TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DSupply Current . . . 300 μA Max
DHigh Unity-Gain Bandwidth...2 MHz Typ
DHigh Slew Rate . . . 0.45 V/μs Min
DSupply-Current Change Over Military Temp
Range ...10 μA Typ at VCC ±=±15 V
DSpecified for Both 5-V Single-Supply and
±15-V Operation
DPhase-Reversal Protection
DHigh Open-Loop Gain...6.5 V/μV
(136 dB) Typ
DLow Offset Voltage . . . 100 μV Max
DOffset Voltage Drift With Time
0.005 μV/mo Typ
DLow Input Bias Current . . . 50 nA Max
DLow Noise Voltage . . . 19 nV/Hz Typ
description
The TLE202x, TLE202xA, and TLE202xB devices are precision, high-speed, low-power operational amplifiers
using a new Texas Instruments Excalibur process. These devices combine the best features of the OP21 with
highly improved slew rate and unity-gain bandwidth.
The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic
improvement in unity-gain bandwidth and slew rate over similar devices.
The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both
time and temperature. This means that a precision device remains a precision device even with changes in
temperature and over years of use.
This combination of excellent dc performance with a common-mode input voltage range that includes the
negative rail makes these devices the ideal choice for low-level signal conditioning applications in either
single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry
that eliminates an unexpected change in output states when one of the inputs goes below the negative supply
rail.
A variety of available options includes small-outline and chip-carrier versions for high-density systems
applications.
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized
for operation from 40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of 55°C to 125°C.
Copyright © 2010, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 AVAILABLE OPTIONS
PACKAGED DEVICES
CHIP
TA
VIOmax
AT 25°CSMALL
OUTLINE
(D)
SSOP
(DB)
CHIP
CARRIER
(FK)
CERAMIC DIP
(JG)
PLASTIC DIP
(P)
TSSOP
(PW)
CHIP
FORM§
(Y)
0°C to 200
μ
V TLE2021ACD
TLE2021CDBLE
TLE2021ACP
0C to
70°C
200 μV
500 μV
TLE2021ACD
TLE2021CD TLE2021CDBLE
TLE2021ACP
TLE2021CP TLE2021CPWLE TLE2021Y
40°C
to
200
μ
V TLE2021AID TLE2021AIP
to
85°C
200 μV
500 μV
TLE2021AID
TLE2021ID
TLE2021AIP
TLE2021IP
55°C
100 V
TLE2021BMFK
TLE2021BMJG
55 C
to 100 μV
500 μV
TLE2021MD
TLE2021BMFK
TLE2021MFK
TLE2021BMJG
TLE2021MJG
TLE2021MP
to
125°C500 μV TLE2021MD TLE2021MFK TLE2021MJ
G
TLE2021MP
The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2021CDR).
The DB and PW packages are only available left-end taped and reeled.
§Chip forms are tested at 25°C only.
TLE2022 AVAILABLE OPTIONS
PACKAGED DEVICES
CHIP
TA
VIOmax
AT 25°CSMALL
OUTLINE
(D)
SSOP
(DB)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
TSSOP
(PW)
CHIP
FORM§
(Y)
0°C
to
150 μV
300 μV
TLE2022BCD
TLE2022ACD
TLE2022ACP
to
70°C
300 μV
500 μV
TLE2022ACD
TLE2022CD
TLE2022CDBLE
TLE2022ACP
TLE2022CP
TLE2022CPWLE
TLE2022Y
40°C
to
150 μV
300 μV
TLE2022BID
TLE2022AID
TLE2022AIP
to
85°C
300 μV
500 μV
TLE2022AID
TLE2022ID
TLE2022AIP
TLE2022IP
55°C150
μ
V TLE2022BMJG
55 C
to
150 μV
300 μV
TLE2022AMD
TLE2022AMFK
TLE2022BMJG
TLE2022AMJG
TLE2022AMP
to
125°C
300 μV
500 μV
TLE2022AMD
TLE2022MD
TLE2022AMFK
TLE2022MFK
TLE2022AMJG
TLE2022MJG
TLE2022AMP
TLE2022MP
The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2022CDR).
The DB and PW packages are only available left-end taped and reeled.
§Chip forms are tested at 25°C only.
TLE2024 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax
AT 25°C
SMALL
OUTLINE
(DW)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
PLASTIC
DIP
(N)
CHIP
FORM§
(Y)
500
μ
V TLE2024BCDW TLE2024BCN
0°C to 70°C
500 μV
750 μV
TLE2024BCDW
TLE2024ACDW
TLE2024BCN
TLE2024ACN
0C to 70 C
750 μV
1000 μV
TLE2024ACDW
TLE2024CDW
TLE2024ACN
TLE2024CN TLE2024Y
500
μ
V TLE2024BIDW TLE2024BIN
40°C to 85°C
500 μV
750 μV
TLE2024BIDW
TLE2024AIDW
TLE2024BIN
TLE2024AIN
40 C to 85 C
750 μV
1000 μV
TLE2024AIDW
TLE2024IDW
TLE2024AIN
TLE2024IN
500
μ
V TLE2024BMDW TLE2024BMFK TLE2024BMJ TLE2024BMN
55°C to 125°C
500 μV
750 μV
TLE2024BMDW
TLE2024AMDW
TLE2024BMFK
TLE2024AMFK
TLE2024BMJ
TLE2024AMJ
TLE2024BMN
TLE2024AMN
55 C to 125 C
750 μV
1000 μV
TLE2024AMDW
TLE2024MDW
TLE2024AMFK
TLE2024MFK
TLE2024AMJ
TLE2024MJ
TLE2024AMN
TLE2024MN
§Chip forms are tested at 25°C only.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
1
2
3
4
8
7
6
5
OFFSET N1
IN
IN+
VCC /GND
NC
VCC+
OUT
OFFSET N2
NC No internal connection
3212019
910111213
4
5
6
7
8
18
17
16
15
14
NC
VCC+
NC
OUT
NC
NC
IN
NC
IN+
NC
TLE2021
FK PACKAGE
(TOP VIEW)
NC
OFFSET N1
NC
NC NC
NC
GND
NC
OFFSET N2 NC
CC
V/
TLE2021
D, DB, JG, P, OR PW PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
VCC /GND
VCC+
2OUT
2IN
2IN+
D, DB, JG, P, OR PW PACKAGE
(TOP VIEW)
NC No internal connection
3212019
910111213
4
5
6
7
8
18
17
16
15
14
NC
2OUT
NC
2IN
NC
NC
1IN
NC
1IN +
NC
FK PACKAGE
(TOP VIEW)
NC
1OUT
NC
NC NC
NC
GND
NC
2IN +
CC
V/
CC +
V
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
1OUT
1IN
1IN+
VCC +
2IN+
2IN
2OUT
NC
4OUT
4IN
4IN+
VCC /GND
3IN+
3IN
3OUT
NC
DW PACKAGE
(TOP VIEW)
3 2 1 20 19
910111213
4
5
6
7
8
18
17
16
15
14
4IN+
NC
VCC /GND
NC
3IN+
1IN+
NC
VCC +
NC
2IN+
1IN
1OUT
NC
3OUT
3IN
4OUT
4IN
2IN
2OUT
NC
NC No internal connection
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN
1IN+
VCC +
2IN+
2IN
2OUT
4OUT
4IN
4IN+
VCC /GND
3IN+
3IN
3OUT
FK PACKAGE
(TOP VIEW)
J OR N PACKAGE
(TOP VIEW)
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021Y chip information
This chip, when properly assembled, display characteristics similar to the TLE2021. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax= 150°C
TOLERANCES ARE ±10%.
ALL DIMENSIONS ARE IN MILS.
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
+
OUT
IN +
IN
VCC+
(7)
(3)
(2)
(6)
(4)
VCC /GND
(1)
(5)
OFFSET N1
OFFSET N2
78
54
(1)
(2) (3)
(4)
(5)(6)(7)
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022Y chip information
This chip, when properly assembled, displays characteristics similar to TLE2022. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ±10%.
ALL DIMENSIONS ARE IN MILS.
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
+
OUT
IN +
IN
VCC+
(8)
(6)
(3)
(2)
(5)
(1)
+
(7) IN +
IN
OUT
(4)
VCC
80
86
(1)
(2) (3)
(4)
(5)
(6)(7)
(8)
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2024Y chip information
This chip, when properly assembled, displays characteristics similar to the TLE2024. Thermal compression or
ultrasonic bonding may be used on the doped aluminum-bonding pads. This chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ±10%.
ALL DIMENSIONS ARE IN MILS.
PIN (11) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
+
1OUT
1IN+
1IN
VCC +
(4)
(6)
(3)
(2)
(5)
(1)
+
(7) 2IN+
2IN
2OUT
(11)
VCC /GND
+
3OUT
2IN+
3IN
(13)
(10)
(9)
(12)
(8)
+
(14)
4OUT
4IN+
4IN
100
140
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
equivalent schematic (each amplifier)
IN
Q23 Q25
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q20
Q21
Q22
Q24
Q26
Q27
Q28
Q29
Q30
Q31
Q32
Q33
Q34
Q35
Q36
Q37
Q38
Q39
Q40
D1 D2
D3
D4
IN +
OUT
OFFSET N1
VCC+
VCC /GND
C1
R1
R2
R3
R4
R5
C2
R6
R7
C4
C3
OFFSET N2
ACTUAL DEVICE COMPONENT COUNT
COMPONENT TLE2021 TLE2022 TLE2024
Transistors 40 80 160
Resistors 7 14 28
Diodes 4 8 16
Capacitors 4 8 16
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) 20 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply voltage, VCC (see Note 1) 20 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±0.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (any input, see Note 1) ±VCC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each input) ±1 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO (each output): TLE2021 ±20 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE2022 ±30 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE2024 ±40 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VCC+ 80 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of VCC 80 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix 40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix 55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg 65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case temperature for 60 seconds, TC: FK package 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DP, P, or PW package 260°C. . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 300°C. . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC +, and VCC .
2. Differential voltages are at IN+ with respect to IN. Excessive current flows if a differential input voltage in excess of approximately
±600 mV is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE TA 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D8725 mW 5.8 mW/°C464 mW 377 mW 145 mW
DB8525 mW 4.2 mW/°C 336 mW
DW16 1025 mW 8.2 mW/°C 656 mW 533 mW 205 mW
FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW
J14 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW
JG81050 mW 8.4 mW/°C 672 mW 546 mW 210 mW
N14 1150 mW 9.2 mW/°C 736 mW 598 mW 230 mW
P81000 mW 8.0 mW/°C 640 mW 520 mW 200 mW
PW8525 mW 4.2 mW/°C336 mW
recommended operating conditions
C SUFFIX I SUFFIX M SUFFIX
UNIT
MIN MAX MIN MAX MIN MAX UNIT
Supply voltage, VCC ±2±20 ±2±20 ±2±20 V
Common mode input voltage V
VCC = ± 5 V 0 3.5 0 3.2 0 3.2
V
Common-mode input voltage, VIC VCC ± = ±15 V 15 13.5 15 13.2 15 13.2 V
Operating free-air temperature, TA0 70 40 85 55 125 °C
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
9
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2021C TLE2021AC TLE2021BC
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 120 600 100 300 80 200
V
VIO Input offset voltage Full range 850 600 300 μV
αVIO Temperature coefficient of
input offset voltage Full range 2 2 2 μV/°C
Input offset voltage long-term drift
(see Note 4) VI
C
= 0, R
S
= 50 Ω25°C 0.005 0.005 0.005 μV/mo
I
Input offset current
VIC = 0
,
RS = 50 Ω
25°C 0.2 6 0.2 6 0.2 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 25 70 25 70 25 70
nA
IIB Input bias current Full range 90 90 90 nA
V
Common mode input voltage range
R 50 Ω
25°C
0
to
3.5
0.3
to
4
0
to
3.5
0.3
to
4
0
to
3.5
0.3
to
4
V
VICR Common-mode input voltage range RS = 50 Ω
Full range
0
to
3.5
0
to
3.5
0
to
3.5
V
V
High level output voltage
25°C 4 4.3 4 4.3 4 4.3
V
VOH High-level output voltage
R 10 kΩ
Full range 3.9 3.9 3.9 V
V
Low level output voltage
RL= 10 kΩ25°C 0.7 0.8 0.7 0.8 0.7 0.8
V
VOL Low-level output voltage Full range 0.85 0.85 0.85 V
A
Lar
g
e-si
g
nal differential V
O
= 1.4 V to 4 V, 25°C 0.3 1.5 0.3 1.5 0.3 1.5
V/ V
AVD
Large signal differential
voltage amplification
VO = 1
.
4 V to 4 V
,
RL = 10 kΩFull range 0.3 0.3 0.3 V/μV
CMRR
Common mode rejection ratio
VI
C
= VI
C
Rmin, 25°C 85 110 85 110 85 110
dB
CMRR Common-mode rejection ratio
VIC = VICRmin
,
RS = 50 ΩFull range 80 80 80 dB
k
Suppl
y
-volta
g
e re
j
ection ratio
V 5 V to 30 V
25°C 105 120 105 120 105 120
dB
kSVR
Supply voltage rejection ratio
(ΔVCC /ΔVIO)VCC = 5 V to 30 V Full range 100 100 100 dB
I
Supply current
25°C 200 300 200 300 200 300
A
ICC Supply current
VO = 2 5 V No load
Full range 300 300 300 μA
ΔICC Supply-current change over
operating temperature range
V
O
=
2
.5
V
,
N
o
l
oa
d
Full range 5 5 5 μA
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2021C TLE2021AC TLE2021BC
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 120 500 80 200 40 100
V
VIO Input offset voltage Full range 750 500 200 μV
αVIO Temperature coefficient of
input offset voltage Full range 2 2 2 μV/°C
Input offset voltage long-term drift
(see Note 4) VIC = 0, RS = 50 Ω25°C 0.006 0.006 0.006 μV/mo
I
Input offset current
25°C 0.2 6 0.2 6 0.2 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 25 70 25 70 25 70
nA
IIB Input bias current Full range 90 90 90 nA
V
Common mode input voltage range
R 50 Ω
25°C
15
to
13.5
15.3
to
14
15
to
13.5
15.3
to
14
15
to
13.5
15.3
to
14
V
VICR Common-mode input voltage range RS = 50 Ω
Full range
15
to
13.5
15
to
13.5
15
to
13.5
V
V
Maximum positive peak 25°C 14 14.3 14 14.3 14 14.3
V
VOM+
Maximum positive peak
output voltage swing
R 10 kΩ
Full range 13.9 13.9 13.9 V
V
Maximum ne
g
ative peak RL = 10 kΩ25°C13.7 14.1 13.7 14.1 13.7 14.1
V
VOM
Maximum negative peak
output voltage swing Full range 13.7 13.7 13.7 V
A
Lar
g
e-si
g
nal differential V
O
= ±10 V, 25°C 1 6.5 1 6.5 1 6.5
V/ V
AVD
Large signal differential
voltage amplification
VO = ±10 V
,
RL = 10 kΩFull range 1 1 1 V/μV
CMRR
Common mode rejection ratio
VI
C
= VI
C
Rmin, 25°C 100 115 100 115 100 115
dB
CMRR Common-mode rejection ratio
VIC = VICR min
,
RS = 50 ΩFull range 96 96 96 dB
k
Su
pp
l
y
-volta
g
e re
j
ection ratio V
CC
± = ± 2.5 V 25°C 105 120 105 120 105 120
dB
kSVR
Supply voltage rejection ratio
(ΔVCC /ΔVIO)
VCC ± = ± 2
.
5 V
to ±15 V Full range 100 100 100 dB
I
Supply current
25°C 240 350 240 350 240 350
A
ICC Supply current
VO = 0 No load
Full range 350 350 350 μA
ΔICC Supply-current change over
operating temperature range
V
O
=
0
,
N
o
l
oa
d
Full range 6 6 6 μA
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
11
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2022C TLE2022AC TLE2022BC
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 600 400 250
V
VIO Input offset voltage Full range 800 550 400 μV
αVIO
Temperature coefficient of
Full range
2
2
2
V/°C
αVIO
Temperature coefficient of
input offset voltage Full range 2 2 2 μV/°C
Input offset volta
g
e lon
g
-term
V 0
R 50 Ω
25°C
0 005
0 005
0 005
V/mo
Input offset voltage long term
drift (see Note 4) VIC = 0, RS = 50 Ω25°C 0.005 0.005 0.005 μV/mo
I
Input offset current
25°C 0.5 6 0.4 6 0.3 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 35 70 33 70 30 70
nA
IIB Input bias current Full range 90 90 90 nA
00.3 0 0.3 0 0.3
25°C
0
to
0
.
3
to
0
to
0
.
3
to
0
to
0
.
3
to
V
Common-mode input
R 50 Ω
25 C
to
3.5
to
4
to
3.5
to
4
to
3.5
to
4
V
VICR
Common mode input
voltage range RS = 50 Ω000V
voltage range
Full range
0
to
0
to
0
to
Full range
to
3.5
to
3.5
to
3.5
V
High level output voltage
25°C 4 4.3 4 4.3 4 4.3
V
VOH High-level output voltage
R 10 kΩ
Full range 3.9 3.9 3.9 V
V
Low level output voltage
RL = 10 kΩ25°C 0.7 0.8 0.7 0.8 0.7 0.8
V
VOL Low-level output voltage Full range 0.85 0.85 0.85 V
A
Lar
g
e-si
g
nal differential
V 1 4 V to 4 V
R 10 kΩ
25°C 0.3 1.5 0.4 1.5 0.5 1.5
V/ V
AVD
Large signal differential
voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩFull range 0.3 0.4 0.5 V/μV
CMRR
Common mode rejection ratio
V V min
R 50 Ω
25°C 85 100 87 102 90 105
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 80 82 85 dB
k
Supply-voltage rejection ratio
V 5 V to 30 V
25°C 100 115 103 118 105 120
dB
kSVR
Supply voltage rejection ratio
(ΔVCC ±/ΔVIO)VCC = 5 V to 30 V Full range 95 98 100 dB
I
Supply current
25°C 450 600 450 600 450 600
A
ICC Supply current
VO = 2 5 V
No load
Full range 600 600 600 μA
ΔICC
Supply current change over
V
O
=
2
.5
V
,
N
o
l
oa
d
Full range
7
7
7
μA
ΔICC
Supply current change over
operating temperature range Full range 7 7 7 μA
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2022C TLE2022AC TLE2022BC
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 150 500 120 300 70 150
V
VIO Input offset voltage Full range 700 450 300 μV
Temperature coefficient of
Full range
2
2
2
V/°C
αVIO
Temperature coefficient of
input offset voltage Full range 222μV/°C
In
p
ut offset volta
g
e lon
g
-term
V 0
R 50 Ω
25°C
0 006
0 006
0 006
V/mo
Input offset voltage long term
drift (see Note 4) VIC = 0, RS = 50 Ω25°C 0.006 0.006 0.006 μV/mo
I
Input offset current
25°C 0.5 6 0.4 6 0.3 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 35 70 33 70 30 70
nA
IIB Input bias current Full range 90 90 90 nA
15 15.3 15 15.3 15 15.3
25°C
15
to
15
.
3
to
15
to
15
.
3
to
15
to
15
.
3
to
V
Common-mode in
p
ut
R 50 Ω
25 C
to
13.5
to
14
to
13.5
to
14
to
13.5
to
14
V
VICR
Common mode input
voltage range RS = 50 Ω15 15 15 V
voltage range
Full ran
g
e
15
to
15
to
15
to
Full range
to
13.5
to
13.5
to
13.5
V
Maximum positive peak 25°C 14 14.3 14 14.3 14 14.3
V
VOM +
Maximum positive peak
output voltage swing
R 10 kΩ
Full range 13.9 13.9 13.9 V
V
Maximum ne
g
ative peak RL = 10 kΩ25°C13.7 14.1 13.7 14.1 13.7 14.1
V
VOM
Maximum negative peak
output voltage swing Full range 13.7 13.7 13.7 V
A
Lar
g
e-si
g
nal differential
V ±10 V
R 10 kΩ
25°C 0.8 4 1 7 1.5 10
V/ V
AVD
Large signal differential
voltage amplification VO = ±10 V, RL = 10 kΩFull range 0.8 1 1.5 V/μV
CMRR
Common mode rejection ratio
V V min
R 50 Ω
25°C 95 106 97 109 100 112
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 91 93 96 dB
k
Suppl
y
-volta
g
e re
j
ection ratio
V ±2 5 V to ±15 V
25°C 100 115 103 118 105 120
dB
kSVR
Supply voltage rejection ratio
(ΔVCC ±/ΔVIO)VCC ± = ±2.5 V to ±15 V Full range 95 98 100 dB
I
Supply current
25°C 550 700 550 700 550 700
A
ICC Supply current
VO = 0
No load
Full range 700 700 700 μA
ΔI
Suppl
y
current chan
g
e over
V
O
=
0
,
N
o
l
oa
d
Full range
9
9
9
μA
ΔICC
Supply current change over
operating temperature range Full range 999μA
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
13
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2024C TLE2024AC TLE2024BC
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 1100 850 600
V
VIO Input offset voltage Full range 1300 1050 800 μV
αVIO Temperature coefficient of
input offset voltage Full range 2 2 2 μV/°C
Input offset voltage long-term
drift (see Note 4) VIC = 0, RS = 50 Ω25°C0.005 0.005 0.005 μV/mo
I
Input offset current
25°C 0.6 6 0.5 6 0.4 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 45 70 40 70 35 70
nA
IIB Input bias current Full range 90 90 90 nA
V
Common-mode input voltage
R 50 Ω
25°C
0
to
3.5
0.3
to
4
0
to
3.5
0.3
to
4
0
to
3.5
0.3
to
4
V
VICR
Common mode input voltage
range RS = 50 Ω
Full range
0
to
3.5
0
to
3.5
0
to
3.5
V
V
High level output voltage
25°C 3.9 4.2 3.9 4.2 4 4.3
V
VOH High-level output voltage
R 10 kΩ
Full range 3.7 3.7 3.8 V
V
Low level output voltage
RL = 10 kΩ25°C 0.7 0.8 0.7 0.8 0.7 0.8
V
VOL Low-level output voltage Full range 0.95 0.95 0.95 V
A
Large-signal differential
V 1 4 V to 4 V
R 10 kΩ
25°C 0.2 1.5 0.3 1.5 0.4 1.5
V/ V
AVD
Large signal differential
voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩFull range 0.1 0.1 0.1 V/μV
CMRR
Common mode rejection ratio
V V min
R 50 Ω
25°C 80 90 82 92 85 95
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 80 82 85 dB
kSVR
Suppl
y
-volta
g
e re
j
ection ratio
V 5 V to 30 V
25°C 98 112 100 115 103 117
dB
kSVR
Supply voltage rejection ratio
(ΔVCC /ΔVIO)VCC = 5 V to 30 V Full range 93 95 98 dB
I
Supply current
25°C 800 1200 800 1200 800 1200
A
ICC Supply current
VO = 2 5 V
No load
Full range 1200 1200 1200 μA
ΔICC Supply current change over
operating temperature range
V
O
=
2
.5
V
,
N
o
l
oa
d
Full range 15 15 15 μA
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2024 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2024C TLE2024AC TLE2024BC
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 1000 750 500
V
VIO Input offset voltage Full range 1200 950 700 μV
αVIO Temperature coefficient of
input offset voltage Full range 2 2 2 μV/°C
Input offset voltage long-term
drift (see Note 4) VIC = 0, RS = 50 Ω25°C0.006 0.006 0.006 μV/mo
I
Input offset current
25°C 0.6 6 0.5 6 0.4 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 50 70 45 70 40 70
nA
IIB Input bias current Full range 90 90 90 nA
V
Common-mode input volta
g
e
R 50 Ω
25°C
15
to
13.5
15.3
to
14
15
to
13.5
15.3
to
14
15
to
13.5
15.3
to
14
V
VICR
Common mode input voltage
range RS = 50 Ω
Full range
15
to
13.5
15
to
13.5
15
to
13.5
V
V
Maximum positive peak output 25°C 13.8 14.1 13.9 14.2 14 14.3
V
VOM +
Maximum positive peak output
voltage swing
R 10 kΩ
Full range 13.7 13.8 13.9 V
V
Maximum ne
g
ative peak output RL = 10 kΩ25°C13.7 14.1 13.7 14.1 13.7 14.1
V
VOM
Maximum negative peak output
voltage swing Full range 13.6 13.6 13.6 V
A
Lar
g
e-si
g
nal differential
V ±10 V
R 10 kΩ
25°C 0.4 2 0.8 4 1 7
V/ V
AVD
Large signal differential
voltage amplification VO = ±10 V, RL = 10 kΩFull range 0.4 0.8 1 V/μV
CMRR
Common mode rejection ratio
V V min
R 50 Ω
25°C 92 102 94 105 97 108
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 88 90 93 dB
k
Su
pp
l
y
-volta
g
e re
j
ection ratio
V ±2 5 V to ±15 V
25°C 98 112 100 115 103 117
dB
kSVR
Supply voltage rejection ratio
(ΔVCC ±/ΔVIO)VCC ± = ±2.5 V to ±15 V Full range 93 95 98 dB
I
Supply current
25°C 1050 1400 1050 1400 1050 1400
A
ICC Supply current
VO = 0
No load
Full range 1400 1400 1400 μA
ΔI
Suppl
y
current chan
g
e over
V
O
=
0
,
N
o
l
oa
d
Full range
20
20
20
μA
Δ
ICC
Supply current change over
operating temperature range Full range 20 20 20 μA
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
15
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2021I TLE2021AI TLE2021BI
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 120 600 100 300 80 200
V
VIO Input offset voltage Full range 950 600 300 μV
αVIO Temperature coefficient of
input offset voltage Full range 2 2 2 μV/°C
Input offset voltage long-term drift
(see Note 4) VIC = 0, RS = 50 Ω25°C 0.005 0.005 0.005 μV/mo
I
Input offset current
25°C 0.2 6 0.2 6 0.2 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 25 70 25 70 25 70
nA
IIB Input bias current Full range 90 90 90 nA
V
Common mode input voltage range
R 50 Ω
25°C
0
to
3.5
0.3
to
4
0
to
3.5
0.3
to
4
0
to
3.5
0.3
to
4
V
VICR Common-mode input voltage range RS = 50 Ω
Full range
0
to
3.2
0
to
3.2
0
to
3.2
V
V
High level output voltage
25°C 4 4.3 4 4.3 4 4.3
V
VOH High-level output voltage
R 10 kΩ
Full range 3.9 3.9 3.9 V
V
Low level output voltage
RL = 10 kΩ25°C 0.7 0.8 0.7 0.8 0.7 0.8
V
VOL Low-level output voltage Full range 0.9 0.9 0.9 V
A
Lar
g
e-si
g
nal differential V
O
= 1.4 V to 4 V, 25°C 0.3 1.5 0.3 1.5 0.3 1.5
V/ V
AVD
Large signal differential
voltage amplification
VO =1
.
4 V to 4 V
,
RL = 10 kΩFull range 0.25 0.25 0.25 V/μV
CMRR
Common mode rejection ratio
VI
C
= VI
C
Rmin, 25°C 85 110 85 110 85 110
dB
CMRR Common-mode rejection ratio
VIC = VICR min
,
RS = 50 ΩFull range 80 80 80 dB
k
Suppl
y
-volta
g
e re
j
ection ratio
V 5 V to 30 V
25°C 105 120 105 120 105 120
dB
kSVR
Supply voltage rejection ratio
(ΔVCC /ΔVIO)VCC = 5 V to 30 V Full range 100 100 100 dB
I
Supply current
25°C 200 300 200 300 200 300
A
ICC Supply current VO = 2.5 V, Full range 300 300 300 μA
ΔICC Supply-current change over
operating temperature range
O,
No load
Full range 6 6 6 μA
Full range is 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2021I TLE2021AI TLE2021BI
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 120 500 80 200 40 100
V
VIO Input offset voltage Full range 850 500 200 μV
αVIO Temperature coefficient of
input offset voltage Full range 2 2 2 μV/°C
Input offset voltage long-term drift
(see Note 4) VIC = 0, RS = 50 Ω25°C 0.006 0.006 0.006 μV/mo
I
Input offset current
25°C 0.2 6 0.2 6 0.2 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 25 70 25 70 25 70
nA
IIB Input bias current Full range 90 90 90 nA
V
Common-mode input volta
g
e ran
g
e
R 50 Ω
25°C
15
to
13.5
15.3
to
14
15
to
13.5
15.3
to
14
15
to
13.5
15.3
to
14
V
VICR
Common mode input voltage range
RS = 50 Ω
Full range
15
to
13.2
15
to
13.2
15
to
13.2
V
V
Maximum positive peak output 25°C 14 14.3 14 14.3 14 14.3
V
VOM +
Maximum positive peak output
voltage swing
R 10 kΩ
Full range 13.9 13.9 13.9 V
V
Maximum ne
g
ative peak output RL = 10 kΩ25°C13.7 14.1 13.7 14.1 13.7 14.1
V
VOM
Maximum negative peak output
voltage swing Full range 13.6 13.6 13.6 V
A
Lar
g
e-si
g
nal differential V
O
=10 V, 25°C 1 6.5 1 6.5 1 6.5
V/ V
AVD
Large signal differential
voltage amplification
VO =10 V
,
RL = 10 kΩFull range 0.75 0.75 0.75 V/μV
CMRR
Common mode rejection ratio
VI
C
= VI
C
Rmin, 25°C 100 115 100 115 100 115
dB
CMRR Common-mode rejection ratio
VIC = VICR min
,
RS = 50 ΩFull range 96 96 96 dB
k
Su
pp
l
y
-volta
g
e re
j
ection ratio V
CC
± = ±2. 5 V 25°C 105 120 105 120 105 120
dB
kSVR
Supply voltage rejection ratio
(ΔVCC /ΔVIO)
VCC ± = ±2
.
5 V
to ± 15 V Full range 100 100 100 dB
I
Supply current
25°C 240 350 240 350 240 350
A
ICC Supply current
VO = 0 V No load
Full range 350 350 350 μA
ΔICC Supply-current change over
operating temperature range
V
O
=
0 V
,
N
o
l
oa
d
Full range 7 7 7 μA
Full range is 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
17
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2022I TLE2022AI TLE2022BI
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 600 400 250
V
VIO Input offset voltage Full range 800 550 400 μV
Temperature coefficient of
Full range
2
2
2
V/°C
αVIO
Temperature coefficient of
input offset voltage Full range 2 2 2 μV/°C
Input offset volta
g
e lon
g
-term
V 0
R 50 Ω
25°C
0 005
0 005
0 005
V/mo
Input offset voltage long term
drift (see Note 4) VIC = 0, RS = 50 Ω25°C0.005 0.005 0.005 μV/mo
I
Input offset current
25°C 0.5 6 0.4 6 0.3 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 35 70 33 70 30 70
nA
IIB Input bias current Full range 90 90 90 nA
00.3 0 0.3 0 0.3
25°C
0
to
0
.
3
to
0
to
0
.
3
to
0
to
0
.
3
to
V
Common-mode input
R 50 Ω
25 C
to
3.5
to
4
to
3.5
to
4
to
3.5
to
4
V
VICR
Common mode input
voltage range RS = 50 Ω000V
voltage range
Full range
0
to
0
to
0
to
Full range
to
3.2
to
3.2
to
3.2
V
High level output voltage
25°C 4 4.3 4 4.3 4 4.3
V
VOH High-level output voltage
R 10 kΩ
Full range 3.9 3.9 3.9 V
V
Low level output voltage
RL = 10 kΩ25°C 0.7 0.8 0.7 0.8 0.7 0.8
V
VOL Low-level output voltage Full range 0.9 0.9 0.9 V
A
Lar
g
e-si
g
nal differential
V 1 4 V to 4 V
R 10 kΩ
25°C 0.3 1.5 0.4 1.5 0.5 1.5
V/ V
AVD
Large signal differential
voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩFull range 0.2 0.2 0.2 V/μV
CMRR
Common mode rejection ratio
V V min
R 50 Ω
25°C 85 100 87 102 90 105
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 80 82 85 dB
k
Supply-voltage rejection ratio
V 5 V to 30 V
25°C 100 115 103 118 105 120
dB
kSVR
Supply voltage rejection ratio
(ΔVCC ±/ΔVIO)VCC = 5 V to 30 V Full range 95 98 100 dB
I
Supply current
25°C 450 600 450 600 450 600
A
ICC Supply current
VO = 2 5 V
No load
Full range 600 600 600 μA
ΔICC
Supply current change over
V
O
=
2
.5
V
,
N
o
l
oa
d
Full range
15
15
15
μA
ΔICC
Supply current change over
operating temperature range Full range 15 15 15 μA
Full range is 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2022I TLE2022AI TLE2022BI
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 150 500 120 300 70 150
V
VIO Input offset voltage Full range 700 450 300 μV
Temperature coefficient of
Full range
2
2
2
V/°C
αVIO
Temperature coefficient of
input offset voltage Full range 2 2 2 μV/°C
In
p
ut offset volta
g
e lon
g
-term
V 0
R 50 Ω
25°C
0 006
0 006
0 006
V/mo
Input offset voltage long term
drift (see Note 4) VIC = 0, RS = 50 Ω25°C0.006 0.006 0.006 μV/mo
I
Input offset current
25°C 0.5 6 0.4 6 0.3 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 35 70 33 70 30 70
nA
IIB Input bias current Full range 90 90 90 nA
15 15.3 15 15.3 15 15.3
25°C
15
to
15
.
3
to
15
to
15
.
3
to
15
to
15
.
3
to
V
Common-mode in
p
ut
R 50 Ω
25 C
to
13.5
to
14
to
13.5
to
14
to
13.5
to
14
V
VICR
Common mode input
voltage range RS = 50 Ω15 15 15 V
voltage range
Full ran
g
e
15
to
15
to
15
to
Full range
to
13.2
to
13.2
to
13.2
V
Maximum positive peak 25°C 14 14.3 14 14.3 14 14.3
V
VOM +
Maximum positive peak
output voltage swing
R 10 kΩ
Full range 13.9 13.9 13.9 V
V
Maximum ne
g
ative peak RL = 10 kΩ25°C13.7 14.1 13.7 14.1 13.7 14.1
V
VOM
Maximum negative peak
output voltage swing Full range 13.6 13.6 13.6 V
A
Lar
g
e-si
g
nal differential
V ±10 V
R 10 kΩ
25°C 0.8 4 1 7 1.5 10
V/ V
AVD
Large signal differential
voltage amplification VO = ±10 V, RL = 10 kΩFull range 0.8 1 1.5 V/μV
CMRR
Common mode rejection ratio
V V min
R 50 Ω
25°C 95 106 97 109 100 112
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 91 93 96 dB
k
Suppl
y
-volta
g
e re
j
ection ratio
V ±2 5 V to ±15 V
25°C 100 115 103 118 105 120
dB
kSVR
Supply voltage rejection ratio
(ΔVCC ±/ΔVIO)VCC = ±2.5 V to ±15 V Full range 95 98 100 dB
I
Supply current
25°C 550 700 550 700 550 700
A
ICC Supply current
VO = 0
No load
Full range 700 700 700 μA
ΔI
Suppl
y
current chan
g
e over
V
O
=
0
,
N
o
l
oa
d
Full range
30
30
30
μA
ΔICC
Supply current change over
operating temperature range Full range 30 30 30 μA
Full range is 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
19
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2024I TLE2024AI TLE2024BI
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 1100 850 600
V
VIO Input offset voltage Full range 1300 1050 800 μV
αVIO Temperature coefficient of
input offset voltage Full range 2 2 2 μV/°C
Input offset voltage long-term
drift (see Note 4) VIC = 0, RS = 50 Ω25°C0.005 0.005 0.005 μV/mo
I
Input offset current
25°C 0.6 6 0.5 6 0.4 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 45 70 40 70 35 70
nA
IIB Input bias current Full range 90 90 90 nA
V
Common-mode input voltage
R 50 Ω
25°C
0
to
3.5
0.3
to
4
0
to
3.5
0.3
to
4
0
to
3.5
0.3
to
4
V
VICR
Common mode input voltage
range RS = 50 Ω
Full range
0
to
3.2
0
to
3.2
0
to
3.2
V
V
Maximum positive peak 25°C 3.9 4.2 3.9 4.2 4 4.3
V
VOM +
Maximum positive peak
output voltage swing
R 10 kΩ
Full range 3.7 3.7 3.8 V
V
Maximum negative peak RL = 10 kΩ25°C 0.7 0.8 0.7 0.8 0.7 0.8
V
VOM
Maximum negative peak
output voltage swing Full range 0.95 0.95 0.95 V
A
Large-signal differential
V 1 4 V to 4 V
R 10 kΩ
25°C 0.2 1.5 0.3 1.5 0.4 1.5
V/ V
AVD
Large signal differential
voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩFull range 0.1 0.1 0.1 V/μV
CMRR
Common mode rejection ratio
V V min
R 50 Ω
25°C 80 90 82 92 85 95
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 80 82 85 dB
kSVR
Suppl
y
-volta
g
e re
j
ection ratio
V ±2 5 V to ±15 V
25°C 98 112 100 115 103 117
dB
kSVR
Supply voltage rejection ratio
(ΔVCC±/ΔVIO)VCC ± = ±2.5 V to ±15 V Full range 93 95 98 dB
I
Supply current
25°C 800 1200 800 1200 800 1200
A
ICC Supply current
VO = 0
No load
Full range 1200 1200 1200 μA
ΔICC Supply current change over
operating temperature range
V
O
=
0
,
N
o
l
oa
d
Full range 30 30 30 μA
Full range is 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2024 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2024I TLE2024AI TLE2024BI
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 1000 750 500
V
VIO Input offset voltage Full range 1200 950 700 μV
αVIO Temperature coefficient of input
offset voltage Full range 2 2 2 μV/°C
Input offset voltage long-term
drift (see Note 4) VIC = 0, RS = 50 Ω25°C0.006 0.006 0.006 μV/mo
I
Input offset current
25°C 0.6 6 0.5 6 0.4 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 50 70 45 70 40 70
nA
IIB Input bias current Full range 90 90 90 nA
V
Common-mode input volta
g
e
R 50 Ω
25°C
15
to
13.5
15.3
to
14
15
to
13.5
15.3
to
14
15
to
13.5
15.3
to
14
V
VICR
Common mode input voltage
range RS = 50 Ω
Full range
15
to
13.2
15
to
13.2
15
to
13.2
V
V
Maximum positive peak output 25°C 13.8 14.1 13.9 14.2 14 14.3
V
VOM +
Maximum positive peak output
voltage swing
R 10 kΩ
Full range 13.7 13.7 13.8 V
V
Maximum ne
g
ative peak output RL = 10 kΩ25°C13.7 14.1 13.7 14.1 13.7 14.1
V
VOM
Maximum negative peak output
voltage swing Full range 13.6 13.6 13.6 V
A
Lar
g
e-si
g
nal differential
V ±10 V
R 10 kΩ
25°C 0.4 2 0.8 4 1 7
V/ V
AVD
Large signal differential
voltage amplification VO = ±10 V, RL = 10 kΩFull range 0.4 0.8 1 V/μV
CMRR
Common mode rejection ratio
V V min
R 50 Ω
25°C 92 102 94 105 97 108
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 88 90 93 dB
k
Su
pp
l
y
-volta
g
e re
j
ection ratio
V ±2 5 V to ±15 V
25°C 98 112 100 115 103 117
dB
kSVR
Supply voltage rejection ratio
(ΔVCC ±/ΔVIO)VCC ± = ±2.5 V to ±15 V Full range 93 95 98 dB
I
Supply current
25°C 1050 1400 1050 1400 1050 1400
A
ICC Supply current
VO = 0
No load
Full range 1400 1400 1400 μA
ΔI
Suppl
y
current chan
g
e over
V
O
=
0
,
N
o
l
oa
d
Full range
50
50
50
μA
Δ
ICC
Supply current change over
operating temperature range Full range 50 50 50 μA
Full range is 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
21
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2021M TLE2021BM
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 120 600 80 200
V
VIO Input offset voltage Full range 1100 300 μV
αVIO Temperature coefficient of
input offset voltage Full range 2 2 μV/°C
Input offset voltage long-term drift (see Note 4) VI
C
= 0, R
S
= 50 Ω25°C0.005 0.005 μV/mo
I
Input offset current
VIC = 0
,
RS = 50 Ω
25°C 0.2 6 0.2 6
nA
IIO Input offset current Full range 10 10 nA
I
Input bias current
25°C 25 70 25 70
nA
IIB Input bias current Full range 90 90 nA
V
Common-mode input
R 50 Ω
25°C
0
to
3.5
0.3
to
4
0
to
3.5
0.3
to
4
V
VICR
Common mode input
voltage range RS = 50 Ω
Full range
0
to
3.2
0
to
3.2
V
V
High level output voltage
25°C 4 4.3 4 4.3
V
VOH High-level output voltage
R 10 kΩ
Full range 3.8 3.8 V
V
Low level output voltage
RL = 10 kΩ25°C 0.7 0.8 0.7 0.8
V
VOL Low-level output voltage Full range 0.95 0.95 V
A
Large-signal differential
V 1 4 V to 4 V
R 10 kΩ
25°C 0.3 1.5 0.3 1.5
V/ V
AVD
Large signal differential
voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩFull range 0.1 0.1 V/μV
CMRR
Common mode rejection ratio
V V min
R 50 Ω
25°C 85 110 85 110
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 80 80 dB
k
Supply-voltage rejection ratio
V 5 V to 30 V
25°C 105 120 105 120
dB
kSVR
Supply voltage rejection ratio
(ΔVCC ±/ΔVIO)VCC = 5 V to 30 V Full range 100 100 dB
I
Supply current
25°C 170 230 170 230
A
ICC Supply current
VO = 2 5 V
No load
Full range 230 230 μA
ΔICC Supply current change over
operating temperature range
V
O
=
2
.5
V
,
N
o
l
oa
d
Full range 9 9 μA
Full range is 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2021M TLE2021BM
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 120 500 40 100
V
VIO Input offset voltage Full range 1000 200 μV
αVIO Temperature coefficient of
input offset voltage Full range 2 2 μV/°C
Input offset voltage long-term drift (see Note 4) V
IC
= 0, R
S
= 50 Ω25°C0.006 0.006 μV/mo
I
Input offset current
VIC = 0
,
RS = 50 Ω
25°C 0.2 6 0.2 6
nA
IIO Input offset current Full range 10 10 nA
I
Input bias current
25°C 25 70 25 70
nA
IIB Input bias current Full range 90 90 nA
V
Common-mode in
p
ut
R 50 Ω
25°C
15
to
13.5
15.3
to
14
15
to
13.5
15.3
to
14
V
VICR
Common mode input
voltage range RS = 50 Ω
Full range
15
to
13.2
15
to
13.2
V
V
Maximum
p
ositive
p
eak 25°C 14 14.3 14 14.3
V
VOM +
Maximum positive peak
output voltage swing
R 10 kΩ
Full range 13.8 13.8 V
V
Maximum ne
g
ative peak RL = 10 kΩ25°C13.7 14.1 13.7 14.1
V
VOM
Maximum negative peak
output voltage swing Full range 13.6 13.6 V
A
Lar
g
e-si
g
nal differential
V ±10 V
R 10 kΩ
25°C 1 6.5 1 6.5
V/ V
AVD
Large signal differential
voltage amplification VO = ±10 V, RL = 10 kΩFull range 0.5 0.5 V/μV
CMRR
Common mode rejection ratio
V V min
R 50 Ω
25°C 100 115 100 115
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 96 96 dB
k
Suppl
y
-volta
g
e re
j
ection ratio
V ± 2 5 V to ±15 V
25°C 105 120 105 120
dB
kSVR
Supply voltage rejection ratio
(ΔVCC ±/ΔVIO)VCC ± = ± 2.5 V to ±15 V Full range 100 100 dB
I
Supply current
25°C 200 300 200 300
A
ICC Supply current
VO = 0
No load
Full range 300 300 μA
ΔICC Supply current change over
operating temperature range
V
O
=
0
,
N
o
l
oa
d
Full range 10 10 μA
Full range is 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
23
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2022M TLE2022AM TLE2022BM
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 600 400 250
V
VIO Input offset voltage Full range 800 550 400 μV
Temperature coefficient of
Full range
2
2
2
V/°C
αVIO
Temperature coefficient of
input offset voltage Full range 2 2 2 μV/°C
Input offset volta
g
e lon
g
-term
V 0
R 50 Ω
25°C
0 005
0 005
0 005
V/mo
Input offset voltage long term
drift (see Note 4) VIC = 0, RS = 50 Ω25°C0.005 0.005 0.005 μV/mo
I
Input offset current
25°C 0.5 6 0.4 6 0.3 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 35 70 33 70 30 70
nA
IIB Input bias current Full range 90 90 90 nA
00.3 0 0.3 0 0.3
25°C
0
to
0
.
3
to
0
to
0
.
3
to
0
to
0
.
3
to
V
Common-mode input
R 50 Ω
25 C
to
3.5
to
4
to
3.5
to
4
to
3.5
to
4
V
VICR
Common mode input
voltage range RS = 50 Ω0 0 0 V
voltage range
Full range
0
to
0
to
0
to
Full range
to
3.2
to
3.2
to
3.2
V
High level output voltage
25°C 4 4.3 4 4.3 4 4.3
V
VOH High-level output voltage
R 10 kΩ
Full range 3.8 3.8 3.8 V
V
Low level output voltage
RL = 10 kΩ25°C 0.7 0.8 0.7 0.8 0.7 0.8
V
VOL Low-level output voltage Full range 0.95 0.95 0.95 V
A
Lar
g
e-si
g
nal differential
V 1 4 V to 4 V
R 10 kΩ
25°C 0.3 1.5 0.4 1.5 0.5 1.5
V/ V
AVD
Large signal differential
voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩFull range 0.1 0.1 0.1 V/μV
CMRR
Common mode rejection ratio
V V min
R 50 Ω
25°C 85 100 87 102 90 105
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 80 82 85 dB
k
Supply-voltage rejection ratio
V 5 V to 30 V
25°C 100 115 103 118 105 120
dB
kSVR
Supply voltage rejection ratio
(ΔVCC ±/ΔVIO)VCC = 5 V to 30 V Full range 95 98 100 dB
I
Supply current
25°C 450 600 450 600 450 600
A
ICC Supply current
VO 25 V
No load
Full range 600 600 600 μA
ΔICC
Supply current change over
VO = 2.5 V, No load
Full range
37
37
37
μA
ΔICC
Supply current change over
operating temperature range Full range 37 37 37 μA
Full range is 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
24 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2022M TLE2022AM TLE2022BM
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 150 500 120 300 70 150
V
VIO Input offset voltage Full range 700 450 300 μV
αVIO
Temperature coefficient of
Full range
2
2
2
V/°C
αVIO
Temperature coefficient of
input offset voltage Full range 2 2 2 μV/°C
In
p
ut offset volta
g
e lon
g
-term
V 0
R 50 Ω
25°C
0 006
0 006
0 006
V/mo
Input offset voltage long term
drift (see Note 4) VIC = 0, RS = 50 Ω25°C0.006 0.006 0.006 μV/mo
I
Input offset current
25°C 0.5 6 0.4 6 0.3 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 35 70 33 70 30 70
nA
IIB Input bias current Full range 90 90 90 nA
15 15.3 15 15.3 15 15.3
25°C
15
to
15
.
3
to
15
to
15
.
3
to
15
to
15
.
3
to
V
Common-mode in
p
ut
R 50 Ω
25 C
to
13.5
to
14
to
13.5
to
14
to
13.5
to
14
V
VICR
Common mode input
voltage range RS = 50 Ω15 15 15 V
voltage range
Full ran
g
e
15
to
15
to
15
to
Full range
to
13.2
to
13.2
to
13.2
V
Maximum positive peak 25°C 14 14.3 14 14.3 14 14.3
V
VOM +
Maximum positive peak
output voltage swing
R 10 kΩ
Full range 13.9 13.9 13.9 V
V
Maximum ne
g
ative peak RL = 10 kΩ25°C13.7 14.1 13.7 14.1 13.7 14.1
V
VOM
Maximum negative peak
output voltage swing Full range 13.6 13.6 13.6 V
A
Lar
g
e-si
g
nal differential
V ±10 V
R 10 kΩ
25°C 0.8 4 1 7 1.5 10
V/ V
AVD
Large signal differential
voltage amplification VO = ±10 V, RL = 10 kΩFull range 0.8 1 1.5 V/μV
CMRR
Common mode rejection ratio
V V min
R 50 Ω
25°C 95 106 97 109 100 112
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 91 93 96 dB
k
Suppl
y
-volta
g
e re
j
ection ratio
V ±2 5 V to ±15 V
25°C 100 115 103 118 105 120
dB
kSVR
Supply voltage rejection ratio
(ΔVCC ±/ΔVIO)VCC ± = ±2.5 V to ±15 V Full range 95 98 100 dB
I
Supply current
25°C 550 700 550 700 550 700
A
ICC Supply current
VO = 0
No load
Full range 700 700 700 μA
ΔI
Suppl
y
current chan
g
e over
V
O
=
0
,
N
o
l
oa
d
Full range
60
60
60
μA
ΔICC
Supply current change over
operating temperature range Full range 60 60 60 μA
Full range is 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
25
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2024M TLE2024AM TLE2024BM
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 1100 850 600
V
VIO Input offset voltage Full range 1300 1050 800 μV
αVIO Temperature coefficient of
input offset voltage Full range 2 2 2 μV/°C
Input offset voltage long-term
drift (see Note 4) VIC = 0, RS = 50 Ω25°C0.005 0.005 0.005 μV/mo
I
Input offset current
25°C 0.6 6 0.5 6 0.4 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 45 70 40 70 35 70
nA
IIB Input bias current Full range 90 90 90 nA
V
Common-mode input voltage
R 50 Ω
25°C
0
to
3.5
0.3
to
4
0
to
3.5
0.3
to
4
0
to
3.5
0.3
to
4
V
VICR
Common mode input voltage
range RS = 50 Ω
Full range
0
to
3.2
0
to
3.2
0
to
3.2
V
V
Maximum positive peak 25°C 3.9 4.2 3.9 4.2 4 4.3
V
VOM +
Maximum positive peak
output voltage swing
R 10 kΩ
Full range 3.7 3.7 3.8 V
V
Maximum negative peak RL = 10 kΩ25°C 0.7 0.8 0.7 0.8 0.7 0.8
V
VOM
Maximum negative peak
output voltage swing Full range 0.95 0.95 0.95 V
A
Large-signal differential
V 1 4 V to 4 V
R 10 kΩ
25°C 0.2 1.5 0.3 1.5 0.4 1.5
V/ V
AVD
Large signal differential
voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩFull range 0.1 0.1 0.1 V/μV
CMRR
Common mode rejection ratio
V V min
R 50 Ω
25°C 80 90 82 92 85 95
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 80 82 85 dB
kSVR
Suppl
y
-volta
g
e re
j
ection ratio
V ±2 5 V to ±15 V
25°C 98 112 100 115 103 117
dB
kSVR
Supply voltage rejection ratio
(ΔVCC±/ΔVIO)VCC ± = ±2.5 V to ±15 V Full range 93 95 98 dB
I
Supply current
25°C 800 1200 800 1200 800 1200
A
ICC Supply current
VO = 0
No load
Full range 1200 1200 1200 μA
ΔICC Supply current change over
operating temperature range
V
O
=
0
,
N
o
l
oa
d
Full range 50 50 50 μA
Full range is 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
26 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2024 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLE2024M TLE2024AM TLE2024BM
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 1000 750 500
V
VIO Input offset voltage Full range 1200 950 700 μV
αVIO Temperature coefficient of
input offset voltage Full range 2 2 2 μV/°C
Input offset voltage long-term
drift (see Note 4) VIC = 0, RS = 50 Ω25°C0.006 0.006 0.006 μV/mo
I
Input offset current
25°C 0.6 6 0.5 6 0.4 6
nA
IIO Input offset current Full range 10 10 10 nA
I
Input bias current
25°C 50 70 45 70 40 70
nA
IIB Input bias current Full range 90 90 90 nA
V
Common-mode input volta
g
e
R 50 Ω
25°C
15
to
13.5
15.3
to
14
15
to
13.5
15.3
to
14
15
to
13.5
15.3
to
14
V
VICR
Common mode input voltage
range RS = 50 Ω
Full range
15
to
13.2
15
to
13.2
15
to
13.2
V
V
Maximum positive peak output 25°C 13.8 14.1 13.9 14.2 14 14.3
V
VOM +
Maximum positive peak output
voltage swing
R 10 kΩ
Full range 13.7 13.7 13.8 V
V
Maximum ne
g
ative peak output RL = 10 kΩ25°C13.7 14.1 13.7 14.1 13.7 14.1
V
VOM
Maximum negative peak output
voltage swing Full range 13.6 13.6 13.6 V
A
Lar
g
e-si
g
nal differential
V ±10 V
R 10 kΩ
25°C 0.4 2 0.8 4 1 7
V/ V
AVD
Large signal differential
voltage amplification VO = ±10 V, RL = 10 kΩFull range 0.4 0.8 1 V/μV
CMRR
Common mode rejection ratio
V V min
R 50 Ω
25°C 92 102 94 105 97 108
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 88 90 93 dB
k
Su
pp
l
y
-volta
g
e re
j
ection ratio
V ±2 5 V to ±15 V
25°C 98 112 100 115 103 117
dB
kSVR
Supply voltage rejection ratio
(ΔVCC ±/ΔVIO)VCC ± = ±2.5 V to ±15 V Full range 93 95 98 dB
I
Supply current
25°C 1050 1400 1050 1400 1050 1400
A
ICC Supply current
VO = 0
No load
Full range 1400 1400 1400 μA
ΔI
Suppl
y
current chan
g
e over
V
O
=
0
,
N
o
l
oa
d
Full range
85
85
85
μA
Δ
ICC
Supply current change over
operating temperature range Full range 85 85 85 μA
Full range is 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
27
TLE2021 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
TEST CONDITIONS
T
C SUFFIX I SUFFIX M SUFFIX
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 25°C 0.5 0.5 0.5 V/μs
V
Equivalent input noise volta
g
ef = 10 Hz 25°C 21 50 21 50 21
nV/Hz
Vn
Equivalent input noise voltage
(see Figure 2) f = 1 kHz 25°C 17 30 17 30 17 nV/Hz
V
Peak-to-peak equivalent input f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16
V
VN(PP)
Peak to peak equivalent input
noise voltage f = 0.1 to 10 Hz 25°C 0.47 0.47 0.47 μV
InEquivalent input noise current 25°C 0.09 0.09 0.9 pA/Hz
B1Unity-gain bandwidth See Figure 3 25°C 1.2 1.2 1.2 MHz
φmPhase margin at unity gain See Figure 3 25°C 42°42°42°
TLE2021 operating characteristics at specified free-air temperature, VCC = ±15 V
PARAMETER
TEST CONDITIONS
T
C SUFFIX I SUFFIX M SUFFIX
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
SR
Slew rate at unity gain
V 1V to 3 V
See Figure 1
25°C 0.45 0.65 0.45 0.65 0.45 0.65
V/ s
SR Slew rate at unity gain VO = 1V to 3 V, See Figure 1 Full range 0.45 0.42 0.45 V/μs
V
Equivalent input noise volta
g
ef = 10 Hz 25°C 19 50 19 50 19
nV/Hz
Vn
Equivalent input noise voltage
(see Figure 2) f = 1 kHz 25°C 15 30 15 30 15 nV/Hz
V
Peak-to-peak equivalent input f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16
V
VN(PP)
Peak to peak equivalent input
noise voltage f = 0.1 to 10 Hz 25°C 0.47 0.47 0.47 μV
InEquivalent input noise current 25°C 0.09 0.09 0.09 pA/Hz
B1Unity-gain bandwidth See Figure 3 25°C 2 2 2 MHz
φmPhase margin at unity gain See Figure 3 25°C 46°46°46°
Full range is 0°C to 70°C for the C-suffix devices, 40°C to 85°C for the I-suffix devices, and 55°C to 125°C for the M-suffix devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
28 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
TEST CONDITIONS
C SUFFIX I SUFFIX M SUFFIX
UNIT
PARAMETER TEST CONDITIONS MIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 0.5 0.5 0.5 V/μs
V
E
q
uivalent in
p
ut noise volta
g
ef = 10 Hz 21 50 21 50 21
nV/Hz
Vn
Equivalent input noise voltage
(see Figure 2) f = 1 kHz 17 30 17 30 17 nV/
Hz
V
Peak to peak equivalent input noise voltage
f = 0.1 to 1 Hz 0.16 0.16 0.16
V
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 to 10 Hz 0.47 0.47 0.47 μV
InEquivalent input noise current 0.1 0.1 0.1 pA/Hz
B1Unity-gain bandwidth See Figure 3 1.7 1.7 1.7 MHz
φmPhase margin at unity gain See Figure 3 47°47°47°
TLE2022 operating characteristics at specified free-air temperature, VCC = ±15 V
PARAMETER
TEST CONDITIONS
T
C SUFFIXI SUFFIXM SUFFIX
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
SR
Slew rate at unity gain
V ±10 V
See Figure 1
25°C 0.45 0.65 0.45 0.65 0.45 0.65
V/ s
SR Slew rate at unity gain VO = ±10 V, See Figure 1 Full range 0.45 0.42 0.4 V/μs
V
Equivalent input noise f = 10 Hz 25°C 19 50 19 50 19
nV/Hz
Vn
Equivalent input noise
voltage (see Figure 2) f = 1 kHz 25°C 15 30 15 30 15 nV/
Hz
V
Peak-to-
p
eak e
q
uivalent f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16
V
VN(PP)
Peak to peak equivalent
input noise voltage f = 0.1 to 10 Hz 25°C 0.47 0.47 0.47 μV
InEquivalent input noise current 25°C 0.1 0.1 0.1 pA/Hz
B1Unity-gain bandwidth See Figure 3 25°C 2.8 2.8 2.8 MHz
φmPhase margin at unity gain See Figure 3 25°C 52°52°52°
Full range is 0°C to 70°C for the Csuffix devices, 40°C to 85°C for the I suffix devices and 55°C to 125°C for the Isuffix devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
29
TLE2024 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
TEST CONDITIONS
C SUFFIX I SUFFIX M SUFFIX
UNIT
PARAMETER TEST CONDITIONS MIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 0.5 0.5 0.5 V/μs
V
Equivalent input noise voltage (see Figure 2)
f = 10 Hz 21 50 21 50 21
nV/Hz
VnEquivalent input noise voltage (see Figure 2) f = 1 kHz 17 30 17 30 17 nV/
Hz
V
Peak to peak equivalent input noise voltage
f = 0.1 to 1 Hz 0.16 0.16 0.16
V
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 to 10 Hz 0.47 0.47 0.47 μV
InEquivalent input noise current 0.1 0.1 0.1 pA/Hz
B1Unity-gain bandwidth See Figure 3 1.7 1.7 1.7 MHz
φmPhase margin at unity gain See Figure 3 47°47°47°
TLE2024 operating characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
C SUFFIXI SUFFIXM SUFFIX
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX MIN TYP MAX UNIT
SR
Slew rate at unity gain
V ±10 V
See Figure 1
25°C 0.45 0.7 0.45 0.7 0.45 0.7
V/ s
SR Slew rate at unity gain VO = ±10 V, See Figure 1 Full range 0.45 0.42 0.4 V/μs
V
Equivalent input noise volta
g
e f = 10 Hz 25°C 19 50 19 50 19
nV/Hz
Vn
Equivalent input noise voltage
(see Figure 2) f = 1 kHz 25°C 15 30 15 30 15 nV/
Hz
V
Peak-to-peak equivalent input noise f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16
V
VN(PP)
Peak to peak equivalent input noise
voltage f = 0.1 to 10 Hz 25°C 0.47 0.47 0.47 μV
InEquivalent input noise current 25°C 0.1 0.1 0.1 pA/Hz
B1Unity-gain bandwidth See Figure 3 25°C 2.8 2.8 2.8 MHz
φmPhase margin at unity gain See Figure 3 25°C 52°52°52°
Full range is 0°C to 70°C for the Csuffix devices, 40°C to 85°C for the I suffix devices and 55°C to 125°C for the Isuffix devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
30 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021Y electrical characteristics at VCC = 5 V, TA = 25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLE2021Y
UNIT
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIO Input offset voltage 150 μV
Input offset voltage long-term drift (see Note 4)
V 0
R 50 Ω
0.005 μV/mo
IIO Input offset current VIC = 0, RS = 50 Ω0.5 nA
IIB Input bias current 35 nA
VICR Common-mode input voltage range RS = 50 Ω
0.3
to
4
V
VOH Maximum high-level output voltage
R 10 kΩ
4.3 V
VOL Maximum low-level output voltage RL = 10 kΩ0.7 V
AVD Large-signal differential voltage amplification VO = 1.4 to 4 V, RL = 10 kΩ1.5 V/μV
CMRR Common-mode rejection ratio VIC = VICR min, RS = 50 Ω100 dB
kSVR Supply-voltage rejection ratio (ΔVCC ±/ΔVIO) VCC = 5 V to 30 V 115 dB
ICC Supply current VO = 2.5 V, No load 400 μA
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2021Y operating characteristics at VCC = 5 V, TA = 25°C
PARAMETER
TEST CONDITIONS
TLE2021Y
UNIT
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SR Slew rate at unity gain VO = 1 V to 3 V 0.5 V/μs
V
Equivalent input noise voltage
f = 10 Hz 21
nV/Hz
VnEquivalent input noise voltage f = 1 kHz 17 nV/
Hz
V
Peak to peak equivalent input noise voltage
f = 0.1 to 1 Hz 0.16
V
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 to 10 Hz 0.47 μV
InEquivalent input noise current 0.1 pA/Hz
B1Unity-gain bandwidth 1.7 MHz
φmPhase margin at unity gain 47°
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLE2022Y
UNIT
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIO Input offset voltage 150 600 μV
Input offset voltage long-term drift (see Note 4)
V 0
R 50 Ω
0.005 μV/mo
IIO Input offset current VIC = 0, RS = 50 Ω0.5 nA
IIB Input bias current 35 nA
VICR Common-mode input voltage range RS = 50 Ω
0.3
to
4
V
VOH Maximum high-level output voltage
R 10 kΩ
4.3 V
VOL Maximum low-level output voltage RL = 10 kΩ0.7 V
AVD Large-signal differential voltage amplification VO = 1.4 to 4 V, RL= 10 kΩ1.5 V/μV
CMRR Common-mode rejection ratio VIC = VICR min, RS = 50 Ω100 dB
kSVR Supply-voltage rejection ratio (ΔVCC ±/ΔVIO) VCC = 5 V to 30 V 115 dB
ICC Supply current VO = 2.5 V, No load 450 μA
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2022Y operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
TEST CONDITIONS
TLE2022Y
UNIT
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 0.5 V/μs
V
Equivalent input noise voltage (see Figure 2)
f = 10 Hz 21
nV/H
VnEquivalent input noise voltage (see Figure 2) f = 1 kHz 17 nV/Hz
V
Peak to peak equivalent input noise voltage
f = 0.1 to 1 Hz 0.16
V
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 to 10 Hz 0.47 μV
InEquivalent input noise current 0.1 pA/Hz
B1Unity-gain bandwidth See Figure 3 1.7 MHz
φmPhase margin at unity gain See Figure 3 47°
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
32 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2024Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLE2024Y
UNIT
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Input offset voltage long-term drift (see Note 4) 0.005 μV/mo
IIO Input offset current VIC = 0, RS = 50 Ω0.6 nA
IIB Input bias current
VIC 0,
RS 50 Ω
45 nA
VICR Common-mode input voltage range RS = 50 Ω
0.3
to
4
V
VOH High-level output voltage
R 10 kΩ
4.2 V
VOL Low-level output voltage RL = 10 kΩ0.7 V
AVD Large-signal differential
voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩ1.5 V/μV
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 Ω90 dB
kSVR Supply-voltage rejection ratio
(ΔVCC /ΔVIO)VCC = 5 V to 30 V 112 dB
ICC Supply current VO = 2.5 V, No load 800 μA
NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2024Y operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
TEST CONDITIONS
TLE2024Y
UNIT
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 0.5 V/μs
V
Equivalent input noise voltage (see Figure 2)
f = 10 Hz 21
nV/Hz
VnEquivalent input noise voltage (see Figure 2) f = 1 kHz 17 nV/
Hz
V
Peak to peak equivalent input noise voltage
f = 0.1 to 1 Hz 0.16
V
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 to 10 Hz 0.47 μV
InEquivalent input noise current 0.1 pA/Hz
B1Unity-gain bandwidth See Figure 3 1.7 MHz
φmPhase margin at unity gain See Figure 3 47°
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
15 V
15 V
20 kΩ
VI
20 kΩ
VO
20 kΩ
VI
30 pF
(see Note A)
VO
5 V
20 kΩ
+
+
(a) SINGLE SUPPLY
NOTE A: CL includes fixture capacitance.
(b) SPLIT SUPPLY
30 pF
(see Note A)
Figure 1. Slew-Rate Test Circuit
2.5 V
5 V
VO
2 kΩ
20 Ω
20 Ω
20 Ω
20Ω
VO
15 V
15 V
2 kΩ
+
+
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
Figure 2. Noise-Voltage Test Circuit
2.5 V
+
+
VO
10 kΩ
15 V
15 V
10 kΩ
100Ω
VI
VI
10 kΩ
VO
100 Ω
10 kΩ
5 V
(a) SINGLE SUPPLY
NOTE A: CL includes fixture capacitance.
(b) SPLIT SUPPLY
30 pF
(see Note A)
30 pF
(see Note A)
Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
34 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
10 kΩ
0.1 μF
10 kΩ
+
VO
10 kΩ
VI
5 V
+
VO
10 kΩ
VI
15 V
15 V
(a) SINGLE SUPPLY
NOTE A: CL includes fixture capacitance.
(b) SPLIT SUPPLY
30 pF
(see Note A)
30 pF
(see Note A)
Figure 4. Small-Signal Pulse-Response Test Circuit
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
35
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO Input offset voltage Distribution 5, 6, 7
IIB Input bias current vs Common-mode input voltage
vs Free-air temperature
8, 9, 10
11, 12, 13
IIInput current vs Differential input voltage 14
VOM Maximum peak output voltage vs Output current
vs Free-air temperature
15, 16, 17
18
VOH High-level output voltage vs High-level output current
vs Free-air temperature
19, 20
21
VOL Low-level output voltage vs Low-level output current
vs Free-air temperature
22
23
VO(PP) Maximum peak-to-peak output voltage vs Frequency 24, 25
AVD Large-signal differential voltage amplification vs Frequency
vs Free-air temperature
26
27, 28, 29
IOS Short-circuit output current vs Supply voltage
vs Free-air temperature
30 33
34 37
ICC Supply current vs Supply voltage
vs Free-air temperature
38, 39, 40
41, 42, 43
CMRR Common-mode rejection ratio vs Frequency 44, 45, 46
SR Slew rate vs Free-air temperature 47, 48, 49
Voltage-follower small-signal pulse response 50, 51
Voltage-follower large-signal pulse response 52 57
VN(PP) Peak-to-peak equivalent input noise voltage 0.1 to 1 Hz
0.1 to 10 Hz
58
59
VnEquivalent input noise voltage vs Frequency 60
B1Unity-gain bandwidth vs Supply voltage
vs Free-air temperature
61, 62
63, 64
φmPhase margin
vs Supply voltage
vs Load capacitance
vs Free-air temperature
65, 66
67, 68
69, 70
Phase shift vs Frequency 26
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
36 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 5
16
12
8
4
3000300
0600
20
VIO Input Offset Voltage μV
Percentage of Units %
600
ÏÏÏÏ
P Package
VCC ± = ±15 V
231 Units Tested From 1 Wafer Lot
DISTRIBUTION OF TLE2021
INPUT OFFSET VOLTAGE
TA = 25°C
450 150 150 450
Figure 6
600
Percentage of Units %
VIO Input Offset Voltage μV
20
200
0
400 200 0
4
8
12
16
400 600
DISTRIBUTION OF TLE2022
INPUT OFFSET VOLTAGE
ÏÏÏÏÏÏÏÏÏÏÏ
398 Amplifiers Tested From 1 Wafer Lot
VCC ± = ±15 V
TA = 25°C
P Package
Figure 7
1
Percentage of Units %
VIO Input Offset Voltage mV
16
1
0
0.5 0 0.5
796 Amplifiers Tested From 1 Wafer Lot
VCC ± = ±15 V
TA = 25°C
N Package
4
8
12
DISTRIBUTION OF TLE2024
INPUT OFFSET VOLTAGE
Figure 8
TA = 25°C
VCC ± = ±15 V
35
30
25
20
15
10
5
1050510
0
15
40
VIC Common-Mode Input Voltage V
IIB Input Bias Current nA
15
IB
I
TLE2021
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
37
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 9
15
IIB Input Bias Current nA
VIC Common-Mode Input Voltage V
50
15
10 5 0 5 10
20
25
30
35
40
45
VCC ± = ±15 V
TA = 25°C
IB
I
TLE2022
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
Figure 10
15
IIB Input Bias Current nA
VIC Common-Mode Input Voltage V
60
15
20
10 50510
30
40
50
VCC ± = ±15 V
TA = 25°C
ÁÁ
ÁÁ
IIB
TLE2024
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
Figure 11
30
25
20
15
10
5
10075502502550
0125
35
TA Free-Air Temperature °C
IIB Input Bias Current nA
75
IB
I
TLE2021
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
VCC ± = ±15 V
VO = 0
VIC = 0
Figure 12
75
IIB Input Bias Current nA
TA Free-Air Temperature °C
50
125
50 25 0 25 50 75 100
20
25
30
35
40
45
VCC ± = ±15 V
VO = 0
VIC = 0
IB
I
TLE2022
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
38 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 13
TA Free-Air Temperature °C
75
IIB Input Bias Current nA
60
20
50 25 0 25 50 75 100
50
30
40
125
ÁÁ
ÁÁ
IIB
ÏÏÏ
ÏÏÏ
ÏÏÏ
VO = 0
VIC = 0
ÏÏÏÏÏ
VCC± = ±15 V
TLE2024
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
Figure 14
TA = 25°C
VIC = 0
VCC± = ±15 V
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.90.80.70.60.50.40.30.20.1
01
1
|VID| Differential Input Voltage V
II Input Current mA
0
INPUT CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
II
Figure 15
0
VOM Maximum Peak Output Voltage V
IO Output Current mA
16
10
02 4 6 8
2
4
6
8
10
12
14
VCC ± = ±15 V
TA = 25°C
ÁÁÁ
ÁÁÁ
ÁÁÁ
V
OM
ÏÏÏÏ
ÏÏÏÏ
VOM
ÏÏÏÏ
ÏÏÏÏ
VOM+
TLE2021
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
Figure 16
0
VOM| Maximum Peak Output Voltage V
|IO| Output Current mA
16
14
0246
2
4
6
8
10
12
14 TA = 25°C
81012
ÁÁ
ÁÁ
|VOM
ÏÏÏ
ÏÏÏ
VOM+
ÏÏÏÏ
ÏÏÏÏ
VOM
VCC ± = ±15 V
TLE2022
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
39
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 17
IO Output Current mA
0
VOM Maximum Peak Output Voltage V
16
0246
2
4
6
8
10
12
14
81012
ÏÏÏ
ÏÏÏ
VOM
14
VCC ± = ±15 V
ÏÏÏ
VOM +
ÁÁ
ÁÁ
ÁÁ
VOM
ÏÏÏÏ
TA = 25°C
TLE2024
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
Figure 18
75
TA Free-Air Temperature °C
15
125
12
50 25 0 25 50 75 100
12.5
13
13.5
14
14.5
VOM
VOM +
VCC ± = ±15 V
TA = 25°C
RL = 10 kΩ
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOM| Maximum Peak Output Voltage V
ÁÁÁ
ÁÁÁ
ÁÁÁ
|VOM
Figure 19
0
VOH High-Level Output Voltage V
IOH High-Level Output Current mA
5
7
0
123456
1
2
3
4
TA = 25°C
VCC = 5 V
ÁÁ
ÁÁ
V
OH
TLE2021
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
Figure 20
IOH High-Level Output Current mA
0
VOH High-Level Output Voltage V
5
0
2468
1
2
3
4
TA = 25°C
VCC = 5 V
ÁÁ
ÁÁ
V
OH
10
TLE2022 AND TLE2024
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
40 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 21
75
TA Free-Air Temperature °C
5
125
4
50 25 0 25 50 75 100
4.2
4.6
4.8
VOH High-Level Output Voltage V
VCC = 5 V
RL = 10 kΩ
No Load
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
ÁÁ
ÁÁ
V
OH
4.4
Figure 22
0
VOL Low-Level Output Voltage V
IOL Low-Level Output Current mA
5
3
00.5 1 1.5 2 2.5
1
2
3
4
VCC = 5 V
TA = 25°C
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
ÁÁ
VOL
Figure 23
75
TA Free-Air Temperature °C
1
125
0
50 25 0 25 50 75 100
0.25
0.5
0.75
IOL = 1 mA
IOL = 0
VCC ± = ±5 V
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOL Low-Level Output Voltage V
ÁÁÁ
ÁÁÁ
VOL
Figure 24
100
VOPP Maximum Peak-to-Peak Output Voltage V
f Frequency Hz
5
1 M
0
1
2
3
4
1 k 10 k 100 k
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
TA = 25°C
VCC =5 V
RL = 10 kΩ
ÁÁ
ÁÁ
ÁÁ
VO(PP)
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
41
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 25
100
f Frequency Hz
30
1 M
0
5
10
15
20
25
1 k 10 k 100 k
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
TA = 25°C
VCC ± = ±15 V
RL = 10 kΩ
VOPP Maximum Peak-to-Peak Output Voltage V
ÁÁ
ÁÁ
ÁÁ
ÁÁ
VO(PP)
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC ± = ±15 V
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
RL = 10 kΩ
CL = 30 pF
TA = 25°C
Phase Shift
AVD
180°
60°
200°
160°
140°
120°
100°
80°
100
80
60
40
20
0
1 M100 k10 k1 k100
20 10 M
120
f Frequency Hz
10
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
ÏÏÏÏÏ
ÏÏÏÏÏ
Phase Shift
VCC = 5 V
Large-Signal Differential
AVD
Voltage Amplification dB
Figure 26
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
42 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 27
RL = 10 kΩ
ÏÏÏÏ
ÏÏÏÏ
VCC = 5 V
6
4
2
10075502502550
0125
10
TA Free-Air Temperature °C
75
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
VCC ± = ±15 V
Vμ
V/
Voltage Amplification
8
Large-Signal Differential
AVD
TLE2021
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
FREE-AIR TEMPERATURE
Figure 28
75
TA Free-Air Temperature °C
125
0
50 25 0 25 50 75 100
1
VCC = 5 V
VCC ± = ±15 V
RL = 10 kΩ
2
3
4
5
6
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
Voltage Amplification V/μV
TLE2022
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
FREE-AIR TEMPERATURE
Figure 29
VCC ± = ±5 V
6
4
2
10075502502550
0125
10
TA Free-Air Temperature °C
75
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC ± = ±15 V
ÏÏÏÏÏ
ÏÏÏÏÏ
RL = 10 kΩ
Vμ
V/
Voltage Amplification
8
A Large-Signal Differential
VD
TLE2024
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
FREE-AIR TEMPERATURE
Figure 30
ÏÏÏÏÏ
VID = 100 mV
TA = 25°C
VID = 100 mV
VO = 0
8
6
4
2
0
2
4
6
8
1412108642
10 16
10
|VCC ±| Supply Voltage V
IOS Short-Circuit Output Current mA
0
ÁÁ
ÁÁ
OS
I
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
43
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 31
0
IOS Short-Circuit Output Current mA
|VCC ±| Supply Voltage V
15
16
15 2 4 6 8101214
VO = 0
TA = 25°C
VID = 100 mV
10
5
0
5
10
IOS
ÏÏÏÏÏ
VID = 100 mV
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
Figure 32
VO = VCC
TA = 25°C
VID = 100 mV
VID = 100 mV
VO = 0
8
4
0
4
8
252015105
12 30
12
VCC Supply Voltage V
0
IOS Short-Circuit Output Current mA
ÁÁ
ÁÁ
ÁÁ
OS
I
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
Figure 33
0
IOS Short-Circuit Output CUrrent mA
VCC Supply Voltage V
15
30
15
10
5
0
5
10
ÏÏÏÏ
ÏÏÏÏ
TA = 25°C
VID = 100 mV
VID = 100 mV
252015105
VO = VCC
VO = 0
IOS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
Figure 34
75
8
125
8
50 25 02550 75 100
6
4
2
0
2
4
6
VID = 100 mV
VCC =5 V
VID = 100 mV
VO = 0
VO = 5 V
TA Free-Air Temperature °C
IOS Short-Circuit Output Current mA
ÁÁ
ÁÁ
OS
I
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
44 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 35
75
6
125
10
50 25 0255075100
8
6
4
2
0
2
4
VID = 100 mV
VCC = 5 V
VO = 5 V
TA Free-Air Temperature °C
IOS Short-Circuit Output Current mA
IOS
ÏÏÏÏÏ
VID = 100 mV
ÏÏÏ
ÏÏÏ
VO = 0
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
Figure 36
75
IOS Short-Circuit Output Current mA
TA Free-Air Temperature °C
12
125
12
50 25 0 25 50 75 100
8
4
0
4
8VO = 0
VCC ± = ±15 V
VID = 100 mV
VID = 100 mV
ÁÁ
ÁÁ
OS
I
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
Figure 37
75
TA Free-Air Temperature °C
15
125
15
10
5
0
5
10
VO = 0
VID = 100 mV
VID = 100 mV
VCC ± = ±15 V
IOS Short-Circuit Output Current mA
50 25 0 25 50 75 100
IOS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
Figure 38
0
ICC Supply Current ua
|VCC ±| Supply Voltage V
250
16
0
50
100
150
200
2 4 6 8 10 12 14
VO = 0
No Load
ÁÁ
ÁÁ
CC
IAμ
ÏÏÏÏ
ÏÏÏÏ
TA = 25°C
ÏÏÏÏ
ÏÏÏÏ
TA = 125°C
ÏÏÏÏ
ÏÏÏÏ
TA = 55°C
TLE2021
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
45
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 39
0
ICC Supply Current ua
|VCC ±| Supply Voltage V
16
2 4 6 8 10 12 14
VO = 0
No Load
TA = 25°C
TA = 125°C
TA = 55°C
100
200
300
400
0
500
ÁÁ
ÁÁ
ÁÁ
CC
IAμ
TLE2022
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
Figure 40
0
|VCC ±| Supply Voltage V
16
2 4 6 8 10 12 14
VO = 0
No Load
200
400
600
800
0
1000
TA = 25°C
ÏÏÏÏ
TA = 125°C
TA = 55°C
Supply Current μAICC
TLE2024
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
Figure 41
75
225
125
0
25
50
75
100
125
150
175
200
50 25 0 25 50 75 100
TA Free-Air Temperature °C
No Load
VO = 0
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
VCC ± = ±2.5 V
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC ± = ±15 V
ICC Supply Current ua
ÁÁ
ÁÁ
CC
IAμ
TLE2021
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
Figure 42
75
500
125
0
50 25 0 25 50 75 100
VCC ±= ±15 V
VCC ± = ±2.5 V
TA Free-Air Temperature °C
No Load
VO = 0
400
300
200
100
ICC Supply Current ua
ÁÁ
ÁÁ
CC
IAμ
TLE2022
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
46 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 43
75 12550 25 0 25 50 75 100
TA Free-Air Temperature °C
1000
0
800
600
400
200
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC ± = ±15 V
ÏÏÏÏÏ
VCC ± = ±2.5 V
VO = 0
No Load
Supply Current μAICC
TLE2024
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
Figure 44
TA = 25°C
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC = 5 V
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC ± = ±15 V
100
80
60
40
20
1 M100 k10 k1 k100
0
10 M
120
f Frequency Hz
CMRR Common-Mode Rejection Ratio dB
10
TLE2021
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
Figure 45
10
CMRR Common-Mode Rehection Ratio dB
f Frequency Hz
120
10 M
0100 1 k 10 k 100 k 1 M
20
40
60
80
100
VCC ± = ±15 V
VCC = 5 V
ÏÏÏÏÏ
TA = 25°C
TLE2022
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
Figure 46
10
CMRR Common-Mode Rejection Ratio dB
f Frequency Hz
120
10 M
0100 1 k 10 k 100 k 1 M
20
40
60
80
100
ÏÏÏÏ
ÏÏÏÏ
VCC = 5 V
TA = 25°C
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC ± = ±15 V
TLE2024
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
47
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 47
See Figure 1
RL = 20 kΩ
CL = 30 pF
0.8
0.6
0.4
0.2
10075502502550
0125
1
TA Free-Air Temperature °C
SR Slew Rate V/us
75
sμ
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC ± = ±15 V
ÏÏÏÏ
ÏÏÏÏ
VCC = 5 V
TLE2021
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 48
75
SR Slew Rate V/ us
TA Free-Air Temperature °C
1
125
0
50 25 0 25 50 75 100
0.2
0.4
0.6
0.8
VCC ± = ±15 V
VCC = 5 V
CL = 30 pF
RL = 20 kΩ
See Figure 1
sμ
TLE2022
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 49
75
SR Slew Rate V/s
TA Free-Air Temperature °C
1
125
0
50 25 0 25 50 75 100
0.2
0.4
0.6
0.8
CL = 30 pF
RL = 20 kΩ
See Figure 1
ÏÏÏÏÏ
VCC ± = ±15 V
VCC = 5 V
sμ
V/
TLE2024
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 50
ÏÏÏÏÏ
ÏÏÏÏÏ
See Figure 4
TA = 25°C
CL = 30 pF
RL = 10 kΩ
VCC ± = ±15 V
50
0
50
60
40200
100 80
100
t Time μs
VO Output Voltage mV
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
ÁÁ
ÁÁ
VO
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
48 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 51
TA = 25°C
CL = 30 pF
ÏÏÏÏÏ
See Figure 4
RL = 10 kΩ
t Time μs
VCC = 5 V
2.5
6040200
2.4 80
2.6
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VO Output Voltage V
ÁÁÁ
ÁÁÁ
VO
2.55
2.45
Figure 52
t Time μs
4
80
00 20 40 60
1
2
3
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
ÏÏÏÏÏ
ÏÏÏÏÏ
See Figure 1
VO Output Voltage V
ÁÁ
ÁÁ
VO
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 53
t Time μs
4
80
00 20 40 60
1
2
3
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
VO Output Voltage V
ÁÁÁ
ÁÁÁ
VO
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 54
t Time μs
4
80
00 20 40 60
1
2
3
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC ± = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
VO Output Voltage V
V
O
TLE2024
VOLTAGE-FOLLOWER LARGE-SCALE
PULSE RESPONSE
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
49
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 55
VO Output Voltage V
t Time μs
15
80
15 020 40 60
10
5
0
5
10
VCC ± = ±15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
ÁÁ
ÁÁ
VO
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 56
VO Output Voltage V
t Time μs
15
80
15 0 20 40 60
10
5
0
5
10
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
VCC ± = ±15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
ÁÁ
ÁÁ
VO
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 57
VO Output Voltage V
t Time μs
15
80
15 020 40 60
10
5
0
5
10
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC ± = ±15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
V
O
TLE2024
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 58
0
0.5
10
0.5 123456789
0.4
0.3
0.2
0.1
0
0.1
0.2
0.3
0.4
t Time s
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
VCC ± = ±15 V
TA = 25°C
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 1 Hz
VNPP Peak-to-Peak Equivalent Input Noise Voltage uV
Vμ
ÁÁ
ÁÁ
ÁÁ
VN(PP)
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
50 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 59
t Time s
0.4
0.3
0.2
0.1
0
0.1
0.2
0.3
0.4
0.5
0.5
987654321100
VCC ± = ±15 V
TA = 25°C
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 10 Hz
VNPP Peak-to-Peak Equivalent Input Noise Voltage uV
Vμ
ÁÁÁ
ÁÁÁ
ÁÁÁ
VN(PP)
Figure 60
1
Vn Equivalent Input Noise Voltage nVHz
f Frequency Hz
200
10 k
0
40
80
120
160
10 100 1 k
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
Vn
ÁÁ
ÁÁ
ÁÁ
nV/ Hz
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC ± = ±15 V
RS = 20 Ω
ÏÏÏÏ
TA = 25°C
ÏÏÏÏÏ
ÏÏÏÏÏ
See Figure 2
Figure 61
0
B1 Unity-Gain Bandwidth MHz
4
16
02 4 6 8 10 12 14
1
2
3See Figure 3
TA = 25°C
CL = 30 pF
RL = 10 kΩ
B1
|VCC±| Supply Voltage V
TLE2021
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
Figure 62
3
2
1
1412108642
016
4
|VCC±| Supply Voltage V
B1 Unity-Gain Bandwidth MHz
0
B1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
51
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 63
75
B1 Unity-Gain Bandwidth MHz
TA Free-Air Temperature °C
4
125
0
50 25 0 25 50 75 100
1
2
3
See Figure 3
CL = 30 pF
RL = 10 kΩ
VCC ± = ±15 V
ÏÏÏÏÏ
VCC = 5 V
B1
TLE2021
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
Figure 64
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC = 5 V
3
2
1
10075502502550
0125
4
TA Free-Air Temperature °C
75
RL = 10 kΩ
CL = 30 pF
See Figure 3
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
VCC ± = ±15 V
B1 Unity-Gain Bandwidth MHz
B1
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
Figure 65
0
m Phase Margin
50°
16
40°2 4 6 8 10 12 14
42°
44°
46°
48°
|VCC ±| Supply Voltage V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
ÁÁ
ÁÁ
m
φ
TLE2021
PHASE MARGIN
vs
SUPPLY VOLTAGE
Figure 66
53°
51°
49°
47°
1412108642
45°16
55°
m Phase Margin
0
|VCC±| Supply Voltage V
ÁÁ
ÁÁ
m
φ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
See Figure 3
TA = 25°C
CL = 30 pF
RL = 10 kΩ
TLE2022 AND TLE2024
PHASE MARGIN
vs
SUPPLY VOLTAGE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
52 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 67
0
CL Load Capacitance pF
60°
100
020 40 60 80
10°
20°
30°
40°
50°
RL = 10 kΩ
TA = 30 pF
See Figure 3
VCC ± = ±15 V
VCC = 5 V
m Phase Margin
ÁÁ
ÁÁ
ÁÁ
m
φ
TLE2021
PHASE MARGIN
vs
LOAD CAPACITANCE
Figure 68
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
80604020
VCC = 5 V
See Figure 3
TA = 25°C
RL = 10 kΩ
60°
50°
40°
30°
20°
10°
0°100
70°
CL Load Capacitance pF
m Phase Margin
0
ÁÁ
ÁÁ
m
φ
VCC ± = ±15 V
TLE2022 AND TLE2024
PHASE MARGIN
vs
LOAD CAPACITANCE
Figure 69
75
m Phase Margin
TA Free-Air Temperature °C
50°
125
36°
50 25 0 25 50 75 100
38°
40°
42°
44°
46°
48°
RL = 10 kΩ
CL = 30 pF
See Figure 3
VCC ± = ±15 V
VCC = 5 V
Á
Á
m
φ
TLE2021
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
Figure 70
42°
10075502502550
VCC = 5 V
VCC ± = ±15 V
52°
50°
48°
46°
44°
40°125
54°
TA Free-Air Temperature °C
75
m Phase Margin
ÁÁ
ÁÁ
m
φ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
See Figure 3
CL = 30 pF
RL = 10 kΩ
TLE2022 AND TLE2024
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
53
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
voltage-follower applications
The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however,
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent
degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For
feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can
be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).
CF = 20 pF to 50 pF
IF 1 mA
RF
VCC +
VCC
VO
VI
+
Figure 71. Voltage Follower
Input offset voltage nulling
The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in
Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null
pins may be left disconnected.
1 kΩ GND (single supply)
VCC (split supply)
5 kΩ
OFFSET N2
+
OFFSET N1
IN
IN +
Figure 72. Input Offset Voltage Null Circuit
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
54 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model generation software used
with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 73, Figure 74, and Figure
75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
DUnity-gain frequency
DCommon-mode rejection ratio
DPhase margin
DDC output resistance
DAC output resistance
DShort-circuit output current limit
DMaximum positive output voltage swing
DMaximum negative output voltage swing
DSlew rate
DQuiescent power dissipation
DInput bias current
DOpen-loop voltage amplification
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
OUT
+
+
+
+
+
+
+
+
VCC +
rp
IN
2
IN+
1
VCC
rc1
11
Q1 Q2
13
cee Iee
3
12
rc2
ve
54 de
dp
vc
dc
4
C1
53
r2
6
9
egnd
vb
fb
C2
gcm ga vlim
8
5ro1
ro2
hlim
90
dip
91
din
92
vinvip
99
7
ree
14
re1 re2
Figure 73. Boyle Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D FEBRUARY 1997 REVISED NOVEMBER 2010
55
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
.SUBCKT TLE2021 1 2 3 4 5
*
c1 11 12 6.244E12
c2 6 7 13.4E12
c3 87 0 10.64E9
cpsr 85 86 15.9E9
dcm+ 81 82 dx
dcm83 81 dx
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
ecmr 84 99 (2 99) 1
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
epsr 85 0 poly(1) (3,4) 60E6 2.0E6
ense 89 2 poly(1) (88,0) 120E6 1
fb 7 99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6
+ 50E7 50E7 50E7 50E7 547E6
ga 6 0 11 12 188.5E6
gcm 0 6 10 99 335.2E12
gpsr 85 86 (85,86) 100E6
grc1 4 11 (4,11) 1.885E4
grc2 4 12 (4,12) 1.885E4
gre1 13 10 (13,10) 6.82E4
gre2 14 10 (14,10) 6.82E4
hlim 90 0 vlim 1k
hcmr 80 1 poly(2) vcm+ vcm 0 1E2 1E2
irp 3 4 185E6
iee 3 10 dc 15.67E6
iio 2 0 2E9
i1 88 0 1E21
q1 11 89 13 qx
q2 12 80 14 qx
R2 6 9 100.0E3
rcm 84 81 1K
ree 10 99 14.76E6
rn1 87 0 2.55E8
rn2 87 88 11.67E3
ro1 8 5 62
ro2 7 99 63
vcm+ 82 99 13.3
vcm83 99 14.6
vb 9 0 dc 0
vc 3 53 dc 1.300
ve 54 4 dc 1.500
vlim 7 8 dc 0
vlp 91 0 dc 3.600
vln 0 92 dc 3.600
vpsr 0 86 dc 0
.model dx d(is=800.0E18)
.model qx pnp(is=800.0E18 bf=270)
.ends
Figure 74. Boyle Macromodel for the TLE2021
.SUBCKT TLE2022 1 2 3 4 5
*
c1 11 12 6.814E12
c2 6 7 20.00E12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0
+ 45.47E6 50E6 50E6 50E6 50E6
ga 6 0 11 12 377.9E6
gcm 0 6 10 99 7.84E10
iee 3 10 DC 18.07E6
hlim 90 0 vlim 1k
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 4 11 2.842E3
rc2 4 12 2.842E3
ge1 13 10 (10,13) 31.299E3
ge2 14 10 (10,14) 31.299E3
ree 10 99 11.07E6
ro1 8 5 250
ro2 7 99 250
rp 3 4 137.2E3
vb 9 0 dc 0
vc 3 53 dc 1.300
ve 54 4 dc 1.500
vlim 7 8 dc 0
vlp 91 0 dc 3
vln 0 92 dc 3
.model dx d(is=800.0E18)
.model qx pnp(is=800.0E18 bf=257.1)
.ends
Figure 75. Boyle Macromodel for the TLE2022
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
5962-9088101MPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-9088102M2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9088102MPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-9088103M2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9088103MCA ACTIVE CDIP J 14 1 TBD Call TI Call TI
5962-9088104Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9088104QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-9088105Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9088105QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-9088106Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9088106QCA ACTIVE CDIP J 14 1 TBD Call TI Call TI
5962-9088107Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9088107QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-9088108Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9088108QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-9088109Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9088109QCA ACTIVE CDIP J 14 1 TBD Call TI Call TI
TLE2021ACD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021ACDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021ACDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021ACDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021ACP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2021ACPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2021ACPS OBSOLETE SO PS 8 TBD Call TI Call TI
TLE2021ACPSG4 OBSOLETE SO PS 8 TBD Call TI Call TI
TLE2021AID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLE2021AIDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021AIDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2021AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2021AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLE2021AMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLE2021BMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLE2021BMJG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLE2021BMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLE2021CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2021CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2021CPWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI
TLE2021CPWR ACTIVE TSSOP PW 8 TBD Call TI Call TI
TLE2021CPWRG4 ACTIVE TSSOP PW 8 TBD Call TI Call TI
TLE2021ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 3
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLE2021IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2021IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2021MD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021MDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021MJG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLE2021MJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLE2022ACD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022ACDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022ACDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022ACDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022ACP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2022ACPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2022AID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022AIDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022AIDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2022AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2022AMD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022AMDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022AMDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 4
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLE2022AMDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLE2022AMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLE2022BCDR OBSOLETE SOIC D 8 TBD Call TI Call TI
TLE2022BMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLE2022BMJG OBSOLETE CDIP JG 8 TBD Call TI Call TI
TLE2022BMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLE2022CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2022CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2022CPSR OBSOLETE SO PS 8 TBD Call TI Call TI
TLE2022ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2022IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2022MD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022MDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 5
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLE2022MDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022MDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLE2022MJG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLE2022MJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLE2024ACDW ACTIVE SOIC DW 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024ACDWG4 ACTIVE SOIC DW 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024ACDWR ACTIVE SOIC DW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024ACDWRG4 ACTIVE SOIC DW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024ACN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2024ACNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2024AIDW ACTIVE SOIC DW 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024AIDWG4 ACTIVE SOIC DW 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024AIN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2024AINE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2024AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLE2024AMJ ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type
TLE2024AMJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type
TLE2024BCDW OBSOLETE SOIC DW 16 TBD Call TI Call TI
TLE2024BCN OBSOLETE PDIP N 14 TBD Call TI Call TI
TLE2024BIDW OBSOLETE SOIC DW 16 TBD Call TI Call TI
TLE2024BIN OBSOLETE PDIP N 14 TBD Call TI Call TI
TLE2024BMDW ACTIVE SOIC DW 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024BMDWG4 ACTIVE SOIC DW 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 6
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLE2024BMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLE2024BMJ ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type
TLE2024BMJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type
TLE2024BMN OBSOLETE PDIP N 14 TBD Call TI Call TI
TLE2024CDW ACTIVE SOIC DW 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024CDWG4 ACTIVE SOIC DW 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024CDWR ACTIVE SOIC DW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024CDWRG4 ACTIVE SOIC DW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024CN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2024CNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2024IDW ACTIVE SOIC DW 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024IDWG4 ACTIVE SOIC DW 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2024INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLE2024MDW ACTIVE SOIC DW 16 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024MDWG4 ACTIVE SOIC DW 16 100 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLE2024MJ OBSOLETE CDIP J 14 TBD Call TI Call TI
TLE2024MJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type
TLE2024MN OBSOLETE PDIP N 14 TBD Call TI Call TI
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 7
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLE2021, TLE2021A, TLE2021AM, TLE2021M, TLE2022, TLE2022A, TLE2022AM, TLE2022B, TLE2022BM, TLE2022M,
TLE2024, TLE2024A, TLE2024AM, TLE2024B, TLE2024BM, TLE2024M :
Catalog: TLE2021A, TLE2021, TLE2022A, TLE2022B, TLE2022, TLE2024A, TLE2024B, TLE2024
Automotive: TLE2021-Q1, TLE2021A-Q1, TLE2021A-Q1, TLE2021-Q1, TLE2022-Q1, TLE2022A-Q1, TLE2022A-Q1, TLE2022-Q1, TLE2024-Q1, TLE2024A-Q1,
TLE2024A-Q1, TLE2024-Q1
Enhanced Product: TLE2021-EP, TLE2021A-EP, TLE2021A-EP, TLE2021-EP, TLE2022-EP, TLE2022A-EP, TLE2022A-EP, TLE2022-EP, TLE2024-EP, TLE2024A-
EP, TLE2024A-EP, TLE2024-EP
Military: TLE2021M, TLE2021AM, TLE2022M, TLE2022AM, TLE2022BM, TLE2024M, TLE2024AM, TLE2024BM
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Enhanced Product - Supports Defense, Aerospace and Medical Applications
Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TLE2021ACDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2021ACDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2021AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2021CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2021IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2022ACDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2022AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2022AMDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2022CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2022IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2022MDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2024ACDWR SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1
TLE2024CDWR SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 17-Aug-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TLE2021ACDR SOIC D 8 2500 367.0 367.0 35.0
TLE2021ACDR SOIC D 8 2500 340.5 338.1 20.6
TLE2021AIDR SOIC D 8 2500 340.5 338.1 20.6
TLE2021CDR SOIC D 8 2500 340.5 338.1 20.6
TLE2021IDR SOIC D 8 2500 340.5 338.1 20.6
TLE2022ACDR SOIC D 8 2500 340.5 338.1 20.6
TLE2022AIDR SOIC D 8 2500 340.5 338.1 20.6
TLE2022AMDR SOIC D 8 2500 367.0 367.0 35.0
TLE2022CDR SOIC D 8 2500 340.5 338.1 20.6
TLE2022IDR SOIC D 8 2500 340.5 338.1 20.6
TLE2022MDR SOIC D 8 2500 367.0 367.0 35.0
TLE2024ACDWR SOIC DW 16 2000 367.0 367.0 38.0
TLE2024CDWR SOIC DW 16 2000 367.0 367.0 38.0
PACKAGE MATERIALS INFORMATION
www.ti.com 17-Aug-2012
Pack Materials-Page 2
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUAR Y 1997
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,16)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated