02/2005
ACD2202
CATV/TV/Video Downconverter
with Dual Synthesizer
Data Sheet - Rev 2.2
Figure 1: Downconverter Block Diagram
FEATURES
Integrated Downconverter
Integrated Dual Synthesizer
256 QAM Compatibility
Single +5 V Power Supply Operation
Low Power Consumption: <0.6 W
Low Noise Figure: 8 dB
High Conversion Gain: 10 dB
Low Distortion: -53 dBc
Three-Wire Interface
Small Size
-40 °C to +85 °C
RoHS-Compliant Package Option
APPLICATIONS
Set Top Boxes
CATV Video Tuners
Digital TV Tuners
CATV Data Tuners
Cable Modems
PRODUCT DESCRIPTION
The ACD2202 uses both GaAs and Si technology
to provide the downconverter and dual synthesizer
functions in a double conversion tuner gain block,
local oscillator, balanced mixer and dual synthesizer.
The specifications meet the requirements of
CATV/TV/Video and Cable Modem Data applications.
S8 Package
28 Pin SSOP
Figure 2: Dual Synthesizer Block Diagram
RF2: 64/65
Prescaler
18 Bit RF2
N Counter
RF2
Phase
Detector
RF2
Charge
Pump
RF1
Phase
Detector
RF1
Charge
Pump
15 Bit RF2
R Counter
15 Bit RF1
R Counter
18 Bit RF1
N Counter
RF1: 64/65
Prescaler
Oscillator
22 Bit
Data Registar
CP
U
CP
D
RF
D
REF
IN
REF
OUT
RF
U
Clock
Data
Enable
V
IF
+IF
OUT+
OSC
OUT
T
CKT
RF
IN
+
Phase Splitter
Low Noise
VGA Mixer
RF
IN
-
V
IF
+IF
OUT-
The ACD2202 is supplied in a 28 lead SSOP
package and requires a single +5 V supply voltage.
The IC is well suited for applications where small
size, low cost, low auxiliary parts count and a no-
compromise performance is important. It provides
for cost reduction by lowering the component and
packaged IC count and decreasing the amount of
labor-intensive production alignment steps, while
significantly improving performance and reliability.
2Data Sheet - Rev 2.2
02/2005
ACD2202
Figure 3: Pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
RFIN+ VIF +IFOUT+
VSS
OSCGND
EN
DATA
TCKT
ISET
CLK
GND
REFIN
REFOUT
VSS VSS
GND
VSS
GND
RFD
OSCOUT
CPD
VSUP
CPU
GND
RFU
VSYN
RFIN-
OSCGND
VIF +IFOUT-
Data Sheet - Rev 2.2
02/2005
3
ACD2202
Table 1: Pin Description
NIP EMAN NOITPIRCSED NIP EMAN NOITPIRCSED
1FR
+NI
retrevnocnwoD
tupnIFRlaitnereffiD 82V
FI
FI+
+TUO
retrevnocnwoD
tuptuOFIlaitnereffiD
otdelpuocylevitcudnI
V+
DD
2FR
-NI
retrevnocnwoD
tupnIFRlaitnereffiD 72V
FI
FI+
TUO-
retrevnocnwoD
tuptuOFIlaitnereffiD
otdelpuocylevitcudnI
V+
DD
3DNG dnuorGretrevnocnwoD
)detcennocebtsuM( 62DNG dnuorGretrevnocnwoD
)detcennocebtsuM(
4I
TES
trebliGretrevnocnwoD
ecruoStnerruClleC
rotsiseR
52V
PUS
esahPdnarotallicsO
V+(ylppuSrettilpS
DD
)
5T
TKC
troPtupnIrotallicsO
)noitcennoctiucricknaT( 42CSO
TUO
tuptuOrotallicsO
otdetcennoC(
)tupnIFRrezisehtnyS
6CSO
DNG
tiucriCknaTrotallicsO
ebottoN(dnuorG
rehtoynaotdetcennoc
)dnuorgtiucric
32G
DN
dnuorGretrevnocnwoD
)detcennocebtsuM(
7CSO
DNG
6niPsaemaS22G
DN
dnuorGretrevnocnwoD
)detcennocebtsuM(
8V
SS
dnuorGrezisehtnyS
)deriuqeR( 12V
SS
dnuorGrezisehtnyS
)deriuqeR(
9V
SS
dnuorGrezisehtnyS
)deriuqeR( 02V
SS
dnuorGrezisehtnyS
)deriuqeR(
01NEelbanEecafretnIeriW-391FR
D
rezisehtnyS
tupnIFRretrevnocnwoD
11ATADataDecafretnIeriW-381PC
D
rezisehtnyS
retrevnocnwoD
tuptuOpmuPegrahC
21KLCkcolCecafretnIeriW-371PC
U
retrevnocpUrezisehtnyS
tuptuOpmuPegrahC
31FER
NI
tupnIecnerefeRlatsyrC61FR
U
retrevnocpUrezisehtnyS
tupnIFR
41FER
TUO
tuptuOecnerefeRlatsyrC51V
NYS
ylppuSrezisehtnyS
V+(
DD
)
4Data Sheet - Rev 2.2
02/2005
ACD2202
ELECTRICAL CHARACTERISTICS
Table 2: Absolute Minimum and Maximum Ratings
Stresses in excess of the absolute ratings may cause permanent damage.
Functional operation is not implied under these conditions. Exposure to absolute
ratings for extended periods of time may adversely affect reliability.
The device may be operated safely over these conditions; however, parametric
performance is guaranteed only over the conditions defined in the electrical
specifications.
Table 3: Operating Ranges
Notes:
(1) Mixer operation is possible beyond these frequencies with slightly reduced
performance.
(2) Case Temperature is 15 °C higher than Ambient Temperature, when Ambient
Temperature is +25 °C, using the PC Board Layout shown in Figures 23-25.
RETEMARAP NIM XAM TINU
)82&72,52snip(egatloVylppuS
)51nip(
-
-
9+
5.6+ CDV
61,41hguorht01snipnoegatloV
Vhtiw91hguorht
SS
V0= 3.0-V
NYS
3.0+CDV
)5&2,1snip(segatloVtupnI-0CDV
)2&1snip(rewoPtupnI
)5nip(
)91&61,31snip(
-
-
-
01+
71+
02+
mBd
erutarepmeTegarotS55-051+C°
erutarepmeTgniredloS-062C°
emiTgniredloS-4ceS
,ecnadepmIlamrehT θ
CJ
-04W/C°
RETEMARAP NIM PYT XAM TINU
seicneuqerFretrevnocnwoD
)1(
)FR(tupnIFR
)FI(tuptuOFI
)OL(rotallicsOlacoL
009
53
568
-
-
-
0021
051
0531
zHM
seicneuqerFrezisehtnyS
FR(rezisehtnySretrevnocpU
U
)
FR(rezisehtnySretrevnocnwoD
D
)
FER(rotallicsOecnerefeR
NI
)
rotceteDesahP
004
004
2
-
-
-
4
-
0012
0041
02
01
zHM
V:egatloVylppuS
DD
)82,72,52,51snip(07.4+5+52.5+CDV
T:erutarepmeTgnitarepOtneibmA
A
)2(
04--58+C°
Data Sheet - Rev 2.2
02/2005
5
ACD2202
Table 4: Electrical Specifications - Downconverter Section
(TA = 25 °C(7), VDD = +5 VDC, RFIN = 1087 MHz, IFOUT = 45 MHz)
Notes:
(1) As measured in ANADIGICS test fixture with single-ended RF input.
(2) As measured in ANADIGICS test fixture with differential RF inputs.
(3) SSB noise figure will be approximately 3 dB higher with single-ended RF input.
(4) Two tones: 1085 and 1091 MHz, -20 dBm each, 1091 MHz tone AM-modulated
99% at 15 kHz.
(5) Two tones: 1085 and 1091 MHz, -15 dBm each.
(6) R1 = 10 Ohms.
(7) Case Temperature is 15 °C higher than Ambient Temperature, when Ambient
Temperature is +25 °C, using the PC Board Layout shown in Figures 23-25.
RETEMARAP NIM PYT XAM TINU
niaGnoisrevnoC
)1(
niaGnoisrevnoC
)2(
8
11
01
31
41
71 Bd
erugiFesioNBSS
)3(,)2(
-47 Bd
noitaludoMssorC
)6(,)4(,)2(
-65-35-cBd
3
dr
noitrotsiDnoitaludomretnIredrO
)3DMI(
)6(,)5(,)2(
-- 35-cBd
3enoT-2
dr
tnioPtpecretnItupnIredrO
)3PII(
)6(,)5(,)2(
21+-- mBd
)tesffOzHK01@(esioNesahPOL
)2(,)1(
-09-5.58-zH/cBd
)42nip(rewoPtuptuOOL
)2(,)1(
01-5-- mBd
tuptuOFI@suoirupS
scinomraHdnaslangiSOL
lennahCtuptuOnihtiWstaeB
zHM002ot2morfstaeBrehtO
suoirupSrehtO
-
-
-
-
01-
84-
05-
01-
-
-
-
-
mBd
cBd
mBd
mBd
)82&72nip(tnerruCylppuSFI
)6(,)2(,)1(
-0556Am
tnerruCylppuSrettilpSesahP/csO
)52nip( -0354Am
noitpmusnoCrewoP-004055Wm
6Data Sheet - Rev 2.2
02/2005
ACD2202
Table 5: Electrical Specifications - Synthesizer Section
(TA = 25 °C(4), VDD = +5 VDC)
Notes:
(1) Measured at 250 kHz comparison frequency.
(2) Measured at 62.5 kHz comparison frequency.
(3) CPU and CPD = VCC/2.
(4) Case Temperature is 15 °C higher than Ambient Temperature, when Ambient Temperature is +25 °C, using the
PC Board Layout shown in Figures 23-25.
RETEMARAP NIM PYT XAM TINU STNEMMOC
ytivitisneStupnIralacserP
FR:retrevnocpU
U
)61nip(
)1(
FR:retrevnocnwoD
D
)91nip(
)2(
FR:retrevnocpU
U
)61nip(
)1(
FR:retrevnocnwoD
D
)91nip(
)2(
7-
31-
6-
11-
-
-
-
-
02+
02+
-
-
mBd
)ycneuqerfgnitareporevo(
T
A
V,C°58+=
DD
V7.4+=
T
A
V,C°58+=
DD
V7.4+=
)31nip(ytivitisneSrotallicsOecnerefeR-5.0-V
p-p
tnerruCtuptuOpmuPegrahC
)3(
KNIS
ECRUOS
-
-
52.1
52.1-
-
-Am
tnerruCylppuS-5305Am
noitpmusnoCrewoP-561052Wm
Data Sheet - Rev 2.2
02/2005
7
ACD2202
Figure 4: Serial Data Input Timing
Table 6: Digital Interface Specifications
(TA = 25 °C, VDD = +5 VDC, ref. Figure 4)
DATA N20: MSB N19 N10 N9 C2 C1: LSB
(R20: MSB) (R19) R10 (R9) (C2) (C1: LSB)(R8)
CLOCK
LE
LE
OR
t
CS
t
CH
t
CWH
t
ES
t
EW
t
CWL
RETEMARAP NIM PYT XAM TINU
V:tupnIhgiHcigoL
H
)21,11,01snip(0.2--V
V:tupnIwoLcigoL
L
)21,11,01snip(--8.0V
noitpmusnoCtnerruCtupnIcigoL
)21,11,01snip( -- 10.0Am
t:emiTpUteSkcolCotataD
SC
05-- sn
t:emiTdloHkcolCotataD
HC
01-- sn
t:hgiHhtdiWesluPkcolC
HWC
05-- sn
t:woLhtdiWesluPkcolC
LWC
05-- sn
t:emiTputeSelbanEdaoLotkcolC
SE
05-- sn
t:htdiWesluPelbanEdaoL
WE
05-- sn
t:emiTesiR
R
-01- sn
t:emiTllaF
F
-01- sn
8Data Sheet - Rev 2.2
02/2005
ACD2202
Figure 10: Typical Local Oscillator Output Power
vs. Ambient Temperature
(V = +5 V, f = 1042 MHz)
DD LO2
-7.0
-6.5
-6.0
-5.5
-5.0
-4.5
25 35 45 55 65 75 85
Ambient Temperature (°C)
Output Power (dBm)
Figure 8: Typical Phase Noise at 10 kHz Offset
vs. Ambient Temperature
(V = +5 V, f = 1042 MHz)
DD LO2
-94
-92
-90
-88
-86
-84
25 35 45 55 65 75 85
Ambient Temperature (°C)
Phase Noise (dBc/Hz)
Figure 6: Typical Conversion Gain and Noise
Figure vs. Ambient Temperature
(V = +5 V, f = 1042 MHz)
DD LO2
10.0
11.0
12.0
13.0
14.0
15.0
25 35 45 55 65 75 85
Ambient Temperature (°C)
Conversion Gain (dB)
3.0
3.4
3.8
4.2
4.6
5.0
Noise Figure (dB)
Conversion Gain
Noise Figure
PERFORMANCE DATA
13.0
13.2
13.4
13.6
13.8
14.0
4.7 4.8 4.9 5.0 5.1 5.2 5.3
Supply Voltage (V)
Conversion Gain (dB)
3.55
3.57
3.59
3.61
3.63
3.65
Noise Figure (dB)
Conversion Gain
Noise Figure
Figure 5: Typical Conversion Gain and Noise
Figure vs. Supply Voltage
(T = +25 °C, f = 1042 MHz)
A LO2
Figure 7: Typical Phase Noise at 10 kHz Offset
vs. Supply Voltage
(T = +25 °C, f = 1042 MHz)
A LO2
-95
-94
-93
-92
-91
-90
4.7 4.8 4.9 5.0 5.1 5.2 5.3
Supply Voltage (V)
Phase Noise (dBc/Hz)
Figure 9: Typical Local Oscillator Output Power
vs. Supply Voltage
(T = +25 °C, f = 1042 MHz)
A LO2
-7.0
-6.5
-6.0
-5.5
-5.0
-4.5
4.7 4.8 4.9 5.0 5.1 5.2 5.3
Supply Voltage (V)
Output Power (dBm)
Data Sheet - Rev 2.2
02/2005
9
ACD2202
Figure 11: Typical Upconverter Prescaler
Sensitivity vs. Local Oscillator Frequency
(T = +25 °C, V = +5 V)
ADD
-35
-30
-25
-20
-15
-10
-5
500 700 900 1100 1300 1500 1700 1900 2100
LO1 Frequency (MHz)
Prescalar Sensitivity (dBm)
Figure 13: Typical Upconverter Prescaler
Sensitivity vs. Supply Voltage
(T = +25 °C, f = 2100 MHz)
A LO1
-9.0
-8.5
-8.0
-7.5
-7.0
4.7 4.8 4.9 5.0 5.1 5.2 5.3
Supply Voltage (V)
Prescalar Sensitivity (dBm)
Figure 15: Typical Upconverter Prescaler
Sensitivity vs. Ambient Temperature
(V = +5 V, f = 2100 MHz)
DD LO1
-8.5
-8.0
-7.5
-7.0
-6.5
-6.0
25 35 45 55 65 75 85
Ambient Temperature (°C)
Prescalar Sensitivity (dBm)
Figure 12: Typical Downconverter Prescaler
Sensitivity vs. Local Oscillator Frequency
(T = +25 °C, V = +5 V)
ADD
-24
-22
-20
-18
-16
-14
-12
400 600 800 1000 1200 1400
LO2 Frequency (MHz)
Prescalar Sensitivity (dBm)
Figure 14: Typical Downconverter Prescaler
Sensitivity vs. Supply Voltage
(T = +25 °C, f = 1000 MHz)
A LO2
-18.0
-17.5
-17.0
-16.5
-16.0
4.7 4.8 4.9 5.0 5.1 5.2 5.3
Supply Voltage (V)
Prescalar Sensitivity (dBm)
Figure 16: Typical Downconverter Prescaler
Sensitivity vs. Ambient Temperature
(V = +5 V, f = 1000 MHz)
DD LO2
-17.5
-17.0
-16.5
-16.0
-15.5
-15.0
25 35 45 55 65 75 85
Ambient Temperature (°C)
Prescalar Sensitivity (dBm)
10 Data Sheet - Rev 2.2
02/2005
ACD2202
Figure 17: Typical Conversion Gain and Noise
Figure vs. LNA/Mixer Current Control Resistor R1
(T = +25 °C, V = +5 V, f = 1042 MHz)
A DD LO2
10
11
12
13
14
15
0 5 10 15 20 25
R1 Resistor Value ()
Conversion Gain (dB)
3.0
3.4
3.8
4.2
4.6
5.0
Noise Figure (dB)
Conversion Gain
Noise Figure
Figure 18: Typical Total Current Consumption
vs. LNA/Mixer Current Control Resistor R1
(T = +25 °C, V = +5 V)
ADD
80
100
120
140
160
180
200
0 5 10 15 20 25
R1 Resistor Value ()
Current (mA)
Figure 19: Typical Input IP3
vs. LNA/Mixer Current Control Resistor R1
(T = +25 °C, V = +5 V)
ADD
9
11
13
15
17
19
0 5 10 15 20 25
R1 Resistor Value ()
IIP3 (dBm)
Figure 20: Typical Cross Modulation
vs. LNA/Mixer Current Control Resistor R1
(T = +25 °C, V = +5 V)
ADD
-65
-60
-55
-50
0 5 10 15 20
R1 Resistor Value ()
Cross Modulation (dBc)
Data Sheet - Rev 2.2
02/2005
11
ACD2202
LOGIC PROGRAMMING
Notes:
Divide ratios less than 3 are prohibited.
LSBMSB
Synthesizer Register Programming
The ACD2202 includes two PLL synthesizers. Each
synthesizer contains programmable Reference and
Main dividers, which allow a wide range of local
oscillator frequencies. The 22-bit registers that control
the dividers are programmed via a shared three-wire
bus, consisting of Data, Clock and Enable lines.
The data word for each register is entered serially
in order with the most significant bit (MSB) first and
the least significant bit (LSB) last. The rising edge
of the Clock pulse shifts each data value into the
register. The Enable line must be low for the duration
of the data entry, then set high to latch the data into
the register. (See Figure 4.)
Register Select Bits
The two least significant bits of each register are
register select bits that determine which register is
programmed during a particular data entry cycle.
Table 7 indicates the register select bit settings used
to program each of the available registers.
Table 7: Register Select Bits
Table 9: Reference Divider R Counter Bits
Table 8: Reference Divider Registers
Reference Divider Programming
The reference divider register for each synthesizer
consists of fifteen divider bits, five program mode
bits and the two register select bits, as shown in
Table 8. The fifteen divider bits allow a divide ratio
from 3 to 32767, inclusive, as shown in Table 9.
TCELES
STIB ROFRETSIGERNOITANITSED
ATADLAIRES
S
2
S
1
00 2LLProfretsigeRrediviDecnerefeR
01 2LLProfretsigeRrediviDniaM
10 1LLProfretsigeRrediviDecnerefeR
11 1LLProfretsigeRrediviDniaM
22 12 02 91 81 71 61 51 41 31 21 11 01 9 8 7 6 5 4 3 2 1
edoMmargorPR,oitaRediviDrediviDecnerefeRtceleS
D
5
D
4
D
3
D
2
D
1
R
51
R
41
R
31
R
21
R
11
R
01
R
9
R
8
R
7
R
6
R
5
R
4
R
3
R
2
R
1
S
2
S
1
EDIVID
ROITAR
R
51
R
41
R
31
R
21
R
11
R
01
R
9
R
8
R
7
R
6
R
5
R
4
R
3
R
2
R
1
3 000000000000011
4 000000000000100
- ---------------
76723 111111111111111
12 Data Sheet - Rev 2.2
02/2005
ACD2202
Main Divider Programming
The main divider register for each synthesizer
consists of seven A counter bits, eleven B counter
bits, two program mode bits and the two register
select bits, as shown in Table 10. The main divider
divide ratio, N, is determined by the values in the A
and B counters. The eleven B Counter bits and
allowed values are shown in Table 11, and the seven
A Counter bits and allowed values are shown in
Table 10: Main Divider Registers
Table 12: Main Divider A Counter Bits
Notes:
B > A, A < P
LSB
MSB
Table 11: Main Divider B Counter Bits
Notes:
B > A, Divide ratios less than 3 are prohibited.
Table 12. Note that there are some limitations on
the ranges of the values for each counter.
Pulse Swallow Function
The VCO output frequency for the local oscillator is
computed using the following equation; the
variables are defined in Table 13:
fVCO = N x fOSC/R, where N = [(P x B) + A]
Table 13: Variable Definitions
22 12 02 91 81 71 61 51 41 31 21 11 01 9 8 7 6 5 4 3 2 1
margorP
edoM retnuoCBretnuoCAtceleS
C
2
C
1
B
11
B
01
B
9
B
8
B
7
B
6
B
5
B
4
B
3
B
2
B
1
A
7
A
6
A
5
A
4
A
3
A
2
A
1
S
2
S
1
BFOEULAV
RETNUOC
B
11
B
01
B
9
B
8
B
7
B
6
B
5
B
4
B
3
B
2
B
1
3 00000000011
4 00000000100
- -----------
7402 11111111111
AFOEULAV
RETNUOC
A
7
A
6
A
5
A
4
A
3
A
2
A
1
0 0000000
1 0000001
- -------
721 1111111
RAV NOITINIFED
f
OCV
lanretxefoycneuqerftuptuoderiseD
)OCV(rotallicsodellortnocegatlov
B)7402ot3(retnuocBfooitarediviD
A)B<A,P<A<0(retnuocAfooitarediviD
f
CSO
rolatsyrcecnereferlanretxefoycneuqerF
rotallicso
R)76723ot3(retnuocRfooitarediviD
P)46=P(ralacserpfosuludomteserP
Data Sheet - Rev 2.2
02/2005
13
ACD2202
Table 15: Phase Detector Polarity Selection
Programmable Modes
Each register contains bits set aside for
programming different modes of operation in the
synthesizers. Currently, the only programmable
mode is the polarity of the phase detector in each of
the synthesizers. Bit D1 in each reference divider
register controls this feature. Bits D2 through D5 in
the reference divider registers and bits C1 and C2
in the main divider registers are reserved bits that
Table 14: Phase Detector Polarity Bit Figure 21: VCO Characteristics
should be set to logic low for proper operation of the
synthesizer.
Setting Phase Detector Polarity
Table 14 shows how bit D1 of each reference divider
register controls the polarity of the phase detector
associated with each PLL. The correct setting is
determined by using Table 15 and Figure 21.
Synthesizer Programming Example
The following example for programming the two synthesizers in the ACD2202 details the calculations
used to determine the required value of each bit in all four registers:
Requirements
Desired CATV input channel: “HHH” - 499.25 MHz picture carrier (501 MHz digital channel center frequency)
(Second) IF picture carrier output frequency: 45.75 MHz (44 MHz digital channel center frequency)
First IF frequency: 1087.75 MHz
Phase detector comparison frequency for down converter (also tuning increment): 62.5 KHz
Phase detector comparison frequency for up converter: 250 KHz
Crystal reference oscillator frequency: 4 MHz
Calculation of Reference Divider Values
The value for each reference divider is calculated by dividing the reference oscillator frequency by the desired
phase detector comparison frequency:
R = fOSC / fPD
For the down converter, the 4 MHz crystal oscillator frequency and the 62.5 KHz phase detector comparison
frequency are used to yield RPLL2 = 4 MHz / 62.5 KHz = 64, and so the bit values for the down converter
R counter are RPLL2 = 000000001000000.
S
2
S
1
D
1
00 ytiraloProtceteDesahP2LLP
10 ytiraloProtceteDesahP1LLP
D
1
ESAHP
ROTCETED
YTIRALOP
OCV
SCITSIRETCARAHC
)21ERUGIFEES(
0evitageN)2(evruc
1evitisoP)1(evruc
(1)
(2)
VCO INPUT VOLTAGE
VCO OUTPUT
FREQUENCY
14 Data Sheet - Rev 2.2
02/2005
ACD2202
LSBMSB
LSB
MSB
For the up converter, the 4 MHz crystal oscillator frequency and the 250 KHz phase detector comparison
frequency are used to yield RPLL1 = 4 MHz / 250 KHz = 16, and so the bit values for the up converter R counter
are RPLL1 = 000000000010000.
Calculation of Main Divider Values
The values for the A and B counters are determined by the desired VCO output frequency for the local
oscillator and the phase detector comparison frequency:
N = fVCO / f PD B = trunc(N / P) A = N - (B x P)
The down converter local oscillator frequency will be 1087.75 MHz - 45.75 MHz = 1042 MHz in this example.
The main divider ratio for the down converter, then, is NPLL2 = 1042 MHz / 62.5 KHz = 16672. Since P = 64 in the
ACD2202, BPLL2 = trunc(16672 / 64) = 260, and APLL2 = 16672 - (260 x 64) = 32. These results give bit values
of BPLL2 = 00100000100 and APLL2 = 0100000 for the B and A counters.
The up converter local oscillator frequency will be 499.25 MHz + 1087.75 MHz = 1587 MHz in this example.
Therefore, NPLL1 = 1587 MHz / 250 KHz = 6348, BPLL1 = trunc(6348 / 64) = 99, and APLL1 = 6348 - (99 x 64) = 12.
These results give bit values of BPLL1 = 00001100011 and APLL1 = 0001100 for the B and A counters.
Phase Detector Polarity
Assuming the VCO for the up converter has a negative slope, the phase detector polarity for PLL1 should be
negative, and D1PLL1 = 1. If the VCO for the down converter has a positive slope, the phase detector polarity for
PLL2 should be positive, and D1PLL2 = 0.
In summary, for this example, the four register programming words are shown in Tables 16 and 17:
Table 16: PLL1 and PLL2 Reference Divider Register Bits
for Synthesizer Programming Example
Table 17: PLL1 and PLL2 Main Divider Register Bits
for Synthesizer Programming Example
22 12 02 91 81 71 61 51 41 31 21 11 01 9 8 7 6 5 4 3 2 1
edoMmargorPretnuoCRrediviDecnerefeRtceleS
D
5
D
4
D
3
D
2
D
1
R
51
R
41
R
31
R
21
R
11
R
01
R
9
R
8
R
7
R
6
R
5
R
4
R
3
R
2
R
1
S
2
S
1
0000100000000100000000
0000000000000001000010
22 12 02 91 81 71 61 51 41 31 21 11 01 9 8 7 6 5 4 3 2 1
margorP
edoM retnuoCBrediviDniaMretnuoCArediviDniaMtceleS
C
2
C
1
B
11
B
01
B
9
B
8
B
7
B
6
B
5
B
4
B
3
B
2
B
1
A
7
A
6
A
5
A
4
A
3
A
2
A
1
S
2
S
1
0 0 0010000010001000000 1
0 0 0000110001100011001 1
Data Sheet - Rev 2.2
02/2005
15
ACD2202
APPLICATION INFORMATION
pins
17,18
V
SYN
V
SS
20 k
A
V
~ -1000
V
SYN
V
SS
pins
16,19
300 k
V
SYN
V
SS
pin 13
V
SYN
V
SS
pin 14
200
GND
pin 1
pin 2
pin 4 GND
5k5k
10
pin 24
pin 5
OSC
GND
V
SUP
15
10 pF
GND
pin 28pin 27
GND
55
5pF 5pF
Figure 22: Equivalent Circuits
16 Data Sheet - Rev 2.2
02/2005
ACD2202
Figure 23: PC Board Layout Top View
Figure 25: PC Board Layout Bottom View
Figure 24: PC Board Layout Mid View
Figure 26 Evaluation Fixture
Table 18: J1 Header Pinout
Balun
J1
RF IF
AFC
Out
LO
In
RF
1
4MHz Xtal
ACD2202
Table 19: Fixture Pinout
NIP NOITCNUF
FRtupnIFRretrevnocnwoD
FRtupnIFRretrevnocnwoD
FI)dednEelgniS(tuptuOFI
tuOCFArotallicsOretrevnocpUoT
tiucriCgninuT
nIOLFRrezisehtnyS
U
tupnIOL
NIP NOITCNUF
1kcolC
2ataD
3dnuorG
4elbanE
5CDV5+
6CDV03+
Data Sheet - Rev 2.2
02/2005
17
ACD2202
Figure 27: Evaluation Fixture Schematic
227
16
15
1
14
22
24
25
23
21
20
19
18
17
28
26
9
8
7
10
6
11
5
12
4
13
3
RF
IN+
OSC
GND
OSC
GND
T
CKT
I
SET
GND
RF
IN-
DATA
CLK
REF
IN
REF
OUT
V
SYN
V
SS
GND
V
SS
GND
RF
D
CP
D
V
SUP
OSC
OUT
CP
U
V
IF
+IF
OUT-
RF
U
V
IF
+IF
OUT+
V
SS
V
SS
EN
GND
C20
R7
D1
ACD2202
R1
C2
C3
L1
C8
C21 C23
C22
L3
C24
C12 C11 C10
R8 L2
R9
C13
R10
C14
C15
R11
C17
C16
R13
RF
C1
RF
C9
+5V
R6
X1
C7
LO
IN
DT1
IF
+5V
R12
AFC
OUT
Q1
C18 C19
+30V
R2
R3
R4
C4 C5 C6
1
6
5
4
3
2
J1
+30V
+5V
R5
18 Data Sheet - Rev 2.2
02/2005
ACD2202
Table 20: Evaluation Fixture Parts List
#METI EULAV EZIS NOITPIRCSED #TRAP YTQ RODNEV
,2C,1C
02C
Fp0013060roticapac-pihC
V05J101GOC93MRG
3
ataruM
3CFp93060roticapac-pihC
V05C090GOC93MRG
1
ataruM
8C,7CFp033060roticapac-pihC
V05J003GOC93MRG
2
ataruM
21CFu022AVV01
seireS
roticapaC
DN-TC0402ECP
1
YEK-IGID
,11C,9C
,12C,41C
22C
Fu1.3060roticapac-pihC
V61Z401V5Y93MRG
5
ataruM
32C,01CFp00013060roticapac-pihC
V05K201R7X93MRG
2
ataruM
71C,51CFp00743060roticapac-pihC
V52K274R7X93MRG
2
ataruM
61CFu13060dael-laidaR
roticapac-pihC
050-K-501-R7X-311EPR
1
ataruM
81CFu10.3060roticapac-pihC
V52K301R7X93MRG
1
ataruM
91CFu01V53
TNAT
.paCseireSET
DN-TC6016SCP
1
YEK-IGID
42CFp513060roticapac-pihC
V05J051GOC93MRG
1
ataruM
31CFp00653060roticapac-pihC
V05K265R7X93MRG
1
ataruM
,5C,4C
6C
Fp333060roticapac-pihC
V05J033GOC93MRG
3
ataruM
8R153060rotsiseRpihC
015JYSG3-JRE
1
cinosanaP
5RK013060rotsiseRpihC
301JYSG3-JRE
1
cinosanaP
4R,3R,2RK23060rotsiseRpihC
202JYSG3-JRE
3
cinosanaP
21RK13060rotsiseRpihC
201JYSG3-JRE
1
cinosanaP
11RK7.23060rotsiseRpihC
272JYSG3-JRE
1
cinosanaP
7RK33060rotsiseRpihC
203JYSG3-JRE
1
cinosanaP
31RK223060rotsiseRpihC
322JYSG3-JRE
1
cinosanaP
01RK2.83060rotsiseRpihC
228JYSG3-JRE
1
cinosanaP
1R013060rotsiseRpihC001JYSG3-JRE
1
cinosanaP
Data Sheet - Rev 2.2
02/2005
19
ACD2202
Table 20: Evaluation Fixture Parts List continued
#METI EULAV EZIS NOITPIRCSED #TRAP YTQ RODNEV
9R,6R03060rotsiseRpihC
3060CZ
2
DCR
1LHn6.55080rotcudnI
CB-X050-SC5080
1
tfarclioC
2LHn865080rotcudnI
CB-X086-SC5080
1
tfarclioC
3LHn0725080rotcudnI
CB-X172-SC5080
1
tfarclioC
1D542VS1edoidrotcaraV
542VS1
1
abihsoT
1TD1:4remrofsnarT
2-1-4CTE
1
.cnI,MOC-A/M
aciremAhtroN
1QV03
DMS
32-TOSNPNrotsisnarT
.lraD
DN-TC31ATMMF
1
YEK-IGID
1XZHM4latsyrC
DN-TC8162ES
1YEK-IGID
20 Data Sheet - Rev 2.2
02/2005
ACD2202
PACKAGE OUTLINE
Figure 28: S8 Package Outline - 28 Pin SSOP
Data Sheet - Rev 2.2
02/2005
21
ACD2202
NOTES
22 Data Sheet - Rev 2.2
02/2005
ACD2202
NOTES
Data Sheet - Rev 2.2
02/2005
23
ACD2202
NOTES
24
IMPORTANT NOTICE
ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without
notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are
subject to change prior to a product’s formal introduction. Information in Data Sheets have been carefully checked and are
assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges
customers to verify that the information they are using is current before placing orders.
WARNING
ANADIGICS products are not intended for use in life support appliances, devices, or systems. Use of an ANADIGICS
product in any such application without written consent is prohibited.
ANADIGICS, Inc.
141 Mount Bethel Road
Warren, New Jersey 07059, U.S.A
Tel: +1 (908) 668-5000
Fax: +1 (908) 668-5132
URL: http://www.anadigics.com
E-mail: Mktg@anadigics.com
Data Sheet - Rev 2.2
02/2005
ACD2202
ORDERING INFORMATION
REBMUNREDRO ERUTAREPMET
EGNAR
EGAKCAP
NOITPIRCSED GNIGAKCAPTNENOPMOC
1P8S2022DCAC°58+otC°04-POSSniP82leerrepseceip0053,leeR&epaT
0P8S2022DCAC°58+otC°04-POSSniP82ebutrepseceip05,sebuT
1P8SR2022DCAC°58+otC°04- tnailpmoC-SHoR
POSSniP82 leerrepseceip0053,leeR&epaT