Standard Power MOSFETs File Number 1827 IRF450, IRF451, IRF452, IRF453 Power MOS Field-Effect Transistors N-CHANNEL ENHANCEMENT MODE N-Channel Enhancement-Mode Power Field-Effect Transistors 12 Aand 13 A, 450 V - 500 V ros(on) =0.4Q and0.5Q 6 Features: = SOA is power-dissipation limited $ = Nanosecond switching speeds 9208-33741 Linear transfer characteristics High input impedance TERMINAL DIAGRAM = Majority carrier device The IRF450, !RF451, IRF452 and IRF453 are n-channel TERMINAL DESIGNATION enhancement-mode silicon-gate power field-effect DRAIN transistors designed for applications such as switching SOURCE (FLANGE } regulators, switching converters, motor drivers, *elay drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. GATE The IRF-types are supptied in the JEDEC TO-204AA metal Sees 8 7001 package. JEDEC TO-204AA Absolute Maximum Ratings Parameter - IRF450 IRF451 IRF452 IRF453 Units Vos Drain - Source Voltage 500 450 500 450 Vv _VDGR Drain - Gate Voltage (Rgg = 20 kt) O 500 450 500 450 Vv Ip @Te =.25C Continuous Drain Current 13 13 12 12 A Ip @ Te = 100C Continuous Drain Current 8.0 8.0 7.0 7.0 A 'pbm Pulsed Drain Current @ 52 52 48 . 48 A | YGs Gate - Source Voltage +20 Vv Py @ Tc = 25C Max. Power Dissipation 150 (See Fig. 14) w Linear Derating Factor 1.2 (See Fig. 14} wre Lu Inductive Current, Clamped (See Fig. 14 and 15) L = 100uH A 52 i 52 | 48 {I 48 T Operati i Tag Storage Temperature Range 85 t0 150 *c Lead Temperature 300 (0.063 in. (1.6rnm) from case for 10s) c 3-129Standard Power MOSFETs IRF450, IRF451, IRF452, IRF453 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVpss_ Drain - Source Breakdown Voltage IRF450 = iRF452 500 =~ = Vv Vas = OV IRF451 IRFA53 450 _ - Vv IQ = 250pA VGSi{th) Gate Threshold Voltage ALL 2.0 = 4.0 Vv Vos = Vgs-'p = 250uA Igss Gate-Source Leakage Forward ALL _ = 100 nA Ves = 20V oss Gate-Source Leakage Reverse ALL ~ -100 nA VGg = -20V loss Zero Gate Voltage Drain Current Au ~ = 250 BA Vos = Max. Rating, Vgg = OV _ = 1000 uA Vos = Max. Rating x 0.8, Veg = OV. Te = 125C Ipion) On-State rain Current @ IRF450 IRF451 13 ~ ~ A Vos? 'pion) * Rpsion) max. Yes = 10 raF452 [44 _ _ A IRF453 RpSion) Static Drain-Source On-State IRF450 Resistance @ IRF451 7 0.3 | 04 a y IOV. In = 7.08 meas2 To og | os ese ope IRF453 . . Sts Forward Transconductance @ ALL 6.0 11 - S(v) Vos > loons * Rosian} max. 'p = 7-04 Ciss Input Capacitance ALL = 2000 pF Vag = OY. Vpg = 25V. f= 1.0 MHz Coss Output Capacitance ALL = 400 - pF See Fig. 10 Cres Reverse Transfer Capacitance ALL - 100 pF tdion) _Turn-On Delay Time ALL = = 35 ns Vpop = 210V. Ip = 7.0A, Zy = 4.79 & Rise Time ALL - - 50 ns See Fig. 17 tdioff) Turn-Off Delay Time ALL _ _ 150 ns {MOSFET switching times are essentially t Fall Time ALL _ _ 70 ns independent of operating temperature.) a. Total Gate Charge Vv = 10V,1, = 16A,V = 0.8 Max. Rating. 9 ~ GS D DS {Gate-Source Plus Gate-Drain) ALL 82 120 ne See Fig. 18 for test circuit. (Gate charge is essentialiv Ogs Gate-Source Charge ALL 40 60 ac independent of operating temperature.) Qga Gate-Drain ('' Miller) Charge ALL _ 42 63 nc Lp Internal Drain inductance ALL - 5.0 - nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances. and center of die. ls Internal Source Inductance ALL - 12.5 - nH Measured from the source pin, 6 mm (0.25 in.} from header and source bonding pad. Thermal Resistance Rinuc _ Junction-to-Case ALL = .83 "c/w Rincs _Case-to-Sink ALL ~ 0.1 ~ C/W Mounting surface flat, smooth, and greased. Rinsa _ Junction-to-Ambient ALL _ _ 30 ecw Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRF450 _ 13 A Modified MOSFET symbol! (Body Diode) IRF451 ~ showing the integral IRFA52 reverse P-N junction rectifier. ineasa | ~ | ~ | |? A , ism Pulse Source Current IRF450 _ _ 52 A (Body Diode! @ IRF451 3 IRF452 IRF453 | ~ | 48 A Vgp Diode Forward Voltage @ AF 450 _ _ ) 4a Vv To = 25C. Ig = 13A, Vgg = OV IRF451 IRF452 . +. one _ _ iRF453 - ~ 1.3 v To = 25C, Ig = 12A, Vgg = OV ter Reverse Recovery Time ALL ~ 1300 _ ns Ty = 150C, Ip = 13A, dip/dt = 100A/us Car Reverse Recovered Charge ALL ~ 7.4 _ pC Ty = 150C, Ip = 13A, dip/dt = 100A/ys ton Forward Turn-on Tire ALL intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal impedance Curve (Fig. 5). Ory = 25C to 150C, @ Pulse Test: Pulse width < 300us, Duty Cycle < 2%. 3-130Standard Power MOSFETs us PULSE Ip, DRAIN CURRENT (AMPERES) Ip, DRAIN CURRENT (AMPERES) 4.0V 50 100 150 200 250 Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS) 300 Fig. 1 - Typical Output Characteristics Ves = 10 Ip, DRAIN CURRENT (AMPERES) Ip. DRAIN CURRENT (AMPERES) 3.5V 1 2 3 4 Vos, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typicat Saturation Characteristics 18 IRF 450, IRF451, IRF452, IRF453 Ty = -500C ! Ty = 250 Vos > 'pion) * Ros(on) max. Ty= 1250 80 us PULSE Test jy? 125C Ty = 1260C Ty = 2500 Tj = -50C 2 3 4 5 6 Vgs. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 2 Typical Transfer Characteristics AREA IS N tRF450,1 IR 3 Te = 25C Ty= 150C MAX. Ringe = 0.83 K/W SINGLE PULSE RFA451,3 (RF450, 2 5 10 20 50 6100 6200 Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS) 00 Fig. 4 Maximum Safe Operating Area e z s 2 2 = KE 10 we >5 Ee 05 wa we ae ae | gs 02 yo z= 1 fo ty a tz 23 0.05 1 Su 1, bUTY FACTOR, D= = ee SINGLE PULSE (TRANSIENT Q = 002 THERMAL IMPEDANCE) 2. PER UNIT BASE = Ringe = 0.83 DEG. C/W. eo Z ao 3. Tym >To = Pom Ztnse!t). 4952 5 42 5 3 2 5 w2 92 5 wl 2 5 1.0 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal tmpedance, Junction-to-Case Vs. Pulse Duration 3-131Standard Power MOSFETs IRF450, IRF451, IRF452, IRF453 20 Ty = -50C Ty = 25C a a NO Ty 12800 Ty = 150C ~ oa Ty = 1500C o o n Uy, TRANSCONDUCTANCE (SIEMENS) wn Vos > 'Dion) * Rostan) max. BO jas PULSE TEST Ty = 250C a ton, REVERSE QRAIN CURRENT (AMPERES) N 0 5 10 15 20 6 0 1 2 3 4 Ig, ORAIN CURRENT (AMPERES) Vgp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 6 ~ Typical Transconductance Vs. Drain Current Fig. 7 Typical Source-Drain Diode Forward Voltage 1,25 22 Veg = 10V wa 3 4 Ips = 5A S415 = o Ke > 2 x) z # So a = ~ Za 1.05 we ey en 14 so es we ox 3 oz ae o 2s Ee? Sz 095 z= o =z 10 - c z 5 z 3 oa a a 0.85 06 > a 0.75 0.2 40 a 40 80 120 160 -40 Q 40 80 120 160 Ty, JUNCTION TEMPERATURE (C) Ty, JUNCTION TEMPERATURE (9C) Fig. 8 Breakdown Voltage Vs. Temperature Fig. 9 Normalized On-Resistance Vs. Temperature 4000 Ciss = Coy + Cog, Cds SHORTED 20 Ceyg = Cog Ves 9 Col j Coss * Cag + f= 1MHz 3200 ons de Cas + Co Cas + Cog a Vps 100V I f Vos * 250V 2400 Vag = 400V a 1600 C, CAPACITANCE (pF} a 800 Vg. GATE TO-SOURCE VOLTAGE (VOLTS) tp = 186A FOR TEST CIRCUIT SEE FIGURE 18 Q 10 20 30 40 50 0 28 56 84 112 140 Vs. DRAIN-TO-SOUACE VOLTAGE (VOLTS) Qy. TOTAL GATE CHARGE inf} Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 3-132Standard Power MOSFETs 10 1 a Z 09 zo. w oe a 5 8 =20V on 6 307 w oO 3 7 2 06 bo E z= = 08 JA a 2 soo MEASURED WITH CURRENT oe PULSE OF 2.0 zs CURATION. 4 INITIAL Ty = 2590. (HEATING L EFFECT OF 2.0 us PULSE IS MINIMAL.) 03 al, 1 4. 1 , 10 20 30 40 50 60 7 Ip, DRAIN CURRENT (AMP=RES) Fig. 12 Typical On-Resistance Vs. Drain Current \ \ > o N\ N\ 10e \ N n> o = a s Pp, POWER DISSIPATION {WATTS} = 5 . \ N 0 20 40 60 80 100 120 140 Tc CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve ADJUST Ay TO OBTAIN SPECIFIED (p Vos T purse DuT. | GENERATOR souace J | | IMPEDANCE L-_1J Fig. 17 Switching Time Test Circuit 12v T BATTERY | IRF450, IRF451, IRF452, IRF453 Ip, ORAIN CURRENT (AMPERES) 0 26 50 75 100 125 150 Te, CASE TEMPERATURE (C) Fig. 13 Maximum Drain Current Vs. Case Temperature VARY ty TO OBTAIN REQUIRED PEAK Vgg = 10v tb E,=O05B8Vps EG = 0.75 BY pss Fig. 15 Clamped Inductive Test Circuit Fig. 16 ~- Clamped Inductive Waveforms Vos CURRENT USOLATED REGULATOR SUPPLY) SAME TYPE AS OUT O.2u4 r Vos Ig + 'p CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 Gate Charge Test Circuit 3-133