Frequency Setting Resistor Connection Pin.
26 CT - Oscillator Frequency Setting Capacitor Connection Pin.
27 VB O Triangular Wave Oscillator Regulator Output Pin.
28 IN3 I CH3 Inverted Input Pin of Error Amplifier.
29 FB3 O CH3 Error Amplifier Output Pin.
30 DTC3 I CH3 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not used.
31 IN2 I CH2 Inverted Input Pin of Error Amplifier.
32 FB2 O CH2 Error Amplifier Output Pin.
33 DTC2 I CH2 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not used.
34 IN1 I CH1 Inverted Input Pin of Error Amplifier.
35 FB1 O CH1 Error Amplifier Output Pin.
36 DTC1 I CH1 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not used.
37 OUT1-1 O CH1 Main-side MOSFET Drive Pin. Connect OUT1-1 to the main MOSFET.
38 OUT1-2 O CH1 MOSFET Drive Pin for Synchronous Rectifier.
39 OUT2-1 O CH2 Main-side MOSFET Drive Pin.
APW7095: Drive a p-channel MOSFET for a step-down converter.
APW7095A: Drive an n-channel MOSFET for a step-up converter.
40 OUT2-2 O CH2 MOSFET Drive Pin for Synchronous Rectifier
41 OUT3 O CH3 MOSFET Drive Pin.
42 PVCC P Drive Circuit Power Supply Pin.
43 OUT4 O CH4 MOSFET Drive Pin.
APW7095: Drive an n-channel MOSFET for a step-up converter.
APW7095A: Drive a p-channel MOSFET for a inverting step-up/down converter.
44 PGND P Drive Circuit Ground Pin.
45 OUT5-1 O CH5 Main-side MOSFET Drive Pin. Connect OUT5-1 to the main MOSFET.
46 OUT5-2 O CH5 MOSFET Drive Pin for Synchronous Rectifier.
47 OUT6 O CH6 MOSFET Drive Pin.
48 PGOOD O Indicator Output Pin. This pin is an open-
drain output used to indicate status of the CH1
output voltage.
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw9
Block Diagram
Drive
2-1
Drive
1-1
Drive
1-2
CH1
PWM
Controller
CS CTL
Logic
OSC SCP
UVLO
2V
CS VB RT CT CSCP VREF GND
2.49V
1.25V
1.0V
1.25V
1.0V
1.0V
1.25V
1.0V
1.0V
0.9V
VB:2V
0.9V
1.25V
x1.1
1.25V
x0.9
Comp.
Error
Amp.
SCP
Comp.
Error
Amp.
SCP
Comp.
Error
Amp.
SCP
Comp.
Error
Amp.
SCP
Comp.
INV
Amp.
1.25V
Error
Amp.
SCP
Comp.
1.25V
Error
Amp.
SCP
Comp.
Ref Power
ON/OFF
CTL
37.5k
62.5k
CT2
CT1
CT
CT2
CT2
CT2
CT1
CT1
CT
DTC1
FB1
DTC2
FB2
DTC3
FB3
DTC4
FB4
DTC5
FB5
FB6
IN1
SCP Control
Soft-Start
CTL1,2
CTL1,2
CTL3
CTL4
CTL5
UVLO
CH2
PWM
Controller
CH3
PWM
Controller
CH4
PWM
Controller
CH5
PWM
Controller
CH6
PWM
Controller
(Max. Duty=80%)
Driver 1-1
Driver 1-2
Driver 2-1
Driver 2-2
Driver 3
Driver 4
Driver 5-1
Driver 5-2
Driver 6
FB1
IN1
DTC1
FB2
IN2
DTC2
FB3
IN3
DTC3
INA4
OUTA4
FB4
IN4
INS4
DTC4
FB5
IN5
DTC5
FB6
IN6
CTL1,2
CTL3
CTL4
CTL5
CIN6
OUT1-1
PVCC
OUT1-2
OUT2-1
OUT2-2
OUT3
OUT4
OUT5-1
OUT5-2
OUT6
PGND
SWIN
VCC
CTL
SWOUT
PGOOD
0.8V
0.3V
1.8V
1.1V
1.8V
1.1V
Power
Comp.
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw10
2.44
2.46
2.48
2.50
2.52
2.54
2.56
-40 -20 020 40 60 80 100
0
1
2
3
4
5
0 1 2 3 4 5 6 7 8
Typical Operating Characteristics
0
1
2
3
4
5
0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
0 1 2 3 4 5
Reference Voltage vs. Ambient Temperature
Reference Voltage, VREF(V)
Ambient Temperature, TA(°C)
Reference Voltage vs. Control Voltage
Power Supply Current vs.
Power Supply VoltageReference Voltage Current vs.
Power Supply Voltage
Power Supply Voltage, VCC(V)Power Supply Voltage, VCC(V)
Control Voltage, VCTL(V)
Reference Voltage, VREF(V) Reference Voltage, VREF(V)
Power Supply Current, ICC(mA)
VCC=5V
TA=25°C
VCC=5V
TA=25°C
IREF=0mA
TA=25°C
VCC=5V
TA=25°C
IREF=0mA
CTL=CTL1,2=CTL3=CTL4=CTL5=5VCTL=CTL1,2=CTL3=CTL4=CTL5=5V
CTL=CTL1,2=CTL3=CTL4=CTL5=5V
IREF=0mA
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw11
0
1
2
3
4
5
0 1 2 3 4 5 6 7 8 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0200 400 600 800 1000 1200
10
100
1000
10000
10 100 1000 10000 10
100
1000
10000
110 100 1000
Typical Operating Characteristics (Cont.)
Oscillator Frequency vs. Timing Capacitor
Oscillator Frequency, fosc(kHz)
Timing Capacitor, CT(pF)
Oscillator Frequency, fosc(kHz)
Oscillator Frequency vs. Timing Resistor
Control Current vs. Control VoltageTriangular Wave Upper & Lower Threshold
Voltages vs. Oscillator Frequency
Control Current, ICTL(µA)
Upper & Lower Threshold Voltage, VCT(V)
Timing Resistor, RT(k)
Control Voltage, VCTL(V)Oscillator Frequency, fosc(kHz)
VCC=5V
TA=25°C
VCC=5V
TA=25°C
RT=4.3k
RT=18k
RT=100k
CT=47pF
CT=100pF
CT=220pF
CT=470pF
CT=1000pF
VCC=5V
TA=25°C
RT=18k
VCC=5V
TA=25°C
VTL, CTL1,2~CTL5
Upper
Lower
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw12
440
460
480
500
520
540
560
-40 -20 020 40 60 80 100 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
-40 -20 020 40 60 80 100
Oscillator Frequency vs. Ambient Temperature
Typical Operating Characteristics (Cont.)
Oscillator Frequency, fosc(kHz)
Ambient Temperature, TA (°C)
VCC=5V
Upper & Lower Threshold Voltage, VCT(V)
Triangular Wave Upper & Lower Threshold
Voltages vs. Ambient Temperature
Ambient Temperature, TA (°C)
Upper
Lower
CTL=CTL1,2=CTL3=CTL4=CTL5=5V
RT=18k
CT=100pF
VCC=5V
RT=18k
CT=100pF
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw13
vvv
1.VBAT=2.7V~6V (4-Cell Battery or 1-Cell LI-ION) for 2 Buck and 4 Boost Converter (Using APW7095)
Typical Application Circuit
Driver
APM2301A
APM2300A
CH1 Buck
Controller
1.25V
Vref
Q1
Q2
Driver
CH2 Buck
Controller
1.25V
Vref
Driver
CH3
Boost
Controller
1.25V
Vref
Driver CH4
Boost
Controller
1.25V
Vref
Driver CH5
Boost
Controller
1.25V
Vref
Driver CH6
Boost
Controller
1.26V
Vref
1.8V/300mA
OUT1-1
OUT1-2
IN1
FB1
APM2301A
APM2300A
Q3
Q4
3.3V/300mA
OUT2-1
OUT2-2
IN2
FB2
APM2300A
Q5
15V/20mA
OUT3
-10V/20mA
FB3
IN3
SWOUT
FB6
IN6
OUT6
FB5
IN5
OUT5-2
FB4
IN4
OUT4
5V
5V/300mA
DTC1
DTC2
DTC3
CIN6
OUTA4
INA4
INS4
DTC4
DTC5
APW7095
VCC
7.5V/20mA
PGND
VREF
VREF
VREF
VREF
VREF
CTL
CTL1,2
CTL3
CTL4
CTL5
SWIN
PGOOD
CS
VB
RT
CT
CSCP
GND
VREF
VREF
VBAT
VBAT
5V
VBAT
VBAT
VBAT
C1
R1
D1 C2
R2
R3
C3
R4
R5
C4
L1
L2
C5 L3
C6
R6
R7
R8
R9
R10
D2
C7
C8 C9
C10
C11
C12
T1 D3
D4
R11
R12
R13
R14
R15
R16 C13
C14
C15
C16
C17
C18
C21
C20
C19 Q6
D5
R17
R18
R19
Q7
R21
R20
R23
R22
R24
C22
C23
C24
C25
L4
L5
Q8
Q9
Q10
D6
R25
R26
R27
R28
R31
R29
L6
C26
C28
C27 Q11
D7
OUT5-1
PVCC
APM2312
APM2301A
APM2300A
APM2301A
APM2301A
APM2300A SS0520
SS12
SS12
SS12
SS12
SS12
SS12
22µF
100µF
22µH
0.1µF1K
6.8K
15K
24K
47K
22µF
10µF
22µH
22µH
100µF
0.1µF
24K
1K
15K
18K
47K
22µF22µF
22µF
4700PF
0.1µF1K
165K
15K
18K
47K
0.22µF100PF
30K
0.1µF
0.1µF
0.33µF
1K
100K
309K
0.1µF
22µH
22µF
22µF
22µF
24K
47K
100K
1K
300K
0.1µF
22µF
22µF
22µF
22µH
24K
47K
22µF
22µF
22µH
0
15k
75k
0.1µF
1K
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw14
Typical Application Circuit(Cont.)
2.VBAT=1.4V~3V (2-Cell Battery) for 1 Buck , 1 Inverting and 4 Boost Converter s (Using APW7095A)
Driver
APM2301A
APM2300A
CH1 Buck
Controller
1.25V
Vref
Q1
Q2
Driver
CH2
Boost
Controller
1.25V
Vref
Driver
CH3
Boost
Controller
1.25V
Vref
Driver CH4
Inverting
Controller
1.25V
Vref
Driver CH5
Boost
Controller
1.25V
Vref
Driver CH6
Boost
Controller
1.26V
Vref
1.8V/300mA
APM2300A
Q4
4V/300mA
APM2300A
Q5
15V/20mA
18V/3mA
5V
3.3V/300mA
-7.5V/20mA
VREF
VREF
VREF
VREF
VREF
CTL
CTL1,2
CTL3
CTL4
CTL5
SWIN
PGOOD
VREF
3.3V ( from CH5 )
VBAT
5V
VBAT
VBAT
VBAT
C1
R1
D1 C2
R2
R3
C3
R4
R5
C4
L1
L2
C6
R6
R7
R8
R9
R10
D2
C7
C8 C9
C10
C11
C12
D3
D4
R11
R12
R13
R14
R15
R16 C13
C14
C15
C16
C17
C18
C21
C20
C19 Q6
D5
R17
R18
R19
Q7
R21
R20
R23
R22
R24
C22
C23
C24
C25
L3
L4
Q8
Q9
Q10
D6
R25
R26
R27
R28
R30
R31
R29
L5
C26
C28
C27
Q11
D7
APM2312
APM2301A
APM2300A
APM2301A
APM2301A
APM2301A
SS0520
SS12
SS0520
SS12
SS12
SS12
SS12
22µF
100µF
22µH
0.1µF1K
6.8K
15K
24K
47K
22µF
22µH
100µF
0.1µF
33K
1K
15K
18K
47K
22µF22µF
22µF
1µF
0.1µF1K
165K
15K
18K
47K
0.22µF
100PF
30K
0.1µF
0.1µF
0.33µF
1K
100K
309K
0.1µF
22µH
22µF
22µF
22µF
24K
47K
15K
1K
24K
0.1µF
22µF
22µF
22µF
22µH
24K
47K
22µF
22µF22µH
0
10k
10k
60k
0.1µF
1K
APM2301A
Q3
C5
1µF
L6
22µH
3.3V
D8
SS0520
APW7095A
OUT1-1
OUT1-2
IN1
FB1
OUT2-1
OUT2-2
IN2
FB2
OUT3
FB3
IN3
SWOUT
FB6
IN6
OUT6
FB5
IN5
OUT5-2
FB4
OUT4
DTC1
DTC2
DTC3
CIN6
OUTA4
INA4
INS4
DTC4
DTC5
VCC
PGND
CS
VB
RT
CT
CSCP
GND
VREF
OUT5-1
PVCC
IN4
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw15
Function Description
General
The APW7095/A provides voltage-mode feedback con-
trols for six DC/DC PWM converters(CH1 to CH6). Each
channel operates with an error amplifier, PWM comparator,
short-circuit comparator, ON/OFF control, and output
driver. An internal temperature-compensated voltage pro-
vides reference voltages for each channel. An triangular-
wave oscillator(CT) with a timing resistor and capacitor
generates triangular waves to each channel. A inverting
amplifier(CH4) cooperates with the error amplifier for an
inverting converter (with negative output voltage) .
Reference Voltage
The APW7095 outputs a temperature- compensated ref-
erence voltage(2.49V) at VREF pin. It is regulated from
the voltage at VCC pin and can source current of max.
1mA to external loads. It also supplies bias for the ICs
internal circuitry.
Triangular-wave Oscillator
The triangular-wave oscillator is designed to generates
a triangular oscillation signal (CT) with amplitude of
0.3V~0.8V at CT pin, providing signal to CH6. The oscilla-
tor frequency is settable from 100kHz to 1MHz and set by
a timing resistor and a timing capacitor connected re-
spectively from RT and CT pins to ground. Additional two
triangular oscillation signals (CT1 and CT2) are also in-
ternally generated with amplitude of 1.1V~1.8V. The CT1
is in phase with the CT to the PWM comparators of CH2
and CH4; the CT2 is out of phase with the CT to the PWM
comparators of CH1, CH3, and CH5.
Error Amplifier
The error amplifier is designed with unit-gain-bandwidth
of 1MHz and to satisfy wide application requirements. It
works with enternal resistor-capacitor network for each
converters feedback compensation. The loop gain can
be set by connecting a feedback resistor and capacitor
from the output pin(FB) to inverted input pin of the error
amplifier for stable operations.
Inverting Amplifier (Inv Amp)
The inverting amplifier detects the inverting DC/DC con-
verter output voltage (as a negative voltage) and outputs a
control signal to the error amp.
Channel Control Function
The channel control function turns on/off one or more
channels depending on the states (H or L level) at
CTL, CTL1,2 to CTL5 pins. The on/off control logic is
shown as the following table:
Voltage Level at CTL Pin Channel ON/OFF State
CTL
CTL1,2
CTL3
CTL4
CTL5
Power
/CH6
CH1
/CH2
CH3
CH4
CH6
Lx x x x OFF(Standby State)
L
OFF
LH
OFF
ON
L
OFF
LHH
OFF
ON
ON
L
OFF
LH
OFF
ON
L
OFF
L
HHH
OFF
ON
ON
ON
LOFF
LH
OFF
ON
LOFF
LHH
OFF
ON
ON
LOFF
LH
OFF
ON
L
OFF
H
H
HHH
ON
ON
ON
ON
ON
Channel on/off Setting Table
Voltage Level at CTL Pin Channel ON/OFF State
CTL
CTL1,2
CTL3
CTL4
CTL5
Power
/CH6
CH1
/CH2
CH3
CH4
CH6
Lx x x x OFF(Standby State)
L
OFF
LH
OFF
ON
L
OFF
LHH
OFF
ON
ON
L
OFF
LH
OFF
ON
L
OFF
L
HHH
OFF
ON
ON
ON
LOFF
LH
OFF
ON
LOFF
LHH
OFF
ON
ON
LOFF
LH
OFF
ON
L
OFF
H
H
HHH
ON
ON
ON
ON
ON
Channel on/off Setting Table
MOSFET Drive Circuits
APW7095/A uses push-pull configuration at output of each
MOSFET driver for providing large drive current to MOSFET
gate. The following table shows the MOSFETs connected
to the drivers:
IC APW7095 APW7095A
CH1 OUT1-1 : PMOS
OUT1-2 : NMOS OUT1-1 : PMOS
OUT1-2 : NMOS
CH2 OUT2-1 : PMOS
OUT2-2 : NMOS OUT2-1 : NMOS
OUT2-2 : PMOS
CH3 OUT3 : NMOS OUT3 : NMOS
CH4 OUT4 : NMOS OUT4 : PMOS
CH5 OUT5-1 : NMOS
OUT5-2 : PMOS OUT5-1 : NMOS
OUT5-2 : PMOS
CH6 OUT6 : NMOS OUT6 : NMOS
Timer-Latch Short-Circuit Protection Circuit
The short-circuit protection comparator in each channel
(CH1 to CH5) monitors converters output voltage via in-
put pin of error amplifier. In CH6, the short-circuit com-
parator detects the voltage at output of error amplifier. As
any detected voltages of CH1 to CH5 falls below 1.0V or
the detected voltage of CH6 is larger than 0.9V, the timer
circuits is actuated to start charging the external capacitor
CSCP connected from CSCP pin to ground. When the
rising voltage of CSCP reaches 0.7V, the IC turns off all
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw16
Timer-Latch Short-Circuit Protection Circuit (Cont.)
Function Description (Cont.)
external MOSFETs and pulls up the voltage at SWOUT
pin. Then the IC is latched. Applying a signal from L to
H to CTL pin enables operation again. The short-circuit
detection function remains working during soft-start op-
eration on CH1 to CH5.
Under-Voltage Lockout (UVLO) Circuit
The under-voltage lockout circuit monitors the supply volt-
age at VCC pin to prevent wrong logic control. The IC
starts operation after the supply voltage rises above its
rising threshold. As the supply voltage falls below its
falling threshold, the IC turns off the external MOSFETs
and pulls up the voltage at SWOUT pin.
The soft-start function controls the output voltage rate of
rise to limit the current surge at start-up. For CH1 to CH5,
the soft-start interval is programmed by the soft-start
capacitor, CS connected from CS pin to ground and
charged by an internal 1µA current source. For CH6, a
soucing current from the internal resistor-divider charges
the capacitor, CCIN6 connected from CIN6 pin to ground,
providing soft-start control.
Soft-Start Operation
Figure 1 and 2 show the soft-start processes. In figure 1,
when all control pins (CTL, CTL1,2 to CTL 5) are driven
high (H level) at the same time, the voltage at CIN6 pin
starts to rise up by charging the capacitor CCIN6 , starting
a soft-start operation on CH6. After the rising voltage at
CIN6 reaches 0.9V, the reference voltage starts to regu-
late and the internal source current starts to charge the
CS , starting a soft-start operation on CH1 to CH5. During
soft-start interval, the error amplifiers compares the CH1
to CH5 output voltage to the voltage at the CS pin. When
any control pins (CH1,2 to CH5) go H from L during the
soft-start interval (CH1 to CH5), the output rises rapidly to
follow the rising voltage at CS pin.
Figure 1 Soft-Start Waveforms
(1) (3)
t
(2) (4)
2V
CTL
CTL1,2
CTL3
CTL4
CTL5
Input
VB
Output
CIN6
CH6 Output
Voltage (Vo6)
VREF
CS
CH1 to CH5
Output Voltages
(Vo1 to Vo5)
0.9V
2.49V
1.25V
(1) to (2) : CH6 Soft-Start Interval
(3) : VREF Output start
(3) to (4) : CH1 to CH5 Soft-Start Interval
(1) to (2) : CH6 soft-start interval
(3) : VREF Output start
(4) to (5) : CH1 to CH3 soft-start Interval
(6) to (7) : CH4, CH5 soft-start Interval
(6)' to (7)' : CH4(CH5) soft start interval as CTL4 (CTL5) go
"H" from "L" during CH1 to CH3 soft start interval
(1) (3) (2) (4)
2V
CTL
Input
VB
Output
CIN6
CH6 Output
Voltage (Vo6)
VREF
CS
CH1 to CH3
Output Voltages
(Vo1 to Vo3)
0.9V
2.49V
1.25V
CTL1,2
CTL3
CTL4
CTL5
1.25V
t
CH4 to CH5
Output Voltages
(Vo4 to Vo5)
(5) (6) (7)
(6)' (7)'
Figure 2 Soft-Start Waveforms
Output Switch Control Circuit
The output switch control circuit outputs a signal to con-
trol external p-channel MOSFETs for preventing reactive
current flow to external step-up circuits on CH5 and CH6.
When a H level signal is applied to SWIN pin after re-
leasing the UVLO and the voltage at CIN6 pin rises above
0.9V(typical), the IC pulls low the voltage at SWOUT pin,
turning on the external p-channel MOSFETs to generate
output voltages.
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw17
Application Information
=(V) 1.26 (V)V
1ln
)(k 100 (k 62.5 )(k 37.5 (F) C
- (S) ts )CIN6CIN6
CCIN6
CIN6
VCIN6
VB(2V) Error
Amp. 6
37.5k
62.5k
F)(C 0.07 (S) ts
CIN6
µ
F)( C 1.25 (S) ts S
µ
(pF) CT)(k RT 900000
(kHz)f OSC
IN1
V
O
Error
Amp. 1
1.25V
R1
R2
+=R2
R1
11.25V (V) Vo
(2) CH4
R2
R1
1.25V- (V) Vo =
IN4
V
O
Error
Amp. 4
1.25V
R1
R2
INV
Amp. 4
R3
OUTA4
INA4
(3) CH6
+=R2
R1
11.26V (V) Vo
CIN6
VB(2V) Error
Amp. 6
37.5k
62.5k
IN6
V
O
R1
R2
F)(C 0.70 (S)t
SCPPE
µ
=
Soft-Start Interval Settings
The CH6 soft-start time depends on the capacitor CCIN6
and is determined as the following equation:
The soft-start time until CH6 output voltage reaches 95%
of the set voltage is determined as the following equation:
On CH1 to CH5, the soft-start time depending on the
capacitor CS determined as the following equation :
Triangular Oscillator Frequency Setting
The triangular oscillator frequency set by the timing ca-
pacitor (CT) connected to the CT pin and the timing resis-
tor (RT) connected to the RT pin determined as the fol-
lowing equation:
Output Voltage Settings
The output voltage is set by the external resistor-divider
connected with converter output, error amplifier input, and
ground.
(1) CH1 to CH3, CH5
Time Constant Setting for Timer-Latch Short-Circuit
Protection Circuit
The time constant for timer-latch short-circuit protection
is set by the capacitor CSCP and determined as the fol-
lowing equation :
Dead-Time Setting
The dead-time control pin (DTC) is designed to set the
maximum ON duty of the main-side MOSFET. When the
device is set for step-up inverted output based on the
step-up or step-up/down Zeta method or flyback method,
the FB pin voltage may reach and exceed the triangular
wave voltage due to load fluctuation. If this is the case, the
output MOSFET is fixed to a ON duty of 100 %. To prevent
this, set the maximum duty of the output MOSFET. Con-
necting a resistor- divider between VREF, DTC and GND
pins provides a voltage VDTC to DTC pin. When the the
voltage at the DTC pin is higher than the triangular wave
voltage (CT1/2), the output transistor is turned on. The
maximum duty is calculated as the following equation:
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw18
Application Information (Cont.)
Dead-Time Setting (Cont.)
DTC1
VREF
R1
R2
V
DTC
(%) 100
V 0.7 V 1.1-V
Duty ON DTC
(max) =
REFDTC V
R2R1R2
(V) V
+
=
where VREF is the output of the reference voltage (2.49V
typical) at VREF pin. The amplitude of the triangular waves
CT1 and CT2 are typically 0.7V from 1.1V to 1.8V.
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw19
Package Information
LQFP7x7-48
8.80 9.20 0.346 0.362
6.90 7.10 0.272 0.280
8.80
6.90
9.20
7.10
0.346
0.272
0.362
0.280
L
0.006
0o
07o
0o
7o
0.50 BSC 0.020 BSC
0.45 0.75 0.018 0.030
S
Y
M
B
O
LMIN. MAX.
1.60
0.05
0.17 0.27
0.09 0.20
0.15
A
A1
b
c
D
D1
E
E1
e
MILLIMETERS
A2 1.35 1.45
LQFP7x7-48
MIN. MAX.
INCHES
0.063
0.002
0.053 0.057
0.007 0.011
0.004 0.008
Note : 1. Followed from JEDEC MS-026 BBC.
2. Dimension "D1" and "E1" do not include mold protrusions.
Allowable protrusions is 0.25 mm per side. "D1" and "E1" are
maximun plasticbody size dimensions including mold mismatch.
SEATING PLANE
GAUGE PLANE
0.25
L
θ
c
A2A1
A
D1
D
E1
E
e
b
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw20
Package Information
TQFN7x7-48 D
E
Pin 1
S
Y
M
B
O
LMIN. MAX.
0.80
0.00
0.18 0.30
5.50 5.80
0.05
5.50
A
A1
b
D
D2
E
E2
e
L
MILLIMETERS
A3 0.20 REF
TQFN7x7-48
0.35 0.45
5.80
0.008 REF
MIN. MAX.
INCHES
0.031
0.000
0.007 0.012
0.217 0.228
0.217
0.014 0.018
0.50 BSC 0.020 BSC
K0.20 0.008
6.90 7.10 0.272 0.280
6.90 7.10 0.272 0.280
0.70
0.228
0.028
0.002
Note : 1. Followed from JEDEC MO-220 WKKD-4.
Pin 1 Corner
D2
E2KL
e
A
b
A1
A3
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw21
Application
A H T1 C d D W E1 F
330.0±2.00
50 MIN.
16.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
16.0±0.30
1.75±0.10
5.5±0.10
P0 P1 P2 D0 D1 T A0 B0 K0
TQFN7x7-48
4.0±0.10
12.0±0.10
2.0±0.10
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.40
7.30±0.20
7.30±0.20
1.3±0.20
(mm)
Devices Per Unit
Carrier Tape & Reel Dimensions
Package Type Unit Quantity
TQFN7x7-48 Tape & Reel 2500
A
E1
A
B
W
F
T
P0
OD0
BA0
P2
K0
B0
SECTION B-B
SECTION A-A
OD1
P1
H
T1
A
d
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw22
Test item Method Description
SOLDERABILITY MIL-STD-883D-2003 245°C, 5 sec
HOLT MIL-STD-883D-1005.7 1000 Hrs Bias @125°C
PCT JESD-22-B, A102 168 Hrs, 100%RH, 121°C
TST MIL-STD-883D-1011.9 -65°C~150°C, 200 Cycles
ESD MIL-STD-883D-3015.7 VHBM > 2KV, VMM > 200V
Latch-Up JESD 78 10ms, 1tr > 100mA
Taping Direction Information
Reflow Condition (IR/Convection or VPR Reflow)
Reliability Test Program
t 25 C to Peak
tp
Ramp-up
tL
Ramp-down
ts
Preheat
Tsmax
Tsmin
TL
TP
25
Temperature
Time
Critical Zone
TL to TP
°
(T)QFN7x7
USER DIRECTION OF FEED
Copyright ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
APW7095/A
www.anpec.com.tw23
Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly
Average ramp-up rate
(TL to TP) 3°C/second max. 3°C/second max.
Preheat
- Temperature Min (Tsmin)
- Temperature Max (Tsmax)
- Time (min to max) (ts)
100°C
150°C
60-120 seconds
150°C
200°C
60-180 seconds
Time maintained above:
- Temperature (TL)
- Time (tL) 183°C
60-150 seconds 217°C
60-150 seconds
Peak/Classification Temperature (Tp)
See table 1 See table 2
Time within 5°C of actual
Peak Temperature (tp) 10-30 seconds 20-40 seconds
Ramp-down Rate 6°C/second max. 6°C/second max.
Time 25°C to Peak Temperature 6 minutes max. 8 minutes max.
Note: All temperatures refer to topside of the package. Measured on the body surface.
Table 2. Pb-free Process Package Classification Reflow Temperatures
Package Thickness Volume mm3
<350 Volume mm3
350-2000 Volume mm3
>2000
<1.6 mm 260 +0°C* 260 +0°C* 260 +0°C*
1.6 mm 2.5 mm 260 +0°C* 250 +0°C* 245 +0°C*
2.5 mm 250 +0°C* 245 +0°C* 245 +0°C*
*Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the
stated classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C)
at the rated MSL level.
Table 1. SnPb Eutectic Process Package Peak Reflow Temperatures
Package Thickness Volume mm3
<350 Volume mm3
350
<2.5 mm 240 +0/-5°C 225 +0/-5°C
2.5 mm 225 +0/-5°C 225 +0/-5°C
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Classification Reflow Profiles