1 of 238 REV: 080607
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device
ma
y
be simultaneousl
y
available throu
g
h various sales channels. For information about device errata, click here: www.maxim
-
ic.com/errata.
GENERAL DESCRIPTION
The DS2155 is a software-selectable T1, E1, or J1
single-chip transceiver (SCT) for short-haul and
long-haul applications. The DS2155 is composed of a
line interface unit (LIU), framer, HDLC controllers,
and a TDM backplane interface, and is controlled by
an 8-bit parallel port configured for Intel or Motorola
bus operations. The DS2155 is pin and software
compatible with the DS2156.
The LIU is composed of transmit and receive
interfaces and a jitter attenuator. The transmit
interface is responsible for generating the necessary
waveshapes for driving the network and providing
the correct source impedance depending on the type
of media used. T1 waveform generation includes
DSX-1 line buildouts as well as CSU line buildouts
of -7.5dB, -15dB, and -22.5dB. E1 waveform
generation includes G.703 waveshapes for both 75
coax and 120 twisted cables. The receive interface
provides network termination and recovers clock and
data from the network.
APPLICATIONS
T1/E1/J1 Line Cards
Switches and Routers
Add-Drop Multiplexers
FEATURES
Complete T1/DS1/ISDN-PRI/J1 Transceiver
Functionality
Complete E1 (CEPT) PCM-30/ISDN-PRI
Transceiver Functionality
Long-Haul and Short-Haul Line Interface for
Clock/Data Recovery and Waveshaping
CMI Coder/Decoder for Optical I/F
Crystal-Less Jitter Attenuator
Fully Independent Transmit and Receive
Functionality
Dual HDLC Controllers
Programmable BERT Generator and Detector
Internal Software-Selectable Receive and
Transmit-Side Termination Resistors for
75/100/120 T1 and E1 Interfaces
Dual Two-Frame Elastic-Store Slip Buffers that
Connect to Asynchronous Backplanes Up to
16.384MHz
16.384MHz, 8.192MHz, 4.096MHz, or
2.048MHz Clock Output Synthesized to
Recovered Network Clock
Features continued in Section 3.
ORDERING INFORMATION
PART TEMP RANGE PIN-PACKAGE
DS2155L 0°C to +70°C
100 LQFP
DS2155L+ 0°C to +70°C
100 LQFP
DS2155LN -40°C to +85°C 100 LQFP
DS2155LN+ -40°C to +85°C 100 LQFP
DS2155G 0°C to +70°C
100 CSBGA
DS2155G+ 0°C to +70°C
100 CSBGA
DS2155GN -40°C to +85°C 100 CSBGA
DS2155GN -40°C to +85°C 100 CSBGA
+ Denotes a lead-free/RoHS-compliant package.
DS2155
T1/E1/J1 Single-Chip Transceive
r
www.maxim-ic.com
DS2155
T1/E1/J1
SCT
T1/E1/J1
NETWORK
BACKPLANE
TDM
DS2155
2 of 238
1. TABLE OF CONTENTS
1. TABLE OF CONTENTS ............................................................................................................................2
1.1 TABLE OF FIGURES ........................................................................................................................................6
1.2 TABLE OF TABLES..........................................................................................................................................7
2. DATA SHEET REVISION HISTORY .....................................................................................................8
3. MAIN FEATURES....................................................................................................................................10
3.1 FUNCTIONAL DESCRIPTION .........................................................................................................................13
3.2 BLOCK DIAGRAM.........................................................................................................................................15
4. PIN FUNCTION DESCRIPTION ...........................................................................................................19
4.1 TRANSMIT SIDE ...........................................................................................................................................19
4.2 RECEIVE SIDE ..............................................................................................................................................21
4.3 PARALLEL CONTROL PORT PINS .................................................................................................................24
4.4 EXTENDED SYSTEM INFORMATION BUS......................................................................................................25
4.5 USER OUTPUT PORT PINS ............................................................................................................................26
4.6 JTAG TEST ACCESS PORT PINS...................................................................................................................27
4.7 LINE INTERFACE PINS ..................................................................................................................................28
4.8 SUPPLY PINS ................................................................................................................................................29
4.9 L AND G PACKAGE PINOUT .........................................................................................................................30
4.10 10MM CSBGA PIN CONFIGURATION ......................................................................................................32
5. PARALLEL PORT ...................................................................................................................................33
5.1 REGISTER MAP ............................................................................................................................................33
6. PROGRAMMING MODEL.....................................................................................................................39
6.1 POWER-UP SEQUENCE .................................................................................................................................40
6.1.1 Master Mode Register.........................................................................................................................40
6.2 INTERRUPT HANDLING ................................................................................................................................41
6.3 STATUS REGISTERS......................................................................................................................................41
6.4 INFORMATION REGISTERS ...........................................................................................................................42
6.5 INTERRUPT INFORMATION REGISTERS ........................................................................................................42
7. SPECIAL PER-CHANNEL REGISTER OPERATION.......................................................................43
8. CLOCK MAP ............................................................................................................................................45
9. T1 FRAMER/FORMATTER CONTROL AND STATUS REGISTERS............................................46
9.1 T1 CONTROL REGISTERS .............................................................................................................................46
9.2 T1 TRANSMIT TRANSPARENCY ...................................................................................................................51
9.3 AIS-CI AND RAI-CI GENERATION AND DETECTION ..................................................................................51
9.4 T1 RECEIVE-SIDE DIGITAL-MILLIWATT CODE GENERATION.....................................................................52
10. E1 FRAMER/FORMATTER CONTROL AND STATUS REGISTERS............................................55
10.1 E1 CONTROL REGISTERS.........................................................................................................................55
10.2 AUTOMATIC ALARM GENERATION .........................................................................................................59
10.3 E1 INFORMATION REGISTERS..................................................................................................................60
11. COMMON CONTROL AND STATUS REGISTERS ..........................................................................62
11.1 T1/E1 STATUS REGISTERS ......................................................................................................................63
DS2155
3 of 238
12. I/O PIN CONFIGURATION OPTIONS.................................................................................................69
13. LOOPBACK CONFIGURATION ..........................................................................................................71
13.1 PER-CHANNEL LOOPBACK ......................................................................................................................73
14. ERROR COUNT REGISTERS ...............................................................................................................75
14.1 LINE-CODE VIOLATION COUNT REGISTER (LCVCR).............................................................................76
14.1.1 T1 Operation.......................................................................................................................................76
14.1.2 E1 Operation.......................................................................................................................................76
14.2 PATH CODE VIOLATION COUNT REGISTER (PCVCR) ............................................................................78
14.2.1 T1 Operation.......................................................................................................................................78
14.2.2 E1 Operation.......................................................................................................................................78
14.3 FRAMES OUT-OF-SYNC COUNT REGISTER (FOSCR)..............................................................................79
14.3.1 T1 Operation.......................................................................................................................................79
14.3.2 E1 Operation.......................................................................................................................................79
14.4 E-BIT COUNTER (EBCR).........................................................................................................................80
15. DS0 MONITORING FUNCTION ...........................................................................................................81
16. SIGNALING OPERATION .....................................................................................................................83
16.1 RECEIVE SIGNALING ...............................................................................................................................83
16.1.1 Processor-Based Signaling.................................................................................................................83
16.1.2 Hardware-Based Receive Signaling ...................................................................................................84
16.2 TRANSMIT SIGNALING.............................................................................................................................89
16.2.1 Processor-Based Mode .......................................................................................................................89
16.2.2 Software Signaling Insertion-Enable Registers, E1 CAS Mode..........................................................93
16.2.3 Software Signaling Insertion-Enable Registers, T1 Mode..................................................................95
16.2.4 Hardware-Based Mode.......................................................................................................................95
17. PER-CHANNEL IDLE CODE GENERATION ....................................................................................96
17.1 IDLE-CODE PROGRAMMING EXAMPLES ..................................................................................................97
18. CHANNEL BLOCKING REGISTERS ................................................................................................101
19. ELASTIC STORES OPERATION........................................................................................................104
19.1 RECEIVE SIDE ........................................................................................................................................107
19.1.1 T1 Mode ............................................................................................................................................107
19.1.2 E1 Mode............................................................................................................................................107
19.2 TRANSMIT SIDE .....................................................................................................................................107
19.2.1 T1 Mode ............................................................................................................................................108
19.2.2 E1 Mode............................................................................................................................................108
19.3 ELASTIC STORES INITIALIZATION .........................................................................................................108
19.4 MINIMUM DELAY MODE .......................................................................................................................108
20. G.706 INTERMEDIATE CRC-4 UPDATING (E1 MODE ONLY)...................................................109
21. T1 BIT-ORIENTED CODE (BOC) CONTROLLER..........................................................................110
21.1 TRANSMIT BOC.....................................................................................................................................110
Transmit a BOC ..............................................................................................................................................110
21.2 RECEIVE BOC .......................................................................................................................................110
Receive a BOC.................................................................................................................................................110
22. ADDITIONAL (SA) AND INTERNATIONAL (SI) BIT OPERATION (E1 ONLY) ......................113
DS2155
4 of 238
22.1 METHOD 1: HARDWARE SCHEME .........................................................................................................113
22.2 METHOD 2: INTERNAL REGISTER SCHEME BASED ON DOUBLE-FRAME ..............................................113
22.3 METHOD 3: INTERNAL REGISTER SCHEME BASED ON CRC4 MULTIFRAME ........................................116
23. HDLC CONTROLLERS ........................................................................................................................126
23.1 BASIC OPERATION DETAILS ..................................................................................................................126
23.2 HDLC CONFIGURATION........................................................................................................................126
23.2.1 FIFO Control....................................................................................................................................130
23.3 HDLC MAPPING....................................................................................................................................131
23.3.1 Receive ..............................................................................................................................................131
23.3.2 Transmit ............................................................................................................................................133
23.3.3 FIFO Information .............................................................................................................................138
23.3.4 Receive Packet-Bytes Available........................................................................................................138
23.3.5 HDLC FIFOs ....................................................................................................................................139
23.4 RECEIVE HDLC CODE EXAMPLE..........................................................................................................140
23.5 LEGACY FDL SUPPORT (T1 MODE)......................................................................................................140
23.5.1 Overview ...........................................................................................................................................140
23.5.2 Receive Section .................................................................................................................................140
23.5.3 Transmit Section ...............................................................................................................................142
23.6 D4/SLC-96 OPERATION ........................................................................................................................142
24. LINE INTERFACE UNIT (LIU) ...........................................................................................................143
24.1 LIU OPERATION ....................................................................................................................................143
24.2 RECEIVER ..............................................................................................................................................143
24.2.1 Receive Level Indicator and Threshold Interrupt.............................................................................144
24.2.2 Receive G.703 Synchronization Signal (E1 Mode)...........................................................................144
24.2.3 Monitor Mode ...................................................................................................................................144
24.3 TRANSMITTER .......................................................................................................................................145
24.3.1 Transmit Short-Circuit Detector/Limiter..........................................................................................145
24.3.2 Transmit Open-Circuit Detector.......................................................................................................145
24.3.3 Transmit BPV Error Insertion ..........................................................................................................145
24.3.4 Transmit G.703 Synchronization Signal (E1 Mode).........................................................................145
24.4 MCLK PRESCALER ...............................................................................................................................146
24.5 JITTER ATTENUATOR.............................................................................................................................146
24.6 CMI (CODE MARK INVERSION) OPTION ...............................................................................................146
24.7 LIU CONTROL REGISTERS.....................................................................................................................147
24.8 RECOMMENDED CIRCUITS.....................................................................................................................156
24.9 COMPONENT SPECIFICATIONS...............................................................................................................158
25. PROGRAMMABLE IN-BAND LOOP CODE GENERATION AND DETECTION......................163
26. BERT FUNCTION..................................................................................................................................170
26.1 STATUS ..................................................................................................................................................170
26.2 MAPPING ...............................................................................................................................................170
26.3 BERT REGISTER DESCRIPTIONS ...........................................................................................................172
26.4 BERT REPETITIVE PATTERN SET..........................................................................................................176
26.5 BERT BIT COUNTER .............................................................................................................................177
26.6 BERT ERROR COUNTER........................................................................................................................178
27. PAYLOAD ERROR-INSERTION FUNCTION (T1 MODE ONLY)................................................180
27.1 NUMBER-OF-ERRORS REGISTERS..........................................................................................................182
27.1.1 Number-of-Errors Left Register........................................................................................................183
28. INTERLEAVED PCM BUS OPERATION (IBO)...............................................................................184
DS2155
5 of 238
28.1 CHANNEL INTERLEAVE .........................................................................................................................184
28.2 FRAME INTERLEAVE..............................................................................................................................184
29. EXTENDED SYSTEM INFORMATION BUS (ESIB) .......................................................................187
30. PROGRAMMABLE BACKPLANE CLOCK SYNTHESIZER ........................................................191
31. FRACTIONAL T1/E1 SUPPORT .........................................................................................................191
32. USER-PROGRAMMABLE OUTPUT PINS........................................................................................193
33. TRANSMIT FLOW DIAGRAMS .........................................................................................................194
34. JTAG BOUNDARY SCAN ARCHITECTURE AND TEST ACCESS PORT .................................199
34.1 DESCRIPTION .........................................................................................................................................199
34.2 INSTRUCTION REGISTER........................................................................................................................202
34.3 TEST REGISTERS....................................................................................................................................204
34.4 BOUNDARY SCAN REGISTER .................................................................................................................204
34.5 BYPASS REGISTER .................................................................................................................................204
34.6 IDENTIFICATION REGISTER....................................................................................................................204
35. FUNCTIONAL TIMING DIAGRAMS.................................................................................................208
35.1 T1 MODE ...............................................................................................................................................208
35.2 E1 MODE ...............................................................................................................................................213
36. OPERATING PARAMETERS ..............................................................................................................222
37. AC TIMING PARAMETERS AND DIAGRAMS ...............................................................................224
37.1 MULTIPLEXED BUS AC CHARACTERISTICS ..........................................................................................224
37.2 NONMULTIPLEXED BUS AC CHARACTERISTICS ...................................................................................227
37.3 RECEIVE-SIDE AC CHARACTERISTICS ..................................................................................................230
37.4 BACKPLANE CLOCK TIMING: AC CHARACTERISTICS .........................................................................233
37.5 TRANSMIT AC CHARACTERISTICS ........................................................................................................234
38. PACKAGE INFORMATION ................................................................................................................237
38.1 100-PIN LQFP (56-G5002-000) ............................................................................................................237
38.2 100-BALL CSBGA (56-G6008-001) .....................................................................................................238
DS2155
6 of 238
1.1 Table of Figures
Figure 3-1. Block Diagram........................................................................................................................................ 15
Figure 3-2. Receive and Transmit LIU...................................................................................................................... 16
Figure 3-3. Receive and Transmit Framer/HDLC..................................................................................................... 17
Figure 3-4. Backplane Interface ................................................................................................................................ 18
Figure 4-1. 10mm CSBGA Pin Configuration .......................................................................................................... 32
Figure 6-1. Programming Sequence .......................................................................................................................... 39
Figure 8-1. Clock Map............................................................................................................................................... 45
Figure 16-1. Simplified Diagram of Receive Signaling Path .................................................................................... 83
Figure 16-2. Simplified Diagram of Transmit Signaling Path................................................................................... 89
Figure 20-1. CRC-4 Recalculate Method ................................................................................................................ 109
Figure 24-1. Typical Monitor Application .............................................................................................................. 144
Figure 24-2. CMI Coding ........................................................................................................................................ 146
Figure 24-3. Software-Selected Termination, Metallic Protection.......................................................................... 156
Figure 24-4. Software-Selected Termination, Longitudinal Protection................................................................... 157
Figure 24-5. E1 Transmit Pulse Template............................................................................................................... 159
Figure 24-6. T1 Transmit Pulse Template............................................................................................................... 159
Figure 24-7. Jitter Tolerance.................................................................................................................................... 160
Figure 24-8. Jitter Tolerance (E1 Mode) ................................................................................................................. 160
Figure 24-9. Jitter Attenuation (T1 Mode) .............................................................................................................. 161
Figure 24-10. Jitter Attenuation (E1 Mode) ............................................................................................................ 161
Figure 24-11. Optional Crystal Connections ........................................................................................................... 162
Figure 26-1. Simplified Diagram of BERT in Network Direction .......................................................................... 171
Figure 26-2. Simplified Diagram of BERT in Backplane Direction ....................................................................... 171
Figure 28-1. IBO Example ...................................................................................................................................... 186
Figure 29-1. ESIB Group of Four DS2155s ............................................................................................................ 187
Figure 33-1. T1 Transmit Flow Diagram ................................................................................................................ 194
Figure 33-2. E1 Transmit Flow Diagram ................................................................................................................ 195
Figure 34-1. JTAG Functional Block Diagram ....................................................................................................... 199
Figure 34-2. TAP Controller State Diagram............................................................................................................ 202
Figure 35-1. Receive-Side D4 Timing..................................................................................................................... 208
Figure 35-2. Receive-Side ESF Timing................................................................................................................... 208
Figure 35-3. Receive-Side Boundary Timing (Elastic Store Disabled)................................................................... 209
Figure 35-4. Receive-Side 1.544MHz Boundary Timing (Elastic Store Enabled).................................................. 209
Figure 35-5. Receive-Side 2.048MHz Boundary Timing (Elastic Store Enabled).................................................. 210
Figure 35-6. Transmit-Side D4 Timing ................................................................................................................... 210
Figure 35-7. Transmit-Side ESF Timing ................................................................................................................. 211
Figure 35-8. Transmit-Side Boundary Timing (with Elastic Store Disabled) ......................................................... 211
Figure 35-9. Transmit-Side 1.544MHz Boundary Timing (Elastic Store Enabled) ................................................ 212
Figure 35-10. Transmit-Side 2.048MHz Boundary Timing (Elastic Store Enabled) .............................................. 212
Figure 35-11. Receive-Side Timing ........................................................................................................................ 213
Figure 35-12. Receive-Side Boundary Timing (with Elastic Store Disabled)......................................................... 213
Figure 35-13. Receive-Side Boundary Timing, RSYSCLK = 1.544MHz (Elastic Store Enabled) ........................ 214
Figure 35-14. Receive-Side Boundary Timing, RSYSCLK = 2.048MHz (Elastic Store Enabled) ........................ 214
Figure 35-15. Receive IBO Channel Interleave Mode Timing ............................................................................... 215
Figure 35-16. Receive IBO Frame Interleave Mode Timing................................................................................... 216
Figure 35-17. G.802 Timing, E1 Mode Only .......................................................................................................... 217
Figure 35-18. Transmit-Side Timing....................................................................................................................... 217
Figure 35-19. Transmit-Side Boundary Timing (Elastic Store Disabled) ............................................................... 218
Figure 35-20. Transmit-Side Boundary Timing, TSYSCLK = 1.544MHz (Elastic Store Enabled) ...................... 218
Figure 35-21. Transmit-Side Boundary Timing, TSYSCLK = 2.048MHz (Elastic Store Enabled) ....................... 219
Figure 35-22. Transmit IBO Channel Interleave Mode Timing.............................................................................. 220
DS2155
7 of 238
Figure 35-23. Transmit IBO Frame Interleave Mode Timing................................................................................. 221
Figure 37-1. Intel Multiplexed Bus Read Timing (BTS = 0/MUX = 1).................................................................. 225
Figure 37-2. Intel Multiplexed Bus Write Timing (BTS = 0/MUX = 1)................................................................. 225
Figure 37-3. Motorola Multiplexed Bus Timing (BTS = 1/MUX = 1) ................................................................... 226
Figure 37-4. Intel Nonmultiplexed Bus Read Timing (BTS = 0/MUX = 0) ........................................................... 228
Figure 37-5. Intel Nonmultiplexed Bus Write Timing (BTS = 0/MUX = 0) .......................................................... 228
Figure 37-6. Motorola Nonmultiplexed Bus Read Timing (BTS = 1/MUX = 0).................................................... 229
Figure 37-7. Motorola Nonmultiplexed Bus Write Timing (BTS = 1/MUX = 0)................................................... 229
Figure 37-8. Receive-Side Timing .......................................................................................................................... 231
Figure 37-9. Receive-Side Timing, Elastic Store Enabled ...................................................................................... 232
Figure 37-10. Receive Line Interface Timing ......................................................................................................... 232
Figure 37-11 Receive Timing Delay RCLK to BPCLK......................................................................................... 233
Figure 37-12. Transmit-Side Timing....................................................................................................................... 235
Figure 37-13. Transmit-Side Timing, Elastic Store Enabled................................................................................... 236
Figure 37-14. Transmit Line Interface Timing........................................................................................................ 236
1.2 Table of Tables
Table 4-A. Pin Description Sorted by Pin Number ................................................................................................... 30
Table 5-A. Register Map Sorted by Address............................................................................................................. 33
Table 9-A. T1 Alarm Criteria .................................................................................................................................... 54
Table 10-A. E1 Sync/Resync Criteria ....................................................................................................................... 56
Table 10-B. E1 Alarm Criteria .................................................................................................................................. 61
Table 14-A. T1 Line Code Violation Counting Options ........................................................................................... 76
Table 14-B. E1 Line-Code Violation Counting Options ........................................................................................... 76
Table 14-C. T1 Path Code Violation Counting Arrangements.................................................................................. 78
Table 14-D. T1 Frames Out-of-Sync Counting Arrangements ................................................................................. 79
Table 16-A. Time Slot Numbering Schemes............................................................................................................. 90
Table 17-A. Idle-Code Array Address Mapping ....................................................................................................... 96
Table 17-B. GRIC and GTIC Functions.................................................................................................................... 98
Table 19-A. Elastic Store Delay After Initialization ............................................................................................... 108
Table 23-A. HDLC Controller Registers................................................................................................................. 127
Table 24-A. Component List (Software-Selected Termination, Metallic Protection)............................................. 156
Table 24-B. Component List (Software-Selected Termination, Longitudinal Protection)...................................... 157
Table 24-C. Transformer Specifications.................................................................................................................. 158
Table 27-A. Transmit Error-Insertion Setup Sequence ........................................................................................... 180
Table 27-B. Error Insertion Examples..................................................................................................................... 182
Table 34-A. Instruction Codes for IEEE 1149.1 Architecture ................................................................................ 203
Table 34-B. ID Code Structure................................................................................................................................ 204
Table 34-C. Device ID Codes.................................................................................................................................. 204
Table 34-D. Boundary Scan Control Bits................................................................................................................ 205
DS2155
8 of 238
2. DATA SHEET REVISION HISTORY
REVISION DESCRIPTION
080607
In Section 3: Line Interface and Section 3.1: Functional Description, corrected dB values
for E1 and T1 (page 10 and page 13):
E1: 0 to -43dB and 0 to -12dB
T1: 0 to -15dB and 0 to -36dB
040907 Added Note 1 (GBD for cold temp) to Absolute Maximum Ratings (Section 36).
041806 Replaced Figure 24-3 and Figure 24-4, added Table 24-A and Table 24-B.
011606 Added lead-free packages to Ordering Information table on page 1.
Add revision history table: The previous version of the DS2155 data sheet (12-06-02) did
not incorporate a revision history table and did not describe new features added to B1
revision of the DS2155.
THE FOLLOWING WERE INADVERTENTLY REMOVED FROM THE
PREVIOUS VERSION OF THE DS2155 DATA SHEET:
Add CSBGA package information to Ordering Information table on front page
Add CSBGA package thermal characteristics to Operating Parameters section
Add Transmit Line Build Out Control register (TLBC) description
Add Transmit Line Build Out Control register (TLBC) to Port Map
Add Transmit Line Build Out Control register (TLBC) description to LIU TRANSMIT
section
THE FOLLOWING ARE CORRECTIONS TO ERRORS IN THE PREVIOUS
VERSION OF THE DS2155 DATA SHEET:
Correct Device ID in Device Identification Register
Correct Device ID in JTAG ID Code table
Correct minimum value for tDHW in AC CHARACTERISTICS: MULTIPLEXED
PARALLEL PORT table. tDHW was changed from 5ns to 0ns
Correct minimum value for tDDR in AC CHARACTERISTICS: MULTIPLEXED
PARALLEL PORT table. tDDR was changed from unstated to 20ns
Corrections to AC CHARACTERISTICS: TRANSMIT SIDE timing table.
1. tCP, tCH, tCL, tLP, tLH, tLL, and tSP typical values have been restated to reflect various IBO
modes.
2. tCH, tCL, tLH, tLL minimum values have been changed from 75ns to 20ns.
3. tSP, tLL minimum values have been changed from 50ns to 20ns.
4. tD3 minimum values have been changed from 75ns to 22ns.
Corrections to AC CHARACTERISTICS: RECEIVE SIDE timing table.
1. tCP, tCH, tCL, tLP, tLH, tLL, and tSP typical values have been restated to reflect various IBO
modes.
2. tCH, tCL, minimum values have been changed from 75ns to 20ns.
3. tSH, tSL minimum values have been changed from 50ns to 20ns.
4. tSH, tSL typical values have been added.
5. tD3, tD4 minimum values have been changed from 50ns to 22ns.
100903
Correct Transmit Signaling Registers (E1 Mode, CCS Format) table in Transmit Signaling
section
DS2155
9 of 238
REVISION DESCRIPTION
The definition of the EGL bit in the LIC1 register has been corrected for both T1 and E1
mode.
T1 Mode: EGL = 1 was changed from 15dB to –15dB
E1 Mode: EGL = 0 was changed from –10dB to –12dB
THE FOLLOWING ARE FORMAT CHANGES AND ADDED OR REMOVED
TEXT, TABLES OR DIAGRAMS:
Replace X* format for showing active low signals with X
Remove redundant statements about “multiport configurations” in Interrupt Handling
section
Remove BASIC NETWORK CONNECTIONS figure in LINE INTERFACE UNIT
section
Add “Simplified Diagram of BERT in Network Direction” figure to BERT section
Add “Simplified Diagram of BERT in Backplane Direction” figure to BERT section
Add Receive Signaling Registers (E1 Mode, CCS Format) table to Receive Signaling
section
Add GRIC and GTIC function table to IAAR register
Changed Table of contents to include table of figures and table of tables.
Add note for FASRC bit.
Add T1 and E1 Transmit Flow Chart.
Added RCLK to BPCLK timing diagram.
THE FOLLOWING ARE NEW FEATURES AVAILABLE ON TH E DS2155 REV
B1 AND ARE EXPLAINED IN THE BODY OF THE DATA SHEET
Add FRAS0, TCCS, RCCS and GRSRE bits to Signaling Control Register (SIGCR)
Add section on AIS-CI and RAI-CI Generation and Detection
Add RAIS-CI status bit to Status Register 4 (SR4) and Interrupt Mask Register 4 (IMR4)
Add RAIS-CI status bit to Status Register 4 (SR4)
Add TRAI-CI control bit to T1 Common Control Register 1 (TCCR1)
Add TAIS-CI control bit to T1 Common Control Register 1 (TCCR1)
Add Pseudorandom 2E9-1 pattern to PS0, PS1 and PS2 bit description in Bert Control
Register 1 (BCR1)
Add BD bit to Information Register 2 (INFO2)
Add ILUT status bit to Status Register 1 (SR1) and Interrupt Mask Register 1 (IMR1)
Add INTDIS and TMSS bits to Common Control Register 3 (CCR3)
DS2155
10 of 238
3. MAIN FEATURES
The DS2155 contains all of the features of the previous generation of Dallas Semiconductor’s T1 and E1 SCTs plus
many new features.
General
Programmable output clocks for fractional T1, E1,
H0, and H12 applications
Interleaving PCM bus operation
8-bit parallel control port, multiplexed or
nonmultiplexed, Intel or Motorola
IEEE 1149.1 JTAG-Boundary Scan
3.3V supply with 5V tolerant inputs and outputs
Pin compatible with DS2156, DS2152/DS2154,
and DS21x5Y SCT family
Signaling System 7 Support
RAI-CI, AIS-CI support
100-pin LQFP (14mm x 14mm) (DS2155L)
100-pin CSBGA (10mm x 10mm) (DS2155G)
3.3V supply with 5V tolerant inputs and outputs
Evaluation kits
IEEE 1149.1 JTAG boundary scan
Driver source code available from the factory
Line Interface
Requires only a 2.048MHz master clock for both
E1 and T1 operation with the option to use
1.544MHz for T1 operation
Fully software configurable
Short-haul and long-haul applications
Automatic receive sensitivity adjustments
Ranges include 0 to -43dB or 0 to -12dB for E1
applications and 0 to -15dB or 0 to -36dB for T1
applications
Receive level indication in 2.5dB steps from
-42.5dB to -2.5dB
Internal receive termination option for 75, 100,
and 120 lines
Internal transmit termination option for 75, 100,
and 120 lines
Monitor application gain settings of 20dB, 26dB,
and 32dB
G.703 receive synchronization-signal mode
Flexible transmit waveform generation
T1 DSX-1 line buildouts
T1 CSU line buildouts of -7.5dB, -15dB, and
-22.5dB
E1 waveforms include G.703 waveshapes for
both 75 coax and 120 twisted cables
AIS generation independent of loopbacks
Alternating ones and zeros generation
Square-wave output
Open-drain output option
NRZ format option
Transmitter power-down
Transmitter 50mA short-circuit limiter with
current-limit-exceeded indication
Transmit open-circuit-detected indication
Line interface function can be completely
decoupled from the framer/formatter
Clock Synthesizer
Output frequencies include 2.048MHz, 4.096MHz,
8.192MHz, and 16.384MHz
Derived from recovered receive clock
Jitter Attenuator
32-bit or 128-bit crystal-less jitter attenuator
Requires only a 2.048MHz master clock for both
E1 and T1 operation with the option to use
1.544MHz for T1 operation
Can be placed in either the receive or transmit path
or disabled
Limit trip indication
Framer/Formatter
Fully independent transmit and receive
functionality
Full receive and transmit path transparency
T1 framing formats include D4 (SLC-96) and ESF
Detailed alarm and status reporting with optional
interrupt support
Large path and line error counters for:
T1: BPV, CV, CRC6, and framing bit errors
E1: BPV, CV, CRC4, E-bit, and frame
alignment errors
Timed or manual update modes
DS1 idle code generation on a per-channel basis in
both transmit and receive paths
– User-defined
– Digital milliwatt
ANSI T1.403-1998 Support
RAI-CI detection and generation
AIS-CI detection and generation
E1ETS 300 011 RAI generation
G.965 V5.2 link detect
Ability to monitor one DS0 channel in both the
transmit and receive paths
In-band repeating pattern generators and detectors
Three independent generators and detectors
Patterns from 1 to 8 bits or 16 bits in length
RCL, RLOS, RRA, and RAIS alarms interrupt on
change-of-state
DS2155
11 of 238
Flexible signaling support
– Software or hardware based
Interrupt generated on change of signaling data
Receive signaling freeze on loss-of-sync,
carrier loss, or frame slip
Addition of hardware pins to indicate carrier loss
and signaling freeze
Automatic RAI generation to ETS 300 011
specifications
Access to Sa and Si bits
Option to extend carrier loss criteria to a 1ms
period as per ETS 300 233
Japanese J1 support
Ability to calculate and check CRC6 according
to the Japanese standard
Ability to generate Yellow Alarm according to
the Japanese standard
TDM Bus
Dual two-frame independent receive and transmit
elastic stores
Independent control and clocking
Controlled slip capability with status
Minimum delay mode supported
16.384MHz maximum backplane burst rate
Supports T1 to CEPT (E1) conversion
Programmable output clocks for fractional T1, E1,
H0, and H12 applications
Interleaving PCM bus operation
Hardware signaling capability
Receive signaling reinsertion to a backplane
multiframe sync
Availability of signaling in a separate PCM
data stream
Signaling freezing
Ability to pass the T1 F-bit position through the
elastic stores in the 2.048MHz backplane mode
Access to the data streams in between the
framer/formatter and the elastic stores
User-selectable synthesized clock output
HDLC Controllers
Two independent HDLC controllers
Fast load and unload features for FIFOs
SS7 support for FISU transmit and receive
Independent 128-byte Rx and Tx buffers with
interrupt support
Access FDL, Sa, or single/multiple DS0 channels
DS0 access includes Nx64 or Nx56
Compatible with polled or interrupt driven
environments
Bit-oriented code (BOC) support
Test and Diagnostics
Programmable on-chip bit error-rate testing
Pseudorandom patterns including QRSS
User-defined repetitive patterns
Daly pattern
Error insertion single and continuous
Total bit and errored bit counts
Payload error insertion
Error insertion in the payload portion of the T1
frame in the transmit path
Errors can be inserted over the entire frame or
selected channels
Insertion options include continuous and absolute
number with selectable insertion rates
F-bit corruption for line testing
Loopbacks: remote, local, analog, and per-channel
loopback
Extended System Information Bus
Host can read interrupt and alarm status on up to 8
ports with a single bus read
User-Programmable Output Pins
Four user-defined output pins for controlling
external logic
Control Port
8-bit parallel control port
Multiplexed or nonmultiplexed buses
Intel or Motorola formats
Supports polled or interrupt environments
Software access to device ID and silicon revision
Software reset supported
Automatic clear on power-up
Hardware reset pin
DS2155
12 of 238
The DS2155 is compliant with the following standards:
ANSI: T1.403-1995, T1.231–1993, T1.408
AT&T: TR54016, TR62411
ITU: G.703, G.704, G.706, G.736, G.775, G.823, G.932, I.431, O.151, Q.161
ITU-T: Recommendation I.432–03/93 B-ISDN User-Network Interface—Physical Layer
Specification
ETSI: ETS 300 011, ETS 300 166, ETS 300 233, CTR12, CTR4
Japanese: JTG.703, JTI.431, JJ-20.11 (CMI Coding Only)
DS2155
13 of 238
3.1 Functional Description
The DS2155 is a software-selectable T1, E1, or J1 single-chip transceiver (SCT) for short-haul and long-
haul applications. The DS2155 is composed of an LIU, framer, HDLC controllers, and a TDM backplane
interface, and is controlled by an 8-bit parallel port configured for Intel or Motorola bus operations. The
DS2155 is pin and software compatible with the DS2156.
The LIU is composed of transmit and receive interfaces and a jitter attenuator. The transmit interface is
responsible for generating the necessary waveshapes for driving the network and providing the correct
source impedance depending on the type of media used. T1 waveform generation includes DSX-1 line
buildouts as well as CSU line buildouts of -7.5dB, -15dB, and -22.5dB. E1 waveform generation includes
G.703 waveshapes for both 75 coax and 120 twisted cables. The receive interface provides network
termination and recovers clock and data from the network. The receive sensitivity adjusts automatically to
the incoming signal and can be programmed for 0 to -43dB or 0 to -12dB for E1 applications and
0 to -15dB or 0 to -36dB for T1 applications. The jitter attenuator removes phase jitter from the
transmitted or received signal. The crystal-less jitter attenuator requires only a 2.048MHz MCLK for both
E1 and T1 applications (with the option of using a 1.544MHz MCLK in T1 applications) and can be
placed in either transmit or receive data paths. An additional feature of the LIU is a CMI coder/decoder
for interfacing to optical networks.
On the transmit side, clock, data, and frame-sync signals are provided to the framer by the backplane
interface section. The framer inserts the appropriate synchronization framing patterns, alarm information,
calculates and inserts the CRC codes, and provides the B8ZS/HDB3 (zero code suppression) and AMI
line coding. The receive-side framer decodes AMI, B8ZS, and HDB3 line coding, synchronizes to the
data stream, reports alarm information, counts framing/coding/CRC errors, and provides clock/data and
frame-sync signals to the backplane interface section.
Both the transmit and receive path have two HDLC controllers. The HDLC controllers transmit and
receive data through the framer block. The HDLC controllers can be assigned to any time slot, group of
time slots, portion of a time slot or to FDL (T1) or Sa bits (E1). Each controller has 128-byte FIFOs, thus
reducing the amount of processor overhead required to manage the flow of data. In addition, built-in
support for reducing the processor time is required in SS7 applications.
The backplane interface provides a versatile method of sending and receiving data from the host system.
Elastic stores provide a method for interfacing to asynchronous systems, converting from a T1/E1
network to a 2.048MHz, 4.096MHz, 8.192MHz, or N x 64kHz system backplane. The elastic stores also
manage slip conditions (asynchronous interface). An interleave bus option (IBO) is provided to allow up
to eight transceivers to share a high-speed backplane.
The parallel port provides access for control and configuration of the DS2155’s features. The extended
system information bus (ESIB) function allows up to eight transceivers to be accessed by a single read for
interrupt status or other user-selectable alarm status information. Diagnostic capabilities include
loopbacks, PRBS pattern generation/detection, and 16-bit loop-up and loop-down code generation and
detection.
DS2155
14 of 238
Reader’s Note: This data sheet assumes a particular nomenclature of the T1 operating environment. In
each 125µs frame there are 24 8-bit channels plus a framing bit. It is assumed that the framing bit is sent
first followed by channel 1. Each channel is made up of eight bits that are numbered 1 to 8. Bit number 1
is the MSB and is transmitted first. Bit number 8 is the LSB and is transmitted last. The term “locked” is
used to refer to two clock signals that are phase- or frequency-locked or derived from a common clock
(i.e., a 1.544MHz clock can be locked to a 2.048MHz clock if they share the same 8kHz component).
Throughout this data sheet, the following abbreviations are used:
B8ZS Bipolar with 8 Zero Substitution
BOC Bit-Oriented Code
CRC Cyclical Redundancy Check
D4 Superframe (12 frames per multiframe) Multiframe Structure
ESF Extended Superframe (24 frames per multiframe) Multiframe Structure
FDL Facility Data Link
FPS Framing Pattern Sequence in ESF
Fs Signaling Framing Pattern in D4
Ft Terminal Framing Pattern in D4
HDLC High-Level Data Link Control
MF Multiframe
SLC–96 Subscriber Loop Carrier—96 Channels
DS2155
15 of 238
3.2 Block Diagram
Figure 3-1 shows a simplified block diagram featuring the major components of the DS2155. Details are
shown in subsequent figures. The block diagram is divided into three functional blocks: LIU, FRAMER,
and BACKPLANE INTERFACE.
Figure 3-1. Block Diagram
TX
LIU
CLOCK
ADAPTER
BACKPLANE
INTERFACE
CIRCUIT
HOST INTERFACE
T1/E1/J1
NETWORK
CLOCK
JTAG ESIB
RX
LIU
JITTER ATTENUATOR
LOCAL LOOPBACK
REMOTE LOOPBACK
FRAMER LOOPBACK
PAYLOAD LOOPBACK
MUX
MUX
EXTERNAL ACCESS
TO RECEIVE SIGNALS
EXTERNAL ACCESS
TO TRANSMIT SIGNALS
BACKPLANE
BACKPLANE
CLOCK SYNTH
LIU FRAMER BACKPLANE
INTERFACE
SYNC
HDLCs
SINGALING
ALARM DET
FRAMER
CRC GEN
SINGALING
ALARM GEN
HDLCs
HDB3 / B8ZS
HDB3 / B8ZS
DS2155
16 of 238
Figure 3-2. Receive and Transmit LIU
LOCAL LOOPBACK
TRING
TTIP
JITTER ATTENUATOR
TRANSMIT
OR RECEIVE PATH
RECEIVE
LINE I/F
RRING
RTIP
REMOTE LOOPBACK
VCO / PLL
MCLK
8XCLK
32.768MHz
XTALD
RPOSO
RNEGO
RNEGI
RPOSI
TPOSI
TNEGI
TNEGO
TPOSO
RCLKO
RCLKI
TCLKI
TCLKO
LIUC
MUX
MUX
RPOS
RNEG
RCLK
TPOS
TNEG
TCLK
JACLK
RCL
TRANSMIT
LINE I/F
DS2155
17 of 238
Figure 3-3. Receive and Transmit Framer/HDLC
RECEIVE
FRAMER
TRANSMIT
FRAMER
DATA
CLOCK
SYNC
SYNC
CLOCK
DATA
FRAMER LOOPBACK
XMIT
HDLC #1
MAPPER
XMIT
HDLC #2
MAPPER
128 Byte
FIFO
128 Byte
FIFO
MAPPER MAPPER
REC
HDLC #1
REC
HDLC #2
128 Byte
FIFO
128 Byte
FIFO
DATA
CLOCK
SYNC
SYNC
CLOCK
DATA
RPOS
RNEG
RCLK
TPOS
TNEG
TCLK
PAYLOAD LOOPBACK
DS2155
18 of 238
Figure 3-4. Backplane Interface
RLINK
RLCLK
RSIG
RSIGFR
RSER
RCLK
RSYNC
RDATA
RFSYNC
RMSYNC
ELASTIC
STORE
SIGNALING
BUFFER
Sa BIT/FDL
EXTRACTION
DATA
CLOCK
SYNC
RCHBLK
RCHCLK
CHANNEL
TIMING
RSYSCLK
TSER
TSIG
TSSYNC
TSYNC
TDATA
TESO
TCHBLK
TCHCLK
TLINK
TLCLK
CHANNEL
TIMING
SYNC
CLOCK
DATA
SIGNALING
BUFFER
ELASTIC
STORE
Sa/FDL
INSERT
TCLK
MUX TCLK
TSYSCLK
JACLK
DS2155
19 of 238
4. PIN FUNCTION DESCRIPTION
4.1 Transmit Side
Signal Name: TCLK
Signal Description: Transmit Clock
Signal Type: Input
A 1.544MHz (T1) or a 2.048MHz (E1) primary clock. Used to clock data through the transmit-side formatter.
TCLK can be internally sourced from MCLK. This is the most flexible method and requires only a single clock
signal for both T1 or E1. If internal sourcing is used, then the TCLK pin should be connected low.
Signal Name: TSER
Signal Description: Transmit Serial Data
Signal Type: Input
Transmit NRZ serial data. Sampled on the falling edge of TCLK when the transmit-side elastic store is disabled.
Sampled on the falling edge of TSYSCLK when the transmit-side elastic store is enabled.
Signal Name: TCHCLK
Signal Description: Transmit Channel Clock
Signal Type: Output
A 192kHz (T1) or 256kHz (E1) clock that pulses high during the LSB of each channel. Can also be programmed to
output a gated transmit bit clock on a per-channel basis. Synchronous with TCLK when the transmit-side elastic
store is disabled. Synchronous with TSYSCLK when the transmit-side elastic store is enabled. Useful for parallel-
to-serial conversion of channel data.
Signal Name: TCHBLK
Signal Description: Transmit Channel Block
Signal Type: Output
A user-programmable output that can be forced high or low during any of the channels. Synchronous with TCLK
when the transmit-side elastic store is disabled. Synchronous with TSYSCLK when the transmit-side elastic store is
enabled. Useful for blocking clocks to a serial UART or LAPD controller in applications where not all channels are
used such as Fractional T1, Fractional E1, 384kbps (H0), 768kbps, or ISDN–PRI. Also useful for locating
individual channels in drop-and-insert applications, for external per-channel loopback, and for per-channel
conditioning.
Signal Name: TSYSCLK
Signal Description: Transmit System Clock
Signal Type: Input
1.544MHz, 2.048MHz, 4.096MHz, 8.192MHz, or 16.384MHz clock. Only used when the transmit-side elastic
store function is enabled. Should be connected low in applications that do not use the transmit-side elastic store.
See Section 28 for details on 4.096MHz, 8.192MHz, and 16.384MHz operation using the IBO.
Signal Name: TLCLK
Signal Description: Transmit Link Clock
Signal Type: Output
Demand clock for the transmit link data [TLINK] input.
T1 Mode: A 4kHz or 2kHz (ZBTSI) clock.
E1 Mode: A 4kHz to 20kHz clock.
DS2155
20 of 238
Signal Name: TLINK
Signal Description: Transmit Link Data
Signal Type: Input
If enabled, this pin is sampled on the falling edge of TCLK for data insertion into either the FDL stream (ESF) or
the Fs-bit position (D4), or the Z-bit position (ZBTSI) or any combination of the Sa-bit positions (E1).
Signal Name: TSYNC
Signal Description: Transmit Sync
Signal Type: Input/Output
A pulse at this pin establishes either frame or multiframe boundaries for the transmit side. Can be programmed to
output either a frame or multiframe pulse. If this pin is set to output pulses at frame boundaries, it can also be set by
IOCR1.3 to output double-wide pulses at signaling frames in T1 mode.
Signal Name: TSSYNC
Signal Description: Transmit System Sync
Signal Type: Input
Only used when the transmit-side elastic store is enabled. A pulse at this pin establishes either frame or multiframe
boundaries for the transmit side. Should be connected low in applications that do not use the transmit-side elastic
store.
Signal Name: TSIG
Signal Description: Transmit Signaling Input
Signal Type: Input
When enabled, this input samples signaling bits for insertion into outgoing PCM data stream. Sampled on the
falling edge of TCLK when the transmit-side elastic store is disabled. Sampled on the falling edge of TSYSCLK
when the transmit-side elastic store is enabled.
Signal Name: TESO
Signal Description: Transmit Elastic Store Data Output
Signal Type: Output
Updated on the rising edge of TCLK with data out of the transmit-side elastic store whether the elastic store is
enabled or not. This pin is normally connected to TDATA.
Signal Name: TDATA
Signal Description: Transmit Data
Signal Type: Input
Sampled on the falling edge of TCLK with data to be clocked through the transmit-side formatter. This pin is
normally connected to TESO.
Signal Name: TPOSO
Signal Description: Transmit Positive-Data Output
Signal Type: Output
Updated on the rising edge of TCLKO with the bipolar data out of the transmit-side formatter. Can be programmed
to source NRZ data by the output data format (IOCR1.0) control bit. This pin is normally connected to TPOSI.
Signal Name: TNEGO
Signal Description: Transmit Negative-Data Output
Signal Type: Output
Updated on the rising edge of TCLKO with the bipolar data out of the transmit-side formatter. This pin is normally
connected to TNEGI.
Signal Name: TCLKO
DS2155
21 of 238
Signal Description: Transmit Clock Output
Signal Type: Output
Buffered clock that is used to clock data through the transmit-side formatter (i.e., either TCLK or RCLKI). This pin
is normally connected to TCLKI.
Signal Name: TPOSI
Signal Description: Transmit Positive-Data Input
Signal Type: Input
Sampled on the falling edge of TCLKI for data to be transmitted out onto the T1 line. Can be internally connected
to TPOSO by connecting the LIUC pin high. TPOSI and TNEGI can be connected together in NRZ applications.
Signal Name: TNEGI
Signal Description: Transmit Negative-Data Input
Signal Type: Input
Sampled on the falling edge of TCLKI for data to be transmitted out onto the T1 line. Can be internally connected
to TNEGO by connecting the LIUC pin high. TPOSI and TNEGI can be connected together in NRZ applications.
Signal Name: TCLKI
Signal Description: Transmit Clock Input
Signal Type: Input
Line interface transmit clock. Can be internally connected to TCLKO by connecting the LIUC pin high.
4.2 Receive Side
Signal Name: RLINK
Signal Description: Receive Link Data
Signal Type: Output
T1 Mode: Updated with either FDL data (ESF) or Fs bits (D4) or Z bits (ZBTSI) one RCLK before the start of a
frame.
E1 Mode: Updated with the full E1 data stream on the rising edge of RCLK.
Signal Name: RLCLK
Signal Description: Receive Link Clock
Signal Type: Output
T1 Mode: A 4kHz or 2kHz (ZBTSI) clock for the RLINK output.
E1 Mode: A 4kHz to 20kHz clock.
Signal Name: RCLK
Signal Description: Receive Clock
Signal Type: Output
1.544MHz (T1) or 2.048MHz (E1) clock that is used to clock data through the receive-side framer.
Signal Name: RCHCLK
Signal Description: Receive Channel Clock
Signal Type: Output
A 192kHz (T1) or 256kHz (E1) clock that pulses high during the LSB of each channel. Synchronous with RCLK
when the receive-side elastic store is disabled. Synchronous with RSYSCLK when the receive-side elastic store is
enabled. Useful for parallel-to-serial conversion of channel data.
DS2155
22 of 238
Signal Name: RCHBLK
Signal Description: Receive Channel Block
Signal Type: Output
A user-programmable output that can be forced high or low during any of the 24 T1 or 32 E1 channels.
Synchronous with RCLK when the receive-side elastic store is disabled. Synchronous with RSYSCLK when the
receive-side elastic store is enabled. Useful for blocking clocks to a serial UART or LAPD controller in
applications where not all channels are used such as fractional service, 384kbps service, 768kbps, or ISDN–PRI.
Also useful for locating individual channels in drop-and-insert applications, for external per-channel loopback, and
for per-channel conditioning. See Section 18 for details.
Signal Name: RSER
Signal Description: Receive Serial Data
Signal Type: Output
Received NRZ serial data. Updated on rising edges of RCLK when the receive-side elastic store is disabled.
Updated on the rising edges of RSYSCLK when the receive-side elastic store is enabled.
Signal Name: RSYNC
Signal Description: Receive Sync
Signal Type: Input/Output
An extracted pulse, one RCLK wide, is output at this pin that identifies either frame (IOCR1.5 = 0) or multiframe
(IOCR1.5 = 1) boundaries. If set to output frame boundaries, then through IOCR1.6, RSYNC can also be set to
output double-wide pulses on signaling frames in T1 mode. If the receive-side elastic store is enabled, then this pin
can be enabled to be an input through IOCR1.4, at which a frame or multiframe boundary pulse is applied.
Signal Name: RFSYNC
Signal Description: Receive Frame Sync
Signal Type: Output
An extracted 8kHz pulse, one RCLK wide, is output at this pin that identifies frame boundaries.
Signal Name: RMSYNC
Signal Description: Receive Multiframe Sync
Signal Type: Output
An extracted pulse, one RCLK wide (elastic store disabled) or one RSYSCLK wide (elastic store enabled), is
output at this pin that identifies multiframe boundaries.
Signal Name: RDATA
Signal Description: Receive Data
Signal Type: Output
Updated on the rising edge of RCLK with the data out of the receive-side framer.
Signal Name: RSYSCLK
Signal Description: Receive System Clock
Signal Type: Input
1.544MHz, 2.048MHz, 4.096MHz, or 8.192MHz clock. Only used when the receive-side elastic store function is
enabled. Should be connected low in applications that do not use the receive-side elastic store. See Section 28 for
details on 4.096MHz and 8.192MHz operation using the IBO.
Signal Name: RSIG
Signal Description: Receive Signaling Output
Signal Type: Output
Outputs signaling bits in a PCM format. Updated on rising edges of RCLK when the receive-side elastic store is
disabled. Updated on the rising edges of RSYSCLK when the receive-side elastic store is enabled.
DS2155
23 of 238
Signal Name: RLOS/LOTC
Signal Description: Receive Loss-of-Sync/Loss-of-Transmit Clock
Signal Type: Output
A dual function output that is controlled by the CCR1.0 control bit. This pin can be programmed to either toggle
high when the synchronizer is searching for the frame and multiframe or to toggle high if the TCLK pin has not
been toggled for 5µs.
Signal Name: RCL
Signal Description: Receive Carrier Loss
Signal Type: Output
Set high when the line interface detects a carrier loss.
Signal Name: RSIGF
Signal Description: Receive Signaling Freeze
Signal Type: Output
Set high when the signaling data is frozen by either automatic or manual intervention. Used to alert downstream
equipment of the condition.
Signal Name: BPCLK
Signal Description: Backplane Clock
Signal Type: Output
A user-selectable synthesized clock output that is referenced to the clock that is output at the RCLK pin.
Signal Name: RPOSO
Signal Description: Receive Positive-Data Output
Signal Type: Output
Updated on the rising edge of RCLKO with bipolar data out of the line interface. This pin is normally connected to
RPOSI.
Signal Name: RNEGO
Signal Description: Receive Negative-Data Output
Signal Type: Output
Updated on the rising edge of RCLKO with the bipolar data out of the line interface. This pin is normally
connected to RNEGI.
Signal Name: RCLKO
Signal Description: Receive Clock Output
Signal Type: Output
Buffered recovered clock from the network. This pin is normally connected to RCLKI.
Signal Name: RPOSI
Signal Description: Receive Positive-Data Input
Signal Type: Input
Sampled on the falling edge of RCLKI for data to be clocked through the receive-side framer. RPOSI and RNEGI
can be connected together for an NRZ interface. Can be internally connected to RPOSO by connecting the LIUC
pin high.
Signal Name: RNEGI
Signal Description: Receive Negative-Data Input
Signal Type: Input
Sampled on the falling edge of RCLKI for data to be clocked through the receive-side framer. RPOSI and RNEGI
can be connected together for an NRZ interface. Can be internally connected to RNEGO by connecting the LIUC
pin high.
DS2155
24 of 238
Signal Name: RCLKI
Signal Description: Receive Clock Input
Signal Type: Input
Clock used to clock data through the receive-side framer. This pin is normally connected to RCLKO. Can be
internally connected to RCLKO by connecting the LIUC pin high.
4.3 Parallel Control Port Pins
Signal Name: INT
Signal Description: Interrupt
Signal Type: Output
Flags host controller during conditions and events defined in the status registers. Active-low, open-drain output.
Signal Name: TSTRST
Signal Description: Tri-State Control and Device Reset
Signal Type: Input
A dual function pin. A 0-to-1 transition issues a hardware reset to the DS2155 register set. A reset clears all
configuration registers. Configuration register contents are set to 0. Leaving TSTRST high tri-states all output and
I/O pins (including the parallel control port). Set low for normal operation. Useful in board-level testing.
Signal Name: MUX
Signal Description: Bus Operation
Signal Type: Input
Set low to select nonmultiplexed bus operation. Set high to select multiplexed bus operation.
Signal Name: AD0 to AD7
Signal Description: Data Bus [D0 to D7] or Address/Data Bus
Signal Type: Input/Output
In nonmultiplexed bus operation (MUX = 0), these serve as the data bus. In multiplexed bus operation (MUX = 1),
these pins serve as an 8-bit multiplexed address/data bus.
Signal Name: A0 to A6
Signal Description: Address Bus
Signal Type: Input
In nonmultiplexed bus operation (MUX = 0), these serve as the address bus. In multiplexed bus operation
(MUX = 1), these pins are not used and should be connected low.
Signal Name: BTS
Signal Description: Bus Type Select
Signal Type: Input
Strap high to select Motorola bus timing; strap low to select Intel bus timing. This pin controls the function of the
RD (DS), ALE (AS), and WR (R/W) pins.
If BTS = 1, then these pins assume the function listed in parentheses ().
Signal Name: RD (DS)
Signal Description: Read Input, Data Strobe
Signal Type: Input
In Intel mode, RD determines when data is read from the device. In Motorola mode, DS is used to write to the
device. See Bus Timing Diagrams.
DS2155
25 of 238
Signal Name: CS
Signal Description: Chip Select
Signal Type: Input
Must be low to read or write to the device. CS is an active-low signal.
Signal Name: ALE(AS)/A7
Signal Description: Address Latch Enable (Address Strobe) or A7
Signal Type: Input
In nonmultiplexed bus operation (MUX = 0), serves as the upper address bit. In multiplexed bus operation
(MUX = 1), serves to demultiplex the bus on a positive-going edge.
Signal Name: WR (R/W)
Signal Description: Write Input(Read/Write)
Signal Type: Input
WR is an active-low signal.
4.4 Extended System Information Bus
Signal Name: ESIBS0
Signal Description: Extended System Information Bus Select 0
Signal Type: Input/Output
Used to group two to eight DS2155s into a bus-sharing mode for alarm and status reporting. See Section 29 for
more details.
Signal Name: ESIBS1
Signal Description: Extended System Information Bus Select 1
Signal Type: Input/Output
Used to group two to eight DS2155s into a bus-sharing mode for alarm and status reporting. See Section 29 for
more details.
Signal Name: ESIBRD
Signal Description: Extended System Information Bus Read
Signal Type: Input/Output
Used to group two to eight DS2155s into a bus-sharing mode for alarm and status reporting. See Section 29 for
more details.
DS2155
26 of 238
4.5 User Output Port Pins
Signal Name: UOP0
Signal Description: User Output Port 0
Signal Type: Output
This output port pin can be set low or high by the CCR4.0 control bit. This pin is forced low on power-up and after
any device reset.
Signal Name: UOP1
Signal Description: User Output Port 1
Signal Type: Output
This output port pin can be set low or high by the CCR4.1 control bit. This pin is forced low on power-up and after
any device reset.
Signal Name: UOP2
Signal Description: User Output Port 2
Signal Type: Output
This output port pin can be set low or high by the CCR4.2 control bit. This pin is forced low on power-up and after
any device reset.
Signal Name: UOP3
Signal Description: User Output Port 3
Signal Type: Output
This output port pin can be set low or high by the CCR4.3 control bit. This pin is forced low on power-up and after
any device reset.
DS2155
27 of 238
4.6 JTAG Test Access Port Pins
Signal Name: JTRST
Signal Description: IEEE 1149.1 Test Reset
Signal Type: Input
JTRST is used to asynchronously reset the test access port controller. After power-up, JTRST must be toggled from
low to high. This action sets the device into the JTAG DEVICE ID mode. Normal device operation is restored by
pulling JTRST low. JTRST is pulled high internally by a 10k resistor operation.
Signal Name: JTMS
Signal Description: IEEE 1149.1 Test Mode Select
Signal Type: Input
This pin is sampled on the rising edge of JTCLK and is used to place the test access port into the various defined
IEEE 1149.1 states. This pin has a 10k pullup resistor.
Signal Name: JTCLK
Signal Description: IEEE 1149.1 Test Clock Signal
Signal Type: Input
This signal is used to shift data into JTDI on the rising edge and out of JTDO on the falling edge.
Signal Name: JTDI
Signal Description: IEEE 1149.1 Test Data Input
Signal Type: Input
Test instructions and data are clocked into this pin on the rising edge of JTCLK. This pin has a 10k pullup
resistor.
Signal Name: JTDO
Signal Description: IEEE 1149.1 Test Data Output
Signal Type: Output
Test instructions and data are clocked out of this pin on the falling edge of JTCLK. If not used, this pin should be
left unconnected.
DS2155
28 of 238
4.7 Line Interface Pins
Signal Name: MCLK
Signal Description: Master Clock Input
Signal Type: Input
A (50ppm) clock source is applied at this pin. This clock is used internally for both clock/data recovery and for the
jitter attenuator for T1 and E1 modes. A quartz crystal of 2.048MHz can be applied across MCLK and XTALD
instead of the clock source. The clock rate can be 16.384MHz, 8.192MHz, 4.096MHz, or 2.048MHz. When using
the DS2155 in T1-only operation, a 1.544MHz (50ppm) clock source can be used.
Signal Name: XTALD
Signal Description: Quartz Crystal Driver
Signal Type: Output
A quartz crystal of 2.048MHz (optional 1.544MHz in T1-only operation) can be applied across MCLK and
XTALD instead of a clock source at MCLK. Leave open circuited if a clock source is applied at MCLK.
Signal Name: 8XCLK
Signal Description: Eight Times Clock (8x)
Signal Type: Output
An 8x clock that is locked to the recovered network clock provided from the clock/data recovery block (if
the jitter attenuator is enabled on the receive side) or from the TCLKI pin (if the jitter attenuator is
enabled on the transmit side).
Signal Name: LIUC
Signal Description: Line Interface Connect
Signal Type: Input
Connect low to separate the line interface circuitry from the framer/formatter circuitry and activate the
TPOSI/TNEGI/TCLKI/RPOSI/RNEGI/RCLKI pins. Connect high to connect the line interface circuitry to the
framer/formatter circuitry and deactivate the TPOSI/TNEGI/TCLKI/RPOSI/RNEGI/RCLKI pins. When LIUC is
connected high, the TPOSI/TNEGI/TCLKI/RPOSI/RNEGI/RCLKI pins should be connected low.
Signal Name: RTIP and RRING
Signal Description: Receive Tip and Ring
Signal Type: Input
Analog inputs for clock recovery circuitry. These pins connect through a 1:1 transformer to the network. See
Section 24 for details.
Signal Name: TTIP and TRING
Signal Description: Transmit Tip and Ring
Signal Type: Output
Analog line driver outputs. These pins connect through a 1:2 step-up transformer to the network. See Section 24 for
details.
DS2155
29 of 238
4.8 Supply Pins
Signal Name: DVDD
Signal Description: Digital Positive Supply
Signal Type: Supply
3.3V ±5%. Should be connected to the RVDD and TVDD pins.
Signal Name: RVDD
Signal Description: Receive Analog Positive Supply
Signal Type: Supply
3.3V ±5%. Should be connected to the DVDD and TVDD pins.
Signal Name: TVDD
Signal Description: Transmit Analog Positive Supply
Signal Type: Supply
3.3V ±5%. Should be connected to the RVDD and DVDD pins.
Signal Name: DVSS
Signal Description: Digital Signal Ground
Signal Type: Supply
Should be connected to the RVSS and TVSS pins.
Signal Name: RVSS
Signal Description: Receive Analog Signal Ground
Signal Type: Supply
0V. Should be connected to DVSS and TVSS.
Signal Name: TVSS
Signal Description: Transmit Analog Signal Ground
Signal Type: Supply
0V. Should be connected to DVSS and RVSS.
DS2155
30 of 238
4.9 L and G Package Pinout
The DS2155 is available in either a 100-pin LQFP (L) or 10mm CSBGA, 0.8mm pitch (G) package.
Table 4-A. Pin Description Sorted by Pin Number
PIN
LQFP CSBGA
SYMBOL TYPE FUNCTION
1 A1 RCHBLK O Receive Channel Block
2 B2 JTMS I IEEE 1149.1 Test Mode Select
3 C3 BPCLK O Backplane Clock
4 B1 JTCLK I IEEE 1149.1 Test Clock Signal
5 D4 JTRST I IEEE 1149.1 Test Reset
6 C2 RCL O Receive Carrier Loss
7 C1 JTDI I IEEE 1149.1 Test Data Input
8 D3 UOP0 O User Output 0
9 D2 UOP1 O User Output 1
10 D1 JTDO O IEEE 1149.1 Test Data Output
11 E3 BTS I Bus Type Select
12 E2 LIUC I Line Interface Connect
13 E1 8XCLK O Eight Times Clock
14 E4 TSTRST I Test/Reset
15 E5 UOP2 O User Output 2
16 F1 RTIP I Receive Analog Tip Input
17 F2 RRING I Receive Analog Ring Input
18 F3 RVDD Receive Analog Positive Supply
19, 20, 24 F4, G1, J1 RVSS Receive Analog Signal Ground
21 G2 MCLK I Master Clock Input
22 H1 XTALD O Quartz Crystal Driver
23 G3 UOP3 O User Output 3
25 H2
INT O Interrupt
26 K1 N.C. Reserved for Factory Test
27, 28 J2, H3 N.C. Reserved for Factory Test
29 K2 TTIP O Transmit Analog Tip Output
30 G4 TVSS Transmit Analog Signal Ground
31 J3 TVDD Transmit Analog Positive Supply
32 K3 TRING O Transmit Analog Ring Output
33 H4 TCHBLK O Transmit Channel Block
34 J4 TLCLK O Transmit Link Clock
35 K4 TLINK I Transmit Link Data
36 H5 ESIBS0 I/O Extended System Information Bus 0
37 J5 TSYNC I/O Transmit Sync
38 K5 TPOSI I Transmit Positive-Data Input
39 G5 TNEGI I Transmit Negative-Data Input
40 F5 TCLKI I Transmit Clock Input
41 K6 TCLKO O Transmit Clock Output
42 J6 TNEGO O Transmit Negative-Data Output
43 H6 TPOSO O Transmit Positive-Data Output
44, 61, 81, 83 K7, F8, B8, C7 DVDD Digital Positive Supply
45, 60, 80, 84 G6, G10, D7, B7 DVSS Digital Signal Ground
46 J7 TCLK I Transmit Clock
47 K8 TSER I Transmit Serial Data
48 H7 TSIG I Transmit Signaling Input
49 K9 TESO O Transmit Elastic Store Output
50 J8 TDATA I Transmit Data
DS2155
31 of 238
PIN
LQFP CSBGA
SYMBOL TYPE FUNCTION
51 K10 TSYSCLK I Transmit System Clock
52 J9 TSSYNC I Transmit System Sync
53 H8 TCHCLK O Transmit Channel Clock
54 J10 ESIBS1 I/O Extended System Information Bus 1
55 G7 MUX I Bus Operation
56 H9 D0/AD0 I/O Data Bus Bit0/Address/Data Bus Bit 0
57 H10 D1/AD1 I/O Data Bus Bit1/Address/Data Bus Bit 1
58 G8 D2/AD2 I/O Data Bus Bit 2/Address/Data Bus 2
59 G9 D3/AD3 I/O Data Bus Bit 3/Address/Data Bus Bit 3
62 F9 D4/AD4 I/O Data Bus Bit4/Address/Data Bus Bit 4
63 F10 D5/AD5 I/O Data Bus Bit 5/Address/Data Bus Bit 5
64 F7 D6/AD6 I/O Data Bus Bit 6/Address/Data Bus Bit 6
65 F6 D7/AD7 I/O Data Bus Bit 7/Address/Data Bus Bit 7
66 E10 A0 I Address Bus Bit 0
67 E9 A1 I Address Bus Bit 1
68 E8 A2 I Address Bus Bit 2
69 D10 A3 I Address Bus Bit 3
70 E7 A4 I Address Bus Bit 4
71 D9 A5 I Address Bus Bit 5
72 C10 A6 I Address Bus Bit 6
73 D8 ALE (AS)/A7 I Address Latch Enable/Address Bus Bit 7
74 B10 RD (DS) I Read Input (Data Strobe)
75 C9
CS I Chip Select
76 A10 ESIBRD I/O Extended System Information Bus Read
77 B9 WR (R/W) I Write Input (Read/Write)
78 C8 RLINK O Receive Link Data
79 A9 RLCLK O Receive Link Clock
82 A8 RCLK O Receive Clock
85 A7 RDATA O Receive Data
86 C6 RPOSI I Receive Positive-Data Input
87 B6 RNEGI I Receive Negative-Data Input
88 A6 RCLKI I Receive Clock Input
89 D6 RCLKO O Receive Clock Output
90 E6 RNEGO O Receive Negative-Data Output
91 A5 RPOSO O Receive Positive-Data Output
92 B5 RCHCLK O Receive Channel Clock
93 C5 RSIGF O Receive Signaling-Freeze Output
94 A4 RSIG O Receive Signaling Output
95 D5 RSER O Receive Serial Data
96 B4 RMSYNC O Receive Multiframe Sync
97 A3 RFSYNC O Receive Frame Sync
98 C4 RSYNC I/O Receive Sync
99 A2 RLOS/LOTC O Receive Loss-of-Sync/Loss-of-Transmit Clock
100 B3 RSYSCLK I Receive System Clock
DS2155
32 of 238
4.10 10mm CSBGA Pin Configuration
Figure 4-1. 10mm CSBGA Pin Configuration
1 2 3 4 5 6 7 8 9 10
A RCHBLK RLOS/
LOTC RFSYNC RSIG RPOSO RCLKI RDATA RCLK RLCLK ESIBRD
B JTCLK JTMS RSYSCLK RMSYNC RCHCLK RNEGI DVSS DVDD WR
(R/W)
RD
(DS)
C JTDI RCL BPCLK RSYNC RSIGF RPOSI DVDD RLINK CS A6
D JTDO UOP1 UOP0 JTRST RSER RCLKO DVSS
ALE(AS)/
A7 A5 A3
E 8XCLK LIUC BTS TSTRST UOP2 RNEGO A4 A2 A1 A0
F RTIP RRING RVDD RVSS TCLKI D7/AD7 D6/AD6 DVDD D4/AD4 D5/AD5
G RVSS MCLK UOP3 TVSS TNEGI DVSS MUX D2/AD2 D3/AD3 DVSS
H XTALD INT N.C. TCHBLK ESIBS0 TPOSO TSIG TCHCLK D0/AD0 D1/AD1
J RVSS N.C. TVDD TLCLK TSYNC TNEGO TCLK TDATA TSSYNC ESIBS1
K TUSEL TTIP TRING TLINK TPOSI TCLKO DVDD TSER TESO TSYSCLK
TOP VIEW
DS2155
33 of 238
5. PARALLEL PORT
The SCT is controlled by either a nonmultiplexed (MUX = 0) or a multiplexed (MUX = 1) bus through an
external microcontroller or microprocessor. The SCT can operate with either Intel or Motorola bus timing
configurations. If the BTS pin is connected low, Intel timing is selected; if connected high, Motorola
timing is selected. All Motorola bus signals are listed in parentheses (). See the timing diagrams in AC
Electrical Characteristics in Section 37 for more details.
5.1 Register Map
Table 5-A. Register Map Sorted by Address
ADDRESS
xxh R/W REGISTER NAME SYMBOL PAGE
00 R/W Master Mode Register MSTRREG 40
01 R/W I/O Configuration Register 1 IOCR1 69
02 R/W I/O Configuration Register 2 IOCR2 70
03 R/W T1 Receive Control Register 1 T1RCR1 46
04 R/W T1 Receive Control Register 2 T1RCR2 47
05 R/W T1 Transmit Control Register 1 T1TCR1 48
06 R/W T1 Transmit Control Register 2 T1TCR2 49
07 R/W T1 Common Control Register 1 T1CCR1 50
08 R/W Software Signaling Insertion Enable 1 SSIE1 93
09 R/W Software Signaling Insertion Enable 2 SSIE2 93
0A R/W Software Signaling Insertion Enable 3 SSIE3 94
0B R/W Software Signaling Insertion Enable 4 SSIE4 94
0C R/W T1 Receive Digital Milliwatt Enable Register 1 T1RDMR1 52
0D R/W T1 Receive Digital Milliwatt Enable Register 2 T1RDMR2 52
0E R/W T1 Receive Digital Milliwatt Enable Register 3 T1RDMR3 52
0F R Device Identification Register IDR 63
10 R/W Information Register 1 INFO1 53
11 R Information Register 2 INFO2 153
12 R/W Information Register 3 INFO3 60
13 — Unused
14 R Interrupt Information Register 1 IIR1 42
15 R Interrupt Information Register 2 IIR2 42
16 R/W Status Register 1 SR1 154
17 R/W Interrupt Mask Register 1 IMR1 155
18 R/W Status Register 2 SR2 63
19 R/W Interrupt Mask Register 2 IMR2 64
1A R/W Status Register 3 SR3 65
1B R/W Interrupt Mask Register 3 IMR3 66
1C R/W Status Register 4 SR4 67
1D R/W Interrupt Mask Register 4 IMR4 68
1E R/W Status Register 5 SR5 106
1F R/W Interrupt Mask Register 5 IMR5 106
20 R/W Status Register 6 SR6 135
21 R/W Interrupt Mask Register 6 IMR6 136
22 R/W Status Register 7 SR7 135
23 R/W Interrupt Mask Register 7 IMR7 136
24 R/W Status Register 8 SR8 112
DS2155
34 of 238
ADDRESS
xxh R/W REGISTER NAME SYMBOL PAGE
25 R/W Interrupt Mask Register 8 IMR8 112
26 R/W Status Register 9 SR9 174
27 R/W Interrupt Mask Register 9 IMR9 175
28 R/W Per-Channel Pointer Register PCPR 43
29 W Per-Channel Data Register 1 PCDR1 44
2A W Per-Channel Data Register 2 PCDR2 44
2B W Per-Channel Data Register 3 PCDR3 44
2C W Per-Channel Data Register 4 PCDR4 44
2D R/W Information Register 4 INFO4 137
2E R Information Register 5 INFO5 137
2F R Information Register 6 INFO6 137
30 R Information Register 7 INFO7 60
31 R/W HDLC #1 Receive Control H1RC 129
32 R/W HDLC #2 Receive Control H2RC 129
33 R/W E1 Receive Control Register 1 E1RCR1 55
34 R/W E1 Receive Control Register 2 E1RCR2 56
35 R/W E1 Transmit Control Register 1 E1TCR1 57
36 R/W E1 Transmit Control Register 2 E1TCR2 58
37 R/W BOC Control Register BOCC 111
38 R/W Receive Signaling Change-of-State Information 1 RSINFO1 88
39 R/W Receive Signaling Change-of-State Information 2 RSINFO2 88
3A R/W Receive Signaling Change-of-State Information 3 RSINFO3 88
3B R/W Receive Signaling Change-of-State Information 4 RSINFO4 88
3C R/W Receive Signaling Change-of-State Interrupt Enable 1 RSCSE1 88
3D R/W Receive Signaling Change-of-State Interrupt Enable 2 RSCSE2 88
3E R/W Receive Signaling Change-of-State Interrupt Enable 3 RSCSE3 88
3F R/W Receive Signaling Change-of-State Interrupt Enable 4 RSCSE4 88
40 R/W Signaling Control Register SIGCR 85
41 R/W Error Count Configuration Register ERCNT 75
42 R Line Code Violation Count Register 1 LCVCR1 77
43 R Line Code Violation Count Register 2 LCVCR2 77
44 R Path Code Violation Count Register 1 PCVCR1 78
45 R Path Code Violation Count Register 2 PCVCR2 78
46 R Frames Out-of-Sync Count Register 1 FOSCR1 79
47 R Frames Out-of-Sync Count Register 2 FOSCR2 79
48 R E-Bit Count Register 1 EBCR1 80
49 R E-Bit Count Register 2 EBCR2 80
4A R/W Loopback Control Register LBCR 71
4B R/W Per-Channel Loopback Enable Register 1 PCLR1 73
4C R/W Per-Channel Loopback Enable Register 2 PCLR2 73
4D R/W Per-Channel Loopback Enable Register 3 PCLR3 74
4E R/W Per-Channel Loopback Enable Register 4 PCLR4 74
4F R/W Elastic Store Control Register ESCR 105
50 R/W Transmit Signaling Register 1 TS1 91
51 R/W Transmit Signaling Register 2 TS2 91
52 R/W Transmit Signaling Register 3 TS3 91
53 R/W Transmit Signaling Register 4 TS4 91
DS2155
35 of 238
ADDRESS
xxh R/W REGISTER NAME SYMBOL PAGE
54 R/W Transmit Signaling Register 5 TS5 91
55 R/W Transmit Signaling Register 6 TS6 91
56 R/W Transmit Signaling Register 7 TS7 91
57 R/W Transmit Signaling Register 8 TS8 91
58 R/W Transmit Signaling Register 9 TS9 91
59 R/W Transmit Signaling Register 10 TS10 91
5A R/W Transmit Signaling Register 11 TS11 91
5B R/W Transmit Signaling Register 12 TS12 91
5C R/W Transmit Signaling Register 13 TS13 91
5D R/W Transmit Signaling Register 14 TS14 91
5E R/W Transmit Signaling Register 15 TS15 91
5F R/W Transmit Signaling Register 16 TS16 91
60 R Receive Signaling Register 1 RS1 86
61 R Receive Signaling Register 2 RS2 86
62 R Receive Signaling Register 3 RS3 86
63 R Receive Signaling Register 4 RS4 86
64 R Receive Signaling Register 5 RS5 86
65 R Receive Signaling Register 6 RS6 86
66 R Receive Signaling Register 7 RS7 86
67 R Receive Signaling Register 8 RS8 86
68 R Receive Signaling Register 9 RS9 86
69 R Receive Signaling Register 10 RS10 86
6A R Receive Signaling Register 11 RS11 86
6B R Receive Signaling Register 12 RS12 86
6C R Receive Signaling Register 13 RS13 86
6D R Receive Signaling Register 14 RS14 86
6E R Receive Signaling Register 15 RS15 86
6F R Receive Signaling Register 16 RS16 86
70 R/W Common Control Register 1 CCR1 62
71 R/W Common Control Register 2 CCR2 191
72 R/W Common Control Register 3 CCR3 192
73 R/W Common Control Register 4 CCR4 149
74 R/W Transmit Channel Monitor Select TDS0SEL 81
75 R Transmit DS0 Monitor Register TDS0M 81
76 R/W Receive Channel Monitor Select RDS0SEL 82
77 R Receive DS0 Monitor Register RDS0M 82
78 R/W Line Interface Control 1 LIC1 147
79 R/W Line Interface Control 2 LIC2 150
7A R/W Line Interface Control 3 LIC3 151
7B R/W Line Interface Control 4 LIC4 152
7C — Unused
7D R/W Transmit Line Build-Out Control TLBC 149
7E W Idle Array Address Register IAAR 98
7F R/W Per-Channel Idle Code Value Register PCICR 98
80 R/W Transmit Idle Code Enable Register 1 TCICE1 99
81 R/W Transmit Idle Code Enable Register 2 TCICE2 99
82 R/W Transmit Idle Code Enable Register 3 TCICE3 99
DS2155
36 of 238
ADDRESS
xxh R/W REGISTER NAME SYMBOL PAGE
83 R/W Transmit Idle Code Enable Register 4 TCICE4 99
84 R/W Receive Idle Code Enable Register 1 RCICE1 100
85 R/W Receive Idle Code Enable Register 2 RCICE2 100
86 R/W Receive Idle Code Enable Register 3 RCICE3 100
87 R/W Receive Idle Code Enable Register 4 RCICE4 100
88 R/W Receive Channel Blocking Register 1 RCBR1 101
89 R/W Receive Channel Blocking Register 2 RCBR2 101
8A R/W Receive Channel Blocking Register 3 RCBR3 102
8B R/W Receive Channel Blocking Register 4 RCBR4 102
8C R/W Transmit Channel Blocking Register 1 TCBR1 103
8D R/W Transmit Channel Blocking Register 2 TCBR2 103
8E R/W Transmit Channel Blocking Register 3 TCBR3 103
8F R/W Transmit Channel Blocking Register 4 TCBR4 103
90 R/W HDLC #1 Transmit Control H1TC 128
91 R/W HDLC #1 FIFO Control H1FC 130
92 R/W HDLC #1 Receive Channel Select 1 H1RCS1 131
93 R/W HDLC #1 Receive Channel Select 2 H1RCS2 131
94 R/W HDLC #1 Receive Channel Select 3 H1RCS3 131
95 R/W HDLC #1 Receive Channel Select 4 H1RCS4 131
96 R/W HDLC #1 Receive Time Slot Bits/Sa Bits Select H1RTSBS 132
97 R/W HDLC #1 Transmit Channel Select1 H1TCS1 133
98 R/W HDLC #1 Transmit Channel Select2 H1TCS2 133
99 R/W HDLC #1 Transmit Channel Select3 H1TCS3 133
9A R/W HDLC #1 Transmit Channel Select4 H1TCS4 133
9B R/W HDLC #1 Transmit Time Slot Bits/Sa Bits Select H1TTSBS 134
9C R HDLC #1 Receive Packet Bytes Available H1RPBA 138
9D W HDLC #1 Transmit FIFO H1TF 139
9E R HDLC #1 Receive FIFO H1RF 139
9F R HDLC #1 Transmit FIFO Buffer Available H1TFBA 138
A0 R/W HDLC #2 Transmit Control H2TC 128
A1 R/W HDLC #2 FIFO Control H2FC 130
A2 R/W HDLC #2 Receive Channel Select 1 H2RCS1 131
A3 R/W HDLC #2 Receive Channel Select 2 H2RCS2 131
A4 R/W HDLC #2 Receive Channel Select 3 H2RCS3 131
A5 R/W HDLC #2 Receive Channel Select 4 H2RCS4 131
A6 R/W HDLC #2 Receive Time Slot Bits/Sa Bits Select H2RTSBS 132
A7 R/W HDLC #2 Transmit Channel Select1 H2TCS1 133
A8 R/W HDLC #2 Transmit Channel Select2 H2TCS2 133
A9 R/W HDLC #2 Transmit Channel Select3 H2TCS3 133
AA R/W HDLC #2 Transmit Channel Select4 H2TCS4 133
AB R/W HDLC #2 Transmit Time Slot Bits/Sa Bits Select H2TTSBS 134
AC R HDLC #2 Receive Packet Bytes Available H2RPBA 138
AD W HDLC #2 Transmit FIFO H2TF 139
AE R HDLC #2 Receive FIFO H2RF 139
AF R HDLC #2 Transmit FIFO Buffer Available H2TFBA 138
B0 R/W Extend System Information Bus Control Register 1 ESIBCR1 188
B1 R/W Extend System Information Bus Control Register 2 ESIBCR2 189
DS2155
37 of 238
ADDRESS
xxh R/W REGISTER NAME SYMBOL PAGE
B2 R Extend System Information Bus Register 1 ESIB1 190
B3 R Extend System Information Bus Register 2 ESIB2 190
B4 R Extend System Information Bus Register 3 ESIB3 190
B5 R Extend System Information Bus Register 4 ESIB4 190
B6 R/W In-Band Code Control Register IBCC 164
B7 R/W Transmit Code Definition Register 1 TCD1 165
B8 R/W Transmit Code Definition Register 2 TCD2 165
B9 R/W Receive Up Code Definition Register 1 RUPCD1 166
BA R/W Receive Up Code Definition Register 2 RUPCD2 166
BB R/W Receive Down Code Definition Register 1 RDNCD1 167
BC R/W Receive Down Code Definition Register 2 RDNCD2 167
BD R/W In-Band Receive Spare Control Register RSCC 168
BE R/W Receive Spare Code Definition Register 1 RSCD1 169
BF R/W Receive Spare Code Definition Register 2 RSCD2 169
C0 R Receive FDL Register RFDL 141
C1 R/W Transmit FDL Register TFDL 142
C2 R/W Receive FDL Match Register 1 RFDLM1 141
C3 R/W Receive FDL Match Register 2 RFDLM2 141
C4 — Unused
C5 R/W Interleave Bus Operation Control Register IBOC 185
C6 R Receive Align Frame Register RAF 114
C7 R Receive Nonalign Frame Register RNAF 114
C8 R Receive Si Align Frame RSiAF 116
C9 R Receive Si Nonalign Frame RSiNAF 117
CA R Receive Remote Alarm Bits RRA 117
CB R Receive Sa4 Bits RSa4 118
CC R Receive Sa5 Bits RSa5 118
CD R Receive Sa6 Bits RSa6 119
CE R Receive Sa7 Bits RSa7 119
CF R Receive Sa8 Bits RSa8 120
D0 R/W Transmit Align Frame Register TAF 115
D1 R/W Transmit Nonalign Frame Register TNAF 115
D2 R/W Transmit Si Align Frame TSiAF 120
D3 R/W Transmit Si Nonalign Frame TSiNAF 121
D4 R/W Transmit Remote Alarm Bits TRA 121
D5 R/W Transmit Sa4 Bits TSa4 122
D6 R/W Transmit Sa5 Bits TSa5 122
D7 R/W Transmit Sa6 Bits TSa6 123
D8 R/W Transmit Sa7 Bits TSa7 123
D9 R/W Transmit Sa8 Bits TSa8 124
DA R/W Transmit Sa Bit Control Register TSACR 125
DB R/W BERT Alternating Word Count Rate BAWC 175
DC R/W BERT Repetitive Pattern Set Register 1 BRP1 176
DD R/W BERT Repetitive Pattern Set Register 2 BRP2 176
DE R/W BERT Repetitive Pattern Set Register 3 BRP3 176
DF R/W BERT Repetitive Pattern Set Register 4 BRP4 176
E0 R/W BERT Control Register 1 BC1 172
DS2155
38 of 238
ADDRESS
xxh R/W REGISTER NAME SYMBOL PAGE
E1 R/W BERT Control Register 2 BC2 173
E2 — Unused
E3 R BERT Bit Count Register 1 BBC1 177
E4 R BERT Bit Count Register 2 BBC2 177
E5 R BERT Bit Count Register 3 BBC3 177
E6 R BERT Bit Count Register 4 BBC4 177
E7 R BERT Error Count Register 1 BEC1 178
E8 R BERT Error Count Register 2 BEC2 178
E9 R BERT Error Count Register 3 BEC3 178
EA R/W BERT Interface Control Register BIC 179
EB R/W Error Rate Control Register ERC 181
EC R/W Number-of-Errors 1 NOE1 182
ED R/W Number-of-Errors 2 NOE2 182
EE R Number-of-Errors Left 1 NOEL1 183
EF R Number-of-Errors Left 2 NOEL2 183
F0*Test Register TEST
F1–F9*Test Register TEST
FA–FF*Test Register TEST
*TEST1 to TEST16 registers are used only by the factory.
DS2155
39 of 238
6. PROGRAMMING MODEL
The DS2155 register map is divided into three groups: T1 specific features, E1 specific features, and
common features. The typical programming sequence begins with issuing a reset to the DS2155, selecting
T1 or E1 operation in the master mode register, enabling T1 or E1 functions and enabling the common
functions. The act of resetting the DS2155 automatically clears all configuration and status registers.
Therefore, it is not necessary to load unused registers with 0s.
Figure 6-1. Programming Sequence
POWER-ON
ISSUE RESET
SELECT T1 OR E1 OPERATION
IN MASTER MODE REGISTER
PROGRAM T1 SPECIFIC REGISTERS PROGRAM E1 SPECIFIC REGISTERS
PROGRAM COMMON REGISTERS
DS2155 OPERATIONAL
DS2155
40 of 238
6.1 Power-Up Sequence
The DS2155 contains an on-chip power-up reset function that automatically clears the writeable register
space immediately after power is supplied to the DS2155. The user can issue a chip reset at any time.
Issuing a reset disrupts traffic flowing through the DS2155 until the device is reprogrammed. The reset
can be issued through hardware using the TSTRST pin or through software using the SFTRST function in
the master mode register. The LIRST (LIC2.6) should be toggled from 0 to 1 to reset the line interface
circuitry. (It takes the DS2155 about 40ms to recover from the LIRST bit being toggled.) Finally, after the
TSYSCLK and RSYSCLK inputs are stable, the receive and transmit elastic stores should be reset (this
step can be skipped if the elastic stores are disabled).
6.1.1 Master Mode Register
Register Name: MSTRREG
Register Description: Master Mode Register
Register Address: 00h
Bit # 7 6 5 4 3 2 1 0
Name — — — — TEST1 TEST0 T1/E1 SFTRST
Default 0 0 0 0 0 0 0 0
Bit 0/Software-Issued Reset (SFTRST). A 0-to-1 transition causes the register space in the DS2155 to be cleared.
A reset clears all configuration and status registers. The bit automatically clears itself when the reset has completed.
Bit 1/DS2155 Operating Mode (T1/E1). Used to select the operating mode of the framer/formatter (digital)
portion of the 2156. The operating mode of the LIU must also be programmed.
0 = T1 operation
1 = E1 operation
Bits 2, 3/Test Mode Bits (TEST0, TEST1). Test modes are used to force the output pins of the DS2155 into
known states. This can facilitate the checkout of assemblies during the manufacturing process and also be used to
isolate devices from shared buses.
TEST1 TEST0 Effect On Output Pins
0 0 Operate normally
0 1 Force all output pins into tri-state (including all I/O pins and parallel port pins)
1 0 Force all output pins low (including all I/O pins except parallel port pins)
1 1 Force all output pins high (including all I/O pins except parallel port pins)
Bits 4 to 7/Unused, must be set to 0 for proper operation
DS2155
41 of 238
6.2 Interrupt Handling
Various alarms, conditions, and events in the DS2155 can cause interrupts. For simplicity, these are all
referred to as events in this explanation. All status registers can be programmed to produce interrupts.
Each status register has an associated interrupt mask register. For example, SR1 (status register 1) has an
interrupt control register called IMR1 (interrupt mask register 1). Status registers are the only sources of
interrupts in the DS2155. On power-up, all writeable registers are automatically cleared. Since bits in the
IMRx registers have to be set = 1 to allow a particular event to cause an interrupt, no interrupts can occur
until the host selects which events are to product interrupts. Since there are potentially many sources of
interrupts on the DS2155, several features are available to help sort out and identify which event is
causing an interrupt. When an interrupt occurs, the host should first read the IIR1 and IIR2 registers
(interrupt information registers) to identify which status register (or registers) is producing the interrupt.
Once that is determined, the individual status register or registers can be examined to determine the exact
source. In multiple port configurations, two to eight DS2155s can be connected together by the 3-wire
ESIB feature. This allows multiple DS2155s to be interrogated by a single CPU port read cycle. The host
can determine the synchronization status, or interrupt status of up to eight devices with a single read. The
ESIB feature also allows the user to select from various events to be examined through this method. For
more information, see Section 29.
Once an interrupt has occurred, the interrupt handler routine should set the INTDIS bit (CCR3.6) to stop
further activity on the interrupt pin. After all interrupts have been determined and processed, the interrupt
hander routine should re-enable interrupts by setting the INTDIS bit = 0.
6.3 Status Registers
When a particular event or condition has occurred (or is still occurring in the case of conditions), the
appropriate bit in a status register is set to a 1. All of the status registers operate in a latched fashion. This
means that if an event or condition occurs a bit is set to a 1. It remains set until the user reads that bit. An
event bit is cleared when it is read and it is not set again until the event has occurred again. Condition bits
such as RBL, RLOS, etc., remain set if the alarm is still present.
The user always proceeds a read of any of the status registers with a write. The byte written to the register
informs the DS2155 which bits the user wishes to read and have cleared. The user writes a byte to one of
these registers, with a 1 in the bit positions the user wishes to read and a 0 in the bit positions the user
does not wish to obtain the latest information on. When a 1 is written to a bit location, the read register is
updated with the latest information. When a 0 is written to a bit position, the read register is not updated
and the previous value is held. A write to the status registers is immediately followed by a read of the
same register. This write-read scheme allows an external microcontroller or microprocessor to
individually poll certain bits without disturbing the other bits in the register. This operation is key in
controlling the DS2155 with higher order languages.
Status register bits are divided into two groups, condition bits and event bits. Condition bits are typically
network conditions such as loss-of-sync or all-ones detect. Event bits are typically markers such as the
one-second timer, elastic store slip, etc. Each status register bit is labeled as a condition or event bit.
Some of the status registers have bits for both the detection of a condition and the clearance of the
condition. For example, SR2 has a bit that is set when the device goes into a loss-of-sync state (SR2.0, a
condition bit) and a bit that is set (SR2.4, an event bit) when the loss-of-sync condition clears (goes in
sync). Some of the status register bits (condition bits) do not have a separate bit for the “condition clear”
event but rather the status bit can produce interrupts on both edges, setting and clearing. These bits are
marked as double interrupt bits. An interrupt is produced when the condition occurs and when it clears.
DS2155
42 of 238
6.4 Information Registers
Information registers operate the same as status registers except they cannot cause interrupts. They are all
latched except for INFO7 and some of the bits in INFO5 and INFO6. INFO7 register is a read-only
register. It reports the status of the E1 synchronizer in real time. INFO7 and some of the bits in INFO6
and INFO5 are not latched and it is not necessary to precede a read of these bits with a write.
6.5 Interrupt Information Registers
The interrupt information registers provide an indication of which status registers (SR1 through SR9) are
generating an interrupt. When an interrupt occurs, the host can read IIR1 and IIR2 to quickly identify
which of the nine status registers are causing the interrupt.
Register Name: IIR1
Register Description: Interrupt Information Register 1
Register Address: 14h
Bit # 7 6 5 4 3 2 1 0
Name SR8 SR7 SR6 SR5 SR4 SR3 SR2 SR1
Default 0 0 0 0 0 0 0 0
Register Name: IIR2
Register Description: Interrupt Information Register 2
Register Address: 15h
Bit # 7 6 5 4 3 2 1 0
Name — — — — — U_RSR SR9
Default 0 0 0 0 0 0 0 0
DS2155
43 of 238
7. SPECIAL PER-CHANNEL REGISTER OPERATION
Some of the features described in the data sheet that operate on a per-channel basis use a special method
for channel selection. There are five registers involved: per-channel pointer register (PCPR) and per-
channel data registers 1–4 (PCDR1–4). The user selects which function or functions are to be applied on a
per-channel basis by setting the appropriate bit(s) in the PCPR register. The user then writes to the PCDR
registers to select the channels for that function. The following is an example of mapping the transmit and
receive BERT function to channels 9–12, 20, and 21.
Write 11h to PCPR
Write 00h to PCDR1
Write 0fh to PCDR2
Write 18h to PCDR3
Write 00h to PCDR4
The user may write to the PCDR1-4 with muliple functions in the PCPR register selected, but can only
read the values from the PCDR1-4 registers for a single function at a time. More information about how
to use these per-channel features can be found in their respective sections in the data sheet.
Register Name: PCPR
Register Description: Per-Channel Pointer Register
Register Address: 28h
Bit # 7 6 5 4 3 2 1 0
Name RSAOICS RSRCS RFCS BRCS THSCS PEICS TFCS BTCS
Default 0 0 0 0 0 0 0 0
Bit 0/Bert Transmit Channel Select (BTCS)
Bit 1/Transmit Fractional Channel Select (TFCS)
Bit 2/Payload Error Insert Channel Select (PEICS)
Bit 3/Transmit Hardware Signaling Channel Select (THSCS)
Bit 4/Bert Receive Channel Select (BRCS)
Bit 5/Receive Fractional Channel Select (RFCS)
Bit 6/Receive Signaling Reinsertion Channel Select (RSRCS)
Bit 7/Receive Signaling All-Ones Insertion Channel Select (RSAOICS)
DS2155
44 of 238
Register Name: PCDR1
Register Description: Per-Channel Data Register 1
Register Address: 29h
Bit # 7 6 5 4 3 2 1 0
Name —
Default CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1
Register Name: PCDR2
Register Description: Per-Channel Data Register 2
Register Address: 2Ah
Bit # 7 6 5 4 3 2 1 0
Name —
Default CH16 CH15 CH14 CH13 CH12 CH11 CH10 CH9
Register Name: PCDR3
Register Description: Per-Channel Data Register 3
Register Address: 2Bh
Bit # 7 6 5 4 3 2 1 0
Name —
Default CH24 CH23 CH22 CH21 CH20 CH19 CH18 CH17
Register Name: PCDR4
Register Description: Per-Channel Data Register 4
Register Address: 2Ch
Bit # 7 6 5 4 3 2 1 0
Name —
Default CH32 CH31 CH30 CH29 CH28 CH27 CH26 CH25
DS2155
45 of 238
8. CLOCK MAP
Figure 8-1 shows the clock map of the DS2155. The routing for the transmit and receive clocks are shown
for the various loopback modes and jitter attenuator positions. Although there is only one jitter attenuator,
which can be placed in the receive or transmit path, two are shown for simplification and clarity.
Figure 8-1. Clock Map
The TCLK MUX is dependent on the state of the TCSS0 and TCSS1 bits in the CCR1 register and the
state of the TCLK pin.
TCSS1 TCSS0 Transmit Clock Source
0 0 The TCLK pin (C) is always the source of transmit clock.
0 1
Switch to the recovered clock (B) when the signal at the TCLK pin
fails to transition after one channel time.
1 0
Use the scaled signal (A) derived from MCLK as the transmit clock.
The TCLK pin is ignored.
1 1
Use the recovered clock (B) as the transmit clock. The TCLK pin is
ignored.
TRANSMIT
FORMATTER
RECEIVE
FRAMER
BPCLK
SYNTH
REMOTE
LOOPBACK
FRAMER
LOOPBACK
PAYLOAD
LOOPBACK
(SEE NOTES)
LTCA
LTCA
JITTER ATTENUATOR
SEE LIC1 REGISTER
LOCAL
LOOPBACK
BPCLK
RCLK
TCLK
MCLK
RXCLK
TXCLK
TO
LIU
LLB = 0
LLB = 1
PLB = 0
PLB = 1
RLB = 1
RLB = 0
FLB = 1
FLB = 0
JAS = 0
AND
DJA = 0
JAS = 1
OR
DJA = 1
JAS = 0
OR
DJA = 1
JAS = 1
AND
DJA = 0
RCL = 1
RCL = 0
DJA = 1
DJA = 0
8XCLK
8 x PLL
PRE-SCALER LIC4.MPS0
LIC4.MPS1
LIC2.3
2.048 TO 1.544
SYNTHESIZER
BA C
MCLKS = 0
TSYSCLK
MCLKS = 1
TCLK
MUX
DS2155
46 of 238
9. T1 FRAMER/FORMATTER CONTROL AND STATUS REGISTERS
The T1 framer portion of the DS2155 is configured through a set of nine control registers. Typically, the
control registers are only accessed when the system is first powered up. Once the DS2155 has been
initialized, the control registers only need to be accessed when there is a change in the system
configuration. There are two receive control registers (T1RCR1 and T1RCR2), two transmit control
registers (T1TCR1 and T1TCR2), and a common control register (T1CCR1). Each of these registers is
described in this section.
9.1 T1 Control Registers
Register Name: T1RCR1
Register Description: T1 Receive Control Register 1
Register Address: 03h
Bit # 7 6 5 4 3 2 1 0
Name — ARC OOF1 OOF2 SYNCC SYNCT SYNCE RESYNC
Default 0 0 0 0 0 0 0 0
Bit 0/Resynchronize (RESYNC). When toggled from low to high, a resynchronization of the receive-side framer
is initiated. Must be cleared and set again for a subsequent resync.
Bit 1/Sync Enable (SYNCE)
0 = auto resync enabled
1 = auto resync disabled
Bit 2/Sync Time (SYNCT)
0 = qualify 10 bits
1 = qualify 24 bits
Bit 3/Sync Criteria (SYNCC)
In D4 Framing Mode:
0 = search for Ft pattern, then search for Fs pattern
1 = cross couple Ft and Fs pattern
In ESF Framing Mode:
0 = search for FPS pattern only
1 = search for FPS and verify with CRC6
Bits 4, 5/Out-of-Frame Select Bits (OOF2, OOF1)
OOF2 OOF1 Out-Of-Frame Criteria
0 0 2/4 frame bits in error
0 1 2/5 frame bits in error
1 0 2/6 frame bits in error
1 1 2/6 frame bits in error
Bit 6/Auto Resync Criteria (ARC)
0 = resync on OOF or RCL event
1 = resync on OOF only
Bit 7/Unused, must be set to 0 for proper operation
DS2155
47 of 238
Register Name: T1RCR2
Register Description: T1 Receive Control Register 2
Register Address: 04h
Bit # 7 6 5 4 3 2 1 0
Name — RFM RB8ZS RSLC96 RZSE RZBTSI RJC RD4YM
Default 0 0 0 0 0 0 0 0
Bit 0/Receive-Side D4 Yellow Alarm Select (RD4YM)
0 = 0s in bit 2 of all channels
1 = a 1 in the S-bit position of frame 12 (J1 Yellow Alarm Mode)
Bit 1/Receive Japanese CRC6 Enable (RJC)
0 = use ANSI/AT&T/ITU CRC6 calculation (normal operation)
1 = use Japanese standard JT–G704 CRC6 calculation
Bit 2/Receive-Side ZBTSI Support Enable (RZBTSI). Allows ZBTSI information to be output on RLINK pin.
0 = ZBTSI disabled
1 = ZBTSI enabled
Bit 3/Receive FDL Zero-Destuffer Enable (RZSE). Set this bit to 0 if using the internal HDLC/BOC controller
instead of the legacy support for the FDL. See Section 23.5 for details.
0 = zero destuffer disabled
1 = zero destuffer enabled
Bit 4/Receive SLC-96 Enable (RSLC96). Only set this bit to a 1 in D4/SLC-96 framing applications. See Section
23.6 for details.
0 = SLC-96 disabled
1 = SLC-96 enabled
Bit 5/Receive B8ZS Enable (RB8ZS)
0 = B8ZS disabled
1 = B8ZS enabled
Bit 6/Receive Frame Mode Select (RFM)
0 = D4 framing mode
1 = ESF framing mode
Bit 7/Unused, must be set to 0 for proper operation
DS2155
48 of 238
Register Name: T1TCR1
Register Description: T1 Transmit Control Register 1
Register Address: 05h
Bit # 7 6 5 4 3 2 1 0
Name TJC TFPT TCPT TSSE GB7S TFDLS TBL TYEL
Default 0 0 0 0 0 0 0 0
Bit 0/Transmit Yellow Alarm (TYEL)
0 = do not transmit yellow alarm
1 = transmit yellow alarm
Bit 1/Transmit Blue Alarm (TBL)
0 = transmit data normally
1 = transmit an unframed all-ones code at TPOS and TNEG
Bit 2/TFDL Register Select (TFDLS)
0 = source FDL or Fs-bits from the internal TFDL register (legacy FDL support mode)
1 = source FDL or Fs-bits from the internal HDLC controller or the TLINK pin
Bit 3/Global Bit 7 Stuffing (GB7S)
0 = allow the SSIEx registers to determine which channels containing all 0s are to be bit 7 stuffed
1 = force bit 7 stuffing in all 0-byte channels regardless of how the SSIEx registers are programmed
Bit 4/Transmit Software Signaling Enable (TSSE).
0 = do not source signaling data from the TSx registers regardless of the SSIEx registers. The SSIEx
registers still define which channels are to have B7 stuffing preformed.
1 = source signaling data as enabled by the SSIEx registers
Bit 5/Transmit CRC Pass-Through (TCPT)
0 = source CRC6 bits internally
1 = CRC6 bits sampled at TSER during F-bit time
Bit 6/Transmit F-Bit Pass-Through (TFPT)
0 = F bits sourced internally
1 = F bits sampled at TSER
Bit 7/Transmit Japanese CRC6 Enable (TJC)
0 = use ANSI/AT&T/ITU CRC6 calculation (normal operation)
1 = use Japanese standard JT–G704 CRC6 calculation
DS2155
49 of 238
Register Name: T1TCR2
Register Description: T1 Transmit Control Register 2
Register Address: 06h
Bit # 7 6 5 4 3 2 1 0
Name TB8ZS TSLC96 TZSE FBCT2 FBCT1 TD4YM TZBTSI TB7ZS
Default 0 0 0 0 0 0 0 0
Bit 0/Transmit-Side Bit 7 Zero-Suppression Enable (TB7ZS)
0 = no stuffing occurs
1 = bit 7 forced to a 1 in channels with all 0s
Bit 1/Transmit-Side ZBTSI Support Enable (TZBTSI). Allows ZBTSI information to be input on TLINK pin.
0 = ZBTSI disabled
1 = ZBTSI enabled
Bit 2/Transmit-Side D4 Yellow Alarm Select (TD4YM)
0 = 0s in bit 2 of all channels
1 = a 1 in the S-bit position of frame 12
Bit 3/F-Bit Corruption Type 1 (FBCT1). A low-to-high transition of this bit causes the next three consecutive Ft
(D4 framing mode) or FPS (ESF framing mode) bits to be corrupted causing the remote end to experience a loss of
synchronization.
Bit 4/F-Bit Corruption Type 2 (FBCT2). Setting this bit high enables the corruption of one Ft (D4 framing mode)
or FPS (ESF framing mode) bit in every 128 Ft or FPS bits as long as the bit remains set.
Bit 5/Transmit FDL Zero-Stuffer Enable (TZSE). Set this bit to 0 if using the internal HDLC controller instead
of the legacy support for the FDL. See Section 15 for details.
0 = zero stuffer disabled
1 = zero stuffer enabled
Bit 6/Transmit SLC-96/Fs-Bit Insertion Enable (TSLC96). Only set this bit to a 1 in D4 framing applications.
Must be set to 1 to source the Fs pattern from the TFDL register. See Section 23.6 for details.
0 = SLC-96/Fs-bit insertion disabled
1 = SLC-96/Fs-bit insertion enabled
Bit 7/Transmit B8ZS Enable (TB8ZS)
0 = B8ZS disabled
1 = B8ZS enabled
DS2155
50 of 238
Register Name: T1CCR1
Register Description: T1 Common Control Register 1
Register Address: 07h
Bit # 7 6 5 4 3 2 1 0
Name — TRAI-CI TAIS-CI TFM PDE TLOOP
Default 0 0 0 0 0 0 0 0
Bit 0/Transmit Loop-Code Enable (TLOOP). See Section 25 for details.
0 = transmit data normally
1 = replace normal transmitted data with repeating code as defined in registers TCD1 and TCD2
Bit 1/Pulse Density Enforcer Enable (PDE). The framer always examines the transmit and receive data streams
for violations of these, which are required by ANSI T1.403: No more than 15 consecutive 0s and at least N 1s in
each and every time window of 8 x (N + 1) bits, where N = 1 through 23. Violations for the transmit and receive
data streams are reported in the INFO1.6 and INFO1.7 bits, respectively. When this bit is set to 1, the DS2155
forces the transmitted stream to meet this requirement no matter the content of the transmitted stream. When
running B8ZS, this bit should be set to 0 since B8ZS encoded data streams cannot violate the pulse density
requirements.
0 = disable transmit pulse density enforcer
1 = enable transmit pulse density enforcer
Bit 2/Transmit Frame Mode Select (TFM)
0 = D4 framing mode
1 = ESF framing mode
Bit 3/Transmit AIS-CI Enable (TAIS-CI). Setting this bit and the TBL bit (T1TCR1.1) causes the AIS-CI code
to be transmitted at TPOSO and TNEGO, as defined in ANSI T1.403.
0 = do not transmit the AIS-CI code
1 = transmit the AIS-CI code (T1TCR1.1 must also be set = 1)
Bit 4/Transmit RAI-CI Enable (TRAI-CI). Setting this bit causes the ESF RAI-CI code to be transmitted in the
FDL bit position.
0 = do not transmit the ESF RAI-CI code
1 = transmit the ESF RAI-CI code
Bits 5 to 7/Unused, must be set to 0 for proper operation
DS2155
51 of 238
9.2 T1 Transmit Transparency
The software signaling insertion-enable registers, SSIE1–SSIE4, can be used to select signaling insertion
from the transmit signaling registers, TS1–TS12, on a per-channel basis. Setting a bit in the SSIEx
register allows signaling data to be sourced from the signaling registers for that channel.
In transparent mode, bit 7 stuffing and/or robbed-bit signaling is prevented from overwriting the data in
the channels. If a DS0 is programmed to be clear, no robbed-bit signaling is inserted nor does the channel
have bit 7 stuffing performed. However, in the D4 framing mode, bit 2 is overwritten by a 0 when a
Yellow Alarm is transmitted. Also, the user has the option to globally override the SSIEx registers from
determining which channels are to have bit 7 stuffing performed. If the T1TCR1.3 and T1TCR2.0 bits are
set to 1, then all 24 T1 channels have bit 7 stuffing performed on them, regardless of how the SSIEx
registers are programmed. In this manner, the SSIEx registers are only affecting the channels that are to
have robbed-bit signaling inserted into them.
9.3 AIS-CI and RAI-CI Generation and Detection
The DS2155 can transmit and detect the RAI-CI and AIS-CI codes in T1 mode. These codes are
compatible with and do not interfere with the standard RAI (Yellow) and AIS (Blue) alarms. These codes
are defined in ANSI T1.403.
The AIS-CI code (alarm indication signal-customer installation) is the same for both ESF and D4
operation. Setting the TAIS-CI bit in the T1CCR1 register and the TBL bit in the T1TCR1 register causes
the DS2155 to transmit the AIS-CI code. The RAIS-CI status bit in the SR4 register indicates the
reception of an AIS-CI signal.
The RAI-CI (remote alarm indication-customer installation) code for T1 ESF operation is a special form
of the ESF Yellow Alarm (an unscheduled message). Setting the RAIS-CI bit in the T1CCR1 register
causes the DS2155 to transmit the RAI-CI code. The RAI-CI code causes a standard Yellow Alarm to be
detected by the receiver. When the host processor detects a Yellow Alarm, it can then test the alarm for
the RAI-CI state by checking the BOC detector for the RAI-CI flag. That flag is a 011111 code in the 6-
bit BOC message.
The RAI-CI code for T1 D4 operation is a 10001011 flag in all 24 time slots. To transmit the RAI-CI
code the host sets all 24 channels to idle with a 10001011 idle code. Since this code meets the
requirements for a standard T1 D4 Yellow Alarm, the host can use the receive channel monitor function
to detect the 100001011 code whenever a standard Yellow Alarm is detected.
DS2155
52 of 238
9.4 T1 Receive-Side Digital-Milliwatt Code Generation
Receive-side digital-milliwatt code generation involves using the receive digital-milliwatt registers
(T1RDMR1/2/3) to determine which of the 24 T1 channels of the T1 line going to the backplane should
be overwritten with a digital-milliwatt pattern. The digital-milliwatt code is an 8-byte repeating pattern
that represents a 1kHz sine wave (1E/0B/0B/1E/9E/8B/8B/9E). Each bit in the T1RDMRx registers
represents a particular channel. If a bit is set to a 1, then the receive data in that channel is replaced with
the digital-milliwatt code. If a bit is set to 0, no replacement occurs.
Register Name: T1RDMR1
Register Description: T1 Receive Digital-Milliwatt Enable Register 1
Register Address: 0Ch
Bit # 7 6 5 4 3 2 1 0
Name CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Receive Digital-Milliwatt Enable for Channels 1 to 8 (CH1 to CH8)
0 = do not affect the receive data associated with this channel
1 = replace the receive data associated with this channel with digital-milliwatt code
Register Name: T1RDMR2
Register Description: T1 Receive Digital-Milliwatt Enable Register 2
Register Address: 0Dh
Bit # 7 6 5 4 3 2 1 0
Name CH16 CH15 CH14 CH13 CH12 CH11 CH10 CH9
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Receive Digital-Milliwatt Enable for Channels 9 to 16 (CH9 to CH16)
0 = do not affect the receive data associated with this channel
1 = replace the receive data associated with this channel with digital-milliwatt code
Register Name: T1RDMR3
Register Description: T1 Receive Digital-Milliwatt Enable Register 3
Register Address: 0Eh
Bit # 7 6 5 4 3 2 1 0
Name CH24 CH23 CH22 CH21 CH20 CH19 CH18 CH17
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Receive Digital-Milliwatt Enable for Channels 17 to 24 (CH17 to CH24)
0 = do not affect the receive data associated with this channel
1 = replace the receive data associated with this channel with digital-milliwatt code
DS2155
53 of 238
Register Name: INFO1
Register Description: Information Register 1
Register Address: 10h
Bit # 7 6 5 4 3 2 1 0
Name RPDV TPDV COFA 8ZD 16ZD SEFE B8ZS FBE
Default 0 0 0 0 0 0 0 0
Bit 0/Frame Bit-Error Event (FBE). Set when an Ft (D4) or FPS (ESF) framing bit is received in error.
Bit 1/B8ZS Codeword Detect Event (B8ZS). Set when a B8ZS codeword is detected at RPOS and RNEG
independent of whether the B8ZS mode is selected or not by T1TCR2.7. Useful for automatically setting the line
coding.
Bit 2/Severely Errored Framing Event (SEFE). Set when two out of six framing bits (Ft or FPS) are received in
error.
Bit 3/Sixteen Zero-Detect Event (16ZD). Set when a string of at least 16 consecutive 0s (regardless of the length
of the string) have been received at RPOSI and RNEGI.
Bit 4/Eight Zero-Detect Event (8ZD). Set when a string of at least eight consecutive 0s (regardless of the length
of the string) have been received at RPOSI and RNEGI.
Bit 5/Change-of-Frame Alignment Event (COFA). Set when the last resync resulted in a change-of-frame or
multiframe alignment.
Bit 6/Transmit Pulse-Density Violation Event (TPDV). Set when the transmit data stream does not meet the
ANSI T1.403 requirements for pulse density.
Bit 7/Receive Pulse-Density Violation Event (RPDV). Set when the receive data stream does not meet the ANSI
T1.403 requirements for pulse density.
DS2155
54 of 238
Table 9-A. T1 Alarm Criteria
ALARM SET CRITERIA CLEAR CRITERIA
Blue Alarm (AIS)
(Note 1)
When over a 3ms window, five or
fewer 0s are received
When over a 3ms window, six or
more 0s are received
Yellow Alarm (RAI)
D4 Bit 2 Mode
(T1RCR2.0 = 0)
When bit 2 of 256 consecutive
channels is set to 0 for at least 254
occurrences
When bit 2 of 256 consecutive
channels is set to 0 for fewer than
254 occurrences
D4 12th F-Bit Mode
(T1RCR2.0 = 1; this mode is also
referred to as the “Japanese Yellow
Alarm”)
When the 12th framing bit is set to 1
for two consecutive occurrences
When the 12th framing bit is set to
0 for two consecutive occurrences
ESF Mode When 16 consecutive patterns of
00FF appear in the FDL
When 14 or fewer patterns of 00FF
hex out of 16 possible appear in the
FDL
Red Alarm (LRCL)
(Also referred to as loss of signal)
When 192 consecutive 0s are
received
When 14 or more 1s out of 112
possible bit positions are received
Note 1: The definition of Blue Alarm (or AIS) is an unframed all-ones signal. Blue Alarm detectors should be able to operate properly in the
presence of a 10E-3 error rate and they should not falsely trigger on a framed all-1s signal. Blue Alarm criteria in the DS2155 has been
set to achieve this performance. It is recommended that the RBL bit be qualified with the RLOS bit.
Note 2: ANSI specifications use a different nomenclature than the DS2155 does. The following terms are equivalent:
RBL = AIS
RCL = LOS
RLOS = LOF
RYEL = RAI
DS2155
55 of 238
10. E1 FRAMER/FORMATTER CONTROL AND STATUS REGISTERS
The E1 framer portion of the DS2155 is configured by a set of four control registers. Typically, the
control registers are only accessed when the system is first powered up. Once the DS2155 has been
initialized, the control registers need only to be accessed when there is a change in the system
configuration. There are two receive control registers (E1RCR1 and E1RCR2) and two transmit control
registers (E1TCR1 and E1TCR2). There are also four status and information registers. Each of these eight
registers is described in this section.
10.1 E1 Control Registers
Register Name: E1RCR1
Register Description: E1 Receive Control Register 1
Register Address: 33h
Bit # 7 6 5 4 3 2 1 0
Name RSERC RSIGM RHDB3 RG802 RCRC4 FRC SYNCE RESYNC
Default 0 0 0 0 0 0 0 0
Bit 0/Resync (RESYNC). When toggled from low to high, a resync is initiated. Must be cleared and set again for a
subsequent resync.
Bit 1/Sync Enable (SYNCE)
0 = auto resync enabled
1 = auto resync disabled
Bit 2/Frame Resync Criteria (FRC)
0 = resync if FAS received in error three consecutive times
1 = resync if FAS or bit 2 of non-FAS is received in error three consecutive times
Bit 3/Receive CRC4 Enable (RCRC4)
0 = CRC4 disabled
1 = CRC4 enabled
Bit 4/Receive G.802 Enable (RG802). See Section 17 for details.
0 = do not force RCHBLK high during bit 1 of time slot 26
1 = force RCHBLK high during bit 1 of time slot 26
Bit 5/Receive HDB3 Enable (RHDB3)
0 = HDB3 disabled
1 = HDB3 enabled
Bit 6/Receive Signaling Mode Select (RSIGM)
0 = CAS signaling mode
1 = CCS signaling mode
Bit 7/RSER Control (RSERC)
0 = allow RSER to output data as received under all conditions
1 = force RSER to 1 under loss-of-frame alignment conditions
DS2155
56 of 238
Table 10-A. E1 Sync/Resync Criteria
FRAME OR
MULTIFRAME
LEVEL
SYNC CRITERIA RESYNC CRITERIA ITU SPEC.
FAS
FAS present in frame N and
N + 2; FAS not present in
frame N + 1
Three consecutive incorrect
FAS received
Alternate: (E1RCR1.2 = 1) The
above criteria is met or three
consecutive incorrect bit 2 of
non-FAS received
G.706
4.1.1
4.1.2
CRC4 Two valid MF alignment
words found within 8ms
915 or more CRC4 codewords
out of 1000 received in error
G.706
4.2 and 4.3.2
CAS
Valid MF alignment word
found and previous time slot
16 contains code other than
all 0s
Two consecutive MF
alignment words received in
error
G.732
5.2
Register Name: E1RCR2
Register Description: E1 Receive Control Register 2
Register Address: 34h
Bit # 7 6 5 4 3 2 1 0
Name Sa8S Sa7S Sa6S Sa5S Sa4S RCLA
Default 0 0 0 0 0 0 0 0
Bit 0/Receive Carrier-Loss (RCL) Alternate Criteria (RCLA). Defines the criteria for a receive carrier-loss
condition for both the framer and LIU.
0 = RCL declared upon 255 consecutive 0s (125µs)
1 = RCL declared upon 2048 consecutive 0s (1ms)
Bits 1, 2/Unused, must be set to 0 for proper operation
Bit 3/Sa4 Bit Select (Sa4S). Set to 1 to have RLCLK pulse at the Sa4 bit position; set to 0 to force RLCLK low
during Sa4 bit position. See Section 35 for details.
Bit 4/Sa5 Bit Select (Sa5S). Set to 1 to have RLCLK pulse at the Sa5 bit position; set to 0 to force RLCLK low
during Sa5 bit position. See Section 35 for details.
Bit 5/Sa6 Bit Select (Sa6S). Set to 1 to have RLCLK pulse at the Sa6 bit position; set to 0 to force RLCLK low
during Sa6 bit position. See Section 35 for details.
Bit 6/Sa7 Bit Select (Sa7S). Set to 1 to have RLCLK pulse at the Sa7 bit position; set to 0 to force RLCLK low
during Sa7 bit position. See Section 35 for details.
Bit 7/Sa8 Bit Select (Sa8S). Set to 1 to have RLCLK pulse at the Sa8 bit position; set to 0 to force RLCLK low
during Sa8 bit position. See Section 35 for details.
DS2155
57 of 238
Register Name: E1TCR1
Register Description: E1 Transmit Control Register 1
Register Address: 35h
Bit # 7 6 5 4 3 2 1 0
Name TFPT T16S TUA1 TSiS TSA1 THDB3 TG802 TCRC4
Default 0 0 0 0 0 0 0 0
Bit 0/Transmit CRC4 Enable (TCRC4)
0 = CRC4 disabled
1 = CRC4 enabled
Bit 1/Transmit G.802 Enable (TG802). See Section 35 for details.
0 = do not force TCHBLK high during bit 1 of time slot 26
1 = force TCHBLK high during bit 1 of time slot 26
Bit 2/Transmit HDB3 Enable (THDB3)
0 = HDB3 disabled
1 = HDB3 enabled
Bit 3/Transmit Signaling All Ones (TSA1)
0 = normal operation
1 = force time slot 16 in every frame to all ones
Bit 4/Transmit International Bit Select (TSiS)
0 = sample Si bits at TSER pin
1 = source Si bits from TAF and TNAF registers (in this mode, E1TCR1.7 must be set to 0)
Bit 5/Transmit Unframed All Ones (TUA1)
0 = transmit data normally
1 = transmit an unframed all-ones code at TPOSO and TNEGO
Bit 6/Transmit Time Slot 16 Data Select (T16S). See Section 16.2 for details.
0 = time slot 16 determined by the SSIEx registers and the THSCS function in the PCPR register
1 = source time slot 16 from TS1 to TS16 registers
Bit 7/Transmit Time Slot 0 Pass-Through (TFPT)
0 = FAS bits/Sa bits/remote alarm sourced internally from the TAF and TNAF registers
1 = FAS bits/Sa bits/remote alarm sourced from TSER
DS2155
58 of 238
Register Name: E1TCR2
Register Description: E1 Transmit Control Register 2
Register Address: 36h
Bit # 7 6 5 4 3 2 1 0
Name Sa8S Sa7S Sa6S Sa5S Sa4S AEBE AAIS ARA
Default 0 0 0 0 0 0 0 0
Bit 0/Automatic Remote Alarm Generation (ARA)
0 = disabled
1 = enabled
Bit 1/Automatic AIS Generation (AAIS)
0 = disabled
1 = enabled
Bit 2/Automatic E-Bit Enable (AEBE)
0 = E-bits not automatically set in the transmit direction
1 = E-bits automatically set in the transmit direction
Bit 3/Sa4 Bit Select (Sa4S). Set to 1 to source the Sa4 bit from the TLINK pin; set to 0 to not source the Sa4 bit.
See Section 35 for details.
Bit 4/Sa5 Bit Select (Sa5S). Set to 1 to source the Sa5 bit from the TLINK pin; set to 0 to not source the Sa5 bit.
See Section 35 for details.
Bit 5/Sa6 Bit Select (Sa6S). Set to 1 to source the Sa6 bit from the TLINK pin; set to 0 to not source the Sa6 bit.
See Section 35 for details.
Bit 6/Sa7 Bit Select (Sa7S). Set to 1 to source the Sa7 bit from the TLINK pin; set to 0 to not source the Sa7 bit.
See Section 35 for details.
Bit 7/Sa8 Bit Select (Sa8S). Set to 1 to source the Sa8 bit from the TLINK pin; set to 0 to not source the Sa8 bit.
See Section 35 for details.
DS2155
59 of 238
10.2 Automatic Alarm Generation
The device can be programmed to automatically transmit AIS or remote alarm. When automatic AIS
generation is enabled (E1TCR2.1 = 1), the device monitors the receive-side framer to determine if any of
the following conditions are present: loss-of-receive frame synchronization, AIS alarm (all ones)
reception, or loss-of-receive carrier (or signal). The framer forces either an AIS or remote alarm if any
one or more of these conditions is present.
When automatic RAI generation is enabled (E1TCR2.0 = 1), the framer monitors the receive side to
determine if any of the following conditions are present: loss-of-receive-frame synchronization, AIS
alarm (all ones) reception, loss-of-receive carrier (or signal), or if CRC4 multiframe synchronization
cannot be found within 128ms of FAS synchronization (if CRC4 is enabled). If any one or more of these
conditions is present, then the framer transmits an RAI alarm. RAI generation conforms to ETS 300 011
specifications and a constant remote alarm is transmitted if the DS2155 cannot find CRC4 multiframe
synchronization within 400ms as per G.706.
Note: It is an invalid state to have both automatic AIS generation and automatic remote alarm generation
enabled at the same time.
DS2155
60 of 238
10.3 E1 Information Registers
Register Name: INFO3
Register Description: Information Register 3
Register Address: 12h
Bit # 7 6 5 4 3 2 1 0
Name — — — — — CRCRC FASRC CASRC
Default 0 0 0 0 0 0 0 0
Bit 0/CAS Resync Criteria Met Event (CASRC). Set when two consecutive CAS MF alignment words are
received in error.
Bit 1/FAS Resync Criteria Met Event (FASRC). Set when three consecutive FAS words are received in error.
Note: During a CRC resync the FAS synchronizer is brought online to verify the FAS alignment. If during this
process an FAS emulator exists, the FAS synchronizer may temporarily align to the emulator. The FASRC will go
active indicating a search for a valid FAS has been activated.
Bit 2/CRC Resync Criteria Met Event (CRCRC). Set when 915/1000 codewords are received in error.
Register Name: INFO7
Register Description: Information Register 7 (Real-Time, Non-Latched Register)
Register Address: 30h
Bit # 7 6 5 4 3 2 1 0
Name CSC5 CSC4 CSC3 CSC2 CSC0 FASSA CASSA CRC4SA
Default 0 0 0 0 0 0 0 0
Bit 0/CRC4 MF Sync Active (CRC4SA). Set while the synchronizer is searching for the CRC4 MF alignment
word. This is a read-only, non-latched, real-time bit. It is not necessary to precede the read of this bit with a write.
Bit 1/CAS MF Sync Active (CASSA). Set while the synchronizer is searching for the CAS MF alignment word.
This is a read-only, non-latched, real-time bit. It is not necessary to precede the read of this bit with a write.
Bit 2/FAS Sync Active (FASSA). Set while the synchronizer is searching for alignment at the FAS level. This is a
read-only, non-latched, real-time bit. It is not necessary to precede the read of this bit with a write.
Bits 3 to 7/CRC4 Sync Counter Bits (CSC0, CSC2 to CSC4). The CRC4 sync counter increments each time the
8ms CRC4 multiframe search times out. The counter is cleared when the framer has successfully obtained
synchronization at the CRC4 level. The counter can also be cleared by disabling the CRC4 mode (E1RCR1.3 = 0).
This counter is useful for determining the amount of time the framer has been searching for synchronization at the
CRC4 level. ITU G.706 suggests that if synchronization at the CRC4 level cannot be obtained within 400ms, then
the search should be abandoned and proper action taken. The CRC4 sync counter rolls over. CSC0 is the LSB of
the 6-bit counter. (Note: The bit next to LSB is not accessible. CSC1 is omitted to allow resolution to >400ms
using 5 bits.) These are read-only, non-latched, real-time bits. It is not necessary to precede the read of these bits
with a write.
DS2155
61 of 238
Table 10-B. E1 Alarm Criteria
ALARM SET CRITERIA CLEAR CRITERIA ITU
SPECIFICATION
RLOS
An RLOS condition exists on power-up
prior to initial synchronization, when a
resync criteria has been met, or when a
manual resync has been initiated by
E1RCR1.0
RCL
255 or 2048 consecutive 0s received as
determined by E1RCR2.0
At least 32 1s in 255-bit times
are received G.775/G.962
RRA Bit 3 of nonalign frame set to 1 for three
consecutive occasions
Bit 3 of nonalign frame set to
0 for three consecutive
occasions
O.162
2.1.4
RUA1 Fewer than three 0s in two frames (512
bits)
More than two 0s in two
frames (512 bits)
O.162
1.6.1.2
RDMA Bit 6 of time slot 16 in frame 0 has been set
for two consecutive multiframes
V52LNK Two out of three Sa7 bits are 0 G.965
DS2155
62 of 238
11. COMMON CONTROL AND STATUS REGISTERS
Register Name: CCR1
Register Description: Common Control Register 1
Register Address: 70h
Bit # 7 6 5 4 3 2 1 0
Name MCLKS CRC4R SIE ODM DICAI TCSS1 TCSS0 RLOSF
Default 0 0 0 0 0 0 0 0
Bit 0/Function of the RLOS/LOTC Output (RLOSF)
0 = receive loss of sync (RLOS)
1 = loss-of-transmit clock (LOTC)
Bit 1/Transmit Clock Source Select Bit 0 (TCSS0)
Bit 2/Transmit Clock Source Select Bit 0 (TCSS1)
TCSS1 TCSS0 Transmit Clock Source
0 0 The TCLK pin is always the source of transmit clock.
0 1
Switch to the clock present at RCLK when the signal at the TCLK pin
fails to transition after 1 channel time.
1 0
Use the scaled signal present at MCLK as the transmit clock. The
TCLK pin is ignored.
1 1
Use the signal present at RCLK as the transmit clock. The TCLK pin is
ignored.
Bit 3/Disable Idle Code Auto Increment (DICAI). Selects/deselects the auto-increment feature for the transmit
and receive idle code array address register. See Section 17.
0 = addresses in IAAR register automatically increment on every read/write operation to the PCICR
register
1 = addresses in IAAR register do not automatically increment
Bit 4/Output Data Mode (ODM)
0 = pulses at TPOSO and TNEGO are one full TCLKO period wide
1 = pulses at TPOSO and TNEGO are one-half TCLKO period wide
Bit 5/Signaling Integration Enable (SIE)
0 = signaling changes of state reported on any change in selected channels
1 = signaling must be stable for three multiframes in order for a change of state to be reported
Bit 6/CRC-4 Recalculate (CRC4R)
0 = transmit CRC-4 generation and insertion operates in normal mode
1 = transmit CRC-4 generation operates according to G.706 intermediate path recalculation method
Bit 7/MCLK Source (MCLKS). Selects the source of MCLK
0 = MCLK is source from the MCLK pin
1 = MCLK is source from the TSYSCLK pin
DS2155
63 of 238
Register Name: IDR
Register Description: Device Identification Register
Register Address: 0Fh
Bit # 7 6 5 4 3 2 1 0
Name ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
Default 1 0 1 1 X X X X
Bits 0 to 3/Chip Revision Bits (ID0 to ID3). The lower four bits of the IDR are used to display the die revision of
the chip. IDO is the LSB of a decimal code that represents the chip revision.
Bits 4 to 7/Device ID (ID4 to ID7). The upper four bits of the IDR are used to display the DS2155 ID.
11.1 T1/E1 Status Registers
Register Name: SR2
Register Description: Status Register 2
Register Address: 18h
Bit # 7 6 5 4 3 2 1 0
Name RYELC RUA1C FRCLC RLOSC RYEL RUA1 FRCL RLOS
Default 0 0 0 0 0 0 0 0
Bit 0/Receive Loss-of-Sync Condition (RLOS). Set when the DS2155 is not synchronized to the received data
stream.
Bit 1/Framer Receive Carrier-Loss Condition (FRCL). Set when 255 (or 2048 if E1RCR2.0 = 1) E1 mode or
192 T1 mode consecutive 0s have been detected at RPOSI and RNEGI.
Bit 2/Receive Unframed All-Ones (T1 Blue Alarm, E1 AIS) Condition (RUA1). Set when an unframed all 1s
code is received at RPOSI and RNEGI.
Bit 3/Receive Yellow Alarm Condition (RYEL) (T1 Only). Set when a Yellow Alarm is received at RPOSI and
RNEGI.
Bit 4/Receive Loss-of-Sync Clear Event (RLOSC). Set when the framer achieves synchronization; remains set
until read.
Bit 5/Framer Receive Carrier-Loss Clear Event (FRCLC). Set when the carrier loss condition at RPOSI and
RNEGI is no longer detected.
Bit 6/Receive Unframed All-Ones Clear Event (RUA1C). Set when the unframed all 1s condition is no longer
detected.
Bit 7/Receive Yellow Alarm Clear Event (RYELC) (T1 Only). Set when the receive Yellow Alarm condition is
no longer detected.
DS2155
64 of 238
Register Name: IMR2
Register Description: Interrupt Mask Register 2
Register Address: 19h
Bit # 7 6 5 4 3 2 1 0
Name RYELC RUA1C FRCLC RLOSC RYEL RUA1 FRCL RLOS
Default 0 0 0 0 0 0 0 0
Bit 0/Receive Loss-of-Sync Condition (RLOS)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising edge only
Bit 1/Framer Receive Carrier Loss Condition (FRCL)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising edge only
Bit 2/Receive Unframed All-Ones (Blue Alarm) Condition (RUA1)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising edge only
Bit 3/Receive Yellow Alarm Condition (RYEL)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising edge only
Bit 4/Receive Loss-of-Sync Clear Event (RLOSC)
0 = interrupt masked
1 = interrupt enabled
Bit 5/Framer Receive Carrier Loss Condition Clear (FRCLC)
0 = interrupt masked
1 = interrupt enabled
Bit 6/Receive Unframed All-Ones Condition Clear Event (RUA1C)
0 = interrupt masked
1 = interrupt enabled
Bit 7/Receive Yellow Alarm Clear Event (RYELC)
0 = interrupt masked
1 = interrupt enabled
DS2155
65 of 238
Register Name: SR3
Register Description: Status Register 3
Register Address: 1Ah
Bit # 7 6 5 4 3 2 1 0
Name LSPARE LDN LUP LOTC LORC V52LNK RDMA RRA
Default 0 0 0 0 0 0 0 0
Bit 0/Receive Remote Alarm Condition (RRA) (E1 Only). Set when a remote alarm is received at RPOSI and
RNEGI. This is a double interrupt bit. See Section 6.3.
Bit 1/Receive Distant MF Alarm Condition (RDMA) (E1 Only). Set when bit 6 of time slot 16 in frame 0 has
been set for two consecutive multiframes. This alarm is not disabled in the CCS signaling mode. This is a double
interrupt bit. See Section 6.3.
Bit 2/V5.2 Link Detected Condition (V52LNK) (E1 Only). Set on detection of a V5.2 link identification signal
(G.965). This is a double interrupt bit. See Section 6.3.
Bit 3/Loss-of-Receive Clock Condition (LORC). Set when the RCLKI pin has not transitioned for one channel
time. This is a double interrupt bit. See Section 6.3.
Bit 4/Loss-of-Transmit Clock Condition (LOTC). Set when the TCLK pin has not transitioned for one channel
time. Forces the LOTC pin high if enabled by CCR1.0. This is a double interrupt bit. See Section 6.3.
Bit 5/Loop-Up Code Detected Condition (LUP) (T1 Only). Set when the loop-up code as defined in the
RUPCD1/2 register is being received. See Section 25 for details. This is a double interrupt bit. See Section 6.3.
Bit 6/Loop-Down Code Detected Condition (LDN) (T1 Only). Set when the loop down code as defined in the
RDNCD1/2 register is being received. See Section 25 for details. This is a double interrupt bit. See Section 6.3.
Bit 7/Spare Code Detected Condition (LSPARE) (T1 Only). Set when the spare code as defined in the RSCD1/2
registers is being received. See Section 25 for details. This is a double interrupt bit. See Section 6.3.
DS2155
66 of 238
Register Name: IMR3
Register Description: Interrupt Mask Register 3
Register Address: 1Bh
Bit # 7 6 5 4 3 2 1 0
Name LSPARE LDN LUP LOTC LORC V52LNK RDMA RRA
Default 0 0 0 0 0 0 0 0
Bit 0/Receive Remote Alarm Condition (RRA)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising and falling edges
Bit 1/Receive Distant MF Alarm Condition (RDMA)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising and falling edges
Bit 2/V5.2 Link Detected Condition (V52LNK)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising and falling edges
Bit 3/Loss-of-Receive Clock Condition (LORC)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising and falling edges
Bit 4/Loss-of-Transmit Clock Condition (LOTC)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising and falling edges
Bit 5/Loop-Up Code-Detected Condition (LUP)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising and falling edges
Bit 6/Loop-Down Code-Detected Condition (LDN)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising and falling edges
Bit 7/Spare Code Detected Condition (LSPARE)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising and falling edges
DS2155
67 of 238
Register Name: SR4
Register Description: Status Register 4
Register Address: 1Ch
Bit # 7 6 5 4 3 2 1 0
Name RAIS-CI RSAO RSAZ TMF TAF RMF RCMF RAF
Default 0 0 0 0 0 0 0 0
Bit 0/Receive Align Frame Event (RAF) (E1 Only). Set every 250µs at the beginning of align frames. Used to
alert the host that Si and Sa bits are available in the RAF and RNAF registers.
Bit 1/Receive CRC4 Multiframe Event (RCMF) (E1 Only). Set on CRC4 multiframe boundaries; continues to
set every 2ms on an arbitrary boundary if CRC4 is disabled.
Bit 2/Receive Multiframe Event (RMF)
E1 Mode: Set every 2ms (regardless if CAS signaling is enabled or not) on receive multiframe boundaries.
Used to alert the host that signaling data is available.
T1 Mode: Set every 1.5ms on D4 MF boundaries or every 3ms on ESF MF boundaries.
Bit 3/Transmit Align Frame Event (TAF) (E1 Only). Set every 250µs at the beginning of align frames. Used to
alert the host that the TAF and TNAF registers need to be updated.
Bit 4/Transmit Multiframe Event (TMF)
E1 Mode: Set every 2ms (regardless if CRC4 is enabled) on transmit multiframe boundaries. Used to alert
the host that signaling data needs to be updated.
T1 Mode: Set every 1.5ms on D4 MF boundaries or every 3ms on ESF MF boundaries.
Bit 5/Receive Signaling All-Zeros Event (RSAZ) (E1 Only). Set when over a full MF, time slot 16 contains
all 0s.
Bit 6/Receive Signaling All-Ones Event (RSAO) (E1 Only). Set when the contents of time slot 16 contains fewer
than three 0s over 16 consecutive frames. This alarm is not disabled in the CCS signaling mode.
Bit 7/Receive AIS-CI Event (RAIS-CI) (T1 Only). Set when the receiver detects the AIS-CI pattern as defined in
ANSI T1.403.
DS2155
68 of 238
Register Name: IMR4
Register Description: Interrupt Mask Register 4
Register Address: 1Dh
Bit # 7 6 5 4 3 2 1 0
Name RAIS-CI RSAO RSAZ TMF TAF RMF RCMF RAF
Default 0 0 0 0 0 0 0 0
Bit 0/Receive Align Frame Event (RAF)
0 = interrupt masked
1 = interrupt enabled
Bit 1/Receive CRC4 Multiframe Event (RCMF)
0 = interrupt masked
1 = interrupt enabled
Bit 2/Receive Multiframe Event (RMF)
0 = interrupt masked
1 = interrupt enabled
Bit 3/Transmit Align Frame Event (TAF)
0 = interrupt masked
1 = interrupt enabled
Bit 4/Transmit Multiframe Event (TMF)
0 = interrupt masked
1 = interrupt enabled
Bit 5/Receive Signaling All-Zeros Event (RSAZ)
0 = interrupt masked
1 = interrupt enabled
Bit 6/Receive Signaling All-Ones Event (RSAO)
0 = interrupt masked
1 = interrupt enabled
Bit 7/Receive AIS-CI Event (RAIS-CI)
0 = interrupt masked
1 = interrupt enabled
DS2155
69 of 238
12. I/O PIN CONFIGURATION OPTIONS
Register Name: IOCR1
Register Description: I/O Configuration Register 1
Register Address: 01h
Bit # 7 6 5 4 3 2 1 0
Name RSMS RSMS2 RSMS1 RSIO TSDW TSM TSIO ODF
Default 0 0 0 0 0 0 0 0
Bit 0/Output Data Format (ODF)
0 = bipolar data at TPOSO and TNEGO
1 = NRZ data at TPOSO; TNEGO = 0
Bit 1/TSYNC I/O Select (TSIO)
0 = TSYNC is an input
1 = TSYNC is an output
Bit 2/TSYNC Mode Select (TSM). Selects frame or multiframe mode for the TSYNC pin. See the timing
diagrams in Section 35.
0 = frame mode
1 = multiframe mode
Bit 3/TSYNC Double-Wide (TSDW). (Note: This bit must be set to 0 when IOCR1.2 = 1 or when IOCR1.1 = 0.)
0 = do not pulse double-wide in signaling frames
1 = do pulse double-wide in signaling frames
Bit 4/RSYNC I/O Select (RSIO). (Note: This bit must be set to 0 when ESCR.0 = 0.)
0 = RSYNC is an output
1 = RSYNC is an input (only valid if elastic store enabled)
Bit 5/RSYNC Mode Select 1(RSMS1). Selects frame or multiframe pulse when RSYNC pin is in output mode. In
input mode (elastic store must be enabled), multiframe mode is only useful when receive signaling reinsertion is
enabled. See the timing diagrams in Section 35.
0 = frame mode
1 = multiframe mode
Bit 6/RSYNC Mode Select 2 (RSMS2)
T1 Mode: RSYNC pin must be programmed in the output frame mode (IOCR1.5 = 0, IOCR1.4 = 0).
0 = do not pulse double-wide in signaling frames
1 = do pulse double-wide in signaling frames
E1 Mode: RSYNC pin must be programmed in the output multiframe mode (IOCR1.5 = 1, IOCR1.4 = 0).
0 = RSYNC outputs CAS multiframe boundaries
1 = RSYNC outputs CRC4 multiframe boundaries
Bit 7/RSYNC Multiframe Skip Control (RSMS). Useful in framing format conversions from D4 to ESF. This
function is not available when the receive-side elastic store is enabled. RSYNC must be set to output multiframe
pulses (IOCR1.5 = 1 and IOCR1.4 = 0).
0 = RSYNC outputs a pulse at every multiframe
1 = RSYNC outputs a pulse at every other multiframe
DS2155
70 of 238
Register Name: IOCR2
Register Description: I/O Configuration Register 2
Register Address: 02h
Bit # 7 6 5 4 3 2 1 0
Name RCLKINV TCLKINV RSYNCINV TSYNCINV TSSYNCINV H100EN TSCLKM RSCLKM
Default 0 0 0 0 0 0 0 0
Bit 0/RSYSCLK Mode Select (RSCLKM)
0 = if RSYSCLK is 1.544MHz
1 = if RSYSCLK is 2.048MHz or IBO enabled (See Section 28 for details on IBO function.)
Bit 1/TSYSCLK Mode Select (TSCLKM)
0 = if TSYSCLK is 1.544MHz
1 = if TSYSCLK is 2.048MHz or IBO enabled (See Section 28 for details on IBO function.)
Bit 2/H.100 SYNC Mode (H100EN)
0 = normal operation
1 = SYNC shift
Bit 3/TSSYNC Invert (TSSYNCINV)
0 = no inversion
1 = invert
Bit 4/TSYNC Invert (TSYNCINV)
0 = no inversion
1 = invert
Bit 5/RSYNC Invert (RSYNCINV)
0 = no inversion
1 = invert
Bit 6/TCLK Invert (TCLKINV)
0 = no inversion
1 = invert
Bit 7/RCLK Invert (RCLKINV)
0 = no inversion
1 = invert
DS2155
71 of 238
13. LOOPBACK CONFIGURATION
Register Name: LBCR
Register Description: Loopback Control Register
Register Address: 4Ah
Bit # 7 6 5 4 3 2 1 0
Name — — — LIUC LLB RLB PLB FLB
Default 0 0 0 0 0 0 0 0
Bit 0/Framer Loopback (FLB). This loopback is useful in testing and debugging applications. In FLB, the
DS2155 loops data from the transmit side back to the receive side. When FLB is enabled, the following occurs:
1) T1 Mode: An unframed all-ones code is transmitted at TPOSO and TNEGO.
E1 Mode: Normal data is transmitted at TPOSO and TNEGO.
2) Data at RPOSI and RNEGI is ignored.
3) All receive-side signals take on timing synchronous with TCLK instead of RCLKI.
Please note that it is not acceptable to have RCLK connected to TCLK during this loopback because this
causes an unstable condition.
0 = loopback disabled
1 = loopback enabled
Bit 1/Payload Loopback (PLB). When PLB is enabled, the following occurs:
1) Data is transmitted from the TPOSO and TNEGO pins synchronous with RCLK instead of TCLK.
2) All the receive side signals continue to operate normally.
3) Data at the TSER, TDATA, and TSIG pins is ignored.
4) The TLCLK signal becomes synchronous with RCLK instead of TCLK.
0 = loopback disabled
1 = loopback enabled
T1 Mode. Normally, this loopback is only enabled when ESF framing is being performed but can also be
enabled in D4 framing applications. In a PLB situation, the DS2155 loops the 192 bits of payload data
(with BPVs corrected) from the receive section back to the transmit section. The FPS framing pattern,
CRC6 calculation, and the FDL bits are not looped back; they are reinserted by the DS2155.
E1 Mode. In a PLB situation, the DS2155 loops the 248 bits of payload data (with BPVs corrected) from
the receive section back to the transmit section. The transmit section modifies the payload as if it was input
at TSER. The FAS word; Si, Sa, and E bits; and CRC4 are not looped back; they are reinserted by the
DS2155.
Bit 2/Remote Loopback (RLB). In this loopback, data input by the RPOSI and RNEGI pins is transmitted back to
the TPOSO and TNEGO pins. Data continues to pass through the receive-side framer of the DS2155 as it would
normally. Data from the transmit-side formatter is ignored. See Figure 3-1 for more details.
0 = loopback disabled
1 = loopback enabled
DS2155
72 of 238
Bit 3/Local Loopback (LLB). In this loopback, data continues to be transmitted as normal through the transmit
side of the SCT. Data being received at RTIP and RRING are replaced with the data being transmitted. Data in this
loopback passes through the jitter attenuator. See Figure 3-2 for more details.
0 = loopback disabled
1 = loopback enabled
Bit 4/Line Interface Unit Mux Control (LIUC). This is a software version of the LIUC pin. When the LIUC pin
is connected high, the LIUC bit has control. When the LIUC pin is connected low, the framer and LIU are
separated and the LIUC bit has no effect
0 = if LIUC pin connected high, LIU internally connected to framer block and deactivate the
TPOSI/TNEGI/TCLKI/RPOSI/RNEGI/RCLKI pins
1 = if LIUC pin connected high, disconnect LIU from framer block and activate the
TPOSI/TNEGI/TCLKI/RPOSI/RNEGI/RCLKI pins
LIUC Pin LIUC Bit Condition
0 0 LIU and framer separated
0 1 LIU and framer separated
1 0
LIU and framer connected
1 1
LIU and framer separated
Bits 5 to 7/Unused, must be set to 0 for proper operation
DS2155
73 of 238
13.1 Per-Channel Loopback
The per-channel loopback registers (PCLRs) determine which channels (if any) from the backplane
should be replaced with the data from the receive side or, i.e., off of the T1 or E1 line. If this loopback is
enabled, then transmit and receive clocks and frame syncs must be synchronized. One method to
accomplish this is to connect RCLK to TCLK and RFSYNC to TSYNC. There are no restrictions on
which channels can be looped back or on how many channels can be looped back.
Each of the bit positions in the per-channel loopback registers (PCLR1/PCLR2/PCLR3/PCLR4)
represents a DS0 channel in the outgoing frame. When these bits are set to a 1, data from the
corresponding receive channel replaces the data on TSER for that channel.
Register Name: PCLR1
Register Description: Per-Channel Loopback Enable Register 1
Register Address: 4Bh
Bit # 7 6 5 4 3 2 1 0
Name CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Per-Channel Loopback Enable for Channels 1 to 8 (CH1 to CH8)
0 = loopback disabled
1 = enable loopback; source data from the corresponding receive channel
Register Name: PCLR2
Register Description: Per-Channel Loopback Enable Register 2
Register Address: 4Ch
Bit # 7 6 5 4 3 2 1 0
Name CH16 CH15 CH14 CH13 CH12 CH11 CH10 CH9
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Per-Channel Loopback Enable for Channels 9 to 16 (CH9 to CH16)
0 = loopback disabled
1 = enable loopback; source data from the corresponding receive channel
DS2155
74 of 238
Register Name: PCLR3
Register Description: Per-Channel Loopback Enable Register 3
Register Address: 4Dh
Bit # 7 6 5 4 3 2 1 0
Name CH24 CH23 CH22 CH21 CH20 CH19 CH18 CH17
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Per-Channel Loopback Enable for Channels 17 to 24 (CH17 to CH24)
0 = loopback disabled
1 = enable loopback; source data from the corresponding receive channel
Register Name: PCLR4
Register Description: Per-Channel Loopback Enable Register 4
Register Address: 4Eh
Bit # 7 6 5 4 3 2 1 0
Name CH32 CH31 CH30 CH29 CH28 CH27 CH26 CH25
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Per-Channel Loopback Enable for Channels 25 to 32 (CH25 to CH32)
0 = loopback disabled
1 = enable loopback; source data from the corresponding receive channel
DS2155
75 of 238
14. ERROR COUNT REGISTERS
The DS2155 contains four counters that are used to accumulate line-coding errors, path errors, and
synchronization errors. Counter update options include one-second boundaries, 42ms (T1 mode only),
62ms (E1 mode only), or manual. See Error-Counter Configuration Register (ERCNT). When updated
automatically, the user can use the interrupt from the timer to determine when to read these registers. All
four counters saturate at their respective maximum counts, and they do not roll over. Note: Only the line-
code violation count register has the potential to overflow, but the bit error would have to exceed 10E-2
before this would occur.
Register Name: ERCNT
Register Description: Error-Counter Configuration Register
Register Address: 41h
Bit # 7 6 5 4 3 2 1 0
Name — MECU ECUS EAMS VCRFS FSBE MOSCRF LCVCRF
Default 0 0 0 0 0 0 0 0
Bit 0/T1 Line-Code Violation Count Register Function Select (LCVCRF)
0 = do not count excessive 0s
1 = count excessive 0s
Bit 1/Multiframe Out-of-Sync Count Register Function Select (MOSCRF)
0 = count errors in the framing bit position
1 = count the number of multiframes out-of-sync
Bit 2/PCVCR Fs-Bit Error-Report Enable (FSBE)
0 = do not report bit errors in Fs-bit position; only Ft-bit position
1 = report bit errors in Fs-bit position as well as Ft-bit position
Bit 3/E1 Line-Code Violation Count Register Function Select (VCRFS)
0 = count bipolar violations (BPVs)
1 = count code violations (CVs)
Bit 4/Error-Accumulation Mode Select (EAMS)
0 = ERCNT.5 determines accumulation time
1 = ERCNT.6 determines accumulation time
Bit 5/Error-Counter Update Select (ECUS)
T1 Mode:
0 = update error counters once a second
1 = update error counters every 42ms (333 frames)
E1 Mode:
0 = update error counters once a second
1 = update error counters every 62.5ms (500 frames)
Bit 6/Manual Error-Counter Update (MECU). When enabled by ERCNT.4, the changing of this bit from a 0 to
a 1 allows the next clock cycle to load the error-counter registers with the latest counts and reset the counters. The
user must wait a minimum of 1.5 RCLK clock periods before reading the error count registers to allow for proper
update.
Bit 7/Unused, must be set to 0 for proper operation
DS2155
76 of 238
14.1 Line-Code Violation Count Register (LCVCR)
14.1.1 T1 Operation
T1 code violations are defined as bipolar violations (BPVs) or excessive 0s. If the B8ZS mode is set for
the receive side, then B8ZS codewords are not counted. This counter is always enabled; it is not disabled
during receive loss-of-synchronization (RLOS = 1) conditions. Table 14-A shows what the LCVCRs
count.
Table 14-A. T1 Line Code Violation Counting Options
COUNT EXCESSIVE
ZEROS?
(ERCNT.0)
B8ZS ENABLED?
(T1RCR2.5) COUNTED IN THE LCVCRs
No No BPVs
Yes No BPVs + 16 consecutive 0s
No Yes BPVs (B8ZS codewords not counted)
Yes Yes BPVs + 8 consecutive 0s
14.1.2 E1 Operation
Either bipolar violations or code violations can be counted. Bipolar violations are defined as consecutive
marks of the same polarity. In this mode, if the HDB3 mode is set for the receive side, then HDB3
codewords are not counted as BPVs. If ERCNT.3 is set, then the LVC counts code violations as defined
in ITU O.161. Code violations are defined as consecutive bipolar violations of the same polarity. In most
applications, the framer should be programmed to count BPVs when receiving AMI code and to count
CVs when receiving HDB3 code. This counter increments at all times and is not disabled by loss-of-sync
conditions. The counter saturates at 65,535 and does not roll over. The bit-error rate on an E1 line would
have to be greater than 10-2 before the VCR would saturate (Table 14-B).
Table 14-B. E1 Line-Code Violation Counting Options
E1 CODE VIOLATION SELECT
(ERCNT.3) COUNTED IN THE LCVCRs
0 BPVs
1 CVs
DS2155
77 of 238
Register Name: LCVCR1
Register Description: Line-Code Violation Count Register 1
Register Address: 42h
Bit # 7 6 5 4 3 2 1 0
Name LCVC15 LCVC14 LCVC13 LCVC12 LCVC11 LCVC10 LCVC9 LCCV8
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Line-Code Violation Counter Bits 8 to 15 (LCVC8 to LCVC15). LCV15 is the MSB of the 16-bit
code violation count.
Register Name: LCVCR2
Register Description: Line-Code Violation Count Register 2
Register Address: 43h
Bit # 7 6 5 4 3 2 1 0
Name LCVC7 LCVC6 LCVC5 LCVC4 LCVC3 LCVC2 LCVC1 LCVC0
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Line-Code Violation Counter Bits 0 to 7 (LCVC0 to LCVC7). LCV0 is the LSB of the 16-bit code
violation count.
DS2155
78 of 238
14.2 Path Code Violation Count Register (PCVCR)
14.2.1 T1 Operation
The path code violation count register records Ft, Fs, or CRC6 errors in T1 frames. When the receive side
of a framer is set to operate in the T1 ESF framing mode, PCVCR records errors in the CRC6 codewords.
When set to operate in the T1 D4 framing mode, PCVCR counts errors in the Ft framing bit position.
Through the ERCNT.2 bit, a framer can be programmed to also report errors in the Fs framing bit
position. The PCVCR is disabled during receive loss-of-synchronization (RLOS = 1) conditions.
Table 14-C shows what errors the PCVCR counts.
Table 14-C. T1 Path Code Violation Counting Arrangements
FRAMING MODE COUNT Fs ERRORS? COUNTED
IN THE PCVCRs
D4 No Errors in the Ft pattern
D4 Yes Errors in both the Ft and Fs patterns
ESF Don’t Care Errors in the CRC6 codewords
14.2.2 E1 Operation
The path code violation-count register records CRC4 errors. Since the maximum CRC4 count in a one-
second period is 1000, this counter cannot saturate. The counter is disabled during loss-of-sync at either
the FAS or CRC4 level; it continues to count if loss-of-multiframe sync occurs at the CAS level.
Path code violation-count register 1 (PCVCR1) is the most significant word and PCVCR2 is the least
significant word of a 16-bit counter that records path violations (PVs).
Register Name: PCVCR1
Register Description: Path Code Violation Count Register 1
Register Address: 44h
Bit # 7 6 5 4 3 2 1 0
Name PCVC15 PCVC14 PCVC13 PCVC12 PCVC11 PCVC10 PCVC9 PCVC8
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Path Code Violation Counter Bits 8 to 15 (PCVC8 to PCVC15). PCVC15 is the MSB of the 16-bit
path code violation count.
Register Name: PCVCR2
Register Description: Path Code Violation Count Register 2
Register Address: 45h
Bit # 7 6 5 4 3 2 1 0
Name PCVC7 PCVC6 PCVC5 PCVC4 PCVC3 PCVC2 PCVC1 PCVC0
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Path Code Violation Counter Bits 0 to 7 (PCVC0 to PCVC7). PCVC0 is the LSB of the 16-bit path
code violation count.
DS2155
79 of 238
14.3 Frames Out-of-Sync Count Register (FOSCR)
14.3.1 T1 Operation
The FOSCR is used to count the number of multiframes that the receive synchronizer is out of sync. This
number is useful in ESF applications needing to measure the parameters loss-of-frame count (LOFC) and
ESF error events as described in AT&T publication TR54016. When the FOSCR is operated in this
mode, it is not disabled during receive loss-of-synchronization (RLOS = 1) conditions. The FOSCR has
an alternate operating mode whereby it counts either errors in the Ft framing pattern (in the D4 mode) or
errors in the FPS framing pattern (in the ESF mode). When the FOSCR is operated in this mode, it is
disabled during receive loss-of-synchronization (RLOS = 1) conditions. Table 14-D shows what the
FOSCR is capable of counting.
Table 14-D. T1 Frames Out-of-Sync Counting Arrangements
FRAMING MODE
(T1RCR1.3)
COUNT MOS OR
F-BIT ERRORS
(ERCNT.1)
COUNTED IN THE FOSCRs
D4 MOS Number of multiframes out-of-sync
D4 F-Bit Errors in the Ft pattern
ESF MOS Number of multiframes out-of-sync
ESF F-Bit Errors in the FPS pattern
14.3.2 E1 Operation
The FOSCR counts word errors in the FAS in time slot 0. This counter is disabled when RLOS is high.
FAS errors are not counted when the framer is searching for FAS alignment and/or synchronization at
either the CAS or CRC4 multiframe level. Since the maximum FAS word error count in a one-second
period is 4000, this counter cannot saturate.
The frames out-of-sync count register 1 (FOSCR1) is the most significant word and FOSCR2 is the least
significant word of a 16-bit counter that records frames out-of-sync.
Register Name: FOSCR1
Register Description: Frames Out-of-Sync Count Register 1
Register Address: 46h
Bit # 7 6 5 4 3 2 1 0
Name FOS15 FOS14 FOS13 FOS12 FOS11 FOS10 FOS9 FOS8
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Frames Out-of-Sync Counter Bits 8 to 15 (FOS8 to FOS15). FOS15 is the MSB of the 16-bit frames
out-of-sync count.
Register Name: FOSCR2
Register Description: Frames Out-of-Sync Count Register 2
Register Address: 47h
Bit # 7 6 5 4 3 2 1 0
Name FOS7 FOS6 FOS5 FOS4 FOS3 FOS2 FOS1 FOS0
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Frames Out-of-Sync Counter Bits 0 to 7 (FOS0 to FOS7). FOS0 is the LSB of the 16-bit frames out-
of-sync count.
DS2155
80 of 238
14.4 E-Bit Counter (EBCR)
This counter is only available in E1 mode. E-bit count register 1 (EBCR1) is the most significant word
and EBCR2 is the least significant word of a 16-bit counter that records far-end block errors (FEBE) as
reported in the first bit of frames 13 and 15 on E1 lines running with CRC4 multiframe. These count
registers increment once each time the received E-bit is set to 0. Since the maximum E-bit count in a one-
second period is 1000, this counter cannot saturate. The counter is disabled during loss-of-sync at either
the FAS or CRC4 level; it continues to count if loss-of-multiframe sync occurs at the CAS level.
Register Name: EBCR1
Register Description: E-Bit Count Register 1
Register Address: 48h
Bit # 7 6 5 4 3 2 1 0
Name EB15 EB14 EB13 EB12 EB11 EB10 EB9 EB8
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/E-Bit Counter Bits 8 to 15 (EB8 to EB15). EB15 is the MSB of the 16-bit E-bit count.
Register Name: EBCR2
Register Description: E-Bit Count Register 2
Register Address: 49h
Bit # 7 6 5 4 3 2 1 0
Name EB7 EB6 EB5 EB4 EB3 EB2 EB1 EB0
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/E-Bit Counter Bits 0 to 7 (EB0 to EB7). EB0 is the LSB of the 16-bit E-bit count.
DS2155
81 of 238
15. DS0 MONITORING FUNCTION
The DS2155 has the ability to monitor one DS0 64kbps channel in the transmit direction and one DS0
channel in the receive direction at the same time. In the transmit direction, the user determines which
channel is to be monitored by properly setting the TCM0 to TCM4 bits in the TDS0SEL register. In the
receive direction, the RCM0 to RCM4 bits in the RDS0SEL register need to be properly set. The DS0
channel pointed to by the TCM0 to TCM4 bits appear in the transmit DS0 monitor (TDS0M) register.
The DS0 channel pointed to by the RCM0 to RCM4 bits appear in the receive DS0 (RDS0M) register.
The TCM4 to TCM0 and RCM4 to RCM0 bits should be programmed with the decimal decode of the
appropriate T1or E1 channel. T1 channels 1 through 24 map to register values 0 through 23. E1 channels
1 through 32 map to register values 0 through 31. For example, if DS0 channel 6 in the transmit direction
and DS0 channel 15 in the receive direction needed to be monitored, then the following values would be
programmed into TDS0SEL and RDS0SEL:
TCM4 = 0 RCM4 = 0
TCM3 = 0 RCM3 = 1
TCM2 = 1 RCM2 = 1
TCM1 = 0 RCM1 = 1
TCM0 = 1 RCM0 = 0
Register Name: TDS0SEL
Register Description: Transmit Channel Monitor Select
Register Address: 74h
Bit # 7 6 5 4 3 2 1 0
Name — — — TCM4 TCM3 TCM2 TCM1 TCM0
Default 0 0 0 0 0 0 0 0
Bits 0 to 4/Transmit Channel Monitor Bits (TCM0 to TCM4). TCM0 is the LSB of a 5-bit channel select that
determines which transmit channel data appear in the TDS0M register.
Bits 5 to 7/Unused, must be set to 0 for proper operation
Register Name: TDS0M
Register Description: Transmit DS0 Monitor Register
Register Address: 75h
Bit # 7 6 5 4 3 2 1 0
Name B1 B2 B3 B4 B5 B6 B7 B8
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Transmit DS0 Channel Bits (B1 to B8). Transmit channel data that has been selected by the transmit
channel monitor select register. B8 is the LSB of the DS0 channel (last bit to be transmitted).
DS2155
82 of 238
Register Name: RDS0SEL
Register Description: Receive Channel Monitor Select
Register Address: 76h
Bit # 7 6 5 4 3 2 1 0
Name — — — RCM4 RCM3 RCM2 RCM1 RCM0
Default 0 0 0 0 0 0 0 0
Bits 0 to 4/Receive Channel Monitor Bits (RCM0 to RCM4). RCM0 is the LSB of a 5-bit channel select that
determines which receive DS0 channel data appear in the RDS0M register.
Bits 5 to 7/Unused, must be set to 0 for proper operation
Register Name: RDS0M
Register Description: Receive DS0 Monitor Register
Register Address: 77h
Bit # 7 6 5 4 3 2 1 0
Name B1 B2 B3 B4 B5 B6 B7 B8
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Receive DS0 Channel Bits (B1 to B8). Receive channel data that has been selected by the receive
channel monitor select register. B8 is the LSB of the DS0 channel (last bit to be received).
DS2155
83 of 238
16. SIGNALING OPERATION
There are two methods to access receive signaling data and provide transmit signaling data, processor-
based (software-based) or hardware-based. Processor-based refers to access through the transmit and
receive signaling registers RS1–RS16 and TS1–TS16. Hardware-based refers to the TSIG and RSIG pins.
Both methods can be used simultaneously.
16.1 Receive Signaling
Figure 16-1. Simplified Diagram of Receive Signaling Path
16.1.1 Processor-Based Signaling
The robbed-bit signaling (T1) or TS16 CAS signaling (E1) is sampled in the receive data stream and
copied into the receive signaling registers, RS1–RS16. In T1 mode, only RS1–RS12 are used. The
signaling information in these registers is always updated on multiframe boundaries. This function is
always enabled.
16.1.1.1 Change-of-State
To avoid constant monitoring of the receive signaling registers, the DS2155 can be programmed to alert
the host when any specific channel or channels undergo a change of their signaling state.
RSCSE1–RSCSE4 for E1 and RSCSE1–RSCSE3 for T1 are used to select which channels can cause a
change-of-state indication. The change-of-state is indicated in status register 5 (SR1.5). If signaling
integration (CCR1.5) is enabled, then the new signaling state must be constant for three multiframes
before a change-of-state is indicated. The user can enable the INT pin to toggle low upon detection of a
change in signaling by setting the IMR1.5 bit. The signaling integration mode is global and cannot be
enabled on a channel-by-channel basis.
The user can identity which channels have undergone a signaling change-of-state by reading the
RSINFO1–RSINFO4 registers. The information from these registers inform the user which RSx register
to read for the new signaling data. All changes are indicated in the RSINFO1–RSINFO4 registers
regardless of the RSCSE1–RSCSE4 registers.
RECEIVE SIGNALING
REGISTERS
CHANGE-OF-STATE
INDICATION
REGISTERS
SIGNALING
BUFFERS
A
LL-ONES
REINSERTION
CONTROL
RSER
RSYNC
RSIG
T1/E1 DATA STREAM
PER-CHANNEL
CONTROL
SIGNALING
EXTRACTION
DS2155
84 of 238
16.1.2 Hardware-Based Receive Signaling
In hardware-based signaling the signaling data can be obtained from the RSER pin or the RSIG pin.
RSIG is a signaling PCM stream output on a channel-by-channel basis from the signaling buffer. The
signaling data, T1 robbed bit or E1 TS16, is still present in the original data stream at RSER. The
signaling buffer provides signaling data to the RSIG pin and also allows signaling data to be reinserted
into the original data stream in a different alignment that is determined by a multiframe signal from the
RSYNC pin. In this mode, the receive elastic store can be enabled or disabled. If the receive elastic store
is enabled, then the backplane clock (RSYSCLK) can be either 1.544MHz or 2.048MHz. In the ESF
framing mode, the ABCD signaling bits are output on RSIG in the lower nibble of each channel. The
RSIG data is updated once a multiframe (3ms) unless a freeze is in effect. In the D4 framing mode, the
AB signaling bits are output twice on RSIG in the lower nibble of each channel. Hence, bits 5 and 6
contain the same data as bits 7 and 8, respectively, in each channel. The RSIG data is updated once a
multiframe (1.5ms) unless a freeze is in effect. See the timing diagrams in Section 35 for some examples.
16.1.2.1 Receive Signaling Reinsertion at RSER
In this mode, the user provides a multiframe sync at the RSYNC pin and the signaling data is reinserted
based on this alignment. In T1 mode, this results in two copies of the signaling data in the RSER data
stream, the original signaling data and the realigned data. This is of little consequence in voice channels.
Reinsertion can be avoided in data channels since this feature is activated on a per-channel basis. In this
mode, the elastic store must be enabled; however, the backplane clock can be either 1.544MHz or
2.048MHz.
Signaling reinsertion can be enabled on a per-channel basis by setting the RSRCS bit high in the PCPR
register. The channels that will have signaling reinserted are selected by writing to the PCDR1–PCDR3
registers for T1 mode and PCDR1–PCDR4 registers for E1 mode. In E1 mode, the user generally selects
all channels or none for reinsertion. In E1 mode, signaling reinsertion on all channels can be enabled with
a single bit, SIGCR.7 (GRSRE). This bit allows the user to reinsert all signaling channels without having
to program all channels through the per-channel function.
16.1.2.2 Force Receive Signaling All Ones
In T1 mode, the user can, on a per-channel basis, force the robbed-bit signaling bit positions to a 1 by
using the per-channel register (Section 7). The user sets the BTCS bit in the PCPR register. The channels
that will be forced to 1 are selected by writing to the PCDR1–PCDR3 registers.
16.1.2.3 Receive Signaling Freeze
The signaling data in the four multiframe signaling buffers is frozen in a known good state upon either a
loss of synchronization (OOF event), carrier loss, or frame slip. This action meets the requirements of
BellCore TR–TSY–000170 for signaling freezing. To allow this freeze action to occur, the RFE control
bit (SIGCR.4) should be set high. The user can force a freeze by setting the RFF control bit (SIGCR.3)
high. The RSIGF output pin provides a hardware indication that a freeze is in effect. The four-multiframe
buffer provides a three-multiframe delay in the signaling bits provided at the RSIG pin (and at the RSER
pin if receive signaling reinsertion is enabled). When freezing is enabled (RFE = 1), the signaling data is
held in the last-known good state until the corrupting error condition subsides. When the error condition
subsides, the signaling data is held in the old state for at least an additional 9ms (or 4.5ms in D4 framing
mode) before updating with new signaling data.
DS2155
85 of 238
Register Name: SIGCR
Register Description: Signaling Control Register
Register Address: 40h
Bit # 7 6 5 4 3 2 1 0
Name GRSRE RFE RFF RCCS TCCS FRSAO
Default 0 0 0 0 0 0 0 0
Bit 0/Force Receive Signaling All Ones (FRSAO). In T1 mode, this bit forces all signaling data at the RSIG and
RSER pin to all ones. This bit has no effect in E1 mode.
0 = normal signaling data at RSIG and RSER
1 = force signaling data at RSIG and RSER to all ones
Bit 1/Transmit Time Slot Control for CAS Signaling (TCCS). Controls the order that signaling is transmitted
from the transmit signaling registers. This bit should be set = 0 in T1 mode.
0 = signaling data is CAS format
1 = signaling data is CCS format
Bit 2/Receive Time Slot Control for CAS Signaling (RCCS). Controls the order that signaling is placed into the
receive signaling registers. This bit should be set = 0 in T1 mode.
0 = signaling data is CAS format
1 = signaling data is CCS format
Bit 3/Receive Force Freeze (RFF). Freezes receive-side signaling at RSIG (and RSER if receive signaling
reinsertion is enabled); overrides receive freeze enable (RFE). See Section 16.1.2.3 for details.
0 = do not force a freeze event
1 = force a freeze event
Bit 4/Receive Freeze Enable (RFE). See Section 16.1.2.3 for details.
0 = no freezing of receive signaling data occurs
1 = allow freezing of receive signaling data at RSIG (and RSER if receive signaling reinsertion is enabled)
Bits 5, 6/Unused, must be set to 0 for proper operation
Bit 7/Global Receive Signaling Reinsertion Enable (GRSRE). This bit allows the user to reinsert all signaling
channels without programming all channels through the per-channel function.
0 = do not reinsert all signaling
1 = reinsert all signaling
DS2155
86 of 238
Register Name: RS1 to RS12
Register Description: Receive Signaling Registers (T1 Mode, ESF Format)
Register Address: 60h to 6Bh
(MSB)
(LSB)
CH2-A CH2-B CH2-C CH2-D CH1-A CH1-B CH1-C CH1-D RS1
CH4-A CH4-B CH4-C CH4-D CH3-A CH3-B CH3-C CH3-D RS2
CH6-A CH6-B CH6-C CH6-D CH5-A CH5-B CH5-C CH5-D RS3
CH8-A CH8-B CH8-C CH8-D CH7-A CH7-B CH7-C CH7-D RS4
CH10-A CH10-B CH10-C CH10-D CH9-A CH9-B CH9-C CH9-D RS5
CH12-A CH12-B CH12-C CH12-D CH11-A CH11-B CH11-C CH11-D RS6
CH14-A CH14-B CH14-C CH14-D CH13-A CH13-B CH13-C CH13-D RS7
CH16-A CH16-B CH16-C CH16-D CH15-A CH15-B CH15-C CH15-D RS8
CH18-A CH18-B CH18-C CH18-D CH17-A CH17-B CH17-C CH17-D RS9
CH20-A CH20-B CH20-C CH20-D CH19-A CH19-B CH19-C CH19-D RS10
CH22-A CH22-B CH22-C CH22-D CH21-A CH21-B CH21-C CH21-D RS11
CH24-A CH24-B CH24-C CH24-D CH23-A CH23-B CH23-C CH23-D RS12
Register Name: RS1 to RS12
Register Description: Receive Signaling Registers (T1 Mode, D4 Format)
Register Address: 60h to 6Bh
(MSB)
(LSB)
CH2-A CH2-B CH2-A CH2-B
CH1-A CH1-B CH1-A CH1-B RS1
CH4-A CH4-B CH4-A CH4-B
CH3-A CH3-B CH3-A CH3-B RS2
CH6-A CH6-B CH6-A CH6-B
CH5-A CH5-B CH5-A CH5-B RS3
CH8-A CH8-B CH8-A CH8-B
CH7-A CH7-B CH7-A CH7-B RS4
CH10-A CH10-B CH10-A CH10-B
CH9-A CH9-B CH9-A CH9-B RS5
CH12-A CH12-B CH12-A CH12-B
CH11-A CH11-B CH11-A CH11-B RS6
CH14-A CH14-B CH14-A CH14-B
CH13-A CH13-B CH13-A CH13-B RS7
CH16-A CH16-B CH16-A CH16-B
CH15-A CH15-B CH15-A CH15-B RS8
CH18-A CH18-B CH18-A CH18-B
CH17-A CH17-B CH17-A CH17-B RS9
CH20-A CH20-B CH20-A CH20-B
CH19-A CH19-B CH19-A CH19-B RS10
CH22-A CH22-B CH22-A CH22-B
CH21-A CH21-B CH21-A CH21-B RS11
CH24-A CH24-B CH24-A CH24-B
CH23-A CH23-B CH23-A CH23-B RS12
Note: In D4 format, TS1–TS12 contain signaling data for two frames. Bold type indicates data for second frame.
DS2155
87 of 238
Register Name: RS1 to RS16
Register Description: Receive Signaling Registers (E1 Mode, CAS Format)
Register Address: 60h to 6Fh
(MSB)
(LSB)
0 0 0 0 X Y X X RS1
CH2-A CH2-B CH2-C CH2-D CH1-A CH1-B CH1-C CH1-D RS2
CH4-A CH4-B CH4-C CH4-D CH3-A CH3-B CH3-C CH3-D RS3
CH6-A CH6-B CH6-C CH6-D CH5-A CH5-B CH5-C CH5-D RS4
CH8-A CH8-B CH8-C CH8-D CH7-A CH7-B CH7-C CH7-D RS5
CH10-A CH10-B CH10-C CH10-D CH9-A CH9-B CH9-C CH9-D RS6
CH12-A CH12-B CH12-C CH12-D CH11-A CH11-B CH11-C CH11-D RS7
CH14-A CH14-B CH14-C CH14-D CH13-A CH13-B CH13-C CH13-D RS8
CH16-A CH16-B CH16-C CH16-D CH15-A CH15-B CH15-C CH15-D RS9
CH18-A CH18-B CH18-C CH18-D CH17-A CH17-B CH17-C CH17-D RS10
CH20-A CH20-B CH20-C CH20-D CH19-A CH19-B CH19-C CH19-D RS11
CH22-A CH22-B CH22-C CH22-D CH21-A CH21-B CH21-C CH21-D RS12
CH24-A CH24-B CH24-C CH24-D CH23-A CH23-B CH23-C CH23-D RS13
CH26-A CH26-B CH26-C CH26-D CH25-A CH25-B CH25-C CH25-D RS14
CH28-A CH28-B CH28-C CH28-D CH27-A CH27-B CH27-C CH27-D RS15
CH30-A CH30-B CH30-C CH30-D CH29-A CH29-B CH29-C CH29-D RS16
Register Name: RS1 to RS16
Register Description: Receive Signaling Registers (E1 Mode, CCS Format)
Register Address: 60h to 6Fh
(MSB)
(LSB)
1 2 3 4 5 6 7 8 RS1
9 10 11 12 13 14 15 16 RS2
17 18 19 20 21 22 23 24 RS3
25 26 27 28 29 30 31 32 RS4
33 34 35 36 37 38 39 40 RS5
41 42 43 44 45 46 47 48 RS6
49 50 51 52 53 54 55 56 RS7
57 58 59 60 61 62 63 64 RS8
65 66 67 68 69 70 71 72 RS9
73 74 75 76 77 78 79 80 RS10
81 82 83 84 85 86 87 88 RS11
89 90 91 92 93 94 95 96 RS12
97 98 99 100 101 102 103 104 RS13
105 106 107 108 109 110 111 112 RS14
113 114 115 116 117 118 119 120 RS15
121 122 123 124 125 126 127 128 RS16
DS2155
88 of 238
Register Name: RSCSE1, RSCSE2, RSCSE3, RSCSE4
Register Description: Receive Signaling Change-of-State Interrupt Enable
Register Address: 3Ch, 3Dh, 3Eh, 3Fh
(MSB)
(LSB)
CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 RSCSE1
CH16 CH15 CH14 CH13 CH12 CH11 CH10 CH9 RSCSE2
CH24 CH23 CH22 CH21 CH20 CH19 CH18 CH17 RSCSE3
CH30 CH29 CH28 CH27 CH26 CH25 RSCSE4
Setting any of the CH1–CH30 bits in the RSCSE1–RSCSE4 registers causes an interrupt when that channel’s
signaling data changes state.
Register Name: RSINFO1, RSINFO2, RSINFO3, RSINFO4
Register Description: Receive Signaling Change-of-State Information
Register Address: 38h, 39h, 3Ah, 3Bh
(MSB)
(LSB)
CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 RSINFO1
CH16 CH15 CH14 CH13 CH12 CH11 CH10 CH9 RSINFO2
CH24 CH23 CH22 CH21 CH20 CH19 CH18 CH17 RSINFO3
CH30 CH29 CH28 CH27 CH26 CH25 RSINFO4
When a channel’s signaling data changes state, the respective bit in registers RSINFO1–4 is set. An interrupt is
generated if the channel was also enabled as an interrupt source by setting the appropriate bit in RSCSE1–4. The
bit remains set until read.
DS2155
89 of 238
16.2 Transmit Signaling
Figure 16-2. Simplified Diagram of Transmit Signaling Path
16.2.1 Processor-Based Mode
In processor-based mode, signaling data is loaded into the transmit signaling registers (TS1–TS16) by the
host interface. On multiframe boundaries, the contents of these registers are loaded into a shift register for
placement in the appropriate bit position in the outgoing data stream. The user can employ the transmit
multiframe interrupt in status register 4 (SR4.4) to know when to update the signaling bits. The user need
not update any transmit signaling register for which there is no change-of-state for that register.
Each transmit signaling register contains the robbed-bit signaling (T1) or TS16 CAS signaling (E1) for
two time slots that are inserted into the outgoing stream, if enabled to do so through T1TCR1.4 (T1
mode) or E1TCR1.6 (E1 mode). In T1 mode, only TS1–TS12 are used.
Signaling data can be sourced from the TS registers on a per-channel basis by using the software
signaling insertion enable registers, SSIE1–SSIE4.
16.2.1.1 T1 Mode
In T1 ESF framing mode, there are four signaling bits per channel (A, B, C, and D). TS1–TS12 contain a
full multiframe of signaling data. In T1 D4 framing mode, there are only two signaling bits per channel
(A and B). In T1 D4 framing mode, the framer uses the C and D bit positions as the A and B bit positions
for the next multiframe. In D4 mode, two multiframes of signaling data can be loaded into TS1–TS12.
The framer loads the contents of TS1–TS12 into the outgoing shift register every other D4 multiframe. In
D4 mode, the host should load new contents into TS1–TS12 on every other multiframe boundary and no
later than 120µs after the boundary.
TRANSMIT
SIGNALING
REGISTERS
SIGNALING
BUFFERS
PER-CHANNEL
CONTROL
TSER
TSIG
T1/E1 DATA
STREAM
PER-CHANNEL
CONTROL
SSIE1 - SSIE4
B7
T1TCR1.4
1
0
0
1
0
1
PCPR.3
ONLY APPLIES TO T1 MODE
DS2155
90 of 238
16.2.1.2 E1 Mode
In E1 mode, TS16 carries the signaling information. This information can be in either CCS (common
channel signaling) or CAS (channel associated signaling) format. The 32 time slots are referenced by two
different channel number schemes in E1. In “Channel” numbering, TS0–TS31 are labeled channels 1
through 32. In “Phone Channel” numbering, TS1–TS15 are labeled channel 1 through channel 15 and
TS17–TS31 are labeled channel 15 through channel 30.
Table 16-A. Time Slot Numbering Schemes
TS 0 1 2 3 4 5 6 7 8 9 10 11 12 1314 151617 1819 20 2122 232425 2627 28 29 30 31
Channel 1 2 3 4 5 6 7 8 9 10 11 12 131415 1617 18 1920 212223 2425 262728 29 30 31 32
Phone
Channel
1 2 3 4 5 6 7 8 9 10 11 121314 15 161718 1920 212223 2425 26 27 28 29 30
DS2155
91 of 238
Register Name: TS1 to TS16
Register Description: Transmit Signaling Registers (E1 Mode, CAS Format)
Register Address: 50h to 5Fh
(MSB)
(LSB)
0 0 0 0 X Y X X TS1
CH2-A CH2-B CH2-C CH2-D CH1-A CH1-B CH1-C CH1-D TS2
CH4-A CH4-B CH4-C CH4-D CH3-A CH3-B CH3-C CH3-D TS3
CH6-A CH6-B CH6-C CH6-D CH5-A CH5-B CH5-C CH5-D TS4
CH8-A CH8-B CH8-C CH8-D CH7-A CH7-B CH7-C CH7-D TS5
CH10-A CH10-B CH10-C CH10-D CH9-A CH9-B CH9-C CH9-D TS6
CH12-A CH12-B CH12-C CH12-D CH11-A CH11-B CH11-C CH11-D TS7
CH14-A CH14-B CH14-C CH14-D CH13-A CH13-B CH13-C CH13-D TS8
CH16-A CH16-B CH16-C CH16-D CH15-A CH15-B CH15-C CH15-D TS9
CH18-A CH18-B CH18-C CH18-D CH17-A CH17-B CH17-C CH17-D TS10
CH20-A CH20-B CH20-C CH20-D CH19-A CH19-B CH19-C CH19-D TS11
CH22-A CH22-B CH22-C CH22-D CH21-A CH21-B CH21-C CH21-D TS12
CH24-A CH24-B CH24-C CH24-D CH23-A CH23-B CH23-C CH23-D TS13
CH26-A CH26-B CH26-C CH26-D CH25-A CH25-B CH25-C CH25-D TS14
CH28-A CH28-B CH28-C CH28-D CH27-A CH27-B CH27-C CH27-D TS15
CH30-A CH30-B CH30-C CH30-D CH29-A CH29-B CH29-C CH29-D TS16
Register Name: TS1 to TS16
Register Description: Transmit Signaling Registers (E1 Mode, CCS Format)
Register Address: 50h to 5Fh
(MSB)
(LSB)
1 2 3 4 5 6 7 8 TS1
9 10 11 12 13 14 15 16 TS2
17 18 19 20 21 22 23 24 TS3
25 26 27 28 29 30 31 32 TS4
33 34 35 36 37 38 39 40 TS5
41 42 43 44 45 46 47 48 TS6
49 50 51 52 53 54 55 56 TS7
57 58 59 60 61 62 63 64 TS8
65 66 67 68 69 70 71 72 TS9
73 74 75 76 77 78 79 80 TS10
81 82 83 84 85 86 87 88 TS11
89 90 91 92 93 94 95 96 TS12
97 98 99 100 101 102 103 104 TS13
105 106 107 108 109 110 111 112 TS14
113 114 115 116 117 118 119 120 TS15
121 122 123 124 125 126 127 128 TS16
DS2155
92 of 238
Register Name: TS1 to TS12
Register Description: Transmit Signaling Registers (T1 Mode, ESF Format)
Register Address: 50h to 5Bh
(MSB)
(LSB)
CH2-A CH2-B CH2-C CH2-D CH1-A CH1-B CH1-C CH1-D TS1
CH4-A CH4-B CH4-C CH4-D CH3-A CH3-B CH3-C CH3-D TS2
CH6-A CH6-B CH6-C CH6-D CH5-A CH5-B CH5-C CH5-D TS3
CH8-A CH8-B CH8-C CH8-D CH7-A CH7-B CH7-C CH7-D TS4
CH10-A CH10-B CH10-C CH10-D CH9-A CH9-B CH9-C CH9-D TS5
CH12-A CH12-B CH12-C CH12-D CH11-A CH11-B CH11-C CH11-D TS6
CH14-A CH14-B CH14-C CH14-D CH13-A CH13-B CH13-C CH13-D TS7
CH16-A CH16-B CH16-C CH16-D CH15-A CH15-B CH15-C CH15-D TS8
CH18-A CH18-B CH18-C CH18-D CH17-A CH17-B CH17-C CH17-D TS9
CH20-A CH20-B CH20-C CH20-D CH19-A CH19-B CH19-C CH19-D TS10
CH22-A CH22-B CH22-C CH22-D CH21-A CH21-B CH21-C CH21-D TS11
CH24-A CH24-B CH24-C CH24-D CH23-A CH23-B CH23-C CH23-D TS12
Register Name: TS1 to TS12
Register Description: Transmit Signaling Registers (T1 Mode, D4 Format)
Register Address: 50h to 5Bh
(MSB)
(LSB)
CH2-A CH2-B CH2-A CH2-B CH1-A CH1-B CH1-A CH1-B TS1
CH4-A CH4-B CH4-A CH4-B CH3-A CH3-B CH3-A CH3-B TS2
CH6-A CH6-B CH6-A CH6-B CH5-A CH5-B CH5-A CH5-B TS3
CH8-A CH8-B CH8-A CH8-B CH7-A CH7-B CH7-A CH7-B TS4
CH10-A CH10-B CH10-A CH10-B CH9-A CH9-B CH9-A CH9-B TS5
CH12-A CH12-B CH12-A CH12-B CH11-A CH11-B CH11-A CH11-B TS6
CH14-A CH14-B CH14-A CH14-B CH13-A CH13-B CH13-A CH13-B TS7
CH16-A CH16-B CH16-A CH16-B CH15-A CH15-B CH15-A CH15-B TS8
CH18-A CH18-B CH18-A CH18-B CH17-A CH17-B CH17-A CH17-B TS9
CH20-A CH20-B CH20-A CH20-B CH19-A CH19-B CH19-A CH19-B TS10
CH22-A CH22-B CH22-A CH22-B CH21-A CH21-B CH21-A CH21-B TS11
CH24-A CH24-B CH24-A CH24-B CH23-A CH23-B CH23-A CH23-B TS12
Note: In D4 format, TS1–TS12 contain signaling data for two frames. Bold type indicates data for second frame.
DS2155
93 of 238
16.2.2 Software Signaling Insertion-Enable Registers, E1 CAS Mode
In E1 CAS mode, the CAS signaling alignment/alarm byte can be sourced from the transmit signaling
registers along with the signaling data.
Register Name: SSIE1
Register Description: Software Signaling Insertion Enable 1
Register Address: 08h
Bit # 7 6 5 4 3 2 1 0
Name CH7 CH6 CH5 CH4 CH3 CH2 CH1 UCAW
Default 0 0 0 0 0 0 0 0
Bit 0/Upper CAS Align/Alarm Word (UCAW). Selects the upper CAS align/alarm pattern (0000) to be sourced
from the upper 4 bits of the TS1 register.
0 = do not source the upper CAS align/alarm pattern from the TS1 register
1 = source the upper CAS align/alarm pattern from the TS1 register
Bits 1 to 7/Software Signaling-Insertion Enable for Channels 1 to 7 (CH1 to CH7). These bits determine
which channels are to have signaling inserted from the transmit signaling registers.
0 = do not source signaling data from the TSx registers for this channel
1 = source signaling data from the TSx registers for this channel
Register Name: SSIE2
Register Description: Software Signaling Insertion Enable 2
Register Address: 09h
Bit # 7 6 5 4 3 2 1 0
Name CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Software Signaling Insertion Enable for Channels 8 to 15 (CH8 to CH15). These bits determine
which channels are to have signaling inserted from the transmit signaling registers.
0 = do not source signaling data from the TSx registers for this channel
1 = source signaling data from the TSx registers for this channel
DS2155
94 of 238
Register Name: SSIE3
Register Description: Software Signaling Insertion Enable 3
Register Address: 0Ah
Bit # 7 6 5 4 3 2 1 0
Name CH22 CH21 CH20 CH19 CH18 CH17 CH16 LCAW
Default 0 0 0 0 0 0 0 0
Bit 0/Lower CAS Align/Alarm Word (LCAW). Selects the lower CAS align/alarm bits (xyxx) to be sourced
from the lower 4 bits of the TS1 register.
0 = do not source the lower CAS align/alarm bits from the TS1 register
1 = source the lower CAS alarm align/bits from the TS1 register
Bits 1 to 7/Software Signaling Insertion Enable for LCAW and Channels 16 to 22 (CH16 to CH22). These
bits determine which channels are to have signaling inserted from the transmit signaling registers.
0 = do not source signaling data from the TSx registers for this channel
1 = source signaling data from the TSx registers for this channel
Register Name: SSIE4
Register Description: Software Signaling Insertion Enable 4
Register Address: 0Bh
Bit # 7 6 5 4 3 2 1 0
Name CH30 CH29 CH28 CH27 CH26 CH25 CH24 CH23
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Software Signaling Insertion Enable for Channels 22 to 30 (CH23 to CH30). These bits determine
which channels are to have signaling inserted from the transmit signaling registers.
0 = do not source signaling data from the TSx registers for this channel
1 = source signaling data from the TSx registers for this channel
DS2155
95 of 238
16.2.3 Software Signaling Insertion-Enable Registers, T1 Mode
In T1 mode, only registers SSIE1–SSIE3 are used since there are only 24 channels in a T1 frame.
Register Name: SSIE1
Register Description: Software Signaling Insertion Enable 1
Register Address: 08h
Bit # 7 6 5 4 3 2 1 0
Name CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Software Signaling Insertion Enable for Channels 1 to 8 (CH1 to CH8). These bits determine which
channels are to have signaling inserted from the transmit signaling registers.
0 = do not source signaling data from the TSx registers for this channel
1 = source signaling data from the TSx registers for this channel
Register Name: SSIE2
Register Description: Software Signaling-Insertion Enable 2
Register Address: 09h
Bit # 7 6 5 4 3 2 1 0
Name CH16 CH15 CH14 CH13 CH12 CH11 CH10 CH9
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Software Signaling Insertion Enable for Channels 9 to 16 (CH9 to CH16). These bits determine
which channels are to have signaling inserted from the transmit signaling registers.
0 = do not source signaling data from the TSx registers for this channel
1 = source signaling data from the TSx registers for this channel
Register Name: SSIE3
Register Description: Software Signaling-Insertion Enable 3
Register Address: 0Ah
Bit # 7 6 5 4 3 2 1 0
Name CH24 CH23 CH22 CH21 CH20 CH19 CH18 CH17
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Software Signaling Insertion Enable for Channels 17 to 24 (CH17 to CH24). These bits determine
which channels are to have signaling inserted from the transmit signaling registers.
0 = do not source signaling data from the TSx registers for this channel
1 = source signaling data from the TSx registers for this channel
16.2.4 Hardware-Based Mode
In hardware-based mode, signaling data is input through the TSIG pin. This signaling PCM stream is
buffered and inserted to the data stream being input at the TSER pin.
Signaling data can be inserted on a per-channel basis by the transmit hardware-signaling channel-select
(THSCS) function. The user has the ability to control which channels are to have signaling data from the
TSIG pin inserted into them on a per-channel basis. See Section 7 for details on using this per-channel
(THSCS) feature. The signaling insertion capabilities of the framer are available whether the transmit-
side elastic store is enabled or disabled. If the elastic store is enabled, the backplane clock (TSYSCLK)
can be either 1.544MHz or 2.048MHz. Also, if the elastic is enabled in conjunction with transmit
hardware signaling, CCR3.7 must be set = 0.
DS2155
96 of 238
17. PER-CHANNEL IDLE CODE GENERATION
Channel data can be replaced by an idle code on a per-channel basis in the transmit and receive
directions. When operated in the T1 mode, only the first 24 channels are used by the DS2155, the
remaining channels, CH25–CH32, are not used.
The DS2155 contains a 64-byte idle code array accessed by the idle array address register (IAAR) and the
per-channel idle code register (PCICR). The contents of the array contain the idle codes to be substituted
into the appropriate transmit or receive channels. This substitution can be enabled and disabled on a per-
channel basis by the transmit-channel idle code-enable registers (TCICE1–4) and receive-channel idle
code-enable registers (RCICE1–4).
To program idle codes, first select a channel by writing to the IAAR register. Then write the idle code to
the PCICR register. For successive writes there is no need to load the IAAR with the next consecutive
address. The IAAR register automatically increments after a write to the PCICR register. The auto
increment feature can be used for read operations as well. Bits 6 and 7 of the IAAR register can be used
to block write a common idle code to all transmit or receive positions in the array with a single write to
the PCICR register. Bits 6 and 7 of the IAAR register should not be used for read operations. TCICE1–4
and RCICE1–4 are used to enable idle code replacement on a per-channel basis.
Table 17-A. Idle-Code Array Address Mapping
BITS 0 to 5 OF IAAR
REGISTER MAPS TO CHANNEL
0 Transmit Channel 1
1 Transmit Channel 2
2 Transmit Channel 3
— —
— —
30 Transmit Channel 31
31 Transmit Channel 32
32 Receive Channel 1
33 Receive Channel 2
34 Receive Channel 3
— —
— —
62 Receive Channel 31
63 Receive Channel 32
DS2155
97 of 238
17.1 Idle-Code Programming Examples
Example 1
Sets transmit channel 3 idle code to 7Eh.
Write IAAR = 02h ;select channel 3 in the array
Write PCICR = 7Eh ;set idle code to 7Eh
Example 2
Sets transmit channels 3, 4, 5, and 6 idle code to 7Eh and enables transmission of idle codes for those channels.
Write IAAR = 02h ;select channel 3 in the array
Write PCICR = 7Eh ;set channel 3 idle code to 7Eh
Write PCICR = 7Eh ;set channel 4 idle code to 7Eh
Write PCICR = 7Eh ;set channel 5 idle code to 7Eh
Write PCICR = 7Eh ;set channel 6 idle code to 7Eh
Write TCICE1 = 3Ch ;enable transmission of idle codes for channels 3,4,5, and 6
Example 3
Sets transmit channels 3, 4, 5, and 6 idle code to 7Eh, EEh, FFh, and 7Eh, respectively.
Write IAAR = 02h
Write PCICR = 7Eh
Write PCICR = EEh
Write PCICR = FFh
Write PCICR = 7Eh
Example 4
Sets all transmit idle codes to 7Eh.
Write IAAR = 4xh
Write PCICR = 7Eh
Example 5
Sets all receive and transmit idle codes to 7Eh and enables idle code substitution in all E1 transmit and receive
channels.
Write IAAR = Cxh ;enable block write to all transmit and receive positions in the array
Write PCICR = 7Eh ;7Eh is idle code
Write TCICE1 = FEh ;enable idle code substitution for transmit channels 2 through 8
;Although an idle code was programmed for channel 1 by the block write
;function above, enabling it for channel 1 would step on the frame
;alignment, alarms, and Sa bits
Write TCICE2 = FFh ;enable idle code substitution for transmit channels 9 through 16
Write TCICE3 = FEh ;enable idle code substitution for transmit channels 18 through 24
;Although an idle code was programmed for channel 17 by the block write
;function above, enabling it for channel 17 would step on the CAS frame
;alignment, and signaling information
Write TCICE4 = FFh ;enable idle code substitution for transmit channels 25 through 32
Write RCICE1 = FEh ;enable idle code substitution for receive channels 2 through 8
Write RCICE2 = FFh ;enable idle code substitution for receive channels 9 through 16
Write RCICE3 = FEh ;enable idle code substitution for receive channels 18 through 24
Write RCICE4 = FFh ;enable idle code substitution for receive channels 25 through 32
DS2155
98 of 238
Register Name: IAAR
Register Description: Idle Array Address Register
Register Address: 7Eh
Bit # 7 6 5 4 3 2 1 0
Name GRIC GTIC IAA5 IAA4 IAA3 IAA2 IAA1 IAA0
Default 0 0 0 0 0 0 0 0
Bits 0 to 5/Channel Pointer Address Bits (IAA0 to IAA5). These bits select the channel to be programmed with
the idle code defined in the PCICR register. IAA0 is the LSB of the 5-bit channel code. Channel 1 is 01h.
Bit 6/Global Transmit-Idle Code (GTIC). Setting this bit causes all transmit channels to be set to the idle code
written to the PCICR register. This bit must be set = 0 for read operations. The value in bits IAA0–IAA5 must be a
valid transmit channel (01h to 20h for E1 mode; 01h to 18h for T1 mode).
Bit 7/Global Receive-Idle Code (GRIC). Setting this bit causes all receive channels to be set to the idle code
written to the PCICR register. This bit must be set = 0 for read operations. The value in bits IAA0–IAA5 must be a
valid transmit channel (01h to 20h for E1 mode; 01h to 18h for T1 mode).
Table 17-B. GRIC and GTIC Functions
GRIC GTIC FUNCTION
0 0 Updates a single transmit or receive channel
0 1 Updates all transmit channels
1 0 Updates all receive channels
1 1 Updates all transmit and receive channels
Register Name: PCICR
Register Description: Per-Channel Idle Code Register
Register Address: 7Fh
Bit # 7 6 5 4 3 2 1 0
Name C7 C6 C5 C4 C3 C2 C1 C0
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Per-Channel Idle-Code Bits (C0 to C7). This register defines the idle code to be programmed in the
channel selected by the IAAR register. C0 is the LSB of the idle code (this bit is transmitted last).
DS2155
99 of 238
The transmit-channel idle-code enable registers (TCICE1/2/3/4) are used to determine which of the 24 T1 or 32 E1
channels from the backplane to the T1 or E1 line should be overwritten with the code placed in the per-channel
code array.
Register Name: TCICE1
Register Description: Transmit-Channel Idle-Code Enable Register 1
Register Address: 80h
Bit # 7 6 5 4 3 2 1 0
Name CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Transmit Channels 1 to 8 Code Insertion Control Bits (CH1 to CH8)
0 = do not insert data from the idle-code array into the transmit data stream
1 = insert data from the idle-code array into the transmit data stream
Register Name: TCICE2
Register Description: Transmit-Channel Idle-Code Enable Register 2
Register Address: 81h
Bit # 7 6 5 4 3 2 1 0
Name CH16 CH15 CH14 CH13 CH12 CH11 CH10 CH9
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Transmit Channels 9 to 16 Code Insertion Control Bits (CH9 to CH16)
0 = do not insert data from the idle-code array into the transmit data stream
1 = insert data from the idle code-array into the transmit data stream
Register Name: TCICE3
Register Description: Transmit-Channel Idle-Code Enable Register 3
Register Address: 82h
Bit # 7 6 5 4 3 2 1 0
Name CH24 CH23 CH22 CH21 CH20 CH19 CH18 CH17
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Transmit Channels 17 to 24 Code Insertion Control Bits (CH17 to CH24)
0 = do not insert data from the idle-code array into the transmit data stream
1 = insert data from the idle code-array into the transmit data stream
Register Name: TCICE4
Register Description: Transmit-Channel Idle-Code Enable Register 4
Register Address: 83h
Bit # 7 6 5 4 3 2 1 0
Name CH32 CH31 CH30 CH29 CH28 CH27 CH26 CH25
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Transmit Channels 25 to 32 Code Insertion Control Bits (CH25 to CH32)
0 = do not insert data from the idle-code array into the transmit data stream
1 = insert data from the idle-code array into the transmit data stream
DS2155
100 of 238
The receive-channel idle-code enable registers (RCICE1/2/3/4) are used to determine which of the 24 T1 or 32 E1
channels from the backplane to the T1 or E1 line should be overwritten with the code placed in the per-channel
code array.
Register Name: RCICE1
Register Description: Receive-Channel Idle-Code Enable Register 1
Register Address: 84h
Bit # 7 6 5 4 3 2 1 0
Name CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Receive Channels 1 to 8 Code Insertion Control Bits (CH1 to CH8)
0 = do not insert data from the idle-code array into the receive data stream
1 = insert data from the idle-code array into the receive data stream
Register Name: RCICE2
Register Description: Receive-Channel Idle-Code Enable Register 2
Register Address: 85h
Bit # 7 6 5 4 3 2 1 0
Name CH16 CH15 CH14 CH13 CH12 CH11 CH10 CH9
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Receive Channels 9 to 16 Code Insertion Control Bits (CH9 to CH16)
0 = do not insert data from the idle-code array into the receive data stream
1 = insert data from the idle-code array into the receive data stream
Register Name: RCICE3
Register Description: Receive-Channel Idle-Code Enable Register 3
Register Address: 86h
Bit # 7 6 5 4 3 2 1 0
Name CH24 CH23 CH22 CH21 CH20 CH19 CH18 CH17
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Receive Channels 17 to 24 Code Insertion Control Bits (CH17 to CH24)
0 = do not insert data from the idle-code array into the receive data stream
1 = insert data from the idle-code array into the receive data stream
Register Name: RCICE4
Register Description: Receive-Channel Idle-Code Enable Register 4
Register Address: 87h
Bit # 7 6 5 4 3 2 1 0
Name CH32 CH31 CH30 CH29 CH28 CH27 CH26 CH25
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Receive Channels 25 to 32 Code Insertion Control Bits (CH25 to CH32)
0 = do not insert data from the idle-code array into the receive data stream
1 = insert data from the idle-code array into the receive data stream
DS2155
101 of 238
18. CHANNEL BLOCKING REGISTERS
The receive channel blocking registers (RCBR1/RCBR2/RCBR3/RCBR4) and the transmit channel
blocking registers (TCBR1/TCBR2/TCBR3/TCBR4) control RCHBLK and TCHBLK pins, respectively.
The RCHBLK and TCHBLK pins are user-programmable outputs that can be forced either high or low
during individual channels. These outputs can be used to block clocks to a USART or LAPD controller in
ISDN-PRI applications. When the appropriate bits are set to a 1, the RCHBLK and TCHBLK pins are
held high during the entire corresponding channel time. Channels 25 through 32 are ignored when the
DS2155 is operated in the T1 mode.
Register Name: RCBR1
Register Description: Receive Channel Blocking Register 1
Register Address: 88h
Bit # 7 6 5 4 3 2 1 0
Name CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Receive Channels 1 to 8 Channel Blocking Control Bits (CH1 to CH8)
0 = force the RCHBLK pin to remain low during this channel time
1 = force the RCHBLK pin high during this channel time
Register Name: RCBR2
Register Description: Receive Channel Blocking Register 2
Register Address: 89h
Bit # 7 6 5 4 3 2 1 0
Name CH16 CH15 CH14 CH13 CH12 CH11 CH10 CH9
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Receive Channels 9 to 16 Channel Blocking Control Bits (CH9 to CH16)
0 = force the RCHBLK pin to remain low during this channel time
1 = force the RCHBLK pin high during this channel time
DS2155
102 of 238
Register Name: RCBR3
Register Description: Receive Channel Blocking Register 3
Register Address: 8Ah
Bit # 7 6 5 4 3 2 1 0
Name CH24 CH23 CH22 CH21 CH20 CH19 CH18 CH17
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Receive Channels 17 to 24 Channel Blocking Control Bits (CH17 to CH24)
0 = force the RCHBLK pin to remain low during this channel time
1 = force the RCHBLK pin high during this channel time
Register Name: RCBR4
Register Description: Receive Channel Blocking Register 4
Register Address: 8Bh
Bit # 7 6 5 4 3 2 1 0
Name CH32 CH31 CH30 CH29 CH28 CH27 CH26 CH25
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Receive Channels 25 to 32 Channel Blocking Control Bits (CH25 to CH32)
0 = force the RCHBLK pin to remain low during this channel time
1 = force the RCHBLK pin high during this channel time
DS2155
103 of 238
Register Name: TCBR1
Register Description: Transmit Channel Blocking Register 1
Register Address: 8Ch
Bit # 7 6 5 4 3 2 1 0
Name CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Transmit Channels 1 to 8 Channel Blocking Control Bits (CH1 to CH8)
0 = force the TCHBLK pin to remain low during this channel time
1 = force the TCHBLK pin high during this channel time
Register Name: TCBR2
Register Description: Transmit Channel Blocking Register 2
Register Address: 8Dh
Bit # 7 6 5 4 3 2 1 0
Name CH16 CH15 CH14 CH13 CH12 CH11 CH10 CH9
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Transmit Channels 9 to 16 Channel Blocking Control Bits (CH9 to CH16)
0 = force the TCHBLK pin to remain low during this channel time
1 = force the TCHBLK pin high during this channel time
Register Name: TCBR3
Register Description: Transmit Channel Blocking Register 3
Register Address: 8Eh
Bit # 7 6 5 4 3 2 1 0
Name CH24 CH23 CH22 CH21 CH20 CH19 CH18 CH17
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Transmit Channels 17 to 24 Channel Blocking Control Bits (CH17 to CH24)
0 = force the TCHBLK pin to remain low during this channel time
1 = force the TCHBLK pin high during this channel time
Register Name: TCBR4
Register Description: Transmit Channel Blocking Register 4
Register Address: 8Fh
Bit # 7 6 5 4 3 2 1 0
Name CH32 CH31 CH30 CH29 CH28 CH27 CH26 CH25
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Transmit Channels 25 to 32 Channel Blocking Control Bits (CH25 to CH32)
0 = force the TCHBLK pin to remain low during this channel time
1 = force the TCHBLK pin high during this channel time
DS2155
104 of 238
19. ELASTIC STORES OPERATION
The DS2155 contains dual two-frame elastic stores, one for the receive direction and one for the transmit
direction. Both elastic stores are fully independent. The transmit and receive-side elastic stores can be
enabled/disabled independently of each other. Also, each elastic store can interface to either a 1.544MHz
or 2.048MHz/4.096MHz/8.192MHz/16.384MHz backplane without regard to the backplane rate the other
elastic store is interfacing to.
The elastic stores have two main purposes. Firstly, they can be used for rate conversion. When the
DS2155 is in the T1 mode, the elastic stores can rate-convert the T1 data stream to a 2.048MHz
backplane. In E1 mode, the elastic store can rate-convert the E1 data stream to a 1.544MHz backplane.
Secondly, they can be used to absorb the differences in frequency and phase between the T1 or E1 data
stream and an asynchronous (i.e., not locked) backplane clock, which can be 1.544MHz or 2.048MHz. In
this mode, the elastic stores manage the rate difference and perform controlled slips, deleting or repeating
frames of data in order to manage the difference between the network and the backplane.
The elastic stores can also be used to multiplex T1 or E1 data streams into higher backplane rates, which
is the IBO discussed in Section 28.
DS2155
105 of 238
Register Name: ESCR
Register Description: Elastic Store Control Register
Register Address: 4Fh
Bit # 7 6 5 4 3 2 1 0
Name TESALGN TESR TESMDM TESE RESALGN RESR RESMDM RESE
Default 0 0 0 0 0 0 0 0
Bit 0/Receive Elastic Store Enable (RESE)
0 = elastic store is bypassed
1 = elastic store is enabled
Bit 1/Receive Elastic Store Minimum-Delay Mode (RESMDM). See Section 19.4 for details.
0 = elastic stores operate at full two-frame depth
1 = elastic stores operate at 32-bit depth
Bit 2/Receive Elastic Store Reset (RESR). Setting this bit from a 0 to a 1 forces the read and write pointers into
opposite frames, maximizing the delay through the receive elastic store. It should be toggled after RSYSCLK has
been applied and is stable. See Section 19.3 for details. Do not leave this bit set HIGH.
Bit 3/Receive Elastic Store Align (RESALGN). Setting this bit from a 0 to a 1 forces the receive elastic store’s
write/read pointers to a minimum separation of half a frame. No action is taken if the pointer separation is already
greater or equal to half a frame. If pointer separation is less than half a frame, the command is executed and the
data is disrupted. It should be toggled after RSYSCLK has been applied and is stable. Must be cleared and set again
for a subsequent align. See Section 19.3 for details.
Bit 4/Transmit Elastic Store Enable (TESE)
0 = elastic store is bypassed
1 = elastic store is enabled
Bit 5/Transmit Elastic Store Minimum-Delay Mode (TESMDM). See Section 19.4 for details.
0 = elastic stores operate at full two-frame depth
1 = elastic stores operate at 32-bit depth
Bit 6/Transmit Elastic Store Reset (TESR). Setting this bit from a 0 to a 1 forces the read and write pointers into
opposite frames, maximizing the delay through the transmit elastic store. Transmit data is lost during the reset. It
should be toggled after TSYSCLK has been applied and is stable. See Section 19.3 for details. Do not leave this bit
set HIGH.
Bit 7/Transmit Elastic Store Align (TESALGN). Setting this bit from a 0 to a 1 forces the transmit elastic store’s
write/read pointers to a minimum separation of half a frame. No action is taken if the pointer separation is already
greater or equal to half a frame. If pointer separation is less than half a frame, the command is executed and the
data is disrupted. It should be toggled after TSYSCLK has been applied and is stable. It must be cleared and set
again for a subsequent align. See Section 19.3 for details.
DS2155
106 of 238
Register Name: SR5
Register Description: Status Register 5
Register Address: 1Eh
Bit # 7 6 5 4 3 2 1 0
Name — TESF TESEM TSLIP RESF RESEM RSLIP
Default 0 0 0 0 0 0 0 0
Bit 0/Receive Elastic Store Slip-Occurrence Event (RSLIP). Set when the receive elastic store has either
repeated or deleted a frame.
Bit 1/Receive Elastic Store Empty Event (RESEM). Set when the receive elastic store buffer empties and a
frame is repeated.
Bit 2/Receive Elastic Store Full Event (RESF). Set when the receive elastic store buffer fills and a frame is
deleted.
Bit 3/Transmit Elastic Store Slip-Occurrence Event (TSLIP). Set when the transmit elastic store has either
repeated or deleted a frame.
Bit 4/Transmit Elastic Store Empty Event (TESEM). Set when the transmit elastic store buffer empties and a
frame is repeated.
Bit 5/Transmit Elastic Store Full Event (TESF). Set when the transmit elastic store buffer fills and a frame is
deleted.
Register Name: IMR5
Register Description: Interrupt Mask Register 5
Register Address: 1Fh
Bit # 7 6 5 4 3 2 1 0
Name — TESF TESEM TSLIP RESF RESEM RSLIP
Default 0 0 0 0 0 0 0 0
Bit 0/Receive Elastic Store Slip-Occurrence Event (RSLIP)
0 = interrupt masked
1 = interrupt enabled
Bit 1/Receive Elastic Store Empty Event (RESEM)
0 = interrupt masked
1 = interrupt enabled
Bit 2/Receive Elastic Store Full Event (RESF)
0 = interrupt masked
1 = interrupt enabled
Bit 3/Transmit Elastic Store Slip-Occurrence Event (TSLIP)
0 = interrupt masked
1 = interrupt enabled
Bit 4/Transmit Elastic Store Empty Event (TESEM)
0 = interrupt masked
1 = interrupt enabled
Bit 5/Transmit Elastic Store Full Event (TESF)
0 = interrupt masked
1 = interrupt enabled
DS2155
107 of 238
19.1 Receive Side
See the IOCR1 and IOCR2 registers for information about clock and I/O configurations.
If the receive-side elastic store is enabled, then the user must provide either a 1.544MHz or 2.048MHz
clock at the RSYSCLK pin. For higher rate system clock applications, see the Interleaved PCM Bus
Operation in Section 28. The user has the option of either providing a frame/multiframe sync at the
RSYNC pin or having the RSYNC pin provide a pulse on frame/multiframe boundaries. If signaling
reinsertion is enabled, signaling data in TS16 is realigned to the multiframe sync input on RSYNC.
Otherwise, a multiframe sync input on RSYNC is treated as a simple frame boundary by the elastic store.
The framer always indicates frame boundaries on the network side of the elastic store by the RFSYNC
output, whether the elastic store is enabled or not. Multiframe boundaries are always indicated by the
RMSYNC output. If the elastic store is enabled, then RMSYNC outputs the multiframe boundary on the
backplane side of the elastic store.
19.1.1 T1 Mode
If the user selects to apply a 2.048MHz clock to the RSYSCLK pin, then the data output at RSER is
forced to all 1s every fourth channel and the F-bit is passed into the MSB of TS0. Hence, channels 1 (bits
1–7), 5, 9, 13, 17, 21, 25, and 29 [time slots 0 (bits 1–7), 4, 8, 12, 16, 20, 24, and 28] are forced to a 1.
Also, in 2.048MHz applications, the RCHBLK output is forced high during the same channels as the
RSER pin. This is useful in T1-to-E1 conversion applications. If the two-frame elastic buffer either fills
or empties, a controlled slip occurs. If the buffer empties, then a full frame of data is repeated at RSER,
and the SR5.0 and SR5.1 bits are set to a 1. If the buffer fills, then a full frame of data is deleted, and the
SR5.0 and SR5.2 bits are set to a 1.
19.1.2 E1 Mode
If the elastic store is enabled, then either CAS or CRC4 multiframe boundaries are indicated through the
RMSYNC output. If the user selects to apply a 1.544MHz clock to the RSYSCLK pin, then every fourth
channel of the received E1 data is deleted and an F-bit position, which is forced to 1, is inserted. Hence,
channels 1, 5, 9, 13, 17, 21, 25, and 29 (time slots 0, 4, 8, 12, 16, 20, 24, and 28) are deleted from the
received E1 data stream. Also, in 1.544MHz applications, the RCHBLK output is not active in channels
25 through 32 (i.e., RCBR4 is not active). If the two-frame elastic buffer either fills or empties, a
controlled slip occurs. If the buffer empties, then a full frame of data is repeated at RSER, and the SR5.0
and SR5.1 bits are set to a 1. If the buffer fills, then a full frame of data is deleted, and the SR5.0 and
SR5.2 bits are set to a 1.
19.2 Transmit Side
See the IOCR1 and IOCR2 registers for information about clock and I/O configurations.
The operation of the transmit elastic store is very similar to the receive side. If the transmit-side elastic
store is enabled, a 1.544MHz or 2.048MHz clock can be applied to the TSYSCLK input. For higher rate
system clock applications, see Interleaved PCM Bus Operation in Section 28. Controlled slips in the
transmit elastic store are reported in the SR5.3 bit, and the direction of the slip is reported in the SR5.4
and SR5.5 bits. If hardware signaling insertion is not enabled, CCR3.7 should be set = 1.
DS2155
108 of 238
19.2.1 T1 Mode
If the user selects to apply a 2.048MHz clock to the TSYSCLK pin, then the data input at TSER is
ignored every fourth channel. Therefore channels 1, 5, 9, 13, 17, 21, 25, and 29 (time slots 0, 4, 8, 12, 16,
20, 24, and 28) are ignored. The user can supply frame or multiframe sync pulse to the TSSYNC input.
Also, in 2.048MHz applications, the TCHBLK output is forced high during the channels ignored by the
framer.
19.2.2 E1 Mode
A 1.544MHz or 2.048MHz clock can be applied to the TSYSCLK input. The user must supply a frame
sync pulse or a multiframe sync pulse to the TSSYNC input.
19.3 Elastic Stores Initialization
There are two elastic store initializations that can be used to improve performance in certain applications,
elastic store reset and elastic store align. Both of these involve the manipulation of the elastic store’s read
and write pointers and are useful primarily in synchronous applications (RSYSCLK/TSYSCLK are
locked to RCLK/TCLK, respectively) (Table 19-A).
Table 19-A. Elastic Store Delay After Initialization
INITIALIZATION REGISTER BIT DELAY
Receive Elastic Store Reset
Transmit Elastic Store Reset
ESCR.2
ESCR.6
8 Clocks < Delay < 1 Frame
1 Frame < Delay < 2 Frames
Receive Elastic Store Align
Transmit Elastic Store Align
ESCR.3
ESCR.7
½ Frame < Delay < 1 ½ Frames
½ Frame < Delay < 1 ½ Frames
19.4 Minimum Delay Mode
Elastic store minimum delay mode can be used when the elastic store’s system clock is locked to its
network clock (i.e., RCLK locked to RSYSCLK for the receive side and TCLK locked to TSYSCLK for
the transmit side). ESCR.5 and ESCR.1 enable the transmit and receive elastic store minimum delay
modes. When enabled, the elastic stores are forced to a maximum depth of 32 bits instead of the normal
two-frame depth. This feature is useful primarily in applications that interface to a 2.048MHz bus.
Certain restrictions apply when minimum delay mode is used. In addition to the restriction mentioned
above, RSYNC must be configured as an output when the receive elastic store is in minimum delay
mode; TSYNC must be configured as an output when transmit minimum delay mode is enabled. In a
typical application, RSYSCLK and TSYSCLK are locked to RCLK, and RSYNC (frame output mode) is
connected to TSSYNC (frame input mode). All of the slip contention logic in the framer is disabled (since
slips cannot occur). On power-up, after the RSYSCLK and TSYSCLK signals have locked to their
respective network clock signals, the elastic store reset bits (ESCR.2 and ESCR.6) should be toggled
from a 0 to a 1 to ensure proper operation.
DS2155
109 of 238
20. G.706 INTERMEDIATE CRC-4 UPDATING (E1 MODE ONLY)
The DS2155 can implement the G.706 CRC-4 recalculation at intermediate path points. When this mode
is enabled, the data stream presented at TSER already has the FAS/NFAS, CRC multiframe alignment
word, and CRC-4 checksum in time slot 0. The user can modify the Sa bit positions. This change in data
content is used to modify the CRC-4 checksum. This modification, however, does not corrupt any error
information the original CRC-4 checksum may contain. In this mode of operation, TSYNC must be
configured to multiframe mode. The data at TSER must be aligned to the TSYNC signal. If TSYNC is an
input, then the user must assert TSYNC aligned at the beginning of the multiframe relative to TSER. If
TSYNC is an output, the user must multiframe-align the data presented to TSER.
Figure 20-1. CRC-4 Recalculate Method
TSER
XOR
CRC-4
CALCULATOR
EXTRACT
OLD CRC-4
CODE
INSERT
NEW CRC-4
CODE
MODIFY
Sa BIT
POSITIONS
NEW Sa BIT
DATA
+
TPOSO/TNEGO
DS2155
110 of 238
21. T1 BIT-ORIENTED CODE (BOC) CONTROLLER
The DS2155 contains a BOC generator on the transmit side and a BOC detector on the receive side. The
BOC function is available only in T1 mode.
21.1 Transmit BOC
Bits 0 to 5 in the TFDL register contain the BOC message to be transmitted. Setting BOCC.0 = 1 causes
the transmit BOC controller to immediately begin inserting the BOC sequence into the FDL bit position.
The transmit BOC controller automatically provides the abort sequence. BOC messages are transmitted as
long as BOCC.0 is set.
Transmit a BOC
1) Write 6-bit code into the TFDL register.
2) Set the SBOC bit in BOCC = 1.
21.2 Receive BOC
The receive BOC function is enabled by setting BOCC.4 = 1. The RFDL register now operates as the
receive BOC message and information register. The lower six bits of the RFDL register (BOC message
bits) are preset to all 1s. When the BOC bits change state, the BOC change-of-state indicator, SR8.0,
alerts the host. The host then reads the RFDL register to get the BOC status and message. A change-of-
state occurs when either a new BOC code has been present for a time determined by the receive BOC
filter bits RBF0 and RBF1 in the BOCC register, or a nonvalid code is being received.
Receive a BOC
1) Set integration time through BOCC.1 and BOCC.2.
2) Enable the receive BOC function (BOCC.4 = 1).
3) Enable interrupt (IMR8.0 = 1).
4) Wait for interrupt to occur.
5) Read the RFDL register.
6) If SR2.7 = 1, then a valid BOC message was received.
The lower six bits of the RFDL register comprise the message.
DS2155
111 of 238
Register Name: BOCC
Register Description: BOC Control Register
Register Address: 37h
Bit # 7 6 5 4 3 2 1 0
Name — — — RBOCE RBR RBF1 RBF0 SBOC
Default 0 0 0 0 0 0 0 0
Bit 0/Send BOC (SBOC). Set = 1 to transmit the BOC code placed in bits 0 to 5 of the TFDL register.
Bits 1 and 2/Receive BOC Filter Bits (RBF0, RBF1). The BOC filter sets the number of consecutive patterns that
must be received without error prior to an indication of a valid message.
RBF1 RBF0 Consecutive BOC Codes for
Valid Sequence Identification
0 0 None
0 1 3
1 0 5
1 1 7
Bit 3/Receive BOC Reset (RBR). A 0-to-1 transition resets the BOC circuitry. Must be cleared and set again for a
subsequent reset.
Bit 4/Receive BOC Enable (RBOCE). Enables the receive BOC function. The RFDL register reports the received
BOC code and two information bits when this bit is set.
0 = receive BOC function disabled
1 = receive BOC function enabled; the RFDL register reports BOC messages and information
Bits 5 to 7/Unused, must be set to 0 for proper operation
Register Name: RFDL
Register Description: Receive FDL Register
Register Address: C0h
Bit # 7 6 5 4 3 2 1 0
Name RBOC5 RBOC4 RBOC3 RBOC2 RBOC1 RBOC0
Default 0 0 0 0 0 0 0 0
RFDL register bit definitions when BOCC.4 = 1:
Bit 0/BOC Bit 0 (RBOC0)
Bit 1/BOC Bit 1 (RBOC1)
Bit 2/BOC Bit 2 (RBOC2)
Bit 3/BOC Bit 3 (RBOC3)
Bit 4/BOC Bit 4 (RBOC4)
Bit 5/BOC Bit 5 (RBOC5)
Bits 6, 7/This bit position is unused when BOCC.4 = 1.
DS2155
112 of 238
Register Name: SR8
Register Description: Status Register 8
Register Address: 24h
Bit # 7 6 5 4 3 2 1 0
Name — BOCC RFDLAD RFDLF TFDLE RMTCH RBOC
Default 0 0 0 0 0 0 0 0
Bit 0/Receive BOC Detector Change-of-State Event (RBOC). Set whenever the BOC detector sees a change of
state to a valid BOC. The setting of this bit prompts the user to read the RFDL register.
Bit 1/Receive FDL Match Event (RMTCH). Set whenever the contents of the RFDL register matches RFDLM1
or RFDLM2.
Bit 2/TFDL Register Empty Event (TFDLE). Set when the transmit FDL buffer (TFDL) empties.
Bit 3/RFDL Register Full Event (RFDLF). Set when the receive FDL buffer (RFDL) fills to capacity.
Bit 4/RFDL Abort Detect Event (RFDLAD). Set when eight consecutive 1s are received on the FDL.
Bit 5/BOC Clear Event (BOCC). Set when 30 FDL bits occur without an abort sequence.
Register Name: IMR8
Register Description: Interrupt Mask Register 8
Register Address: 25h
Bit # 7 6 5 4 3 2 1 0
Name — BOCC RFDLAD RFDLF TFDLE RMTCH RBOC
Default 0 0 0 0 0 0 0 0
Bit 0/Receive BOC Detector Change-of-State Event (RBOC)
0 = interrupt masked
1 = interrupt enabled
Bit 1/Receive FDL Match Event (RMTCH)
0 = interrupt masked
1 = interrupt enabled
Bit 2/TFDL Register Empty Event (TFDLE)
0 = interrupt masked
1 = interrupt enabled
Bit 3/RFDL Register Full Event (RFDLF)
0 = interrupt masked
1 = interrupt enabled
Bit 4/RFDL Abort Detect Event (RFDLAD)
0 = interrupt masked
1 = interrupt enabled
Bit 5/BOC Clear Event (BOCC)
0 = interrupt masked
1 = interrupt enabled
DS2155
113 of 238
22. ADDITIONAL (SA) AND INTERNATIONAL (SI) BIT OPERATION (E1
ONLY)
When operated in the E1 mode, the DS2155 provides three methods for accessing the Sa and the Si bits.
The first method involves a hardware scheme that uses the RLINK/RLCLK and TLINK/TLCLK pins
(Section 22.1). The second method involves using the internal RAF/RNAF and TAF/TNAF registers
(Section 22.2). The third method, which is covered in Section 22.3, involves an expanded version of the
second method.
22.1 Method 1: Hardware Scheme
On the receive side, all of the received data is reported at the RLINK pin. Using the E1RCR2 register, the
user can control the RLCLK pin to pulse during any combination of Sa bits. This allows the user to create
a clock that can be used to capture the needed Sa bits. If RSYNC is programmed to output a frame
boundary, it identifies the Si bits.
On the transmit side, the individual Sa bits can be either sourced from the internal TNAF register (Section
22.2) or externally from the TLINK pin. Using the E1TCR2 register, the framer can be programmed to
source any combination of the Sa bits from the TLINK pin. Si bits can be sampled through the TSER pin
if by setting E1TCR1.4 = 0.
22.2 Method 2: Internal Register Scheme Based on Double-Frame
On the receive side, the RAF and RNAF registers always report the data as it received in the Sa and Si bit
locations. The RAF and RNAF registers are updated on align-frame boundaries. The setting of the receive
align frame bit in Status Register 4 (SR4.0) indicates that the contents of the RAF and RNAF have been
updated. The host can use the SR4.0 bit to know when to read the RAF and RNAF registers. The host has
250µs to retrieve the data before it is lost.
On the transmit side, data is sampled from the TAF and TNAF registers with the setting of the transmit
align frame bit in Status Register 4 (SR4.3). The host can use the SR4.3 bit to know when to update the
TAF and TNAF registers. It has 250µs to update the data or else the old data is retransmitted. If the TAF
and TNAF registers are only being used to source the align frame and nonalign frame-sync
patterns, then the host need only write once to these registers. Data in the Si bit position is
overwritten if either the framer is (1) programmed to source the Si bits from the TSER pin, (2) in the
CRC4 mode, or (3) has automatic E-bit insertion enabled. Data in the Sa bit position is overwritten if any
of the E1TCR2.3 to E1TCR2.7 bits are set to 1.
DS2155
114 of 238
Register Name: RAF
Register Description: Receive Align Frame Register
Register Address: C6h
Bit # 7 6 5 4 3 2 1 0
Name Si 0 0 1 1 0 1 1
Default 0 0 0 0 0 0 0 0
Bit 0/Frame Alignment Signal Bit (1)
Bit 1/Frame Alignment Signal Bit (1)
Bit 2/Frame Alignment Signal Bit (0)
Bit 3/Frame Alignment Signal Bit (1)
Bit 4/Frame Alignment Signal Bit (1)
Bit 5/Frame Alignment Signal Bit (0)
Bit 6/Frame Alignment Signal Bit (0)
Bit 7/International Bit (Si)
Register Name: RNAF
Register Description: Receive Nonalign Frame Register
Register Address: C7h
Bit # 7 6 5 4 3 2 1 0
Name Si 1 A Sa4 Sa5 Sa6 Sa7 Sa8
Default 0 0 0 0 0 0 0 0
Bit 0/Additional Bit 8 (Sa8)
Bit 1/Additional Bit 7 (Sa7)
Bit 2/Additional Bit 6 (Sa6)
Bit 3/Additional Bit 5 (Sa5)
Bit 4/Additional Bit 4 (Sa4)
Bit 5/Remote Alarm (A)
Bit 6/Frame Nonalignment Signal Bit (1)
Bit 7/International Bit (Si)
DS2155
115 of 238
Register Name: TAF
Register Description: Transmit Align Frame Register
Register Address: D0h
Bit # 7 6 5 4 3 2 1 0
Name Si 0 0 1 1 0 1 1
Default 0 0 0 1 1 0 1 1
Bit 0/Frame Alignment Signal Bit (1)
Bit 1/Frame Alignment Signal Bit (1)
Bit 2/Frame Alignment Signal Bit (0)
Bit 3/Frame Alignment Signal Bit (1)
Bit 4/Frame Alignment Signal Bit (1)
Bit 5/Frame Alignment Signal Bit (0)
Bit 6/Frame Alignment Signal Bit (0)
Bit 7/International Bit (Si)
Register Name: TNAF
Register Description: Transmit Nonalign Frame Register
Register Address: D1h
Bit # 7 6 5 4 3 2 1 0
Name Si 1 A Sa4 Sa5 Sa6 Sa7 Sa8
Default 0 1 0 0 0 0 0 0
Bit 0/Additional Bit 8 (Sa8)
Bit 1/Additional Bit 7 (Sa7)
Bit 2/Additional Bit 6 (Sa6)
Bit 3/Additional Bit 5 (Sa5)
Bit 4/Additional Bit 4 (Sa4)
Bit 5/Remote Alarm [used to transmit the alarm (A)]
Bit 6/Frame Nonalignment Signal Bit (1)
Bit 7/International Bit (Si)
DS2155
116 of 238
22.3 Method 3: Internal Register Scheme Based on CRC4 Multiframe
The receive side contains a set of eight registers (RSiAF, RSiNAF, RRA, and RSa4–RSa8) that report the
Si and Sa bits as they are received. These registers are updated with the setting of the receive CRC4
multiframe bit in Status Register 2 (SR4.1). The host can use the SR4.1 bit to know when to read these
registers. The user has 2ms to retrieve the data before it is lost. The MSB of each register is the first
received. See the following register descriptions for more details.
The transmit side also contains a set of eight registers (TSiAF, TSiNAF, TRA, and TSa4–TSa8) that,
through the transmit Sa bit control register (TSaCR), can be programmed to insert Si and Sa data. Data is
sampled from these registers with the setting of the transmit multiframe bit in Status Register 2 (SR4.4).
The host can use the SR4.4 bit to know when to update these registers. It has 2ms to update the data or
else the old data is retransmitted. The MSB of each register is the first bit transmitted. See the following
register descriptions for more details.
Register Name: RSiAF
Register Description: Received Si Bits of the Align Frame
Register Address: C8h
Bit # 7 6 5 4 3 2 1 0
Name SiF0 SiF2 SiF4 SiF6 SiF8 SiF10 SiF12 SiF14
Default 0 0 0 0 0 0 0 0
Bit 0/Si Bit of Frame 14 (SiF14)
Bit 1/Si Bit of Frame 12 (SiF12)
Bit 2/Si Bit of Frame 10 (SiF10)
Bit 3/Si Bit of Frame 8 (SiF8)
Bit 4/Si Bit of Frame 6 (SiF6)
Bit 5/Si Bit of Frame 4 (SiF4)
Bit 6/Si Bit of Frame 2 (SiF2)
Bit 7/Si Bit of Frame 0 (SiF0)
DS2155
117 of 238
Register Name: RSiNAF
Register Description: Received Si Bits of the Nonalign Frame
Register Address: C9h
Bit # 7 6 5 4 3 2 1 0
Name SiF1 SiF3 SiF5 SiF7 SiF9 SiF11 SiF13 SiF15
Default 0 0 0 0 0 0 0 0
Bit 0/Si Bit of Frame 15 (SiF15)
Bit 1/Si Bit of Frame 13 (SiF13)
Bit 2/Si Bit of Frame 11 (SiF11)
Bit 3/Si Bit of Frame 9 (SiF9)
Bit 4/Si Bit of Frame 7 (SiF7)
Bit 5/Si Bit of Frame 5 (SiF5)
Bit 6/Si Bit of Frame 3 (SiF3)
Bit 7/Si Bit of Frame 1 (SiF1)
Register Name: RRA
Register Description: Received Remote Alarm
Register Address: Cah
Bit # 7 6 5 4 3 2 1 0
Name RRAF1 RRAF3 RRAF5 RRAF7 RRAF9 RRAF11 RRAF13 RRAF15
Default 0 0 0 0 0 0 0 0
Bit 0/Remote Alarm Bit of Frame 15 (RRAF15)
Bit 1/Remote Alarm Bit of Frame 13 (RRAF13)
Bit 2/Remote Alarm Bit of Frame 11 (RRAF11)
Bit 3/Remote Alarm Bit of Frame 9 (RRAF9)
Bit 4/Remote Alarm Bit of Frame 7 (RRAF7)
Bit 5/Remote Alarm Bit of Frame 5 (RRAF5)
Bit 6/Remote Alarm Bit of Frame 3 (RRAF3)
Bit 7/Remote Alarm Bit of Frame 1 (RRAF1)
DS2155
118 of 238
Register Name: RSa4
Register Description: Received Sa4 Bits
Register Address: CBh
Bit # 7 6 5 4 3 2 1 0
Name RSa4F1 RSa4F3 RSa4F5 RSa4F7 RSa4F9 RSa4F11 RSa4F13 RSa4F15
Default 0 0 0 0 0 0 0 0
Bit 0/Sa4 Bit of Frame 15 (RSa4F15)
Bit 1/Sa4 Bit of Frame 13 (RSa4F13)
Bit 2/Sa4 Bit of Frame 11 (RSa4F11)
Bit 3/Sa4 Bit of Frame 9 (RSa4F9)
Bit 4/Sa4 Bit of Frame 7 (RSa4F7)
Bit 5/Sa4 Bit of Frame 5(RSa4F5)
Bit 6/Sa4 Bit of Frame 3 (RSa4F3)
Bit 7/Sa4 Bit of Frame 1 (RSa4F1)
Register Name: RSa5
Register Description: Received Sa5 Bits
Register Address: CCh
Bit # 7 6 5 4 3 2 1 0
Name RSa5F1 RSa5F3 RSa5F5 RSa5F7 RSa5F9 RSa5F11 RSa5F13 RSa5F15
Default 0 0 0 0 0 0 0 0
Bit 0/Sa5 Bit of Frame 15 (RSa5F15)
Bit 1/Sa5 Bit of Frame 13 (RSa5F13)
Bit 2/Sa5 Bit of Frame 11 (RSa5F11)
Bit 3/Sa5 Bit of Frame 9 (RSa5F9)
Bit 4/Sa5 Bit of Frame 7 (RSa5F7)
Bit 5/Sa5 Bit of Frame 5 (RSa5F5)
Bit 6/Sa5 Bit of Frame 3 (RSa5F3)
Bit 7/Sa5 Bit of Frame 1 (RSa5F1)
DS2155
119 of 238
Register Name: RSa6
Register Description: Received Sa6 Bits
Register Address: CDh
Bit # 7 6 5 4 3 2 1 0
Name RSa6F1 RSa6F3 RSa6F5 RSa6F7 RSa6F9 RSa6F11 RSa6F13 RSa6F15
Default 0 0 0 0 0 0 0 0
Bit 0/Sa6 Bit of Frame 15 (RSa6F15)
Bit 1/Sa6 Bit of Frame 13 (RSa6F13)
Bit 2/Sa6 Bit of Frame 11 (RSa6F11)
Bit 3/Sa6 Bit of Frame 9 (RSa6F9)
Bit 4/Sa6 Bit of Frame 7 (RSa6F7)
Bit 5/Sa6 Bit of Frame 5 (RSa6F5)
Bit 6/Sa6 Bit of Frame 4 (RSa6F4)
Bit 7/Sa6 Bit of Frame 3(RSa6F3)
Register Name: RSa7
Register Description: Received Sa7 Bits
Register Address: CEh
Bit # 7 6 5 4 3 2 1 0
Name RSa7F1 Rsa7F3 RSa7F5 RSa7F7 RSa7F9 RSa7F11 RSa7F13 RSa7F15
Default 0 0 0 0 0 0 0 0
Bit 0/Sa7 Bit of Frame 15 (RSa7F15)
Bit 1/Sa7 Bit of Frame 13 (RSa7F13)
Bit 2/Sa7 Bit of Frame 11 (RSa7F11)
Bit 3/Sa7 Bit of Frame 9 (RSa7F9)
Bit 4/Sa7 Bit of Frame 7 (RSa7F7)
Bit 5/Sa7 Bit of Frame 5 (RSa7F5)
Bit 6/Sa7 Bit of Frame 3 (RSa7F3)
Bit 7/Sa7 Bit of Frame 1(RSa4F1)
DS2155
120 of 238
Register Name: RSa8
Register Description: Received Sa8 Bits
Register Address: CFh
Bit # 7 6 5 4 3 2 1 0
Name RSa8F1 RSa8F3 RSa8F5 RSa8F7 RSa8F9 RSa8F11 RSa8F13 RSa8F15
Default 0 0 0 0 0 0 0 0
Bit 0/Sa8 Bit of Frame 15 (RSa8F15)
Bit 1/Sa8 Bit of Frame 13 (RSa8F13)
Bit 2/Sa8 Bit of Frame 11 (RSa8F11)
Bit 3/Sa8 Bit of Frame 9 (RSa8F9)
Bit 4/Sa8 Bit of Frame 7 (RSa8F7)
Bit 5/Sa8 Bit of Frame 5 (RSa8F5)
Bit 6/Sa8 Bit of Frame 3 (RSa8F3)
Bit 7/Sa8 Bit of Frame 1 (RSa8F1)
Register Name: TSiAF
Register Description: Transmit Si Bits of the Align Frame
Register Address: D2h
Bit # 7 6 5 4 3 2 1 0
Name TSiF0 TSiF2 TSiF4 TSiF6 TSiF8 TSiF10 TSiF12 TSiF14
Default 0 0 0 0 0 0 0 0
Bit 0/Si Bit of Frame 14 (TSiF14)
Bit 1/Si Bit of Frame 12 (TSiF12)
Bit 2/Si Bit of Frame 10 (TSiF10)
Bit 3/Si Bit of Frame 8 (TSiF8)
Bit 4/Si Bit of Frame 6 (TSiF6)
Bit 5/Si Bit of Frame 4 (TSiF4)
Bit 6/Si Bit of Frame 2 (TSiF2)
Bit 7/Si Bit of Frame 0 (TSiF0)
DS2155
121 of 238
Register Name: TSiNAF
Register Description: Transmit Si Bits of the Nonalign Frame
Register Address: D3h
Bit # 7 6 5 4 3 2 1 0
Name TSiF1 TSiF3 TSiF5 TSiF7 TSiF9 TSiF11 TSiF13 TSiF15
Default 0 0 0 0 0 0 0 0
Bit 0/Si Bit of Frame 15 (TSiF15)
Bit 1/Si Bit of Frame 13 (TSiF13)
Bit 2/Si Bit of Frame 11 (TSiF11)
Bit 3/Si Bit of Frame 9 (TSiF9)
Bit 4/Si Bit of Frame 7 (TSiF7)
Bit 5/Si Bit of Frame 5 (TSiF5)
Bit 6/Si Bit of Frame 3 (TSiF3)
Bit 7/Si Bit of Frame 1 (TSiF1)
Register Name: TRA
Register Description: Transmit Remote Alarm
Register Address: D4h
Bit # 7 6 5 4 3 2 1 0
Name TRAF1 TRAF3 TRAF5 TRAF7 TRAF9 TRAF11 TRAF13 TRAF15
Default 0 0 0 0 0 0 0 0
Bit 0/Remote Alarm Bit of Frame 15 (TRAF15)
Bit 1/Remote Alarm Bit of Frame 13 (TRAF13)
Bit 2/Remote Alarm Bit of Frame 11 (TRAF11)
Bit 3/Remote Alarm Bit of Frame 9 (TRAF9)
Bit 4/Remote Alarm Bit of Frame 7 (TRAF7)
Bit 5/Remote Alarm Bit of Frame 5 (TRAF5)
Bit 6/Remote Alarm Bit of Frame 3 (TRAF3)
Bit 7/Remote Alarm Bit of Frame 1 (TRAF1)
DS2155
122 of 238
Register Name: TSa4
Register Description: Transmit Sa4 Bits
Register Address: D5h
Bit # 7 6 5 4 3 2 1 0
Name TSa4F1 TSa4F3 TSa4F5 TSa4F7 TSa4F9 TSa4F11 TSa4F13 TSa4F15
Default 0 0 0 0 0 0 0 0
Bit 0/Sa4 Bit of Frame 15 (TSa4F15)
Bit 1/Sa4 Bit of Frame 13 (TSa4F13)
Bit 2/Sa4 Bit of Frame 11 (TSa4F11)
Bit 3/Sa4 Bit of Frame 9 (TSa4F9)
Bit 4/Sa4 Bit of Frame 7 (TSa4F7)
Bit 5/Sa4 Bit of Frame 5 (TSa4F5)
Bit 6/Sa4 Bit of Frame 3 (TSa4F3)
Bit 7/Sa4 Bit of Frame 1 (TSa4F1)
Register Name: TSa5
Register Description: Transmitted Sa5 Bits
Register Address: D6h
Bit # 7 6 5 4 3 2 1 0
Name TSa5F1 TSa5F3 TSa5F5 TSa5F7 TSa5F9 TSa5F11 TSa5F13 TSa5F15
Default 0 0 0 0 0 0 0 0
Bit 0/Sa5 Bit of Frame 15 (TSa5F15)
Bit 1/Sa5 Bit of Frame 13 (TSa5F13)
Bit 2/Sa5 Bit of Frame 11 (TSa5F11)
Bit 3/Sa5 Bit of Frame 9 (TSa5F9)
Bit 4/Sa5 Bit of Frame 7 (TSa5F7)
Bit 5/Sa5 Bit of Frame 5 (TSa5F5)
Bit 6/Sa5 Bit of Frame 3 (TSa5F3)
Bit 7/Sa5 Bit of Frame 1 (TSa5F1)
DS2155
123 of 238
Register Name: TSa6
Register Description: Transmit Sa6 Bits
Register Address: D7h
Bit # 7 6 5 4 3 2 1 0
Name TSa6F1 TSa6F3 TSa6F5 TSa6F7 TSa6F9 TSa6F11 TSa6F13 TSa6F15
Default 0 0 0 0 0 0 0 0
Bit 0/Sa6 Bit of Frame 15 (TSa6F15)
Bit 1/Sa6 Bit of Frame 13 (TSa6F13)
Bit 2/Sa6 Bit of Frame 11 (TSa6F11)
Bit 3/Sa6 Bit of Frame 9 (TSa6F9)
Bit 4/Sa6 Bit of Frame 7 (TSa6F7)
Bit 5/Sa6 Bit of Frame 5 (TSa6F5)
Bit 6/Sa6 Bit of Frame 3 (TSa6F3)
Bit 7/Sa6 Bit of Frame 1 (TSa6F1)
Register Name: TSa7
Register Description: Transmit Sa7 Bits
Register Address: D8h
Bit # 7 6 5 4 3 2 1 0
Name TSa7F1 TSa7F3 TSa7F5 TSa7F7 TSa7F9 TSa7F11 TSa7F13 TSa7F15
Default 0 0 0 0 0 0 0 0
Bit 0/Sa7 Bit of Frame 15 (TSa7F15)
Bit 1/Sa7 Bit of Frame 13 (TSa7F13)
Bit 2/Sa7 Bit of Frame 11 (TSa7F11)
Bit 3/Sa7 Bit of Frame 9 (TSa7F9)
Bit 4/Sa7 Bit of Frame 7 (TSa7F7)
Bit 5/Sa7 Bit of Frame 5 (TSa7F5)
Bit 6/Sa7 Bit of Frame 3 (TSa7F3)
Bit 7/Sa7 Bit of Frame 1 (TSa4F1)
DS2155
124 of 238
Register Name: TSa8
Register Description: Transmit Sa8 Bits
Register Address: D9h
Bit # 7 6 5 4 3 2 1 0
Name TSa8F1 TSa8F3 TSa8F5 TSa8F7 TSa8F9 TSa8F11 TSa8F13 TSa8F15
Default 0 0 0 0 0 0 0 0
Bit 0/Sa8 Bit of Frame 15 (TSa8F15)
Bit 1/Sa8 Bit of Frame 13 (TSa8F13)
Bit 2/Sa8 Bit of Frame 11 (TSa8F11)
Bit 3/Sa8 Bit of Frame 9 (TSa8F9)
Bit 4/Sa8 Bit of Frame 7 (TSa8F7)
Bit 5/Sa8 Bit of Frame 5 (TSa8F5)
Bit 6/Sa8 Bit of Frame 3 (TSa8F3)
Bit 7/Sa8 Bit of Frame 1 (TSa8F1)
DS2155
125 of 238
Register Name: TSACR
Register Description: Transmit Sa Bit Control Register
Register Address: DAh
Bit # 7 6 5 4 3 2 1 0
Name SiAF SiNAF RA Sa4 Sa5 Sa6 Sa7 Sa8
Default 0 0 0 0 0 0 0 0
Bit 0/Additional Bit 8 Insertion Control Bit (Sa8)
0 = do not insert data from the TSa8 register into the transmit data stream
1 = insert data from the TSa8 register into the transmit data stream
Bit 1/Additional Bit 7 Insertion Control Bit (Sa7)
0 = do not insert data from the TSa7 register into the transmit data stream
1 = insert data from the TSa7 register into the transmit data stream
Bit 2/Additional Bit 6 Insertion Control Bit (Sa6)
0 = do not insert data from the TSa6 register into the transmit data stream
1 = insert data from the TSa6 register into the transmit data stream
Bit 3/Additional Bit 5 Insertion Control Bit (Sa5)
0 = do not insert data from the TSa5 register into the transmit data stream
1 = insert data from the TSa5 register into the transmit data stream
Bit 4/Additional Bit 4 Insertion Control Bit (Sa4)
0 = do not insert data from the TSa4 register into the transmit data stream
1 = insert data from the TSa4 register into the transmit data stream
Bit 5/Remote Alarm Insertion Control Bit (RA)
0 = do not insert data from the TRA register into the transmit data stream
1 = insert data from the TRA register into the transmit data stream
Bit 6/International Bit in Nonalign Frame Insertion Control Bit (SiNAF)
0 = do not insert data from the TSiNAF register into the transmit data stream
1 = insert data from the TSiNAF register into the transmit data stream
Bit 7/International Bit in Align Frame Insertion Control Bit (SiAF)
0 = do not insert data from the TSiAF register into the transmit data stream
1 = insert data from the TSiAF register into the transmit data stream
DS2155
126 of 238
23. HDLC CONTROLLERS
This device has two enhanced HDLC controllers, HDLC #1 and HDLC #2. Each controller is
configurable for use with time slots, Sa4 to Sa8 bits (E1 mode), or the FDL (T1 mode). Each HDLC
controller has 128-byte buffers in the transmit and receive paths. When used with time slots, the user can
select any time slot or multiple time slots, contiguous or noncontiguous, as well as any specific bits
within the time slot(s) to assign to the HDLC controllers.
The user must not map both transmit HDLC controllers to the same Sa bits, time slots or, in T1 mode,
map both controllers to the FDL. HDLC #1 and HDLC #2 are identical in operation and therefore the
following operational description refers only to a singular controller.
The HDLC controller performs the entire necessary overhead for generating and receiving performance
report messages (PRMs) as described in ANSI T1.403 and the messages as described in AT&T TR54016.
The HDLC controller automatically generates and detects flags, generates and checks the CRC check
sum, generates and detects abort sequences, stuffs and destuffs zeros, and byte aligns to the data stream.
The 128-byte buffers in the HDLC controller are large enough to allow a full PRM to be received or
transmitted without host intervention.
23.1 Basic Operation Details
The HDLC registers are divided into four groups: control/configuration, status/information, mapping, and
FIFOs. Table 23-A lists these registers by group.
23.2 HDLC Configuration
The HxTC and HxRC registers perform the basic configuration of the HDLC controllers. Operating
features such as CRC generation, zero stuffer, transmit and receive HDLC mapping options, and idle
flags are selected here. These registers also reset the HDLC controllers.
DS2155
127 of 238
Table 23-A. HDLC Controller Registers
REGISTER FUNCTION
CONTROL AND CONFIGURATION
H1TC, HDLC #1 Transmit Control Register
H2TC, HDLC #2 Transmit Control Register
General control over the transmit HDLC
controllers
H1RC, HDLC #1 Receive Control Register
H2RC, HDLC #2 Receive Control Register
General control over the receive HDLC
controllers
H1FC, HDLC #1 FIFO Control Register
H2FC, HDLC #2 FIFO Control Register
Sets high watermark for receiver and low
watermark for transmitter
STATUS AND INFORMATION
SR6, HDLC #1 Status Register
SR7, HDLC #2 Status Register
Key status information for both transmit and
receive directions
IMR6, HDLC #1 Interrupt Mask Register
IMR7, HDLC #2 Interrupt Mask Register
Selects which bits in the status registers (SR7
and SR8) cause interrupts
INFO4, HDLC #1 and #2 Information Register
INFO5, HDLC #1 Information Register
INFO6, HDLC #2 Information Register
Information about HDLC controller
H1RPBA, HDLC #1 Receive Packet Bytes
Available Register
H2RPBA, HDLC #2 Receive Packet Bytes
Available Register
Indicates the number of bytes that can be read
from the receive FIFO
H1TFBA, HDLC #1 Transmit FIFO Buffer
Available Register
H2TFBA, HDLC #2 Transmit FIFO Buffer
Available Register
Indicates the number of bytes that can be
written to the transmit FIFO
MAPPING
H1RCS1, H1RCS2, H1RCS3, H1RCS4, HDLC
#1 Receive Channel Select Registers
H2RCS1, H2RCS2, H2RCS3, H2RCS4, HDLC
#2 Receive Channel Select Registers
Selects which channels are mapped to the
receive HDLC controller
H1RTSBS, HDLC #1 Receive TS/Sa Bit Select
Register
H2RTSBS, HDLC #2 Receive TS/Sa Bit Select
Register
Selects which bits in a channel are used or
which Sa bits are used by the receive HDLC
controller
H1TCS1, H1TCS2, H1TCS3, H1TCS4, HDLC
#1 Transmit Channel Select Registers
H2TCS1, H2TCS2, H2TCS3, H2TCS4, HDLC
#2 Transmit Channel Select Registers
Selects which channels are mapped to the
transmit HDLC controller
H1TTSBS, HDLC # 1 Transmit TS/Sa Bit Select
Register
H2TTSBS, HDLC # 2 Transmit TS/Sa Bit Select
Register
Selects which bits in a channel are used or
which Sa bits are used by the transmit HDLC
controller
FIFOs
H1RF, HDLC #1 Receive FIFO Register
H2RF, HDLC #1 Receive FIFO Register
Access to 128-byte receive FIFO
H1TF, HDLC #1 Transmit FIFO Register
H2TF, HDLC #2 Transmit FIFO Register
Access to 128-byte transmit FIFO
DS2155
128 of 238
Register Name: H1TC, H2TC
Register Description: HDLC #1 Transmit Control
HDLC #2 Transmit Control
Register Address: 90h, A0h
Bit # 7 6 5 4 3 2 1 0
Name NOFS TEOML THR THMS TFS TEOM TZSD TCRCD
Default 0 0 0 0 0 0 0 0
Bit 0/Transmit CRC Defeat (TCRCD). A 2-byte CRC code is automatically appended to the outbound message.
This bit can be used to disable the CRC function.
0 = enable CRC generation (normal operation)
1 = disable CRC generation
Bit 1/Transmit Zero-Stuffer Defeat (TZSD). The zero-stuffer function automatically inserts a 0 in the message
field (between the flags) after five consecutive 1s to prevent the emulation of a flag or abort sequence by the data
pattern. The receiver automatically removes (destuffs) any 0 after five 1s in the message field.
0 = enable the zero stuffer (normal operation)
1 = disable the zero stuffer
Bit 2/Transmit End of Message (TEOM). Should be set to a 1 just before the last data byte of an HDLC packet is
written into the transmit FIFO at HxTF. If not disabled through TCRCD, the transmitter automatically appends a 2-
byte CRC code to the end of the message.
Bit 3/Transmit Flag/Idle Select (TFS). This bit selects the intermessage fill character after the closing and before
the opening flags (7Eh).
0 = 7Eh
1 = FFh
Bit 4/Transmit HDLC Mapping Select (THMS)
0 = transmit HDLC assigned to channels
1 = transmit HDLC assigned to FDL (T1 mode), Sa bits (E1 mode)
Bit 5/Transmit HDLC Reset (THR). Resets the transmit HDLC controller and flushes the transmit FIFO. An
abort followed by 7Eh or FFh flags/idle is transmitted until a new packet is initiated by writing new data into the
FIFO. Must be cleared and set again for a subsequent reset.
0 = normal operation
1 = reset transmit HDLC controller and flush the transmit FIFO
Bit 6/Transmit End of Message and Loop (TEOML). To loop on a message, this bit should be set to a 1 just
before the last data byte of an HDLC packet is written into the transmit FIFO. The message repeats until the user
clears this bit or a new message is written to the transmit FIFO. If the host clears the bit, the looping message
completes, then flags are transmitted until a new message is written to the FIFO. If the host terminates the loop by
writing a new message to the FIFO, the loop terminates, one or two flags are transmitted, and the new message
starts. If not disabled through TCRCD, the transmitter automatically appends a 2-byte CRC code to the end of all
messages. This is useful for transmitting consecutive SS7 FISUs without host intervention.
Bit 7/Number of Flags Select (NOFS)
0 = send one flag between consecutive messages
1 = send two flags between consecutive messages
DS2155
129 of 238
Register Name: H1RC, H2RC
Register Description: HDLC #1 Receive Control
HDLC #2 Receive Control
Register Address: 31h, 32h
Bit # 7 6 5 4 3 2 1 0
Name RHR RHMS — — — — — RSFD
Default 0 0 0 0 0 0 0 0
Bit 0/Receive SS7 Fill-In Signal Unit Delete (RSFD)
0 = normal operation; all FISUs are stored in the receive FIFO and reported to the host.
1 = When a consecutive FISU having the same BSN the previous FISU is detected, it is deleted without
host intervention.
Bits 1 to 5/Unused, must be set to 0 or proper operation
Bit 6/Receive HDLC Mapping Select (RHMS)
0 = receive HDLC assigned to channels
1 = receive HDLC assigned to FDL (T1 mode), Sa bits (E1 mode)
Bit 7/Receive HDLC Reset (RHR). Resets the receive HDLC controller and flushes the receive FIFO. Must be
cleared and set again for a subsequent reset.
0 = normal operation
1 = reset receive HDLC controller and flush the receive FIFO
DS2155
130 of 238
23.2.1 FIFO Control
The FIFO control register (HxFC) controls and sets the watermarks for the transmit and receive FIFOs.
Bits 3, 4, and 5 set the transmit low watermark and the lower 3 bits set the receive high watermark.
When the transmit FIFO empties below the low watermark, the TLWM bit in the appropriate HDLC
status register SR6 or SR7 is set. TLWM is a real-time bit and remains set as long as the transmit FIFO’s
read pointer is below the watermark. If enabled, this condition can also cause an interrupt through the INT
pin.
When the receive FIFO fills above the high watermark, the RHWM bit in the appropriate HDLC status
register is set. RHWM is a real-time bit and remains set as long as the receive FIFO’s write pointer is
above the watermark. If enabled, this condition can also cause an interrupt through the INT pin.
Register Name: H1FC, H2FC
Register Description: HDLC # 1 FIFO Control
HDLC # 2 FIFO Control
Register Address: 91h, A1h
Bit # 7 6 5 4 3 2 1 0
Name TFLWM2 TFLWM1 TFLWM0 RFHWM2 RFHWM1 RFHWM0
Default 0 0 0 0 0 0 0 0
Bits 0 to 2/Receive FIFO High-Watermark Select (RFHWM0 to RFHWM2)
RFHWM2 RFHWM1 RFHWM0 Receive FIFO Watermark
(bytes)
0 0 0 4
0 0 1 16
0 1 0 32
0 1 1 48
1 0 0 64
1 0 1 80
1 1 0 96
1 1 1 112
Bits 3 to 5/Transmit FIFO Low-Watermark Select (TFLWM0 to TFLWM2)
TFLWM2 TFLWM1 TFLWM0 Transmit FIFO Watermark
(bytes)
0 0 0 4
0 0 1 16
0 1 0 32
0 1 1 48
1 0 0 64
1 0 1 80
1 1 0 96
1 1 1 112
Bits 6, 7/Unused, must be set to 0 for proper operation
DS2155
131 of 238
23.3 HDLC Mapping
23.3.1 Receive
The HDLC controllers must be assigned a space in the T1/E1 bandwidth in which they transmit and
receive data. The controllers can be mapped to either the FDL (T1), Sa bits (E1), or to channels. If
mapped to channels, then any channel or combination of channels, contiguous or not, can be assigned to
an HDLC controller. When assigned to a channel(s), any combination of bits within the channel(s) can be
avoided.
The HxRCS1–HxRCS4 registers are used to assign the receive controllers to channels 1–24 (T1) or
1–32 (E1) according to the following table:
Register Channels
HxRCS1 1–8
HxRCS2 9–16
HxRCS3 17–24
HxRCS4 25–32
Register Name: H1RCS1, H1RCS2, H1RCS3, H1RCS4
H2RCS1, H2RCS2, H2RCS3, H2RCS4
Register Description: HDLC # 1 Receive Channel Select x
HDLC # 2 Receive Channel Select x
Register Address: 92h, 93h, 94h, 95h
A2h, A3h, A4h, A5h
Bit # 7 6 5 4 3 2 1 0
Name RHCS7 RHCS6 RHCS5 RHCS4 RHCS3 RHCS2 RHCS1 RHCS0
Default 0 0 0 0 0 0 0 0
Bit 0/Receive HDLC Channel Select Bit 0 (RHCS0). Select Channel 1, 9, 17, or 25.
Bit 1/Receive HDLC Channel Select Bit 1 (RHCS1). Select Channel 2, 10, 18, or 26.
Bit 2/Receive HDLC Channel Select Bit 2 (RHCS2). Select Channel 3, 11, 19, or 27.
Bit 3/Receive HDLC Channel Select Bit 3 (RHCS3). Select Channel 4, 12, 20, or 28.
Bit 4/Receive HDLC Channel Select Bit 4 (RHCS4). Select Channel 5, 13, 21, or 29.
Bit 5/Receive HDLC Channel Select Bit 5 (RHCS5). Select Channel 6, 14, 22, or 30.
Bit 6/Receive HDLC Channel Select Bit 6 (RHCS6). Select Channel 7, 15, 23, or 31.
Bit 7/Receive HDLC Channel Select Bit 7 (RHCS7). Select Channel 8, 16, 24, or 32.
DS2155
132 of 238
Register Name: H1RTSBS, H2RTSBS
Register Description: HDLC # 1 Receive Time Slot Bits/Sa Bits Select
HDLC # 2 Receive Time Slot Bits/Sa Bits Select
Register Address: 96h, A6h
Bit # 7 6 5 4 3 2 1 0
Name RCB8SE RCB7SE RCB6SE RCB5SE RCB4SE RCB3SE RCB2SE RCB1SE
Default 0 0 0 0 0 0 0 0
Bit 0/Receive Channel Bit 1 Suppress Enable/Sa8 Bit Enable (RCB1SE ). LSB of the channel. Set to 1 to stop
this bit from being used.
Bit 1/Receive Channel Bit 2 Suppress Enable/Sa7 Bit Enable (RCB2SE). Set to 1 to stop this bit from being
used.
Bit 2/Receive Channel Bit 3 Suppress Enable/Sa6 Bit Enable (RCB3SE). Set to 1 to stop this bit from being
used.
Bit 3/Receive Channel Bit 4 Suppress Enable/Sa5 Bit Enable (RCB4SE). Set to 1 to stop this bit from being
used.
Bit 4/Receive Channel Bit 5 Suppress Enable/Sa4 Bit Enable (RCB5SE). Set to 1 to stop this bit from being
used.
Bit 5/Receive Channel Bit 6 Suppress Enable (RCB6SE). Set to 1 to stop this bit from being used.
Bit 6/Receive Channel Bit 7 Suppress Enable (RCB7SE). Set to 1 to stop this bit from being used.
Bit 7/Receive Channel Bit 8 Suppress Enable (RCB8SE). MSB of the channel. Set to 1 to stop this bit from
being used.
DS2155
133 of 238
23.3.2 Transmit
The HxTCS1–HxTCS4 registers are used to assign the transmit controllers to channels 1–24 (T1) or
1–32 (E1) according to the following table.
Register Channels
HxTCS1 1–8
HxTCS2 9–16
HxTCS3 17–24
HxTCS4 25–32
Register Name: H1TCS1, H1TCS2, H1TCS3, H1TCS4
H2TCS1, H2TCS2, H2TCS3, H2TCS4
Register Description: HDLC # 1 Transmit Channel Select
HDLC # 2 Transmit Channel Select
Register Address: 97h, 98h, 99h, 9Ah
A7h, A8h, A9h, AAh
Bit # 7 6 5 4 3 2 1 0
Name THCS7 THCS6 THCS5 THCS4 THCS3 THCS2 THCS1 THCS0
Default 0 0 0 0 0 0 0 0
Bit 0/Transmit HDLC Channel Select Bit 0 (THCS0). Select Channel 1, 9, 17, or 25.
Bit 1/Transmit HDLC Channel Select Bit 1 (THCS1). Select Channel 2, 10, 18, or 26.
Bit 2/Transmit HDLC Channel Select Bit 2 (THCS2). Select Channel 3, 11, 19, or 27.
Bit 3/Transmit HDLC Channel Select Bit 3 (THCS3). Select Channel 4, 12, 20, or 28.
Bit 4/Transmit HDLC Channel Select Bit 4 (THCS4). Select Channel 5, 13, 21, or 29.
Bit 5/Transmit HDLC Channel Select Bit 5 (THCS5). Select Channel 6, 14, 22, or 30.
Bit 6/Transmit HDLC Channel Select Bit 6 (THCS6). Select Channel 7, 15, 23, or 31.
Bit 7/Transmit HDLC Channel Select Bit 7 (THCS7). Select Channel 8, 16, 24, or 32.
DS2155
134 of 238
Register Name: H1TTSBS, H2TTSBS
Register Description: HDLC # 1 Transmit Time Slot Bits/Sa Bits Select
HDLC # 2 Transmit Time Slot Bits/Sa Bits Select
Register Address: 9Bh, ABh
Bit # 7 6 5 4 3 2 1 0
Name TCB8SE TCB7SE TCB6SE TCB5SE TCB4SE TCB3SE TCB2SE TCB1SE
Default 0 0 0 0 0 0 0 0
Bit 0/Transmit Channel Bit 1 Suppress Enable/Sa8 Bit Enable (TCB1SE). LSB of the channel. Set to 1 to stop
this bit from being used.
Bit 1/Transmit Channel Bit 2 Suppress Enable/Sa7 Bit Enable (TCB1SE). Set to 1 to stop this bit from being
used.
Bit 2/Transmit Channel Bit 3 Suppress Enable/Sa6 Bit Enable (TCB1SE). Set to 1 to stop this bit from being
used.
Bit 3/Transmit Channel Bit 4 Suppress Enable/Sa5 Bit Enable (TCB1SE). Set to 1 to stop this bit from being
used.
Bit 4/Transmit Channel Bit 5 Suppress Enable/Sa4 Bit Enable (TCB1SE). Set to 1 to stop this bit from being
used.
Bit 5/Transmit Channel Bit 6 Suppress Enable (TCB1SE). Set to 1 to stop this bit from being used.
Bit 6/Transmit Channel Bit 7 Suppress Enable (TCB1SE). Set to 1 to stop this bit from being used.
Bit 7/Transmit Channel Bit 8 Suppress Enable (TCB1SE). MSB of the channel. Set to 1 to stop this bit from
being used.
DS2155
135 of 238
Register Name: SR6, SR7
Register Description: HDLC #1 Status Register 6
HDLC #2 Status Register 7
Register Address: 20h, 22h
Bit # 7 6 5 4 3 2 1 0
Name — TMEND RPE RPS RHWM RNE TLWM TNF
Default 0 0 0 0 0 0 0 0
Bit 0/Transmit FIFO Not Full Condition (TNF). Set when the transmit 128-byte FIFO has at least 1 byte
available.
Bit 1/Transmit FIFO Below Low-Watermark Condition (TLWM). Set when the transmit 128-byte FIFO
empties beyond the low watermark as defined by the transmit low-watermark register (TLWMR).
Bit 2/Receive FIFO Not Empty Condition (RNE). Set when the receive 128-byte FIFO has at least 1 byte
available for a read.
Bit 3/Receive FIFO Above High-Watermark Condition (RHWM). Set when the receive 128-byte FIFO fills
beyond the high watermark as defined by the receive high-watermark register (RHWMR).
Bit 4/Receive Packet-Start Event (RPS). Set when the HDLC controller detects an opening byte. This is a latched
bit and is cleared when read.
Bit 5/Receive Packet-End Event (RPE). Set when the HDLC controller detects either the finish of a valid
message (i.e., CRC check complete) or when the controller has experienced a message fault such as a CRC
checking error, or an overrun condition, or an abort has been seen. This is a latched bit and is cleared when read.
Bit 6/Transmit Message-End Event (TMEND). Set when the transmit HDLC controller has finished sending a
message. This is a latched bit and is cleared when read.
DS2155
136 of 238
Register Name: IMR6, IMR7
Register Description: HDLC # 1 Interrupt Mask Register 6
HDLC # 2 Interrupt Mask Register 7
Register Address: 21h, 23h
Bit # 7 6 5 4 3 2 1 0
Name — TMEND RPE RPS RHWM RNE TLWM TNF
Default 0 0 0 0 0 0 0 0
Bit 0/Transmit FIFO Not Full Condition (TNF)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising edge only
Bit 1/Transmit FIFO Below Low-Watermark Condition (TLWM)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising edge only
Bit 2/Receive FIFO Not Empty Condition (RNE)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising edge only
Bit 3/Receive FIFO Above High-Watermark Condition (RHWM)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising edge only
Bit 4/Receive Packet-Start Event (RPS)
0 = interrupt masked
1 = interrupt enabled
Bit 5/Receive Packet-End Event (RPE)
0 = interrupt masked
1 = interrupt enabled
Bit 6/Transmit Message-End Event (TMEND)
0 = interrupt masked
1 = interrupt enabled
DS2155
137 of 238
Register Name: INFO5, INFO6
Register Description: HDLC #1 Information Register
HDLC #2 Information Register
Register Address: 2Eh, 2Fh
Bit # 7 6 5 4 3 2 1 0
Name TEMPTY TFULL REMPTY PS2 PS1 PS0
Default 0 0 0 0 0 0 0 0
Bits 0 to 2/Receive Packet Status (PS0 to PS2). These are real-time bits indicating the status as of the last read of
the receive FIFO.
PS2 PS1 PS0 Packet Status
0 0 0
In Progress
0 0 1 Packet OK: Packet ended with correct CRC codeword
0 1 0
CRC Error: A closing flag was detected, preceded by a corrupt CRC
codeword
0 1 1
Abort: Packet ended because an abort signal was detected (seven or
more 1s in a row).
1 0 0
Overrun: HDLC controller terminated reception of packet because
receive FIFO is full.
Bit 3/Receive FIFO Empty (REMPTY). A real-time bit that is set high when the receive FIFO is empty.
Bit 4/Transmit FIFO Full (TFULL). A real-time bit that is set high when the FIFO is full.
Bit 5/Transmit FIFO Empty (TEMPTY). A real-time bit that is set high when the FIFO is empty.
Register Name: INFO4
Register Description: HDLC Event Information Register #4
Register Address: 2Dh
Bit # 7 6 5 4 3 2 1 0
Name — — — — H2UDR H2OBT H1UDR H1OBT
Default 0 0 0 0 0 0 0 0
Bit 0/HDLC #1 Opening Byte Event (H1OBT). Set when the next byte available in the receive FIFO is the first
byte of a message.
Bit 1/HDLC #1 Transmit FIFO Underrun Event (H1UDR). Set when the transmit FIFO empties out without
having seen the TMEND bit set. An abort is automatically sent. This bit is latched and is cleared when read.
Bit 2/HDLC #2 Opening Byte Event (H2OBT). Set when the next byte available in the receive FIFO is the first
byte of a message.
Bit 3/HDLC #2 Transmit FIFO Underrun Event (H2UDR). Set when the transmit FIFO empties out without
having seen the TMEND bit set. An abort is automatically sent. This bit is latched and is cleared when read.
DS2155
138 of 238
23.3.3 FIFO Information
The transmit FIFO buffer-available register indicates the number of bytes that can be written into the
transmit FIFO. The count form this register informs the host as to how many bytes can be written into the
transmit FIFO without overflowing the buffer.
Register Name: H1TFBA, H2TFBA
Register Description: HDLC # 1 Transmit FIFO Buffer Available
HDLC # 2 Transmit FIFO Buffer Available
Register Address: 9Fh, Afh
Bit # 7 6 5 4 3 2 1 0
Name TFBA7 TFBA6 TFBA5 TFBA4 TFBA3 TFBA2 TFBA1 TFBA0
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Transmit FIFO Bytes Available (TFBAO to TFBA7). TFBA0 is the LSB.
23.3.4 Receive Packet-Bytes Available
The lower 7 bits of the receive packet-bytes available register indicates the number of bytes (0 through
127) that can be read from the receive FIFO. The value indicated by this register (lower seven bits)
informs the host as to how many bytes can be read from the receive FIFO without going past the end of a
message. This value refers to one of four possibilities: the first part of a packet, the continuation of a
packet, the last part of a packet, or a complete packet. After reading the number of bytes indicated by this
register, the host then checks the HDLC information register for detailed message status.
If the value in the HxRPBA register refers to the beginning portion of a message or continuation of a
message, then the MSB of the HxRPBA register returns a value of 1. This indicates that the host can
safely read the number of bytes returned by the lower seven bits of the HxRPBA register, but there is no
need to check the information register since the packet has not yet terminated (successfully or otherwise).
Register Name: H1RPBA, H2RPBA
Register Description: HDLC # 1 Receive Packet Bytes Available
HDLC # 2 Receive Packet Bytes Available
Register Address: 9Ch, ACh
Bit # 7 6 5 4 3 2 1 0
Name MS RPBA6 RPBA5 RPBA4 RPBA3 RPBA2 RPBA1 RPBA0
Default 0 0 0 0 0 0 0 0
Bits 0 to 6/Receive FIFO Packet Bytes Available Count (RPBA0 to RPBA6). RPBA0 is the LSB.
Bit 7/Message Status (MS)
0 = bytes indicated by RPBA0 through RPBA6 are the end of a message. Host must check the INFO5 or
INFO6 register for details.
1 = bytes indicated by RPBA0 through RPBA6 are the beginning or continuation of a message. The host
does not need to check the INFO5 or INFO6 register.
DS2155
139 of 238
23.3.5 HDLC FIFOs
Register Name: H1TF, H2TF
Register Description: HDLC # 1 Transmit FIFO
HDLC # 2 Transmit FIFO
Register Address: 9Dh, ADh
Bit # 7 6 5 4 3 2 1 0
Name THD7 THD6 THD5 THD4 THD3 THD2 THD1 THD0
Default 0 0 0 0 0 0 0 0
Bit 0/Transmit HDLC Data Bit 0 (THD0). LSB of an HDLC packet data byte.
Bit 1/Transmit HDLC Data Bit 1 (THD1)
Bit 2/Transmit HDLC Data Bit 2 (THD2)
Bit 3/Transmit HDLC Data Bit 3 (THD3)
Bit 4/Transmit HDLC Data Bit 4 (THD4)
Bit 5/Transmit HDLC Data Bit 5 (THD5)
Bit 6/Transmit HDLC Data Bit 6 (THD6)
Bit 7/Transmit HDLC Data Bit 7 (THD7). MSB of an HDLC packet data byte.
Register Name: H1RF, H2RF
Register Description: HDLC # 1 Receive FIFO
HDLC # 2 Receive FIFO
Register Address: 9Eh, AEh
Bit # 7 6 5 4 3 2 1 0
Name RHD7 RHD6 RHD5 RHD4 RHD3 RHD2 RHD1 RHD0
Default 0 0 0 0 0 0 0 0
Bit 0/Receive HDLC Data Bit 0 (RHD0). LSB of an HDLC packet data byte.
Bit 1/Receive HDLC Data Bit 1 (RHD1)
Bit 2/Receive HDLC Data Bit 2 (RHD2)
Bit 3/Receive HDLC Data Bit 3 (RHD3)
Bit 4/Receive HDLC Data Bit 4 (RHD4)
Bit 5/Receive HDLC Data Bit 5 (RHD5)
Bit 6/Receive HDLC Data Bit 6 (RHD6)
Bit 7/Receive HDLC Data Bit 7 (RHD7). MSB of an HDLC packet data byte.
DS2155
140 of 238
23.4 Receive HDLC Code Example
The following is an example of a receive HDLC routine:
1) Reset receive HDLC controller.
2) Set HDLC mode, mapping, and high watermark.
3) Start new message buffer.
4) Enable RPE and RHWM interrupts.
5) Wait for interrupt.
6) Disable RPE and RHWM interrupts.
7) Read HxRPBA register. N = HxRPBA (lower 7 bits are byte count, MSB is status).
8) Read (N and 7Fh) bytes from receive FIFO and store in message buffer.
9) Read INFO5 register.
10) If PS2, PS1, PS0 = 000, then go to Step 4.
11) If PS2, PS1, PS0 = 001, then packet terminated OK, save present message buffer.
12) If PS2, PS1, PS0 = 010, then packet terminated with CRC error.
13) If PS2, PS1, PS0 = 011, then packet aborted.
14) If PS2, PS1, PS0 = 100, then FIFO overflowed.
15) Go to Step 3.
23.5 Legacy FDL Support (T1 Mode)
23.5.1 Overview
To provide backward compatibility to the older DS21x52 T1 device, the DS2155 maintains the circuitry
that existed in the previous generation of the T1 framer. In new applications, it is recommended that the
HDLC controllers and BOC controller described in Section 21 and 23 are used.
23.5.2 Receive Section
In the receive section, the recovered FDL bits or Fs bits are shifted bit-by-bit into the receive FDL
register (RFDL). Because the RFDL is 8 bits in length, it fills up every 2ms (8 x 250µs). The framer
signals an external microcontroller that the buffer has filled through the SR8.3 bit. If enabled through
IMR8.3, the INT pin toggles low, indicating that the buffer has filled and needs to be read. The user has
2ms to read this data before it is lost. If the byte in the RFDL matches either of the bytes programmed
into the RFDLM1 or RFDLM2 registers, then the SR8.1 bit is set to a 1 and the INT pin toggles low if
enabled through IMR8.1. This feature allows an external microcontroller to ignore the FDL or Fs pattern
until an important event occurs.
The framer also contains a zero destuffer, which is controlled through the T1RCR2.3 bit. In both ANSI
T1.403 and TR54016, communications on the FDL follows a subset of an LAPD protocol. The LAPD
protocol states that no more than five 1s should be transmitted in a row so that the data does not resemble
an opening or closing flag (01111110) or an abort signal (11111111). If enabled through T1RCR2.3, the
DS2155 automatically looks for five 1s in a row, followed by a 0. If it finds such a pattern, it
automatically removes the zero. If the zero destuffer sees six or more 1s in a row followed by a 0, the 0 is
not removed. The T1RCR2.3 bit should always be set to a 1 when the DS2155 is extracting the FDL.
Refer to Application Note 335: DS2141A, DS2151 Controlling the FDL for information about using the
DS2155 in FDL applications in this legacy support mode.
DS2155
141 of 238
Register Name: RFDL
Register Description: Receive FDL Register
Register Address: C0h
Bit # 7 6 5 4 3 2 1 0
Name RFDL7 RFDL6 RFDL5 RFDL4 RFDL3 RFDL2 RFDL1 RFDL0
Default 0 0 0 0 0 0 0 0
The receive FDL register (RFDL) reports the incoming FDL or the incoming Fs bits. The LSB is received first.
Bit 0/Receive FDL Bit 0 (RFDL0). LSB of the received FDL code.
Bit 1/Receive FDL Bit 1 (RFDL1)
Bit 2/Receive FDL Bit 2 (RFDL2)
Bit 3/Receive FDL Bit 3 (RFDL3)
Bit 4/Receive FDL Bit 4 (RFDL4)
Bit 5/Receive FDL Bit 5 (RFDL5)
Bit 6/Receive FDL Bit 6 (RFDL6)
Bit 7/Receive FDL Bit 7 (RFDL7). MSB of the received FDL code.
Register Name: RFDLM1, RFDLM2
Register Description: Receive FDL Match Register 1
Receive FDL Match Register 2
Register Address: C2h, C3h
Bit # 7 6 5 4 3 2 1 0
Name RFDLM7 RFDLM6 RFDLM5 RFDLM4 RFDLM3 RFDLM2 RFDLM1 RFDLM0
Default 0 0 0 0 0 0 0 0
Bit 0/Receive FDL Match Bit 0 (RFDLM0). LSB of the FDL match code.
Bit 1/Receive FDL Match Bit 1 (RFDLM1)
Bit 2/Receive FDL Match Bit 2 (RFDLM2)
Bit 3/Receive FDL Match Bit 3 (RFDLM3)
Bit 4/Receive FDL Match Bit 4 (RFDLM4)
Bit 5/Receive FDL Match Bit 5 (RFDLM5)
Bit 6/Receive FDL Match Bit 6 (RFDLM6)
Bit 7/Receive FDL Match Bit 7 (RFDLM7). MSB of the FDL match code.
DS2155
142 of 238
23.5.3 Transmit Section
The transmit section shifts out into the T1 data stream either the FDL (in the ESF framing mode) or the
Fs bits (in the D4 framing mode) contained in the transmit FDL register (TFDL). When a new value is
written to the TFDL, it is multiplexed serially (LSB first) into the proper position in the outgoing T1 data
stream. After the full 8 bits have been shifted out, the framer signals the host microcontroller by setting
the SR8.2 bit to a 1 that the buffer is empty and that more data is needed. The INT also toggles low if
enabled through IMR8.2. The user has 2ms to update the TFDL with a new value. If the TFDL is not
updated, the old value in the TFDL is transmitted once again. The framer also contains a zero stuffer that
is controlled through the T1TCR2.5 bit. In both ANSI T1.403 and TR54016, communications on the FDL
follows a subset of an LAPD protocol. The LAPD protocol states that no more than five 1s should be
transmitted in a row so that the data does not resemble an opening or closing flag (01111110) or an abort
signal (11111111). If enabled through T1TCR2.5, the framer automatically looks for five 1s in a row. If it
finds such a pattern, it automatically inserts a 0 after the five 1s. The T1TCR2.5 bit should always be set
to a 1 when the framer is inserting the FDL.
Register Name: TFDL
Register Description: Transmit FDL Register
Register Address: C1h
Bit # 7 6 5 4 3 2 1 0
Name TFDL7 TFDL6 TFDL5 TFDL4 TFDL3 TFDL2 TFDL1 TFDL0
Default 0 0 0 0 0 0 0 0
Note: Also used to insert Fs framing pattern in D4 framing mode.
The transmit FDL register (TFDL) contains the FDL information that is to be inserted on a byte basis into the
outgoing T1 data stream. The LSB is transmitted first.
Bit 0/Transmit FDL Bit 0 (TFDL0). LSB of the transmit FDL code.
Bit 1/Transmit FDL Bit 1 (TFDL1)
Bit 2/Transmit FDL Bit 2 (TFDL2)
Bit 3/Transmit FDL Bit 3 (TFDL3)
Bit 4/Transmit FDL Bit 4 (TFDL4)
Bit 5/Transmit FDL Bit 5 (TFDL5)
Bit 6/Transmit FDL Bit 6 (TFDL6)
Bit 7/Transmit FDL Bit 7 (TFDL7). MSB of the transmit FDL code.
23.6 D4/SLC-96 Operation
In the D4 framing mode, the framer uses the TFDL register to insert the Fs framing pattern. To allow the
device to properly insert the Fs framing pattern, the TFDL register at address C1h must be programmed to
1Ch and the following bits must be programmed as shown:
T1TCR1.2 = 0 (source Fs data from the TFDL register)
T1TCR2.6 = 1 (allow the TFDL register to load on multiframe boundaries)
Since the SLC-96 message fields share the Fs-bit position, the user can access these message fields
through the TFDL and RFDL registers. Refer to Application Note 345: DS2141A, DS2151, DS2152 SLC-
96 for a detailed description about implementing an SLC-96 function.
DS2155
143 of 238
24. LINE INTERFACE UNIT (LIU)
The LIU contains three sections: the receiver that handles clock and data recovery, the transmitter that
waveshapes and drives the T1 line, and the jitter attenuator. These three sections are controlled by the line
interface control registers (LIC1–LIC4), which are described in the following sections. The LIU has its
own T1/E1 mode-select bit and can operate independently of the framer function.
The DS2155 can switch between T1 or E1 networks without changing any external components on either
the transmit or receive side. Figure 24-3 shows a network connection using minimal components. In this
configuration, the DS2155 can connect to T1, J1, or E1 (75 or 120) without any component change.
The receiver can adjust the 120 termination to 100 or 75. The transmitter can adjust its output
impedance to provide high return-loss characteristics for 120, 100, and 75 lines. Other components
can be added to this configuration to meet safety and network protection requirements (Section 24.8).
24.1 LIU Operation
The analog AMI/HDB3 waveform off the E1 line or the AMI/B8ZS waveform off of the T1 line is
transformer-coupled into the RTIP and RRING pins of the DS2155. The user has the option to use
internal termination, software selectable for 75/100/120 applications, or external termination. The
LIU recovers clock and data from the analog signal and passes it through the jitter-attenuation mux
outputting the received line clock at RCLKO and bipolar or NRZ data at RPOSO and RNEGO. The
DS2155 contains an active filter that reconstructs the analog-received signal for the nonlinear losses that
occur in transmission. The receive circuitry also is configurable for various monitor applications. The
device has a usable receive sensitivity of 0dB to -43dB for E1 and 0dB to -36dB for T1, which allow the
device to operate on 0.63mm (22AWG) cables up to 2.5km (E1) and 6k feet (T1) in length. Data input at
TPOSI and TNEGI is sent through the jitter-attenuation mux to the waveshaping circuitry and line driver.
The DS2155 drives the E1 or T1 line from the TTIP and TRING pins through a coupling transformer.
The line driver can handle both CEPT 30/ISDN-PRI lines for E1 and long-haul (CSU) or short-haul
(DSX-1) lines for T1.
24.2 Receiver
The DS2155 contains a digital clock recovery system. The DS2155 couples to the receive E1 or T1
twisted pair (or coaxial cable in 75 E1 applications) through a 1:1 transformer. See Table 24-C for
transformer details. The DS2155 has the option of using software-selectable termination requiring only a
single fixed pair of termination resistors.
The DS2155’s LIU is designed to be fully software selectable for E1 and T1, requiring no change to any
external resistors for the receive side. The receive side allows the user to configure the DS2155 for 75,
100, or 120 receive termination by setting the RT1 (LIC4.1) and RT0 (LIC4.0) bits. When using the
internal termination feature, the resistors labeled R in Figure 24-3 should be 60 each. If external
termination is used, RT1 and RT0 should be set to 0 and the resistors labeled R in Figure 24-3 should be
37.5, 50, or 60 each, depending on the line impedance.
There are two ranges of user-selectable receive sensitivity for T1 and E1. The EGL bit of LIC1 (LIC1.4)
selects the full or limited sensitivity. The resultant E1 or T1 clock derived from MCLK is multiplied by
16 through an internal PLL and fed to the clock recovery system. The clock recovery system uses the
clock from the PLL circuit to form a 16-times over-sampler that is used to recover the clock and data.
This over-sampling technique offers outstanding performance to meet jitter tolerance specifications
shown in Figure 24-7.
DS2155
144 of 238
Normally, the clock that is output at the RCLK pin is the recovered clock from the E1 AMI/HDB3 or T1
AMI/B8ZS waveform presented at the RTIP and RRING inputs. If the jitter attenuator is placed in the
receive path (as is the case in most applications), the jitter attenuator restores the RCLK to an
approximate 50% duty cycle. If the jitter attenuator is either placed in the transmit path or is disabled, the
RCLK output can exhibit slightly shorter high cycles of the clock. This is because of the highly over-
sampled digital-clock recovery circuitry. See the Receive AC Timing Characteristics in Section 37.3 for
more details. When no signal is present at RTIP and RRING, a receive carrier loss (RCL) condition
occurs and the RCLK is derived from the JACLK source.
24.2.1 Receive Level Indicator and Threshold Interrupt
The DS2155 reports the signal strength at RTIP and RRING in 2.5dB increments through RL3–RL0
located in Information Register 2 (INFO2). This feature is helpful when trouble-shooting line-
performance problems. The DS2155 can initiate an interrupt whenever the input falls below a certain
level through the input-level under-threshold indicator (SR1.7). Using the RLT0–RLT4 bits of the CCR4
register, the user can set a threshold in 2.5dB increments. The SR1.7 bit is set whenever the input level at
RTIP and RRING falls below the threshold set by the value in RLT0–RLT4. The level must remain
below the programmed threshold for approximately 50ms for this bit to be set. The accuracy of the
receive level indication is +/- 1 LSB (2.5dB) from 25C to 85C and +/- 2 LSB’s (5dB) from –40C to 25C.
24.2.2 Receive G.703 Synchronization Signal (E1 Mode)
The DS2155 is capable of receiving a 2.048MHz square-wave synchronization clock as specified in
Section 13 of ITU G.703, October 1998. In order to use the DS2155 in this mode, set the receive
synchronization clock enable (LIC3.2) = 1.
24.2.3 Monitor Mode
Monitor applications in both E1 and T1 require various flat gain settings for the receive-side circuitry.
The DS2155 can be programmed to support these applications through the monitor mode control bits
MM1 and MM0 in the LIC3 register (Figure 24-1).
Figure 24-1. Typical Monitor Application
PRIMARY
T1/E1 TERMINATING
DEVICE
MONITOR
PORT JACK
T1/E1 LINE
X
F
M
R
DS2156
Rt
Rm Rm
SECONDARY T1/E1
TERMINATING
DEVICE
DS2155
145 of 238
24.3 Transmitter
The DS2155 uses a phase-lock loop along with a precision digital-to-analog converter (DAC) to create
the waveforms that are transmitted onto the E1 or T1 line. The waveforms created by the DS2155 meet
the latest ETSI, ITU, ANSI, and AT&T specifications. The user selects which waveform is generated by
setting the ETS bit (LIC2.7) for E1 or T1 operation, then programming the L2/L1/L0 bits in register LIC1
for the appropriate application.
A 2.048MHz or 1.544MHz clock is required at TCLKI for transmitting data presented at TPOSI and
TNEGI. Normally these pins are connected to TCLKO, TPOSO, and TNEGO. However, the LIU can
operate in an independent fashion. ITU specification G.703 requires an accuracy of ±50ppm for both T1
and E1. TR62411 and ANSI specifications require an accuracy of ±32ppm for T1 interfaces. The clock
can be sourced internally from RCLK or JACLK. See LIC2.3, LIC4.4, and LIC4.5 for details. Because of
the nature of the transmitter’s design, very little jitter (less than 0.005UIP-P broadband from 10Hz to
100kHz) is added to the jitter present on TCLK. Also, the waveforms created are independent of the duty
cycle of TCLK. The transmitter in the DS2155 couples to the E1 or T1 transmit twisted pair (or coaxial
cable in some E1 applications) through a 1:2 step-up transformer. For the device to create the proper
waveforms, the transformer used must meet the specifications listed in Table 24-C. The DS2155 has the
option of using software-selectable transmit termination.
The transmit line drive has two modes of operation: fixed gain or automatic gain. In the fixed gain mode,
the transmitter outputs a fixed current into the network load to achieve a nominal pulse amplitude. In the
automatic gain mode, the transmitter adjusts its output level to compensate for slight variances in the
network load. See the Transmit Line Build-Out Control (TLBC) register for details.
24.3.1 Transmit Short-Circuit Detector/Limiter
The DS2155 has an automatic short-circuit limiter that limits the source current to 50mA (RMS) into a
1 load. This feature can be disabled by setting the SCLD bit (LIC2.1) = 1. TCLE (INFO2.5) provides a
real-time indication of when the current limiter is activated. If the current limiter is disabled, TCLE
indicates that a short-circuit condition exists. Status Register SR1.2 provides a latched version of the
information, which can be used to activate an interrupt when enabled by the IMR1 register. The TPD bit
(LIC1.0) powers down the transmit line driver and tri-states the TTIP and TRING pins.
24.3.2 Transmit Open-Circuit Detector
The DS2155 can also detect when the TTIP or TRING outputs are open circuited. TOCD (INFO2.4)
provides a real-time indication of when an open circuit is detected. SR1 provides a latched version of the
information (SR1.1), which can be used to activate an interrupt when enabled by the IMR1 register.
24.3.3 Transmit BPV Error Insertion
When IBPV (LIC2.5) is transitioned from a 0 to a 1, the device waits for the next occurrence of three
consecutive 1s to insert a BPV. IBPV must be cleared and set again for another BPV error insertion.
24.3.4 Transmit G.703 Synchronization Signal (E1 Mode)
The DS2155 can transmit the 2.048MHz square-wave synchronization clock as specified in Section 13 of
ITU G.703, October 1998. In order to transmit the 2.048MHz clock, when in E1 mode, set the transmit
synchronization clock enable (LIC3.1) = 1.
DS2155
146 of 238
24.4 MCLK Prescaler
A 16.384MHz, 8.192MHz, 4.096MHz, 2.048MHz, or 1.544MHz clock must be applied at MCLK. ITU
specification G.703 requires an accuracy of ±50ppm for both T1 and E1. TR62411 and ANSI
specifications require an accuracy of ±32ppm for T1 interfaces. A prescaler divides the 16MHz, 8MHz,
or 4MHz clock down to 2.048MHz. There is an on-board PLL for the jitter attenuator, which converts the
2.048MHz clock to a 1.544MHz rate for T1 applications. Setting JAMUX (LIC2.3) to a logic 0 bypasses
this PLL.
24.5 Jitter Attenuator
The DS2155 contains an on-board jitter attenuator that can be set to a depth of either 32 or 128 bits
through the JABDS bit (LIC1.2). The 128-bit mode is used in applications where large excursions of
wander are expected. The 32-bit mode is used in delay-sensitive applications. The characteristics of the
attenuation are shown in Figure 24-9. The jitter attenuator can be placed in either the receive path or the
transmit path by appropriately setting or clearing the JAS bit (LIC1.3). Setting the DJA bit (LIC1.1)
disables (in effect, removes) the jitter attenuator. On-board circuitry adjusts either the recovered clock
from the clock/data recovery block or the clock applied at the TCLK pin to create a smooth jitter-free
clock that is used to clock data out of the jitter attenuator FIFO. It is acceptable to provide a
gapped/bursty clock at the TCLK pin if the jitter attenuator is placed on the transmit side. If the incoming
jitter exceeds either 120UIP-P (buffer depth is 128 bits) or 28UIP-P (buffer depth is 32 bits), then the
DS2155 divides the internal nominal 32.768MHz (E1) or 24.704MHz (T1) clock by either 15 or 17
instead of the normal 16 to keep the buffer from overflowing. When the device divides by either 15 or 17,
it also sets the jitter attenuator limit trip (JALT) bit in Status Register 1 (SR1.4).
24.6 CMI (Code Mark Inversion) Option
The DS2155 provides a CMI interface for connection to optical transports. This interface is a unipolar
1T2B signal type. Ones are encoded as either a logical 1 or 0 level for the full duration of the clock
period. Zeros are encoded as a 0-to-1 transition at the middle of the clock period.
Figure 24-2. CMI Coding
Transmit and receive CMI are enabled through LIC4.7. When this register bit is set, the TTIP pin outputs
CMI-coded data at normal levels. This signal can be used to directly drive an optical interface. When
CMI is enabled, the user can also use HDB3/B8ZS coding. When this register bit is set, the RTIP pin
becomes a unipolar CMI input. The CMI signal is processed to extract and align the clock with data.
01 11001
CLOCK
DATA
CMI
DS2155
147 of 238
24.7 LIU Control Registers
Register Name: LIC1
Register Description: Line Interface Control 1
Register Address: 78h
Bit # 7 6 5 4 3 2 1 0
Name L2 L1 L0 EGL JAS JABDS DJA TPD
Default 0 0 0 0 0 0 0 0
Bit 0/Transmit Power-Down (TPD)
0 = powers down the transmitter and tri-states the TTIP and TRING pins
1 = normal transmitter operation
Bit 1/Disable Jitter Attenuator (DJA)
0 = jitter attenuator enabled
1 = jitter attenuator disabled
Bit 2/Jitter Attenuator Buffer Depth Select (JABDS)
0 = 128 bits
1 = 32 bits (use for delay-sensitive applications)
Bit 3/Jitter Attenuator Select (JAS)
0 = place the jitter attenuator on the receive side
1 = place the jitter attenuator on the transmit side
Bit 4/Receive Equalizer Gain Limit (EGL). This bit controls the sensitivity of the receive equalizer.
T1 Mode
0 = -36dB (long haul)
1 = -15dB (limited long haul)
E1 Mode
0 = -12dB (short haul)
1 = -43dB (long haul)
Bits 5 to 7/Line Buildout Select (L0 to L2). When using the internal termination, the user needs only to select 000
for 75 operation or 001 for 120 operation below. This selects the proper voltage levels for 75 or 120
operation. Using TT0 and TT1 of the LICR4 register, the user can then select the proper internal source
termination. Line buildouts 100 and 101 are for backwards compatibility with older products only.
E1 Mode
L2 L1 L0 Application N (1) Return Loss Rt (1) ()
0 0 0 75 normal 1:2 NM 0
0 0 1 120 normal 1:2 NM 0
1 0 0 75 with high return loss* 1:2 21dB 6.2
1 0 1 120 with high return loss* 1:2 21dB 11.6
*TT0 and TT1 of LIC4 register must be set to 0 in this configuration.
DS2155
148 of 238
T1 Mode
L2 L1 L0 Application N (1) Return Loss Rt (1) ()
0 0 0 DSX-1 (0ft to 133ft) / 0dB CSU 1:2 NM 0
0 0 1 DSX-1 (133ft to 266ft) 1:2 NM 0
0 1 0 DSX-1 (266ft to 399ft) 1:2 NM 0
0 1 1 DSX-1 (399ft to 533ft) 1:2 NM 0
1 0 0 DSX-1 (533ft to 655ft) 1:2 NM 0
1 0 1 -7.5dB CSU 1:2 NM 0
1 1 0 -15dB CSU 1:2 NM 0
1 1 1 -22.5dB CSU 1:2 NM 0
DS2155
149 of 238
Register Name: TLBC
Register Description: Transmit Line Build-Out Control
Register Address: 7Dh
Bit # 7 6 5 4 3 2 1 0
Name - AGCE GC5 GC4 GC3 GC2 GC1 GC0
Default 0 0 0 0 0 0 0 0
Bit 0–5 Gain Control Bits 0–5 (GC0–GC5). The GC0 through GC5 bits control the gain setting for the
nonautomatic gain mode. Use the tables below for setting the recommended values. The LB (line build-out)
column refers to the value in the
L0–L2 bits in LIC1 (Line Interface Control 1) register.
NETWORK MODE LB GC5 GC4 GC3 GC2 GC1 GC0
0 1 0 0 1 1 0
1 0 1 1 0 1 1
2 0 1 1 0 1 0
3 1 0 0 0 0 0
4 1 0 0 1 1 1
5 1 0 0 1 1 1
6 0 1 0 0 1 1
T1, Impedance Match
Off
7 1 1 1 1 1 1
0 0 1 1 1 1 0
1 0 1 0 1 0 1
2 0 1 0 1 0 1
3 0 1 1 0 1 0
4 1 0 0 0 1 0
5 1 0 0 0 0 0
6 0 0 1 1 0 0
T1, Impedance Match On
7 1 1 1 1 1 1
0 1 0 0 0 0 1
1 1 0 0 0 0 1
4 1 0 1 0 1 0
E1, Impedance Match
Off
5 1 0 1 0 0 0
0 0 1 1 0 1 0
E1, Impedance Match On 1 0 1 1 0 1 0
Bit 6/Automatic Gain Control Enable (AGCE).
0 = use Transmit AGC, TLBC bits 0–5 are “don’t care”
1 = do not use Transmit AGC, TLBC bits 0–5 set nominal level
Bit 7/Unused, must be set to zero for proper operation.
DS2155
150 of 238
Register Name: LIC2
Register Description: Line Interface Control 2
Register Address: 79h
Bit # 7 6 5 4 3 2 1 0
Name ETS LIRST IBPV TUA1 JAMUX SCLD CLDS
Default 0 0 0 0 0 0 0 0
Bit 0/Custom Line Driver Select (CLDS). Setting this bit to a 1 redefines the operation of the transmit line
driver. When this bit is set to a 1 and LIC1.5 = LIC1.6 = LIC1.7 = 0, the device generates a square wave at the
TTIP and TRING outputs instead of a normal waveform. When this bit is set to a 1 and LIC1.5 = LIC1.6 = LIC1.7
0, the device forces TTIP and TRING outputs to become open-drain drivers instead of their normal push-pull
operation. This bit should be set to 0 for normal operation of the device.
Bit 1/Short-Circuit Limit Disable (ETS = 1) (SCLD). Controls the 50mA (RMS) current limiter.
0 = enable 50mA current limiter
1 = disable 50mA current limiter
Bit 2/Unused, must be set to 0 for proper operation
Bit 3/Jitter Attenuator Mux (JAMUX). Controls the source for JACLK.
0 = JACLK sourced from MCLK (2.048MHz or 1.544MHz at MCLK)
1 = JACLK sourced from internal PLL (2.048MHz at MCLK)
Bit 4/Transmit Unframed All Ones (TUA1). The polarity of this bit is set such that the device transmits an all-
ones pattern on power-up or device reset. This bit must be set to a 1 to allow the device to transmit data. The
transmission of this data pattern is always timed off of the JACLK.
0 = transmit all ones at TTIP and TRING
1 = transmit data normally
Bit 5/Insert BPV (IBPV). A 0-to-1 transition on this bit causes a single BPV to be inserted into the transmit data
stream. Once this bit has been toggled from a 0 to a 1, the device waits for the next occurrence of three consecutive
1s to insert the BPV. This bit must be cleared and set again for a subsequent error to be inserted.
Bit 6/Line Interface Reset (LIRST). Setting this bit from a 0 to a 1 initiates an internal reset that resets the clock
recovery state machine and recenters the jitter attenuator. Normally this bit is only toggled on power-up. Must be
cleared and set again for a subsequent reset.
Bit 7/E1/T1 Select (ETS)
0 = T1 mode selected
1 = E1 mode selected
DS2155
151 of 238
Register Name: LIC3
Register Description: Line Interface Control 3
Register Address: 7Ah
Bit # 7 6 5 4 3 2 1 0
Name — TCES RCES MM1 MM0 RSCLKE TSCLKE TAOZ
Default 0 0 0 0 0 0 0 0
Bit 0/Transmit Alternate Ones and Zeros (TAOZ). Transmit a …101010… pattern (customer disconnect
indication signal) at TTIP and TRING. The transmission of this data pattern is always timed off of TCLK.
0 = disabled
1 = enabled
Bit 1/Transmit Synchronization G.703 Clock Enable (TSCLKE)
0 = disable 1.544MHz (T1)/2.048MHz (E1) transmit synchronization clock
1 = enable 1.544MHz (T1)/2.048MHz (E1) transmit synchronization clock
Bit 2/Receive Synchronization G.703 Clock Enable (RSCLKE)
0 = disable 1.544MHz (T1)/2.048MHz (E1) synchronization receive mode
1 = enable 1.544MHz (T1)/2.048MHz (E1) synchronization receive mode
Bits 3 to 4/Monitor Mode (MM0 to MM1)
MM1 MM0 Internal Linear Gain Boost
(dB)
0 0 Normal operation (no boost)
0 1 20
1 0 26
1 1 32
Bit 5/Receive-Clock Edge Select (RCES). Selects which RCLKO edge to update RPOSO and RNEGO.
0 = update RPOSO and RNEGO on rising edge of RCLKO
1 = update RPOSO and RNEGO on falling edge of RCLKO
Bit 6/Transmit-Clock Edge Select (TCES). Selects which TCLKI edge to sample TPOSI and TNEGI.
0 = sample TPOSI and TNEGI on falling edge of TCLKI
1 = sample TPOSI and TNEGI on rising edge of TCLKI
Bit 7/Unused, must be set to 0 for proper operation
DS2155
152 of 238
Register Name: LIC4
Register Description: Line Interface Control 4
Register Address: 7Bh
Bit # 7 6 5 4 3 2 1 0
Name CMIE CMII MPS1 MPS0 TT1 TT0 RT1 RT0
Default 0 0 0 0 0 0 0 0
Bits 0, 1/Receive Termination Select (RT0, RT1)
RT1 RT0 Internal Receive-Termination Configuration
0 0 Internal receive-side termination disabled
0 1 Internal receive-side 75 enabled
1 0 Internal receive-side 100 enabled
1 1 Internal receive-side 120 enabled
Bits 2, 3/Transmit Termination Select (TT0, TT1)
TT1 TT0 Internal Transmit-Termination Configuration
0 0 Internal transmit-side termination disabled
0 1 Internal transmit -side 75 enabled
1 0 Internal transmit -side 100 enabled
1 1 Internal transmit -side 120 enabled
Bits 4, 5/MCLK Prescaler for T1 Mode
MCLK
(MHz) MPS1 MPS0
JAMUX
(LIC2.3)
1.544 0 0 0
3.088 0 1 0
6.176 1 0 0
12.352 1 1 0
2.048 0 0 1
4.096 0 1 1
8.192 1 0 1
16.384 1 1 1
Bits 4, 5/MCLK Prescaler for E1 Mode
MCLK
(MHz) MPS1 MPS0
JAMUX
(LIC2.3)
2.048 0 0 0
4.096 0 1 0
8.192 1 0 0
16.384 1 1 0
Bit 6/CMI Invert (CMII)
0 = CMI normal at TTIP and RTIP
1 = invert CMI signal at TTIP and RTIP
Bit 7/CMI Enable (CMIE)
0 = disable CMI mode
1 = enable CMI mode
DS2155
153 of 238
Register Name: INFO2
Register Description: Information Register 2
Register Address: 11h
Bit # 7 6 5 4 3 2 1 0
Name BSYNC BD TCLE TOCD RL3 RL2 RL1 RL0
Default 0 0 0 0 0 0 0 0
Bits 0 to 3/Receive Level Bits (RL0 to RL3). Real-time bits
RL3 RL2 RL1 RL0 Receive Level (dB)
0 0 0 0 Greater than -2.5
0 0 0 1 -2.5 to -5.0
0 0 1 0 -5.0 to -7.5
0 0 1 1 -7.5 to -10.0
0 1 0 0 -10.0 to -12.5
0 1 0 1 -12.5 to -15.0
0 1 1 0 -15.0 to -17.5
0 1 1 1 -17.5 to -20.0
1 0 0 0 -20.0 to -22.5
1 0 0 1 -22.5 to -25.0
1 0 1 0 -25.0 to -27.5
1 0 1 1 -27.5 to -30.0
1 1 0 0 -30.0 to -32.5
1 1 0 1 -32.5 to -35.0
1 1 1 0 -35.0 to -37.5
1 1 1 1 Less than -37.5
NOTE: RL0 through RL3 only indicate the signal range as specified by the EGL bit in LIC1. Example; if
EGL = 1 and in T1 mode, RL0 through RL3 will only indicate a signal range of >-2.5dB to –15dB even if the
signal is < -15dB.
Bit 4/Transmit Open-Circuit Detect (TOCD). A real-time bit that is set when the device detects that the TTIP
and TRING outputs are open-circuited.
Bit 5/Transmit Current-Limit Exceeded (TCLE). A real-time bit that is set when the 50mA (RMS) current
limiter is activated, whether the current limiter is enabled or not.
Bit 6/BOC Detected (BD). A real-time bit that is set high when the BOC detector is presently seeing a valid
sequence and set low when no BOC is currently being detected.
Bit 7/BERT Real-Time Synchronization Status (BSYNC). Real-time status of the synchronizer (this bit is not
latched). This bit is set when the incoming pattern matches for 32 consecutive bit positions. It is cleared when six
or more bits out of 64 are received in error. Refer to BSYNC in the BERT status register, SR9, for an interrupt-
generating version of this signal.
DS2155
154 of 238
Register Name: SR1
Register Description: Status Register 1
Register Address: 16h
Bit # 7 6 5 4 3 2 1 0
Name ILUT TIMER RSCOS JALT LRCL TCLE TOCD LOLITC
Default 0 0 0 0 0 0 0 0
Bit 0/Loss of Line-Interface Transmit-Clock Condition (LOLITC). Set when TCLKI has not transitioned for
one channel time. This is a double interrupt bit (Section 6.2).
Bit 1/Transmit Open-Circuit Detect Condition (TOCD). Set when the device detects that the TTIP and TRING
outputs are open-circuited. This is a double interrupt bit (Section 6.2).
Bit 2/Transmit Current-Limit Exceeded Condition (TCLE). Set when the 50mA (RMS) current limiter is
activated, whether the current limiter is enabled or not. This is a double interrupt bit (Section 6.2).
Bit 3/Line Interface Receive Carrier-Loss Condition (LRCL). Set when the carrier signal is lost. This is a
double interrupt bit (Section 6.2).
Bit 4/Jitter Attenuator Limit Trip Event (JALT). Set when the jitter attenuator FIFO reaches to within 4 bits of
its useful limit. This bit is cleared when read. Useful for debugging jitter attenuation operation.
Bit 5/Receive Signaling Change-of-State Event (RSCOS). Set when any channel selected by the receive
signaling change-of-state interrupt-enable registers (RSCSE1 through RSCSE4) changes signaling state.
Bit 6/Timer Event (TIMER). Follows the error-counter update interval as determined by the ECUS bit in the
error-counter configuration register (ERCNT).
T1: set on increments of 1 second or 42ms based on RCLK
E1: set on increments of 1 second or 62.5ms based on RCLK
Bit 7/Input Level Under Threshold (ILUT). This bit is set whenever the input level at RTIP and RRING falls
below the threshold set by the value in CCR4.4 through CCR4.7. The level must remain below the programmed
threshold for approximately 50ms for this bit to be set. This is a double interrupt bit (Section 6.2).
DS2155
155 of 238
Register Name: IMR1
Register Description: Interrupt Mask Register 1
Register Address: 17h
Bit # 7 6 5 4 3 2 1 0
Name ILUT TIMER RSCOS JALT LRCL TCLE TOCD LOLITC
Default 0 0 0 0 0 0 0 0
Bit 0/Loss-of-Transmit Clock Condition (LOLITC)
0 = interrupt masked
1 = interrupt enabled—generates interrupts on rising and falling edges
Bit 1/Transmit Open-Circuit Detect Condition (TOCD)
0 = interrupt masked
1 = interrupt enabled—generates interrupts on rising and falling edges
Bit 2/Transmit Current-Limit Exceeded Condition (TCLE)
0 = interrupt masked
1 = interrupt enabled—generates interrupts on rising and falling edges
Bit 3/Line Interface Receive Carrier-Loss Condition (LRCL)
0 = interrupt masked
1 = interrupt enabled—generates interrupts on rising and falling edges
Bit 4/Jitter Attenuator Limit Trip Event (JALT)
0 = interrupt masked
1 = interrupt enabled
Bit 5/Receive Signaling Change-of-State Event (RSCOS)
0 = interrupt masked
1 = interrupt enabled
Bit 6/Timer Event (TIMER)
0 = interrupt masked
1 = interrupt enabled
Bit 7/Input Level Under Threshold (ILUT)
0 = interrupt masked
1 = interrupt enabled
DS2155
156 of 238
24.8 Recommended Circuits
Figure 24-3. Software-Selected Termination, Metallic Protection
T2
2:1
75/100/110/120
S2
F1
60 60
1:1
S1
0.1 µF
S3
T1 1.0 µF
F2
S4
T3
1
T4
1
TTIP
DV SS
Dallas Semiconductor
T1/E1/J1 SCT or LIU
TRING
DV DD
TV SS
TV DD
RV SS
RV DD
0.01 µF
2
0.1 µF
2
0.1 µF
2
0.1 µF
2
VCC
68 µF
2
VCC
RTIP
RRING
VCC
1 Choke is optional but should be included when necessary f or common mode noise reduction.
2 Decoupling capacitors need to be placed near dev ice power pins
Design Notes:
Tw isted Pair/Coax
75/100/110/120
Tw isted Pair/Coax
Table 24-A. Component List (Software-Selected Termination, Metallic
Protection)
NAME DESCRIPTION
F1 and F2 1.25A slow blow fuse
S1 and S2 25V (max) transient suppressor
S3 andS4 77V (max) transient suppressor
T1 and T2 Transformer 1:1CT and 1:2CT (3.3V, SMT)
T3 and T4 Dual common-mode choke (SMT)
Note 1: T3 and T4 are optional. For more information, contact the Telecom Support Group at
telecom.support@dalsemi.com.
Note 2: The layout from the transformers to the network interface is critical. Traces should be at least 25
mils wide and separated from other circuit lines by at least 150 mils. The area under this portion
of the circuit should not contain power planes.
Note 3: Some T1 (never in E1) applications source or sink power from the network-side center taps of
the Rx/Tx transformers.
Note 4: A list of transformer part numbers and manufacturers is available by contacting
telecom.support@dalsemi.com.
DS2155
157 of 238
Figure 24-4. Software-Selected Termination, Longitudinal Protection
T2
2:1
TTIP
DV SS
Dallas Semiconductor
T1/E1/J1 SCT or LIU
S2
F1
F2 TRING
DV DD
TV SS
TV DD
RV SS
RV DD
0.01 µF
2
0.1 µF
2
0.1 µF
2
0.1 µF
2
VCC
68 µF
2
VCC
RTIP
RRING
VCC
60 60
1:1
S1
0.1 µF
S3
S4
S7
T1 1.0 µF
F3
F4
S5
S6
S8
T3
1
T4
1
1
Choke is optional but should be included when necessary f or common mode noise reduction.
2
Decoupling capacitors need to be placed near dev ice power pins
Des ign Notes :
100/110/120
Tw isted Pair
100/110/120
Tw isted Pair
Table 24-B. Component List (Software-Selected Termination, Longitudinal
Protection)
NAME DESCRIPTION
F1 to F4 1.25A slow blow fuse
S1 and S2 25V (max) transient suppressor
S3, S4, S5, S6 180V (max) transient suppressor
S7 and S8 40V (max) transient suppressor
T1 and T2 Transformer 1:1CT and 1:2CT (3.3V, SMT)
T3 and T4 Dual common-mode choke (SMT)
Note 1: T3 and T4 are optional. For more information, contact the Telecom Support Group at
telecom.support@dalsemi.com.
Note 2: A list of alternate transformer part numbers and manufacturers is available at
telecom.support@dalsemi.com.
Note 3: The layout from the transformers to the network interface is critical. Traces should be at least 25
mils wide and separated from other circuit lines by at least 150 mils. The area under this portion
of the circuit should not contain power planes.
Note 4: Some T1 (never in E1) applications source or sink power from the network-side center taps of
the Rx/Tx transformers.
Note 5: The ground trace connected to the S2/S3 pair and the S4/S5 pair should be at least 50 mils wide
to conduct the extra current from a longitudinal power-cross event.
DS2155
158 of 238
24.9 Component Specifications
Table 24-C. Transformer Specifications
SPECIFICATION RECOMMENDED VALUE
Turns Ratio 3.3V Applications 1:1 (receive) and 1:2 (transmit) ±2%
Primary Inductance 600µH (min)
Leakage Inductance 1.0µH (max)
Intertwining Capacitance 40pF (max)
Transmit Transformer DC Resistance
Primary (Device Side)
Secondary
1.0 (max)
2.0 (max)
Receive Transformer DC Resistance
Primary (Device Side)
Secondary
1.2 (max)
1.2 (max)
DS2155
159 of 238
Figure 24-5. E1 Transmit Pulse Template
Figure 24-6. T1 Transmit Pulse Template
0
-0.1
-0.2
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
0
TIME (ns)
SCALED AMPLITUDE
50 100 150 200 250-50-100-150 -200 -250
269ns
194ns
219ns
(IN 75 SYSTEMS, 1.0 ON THE SCALE = 2.37VPEAK
IN 120 SYSTEMS, 1.0 ON THE SCALE = 3.00VPEAK)
G.703
TEMPLATE
0
-0.1
-0.2
-0.3
-0.4
-0.5
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
-500 -300 -100 0300 500 700-400 -200 200 400 600100
TIME (ns)
NORMALIZED AMPLITUDE
T1.102/87, T1.403,
CB 119
(
OCT. 79
)
, AND
I.431 TEMPLATE
-0.77
-0.39
-0.27
-0.27
-0.12
0.00
0.27
0.35
0.93
1.16
-500
-255
-175
-175
-75
0
175
225
600
750
0.05
0.05
0.80
1.15
1.15
1.05
1.05
-0.07
0.05
0.05
-0.77
-0.23
-0.23
-0.15
0.00
0.15
0.23
0.23
0.46
0.66
0.93
1.16
-500
-150
-150
-100
0
100
150
150
300
430
600
750
-0.05
-0.05
0.50
0.95
0.95
0.90
0.50
-0.45
-0.45
-0.20
-0.05
-0.05
UI Time Amp.
MAXIMUM CURVE
UI Time Amp.
MINIMUM CURVE
DS2155
160 of 238
Figure 24-7. Jitter Tolerance
Figure 24-8. Jitter Tolerance (E1 Mode)
FREQUENCY (Hz)
UNIT INTERVALS (UIP-P)
1k
100
10
1
0.1
10 100 1k 10k 100k
DS2155
TOLERANCE
1
MINIMUM TOLERANCE
LEVEL AS PER
ITU G.823
40
1.5
0.2
20 2.4k 18k
FREQUENCY (Hz)
UNIT INTERVALS (UIP-P)
1k
100
10
1
0.1
10 100 1k 10k 100k
DS2155
TOLERANCE
1
TR 62411 (DEC. 90)
ITU-T G.823
DS2155
161 of 238
Figure 24-9. Jitter Attenuation (T1 Mode)
Figure 24-10. Jitter Attenuation (E1 Mode)
FREQUENCY (Hz)
0
-20
-40
-60
1 10 100 1k 10k
JITTER ATTENUATION (dB)
100k
ITU G.7XX
Prohibited Area
TBR12
Prohibited
A
rea
DS2155
E1 MODE
FREQUENCY (Hz)
0dB
-20dB
-40dB
-60dB
1 10 100 1K 10K
JITTER ATTENUATION (dB)
100K
TR 62411 (Dec. 90)
Prohibited Area
Curve B
Curve A
DS2155
T1 MODE
DS2155
162 of 238
Figure 24-11. Optional Crystal Connections
Note 1: C1 and C2 should be 5pF lower than two times the nominal loading capacitance of the crystal to adjust for the input capacitance of the
DS2155.
XTALD
DS2155
C1 C2
1.544MHz/2.048MHz
MCLK
DS2155
163 of 238
25. PROGRAMMABLE IN-BAND LOOP CODE GENERATION AND
DETECTION
The DS2155 has the ability to generate and detect a repeating bit pattern from one to eight bits or 16 bits
in length. This function is available only in T1 mode. To transmit a pattern, the user loads the pattern
into the transmit code-definition registers (TCD1 and TCD2) and selects the proper length of the pattern
by setting the TC0 and TC1 bits in the in-band code control (IBCC) register. When generating a 1-, 2-, 4-,
8-, or 16-bit pattern, both transmit code-definition registers must be filled with the proper code.
Generation of a 3-, 5-, 6-, and 7-bit pattern only requires TCD1 to be filled. Once this is accomplished,
the pattern is transmitted as long as the TLOOP control bit (T1CCR1.0) is enabled. Normally (unless the
transmit formatter is programmed to not insert the F-bit position) the framer overwrites the repeating
pattern once every 193 bits to send the F-bit position.
For example, to transmit the standard “loop-up” code for CSUs, which is a repeating pattern of
...10000100001... , set TCD1 = 80h, IBCC = 0, and T1CCR1.0 = 1.
The framer has three programmable pattern detectors. Typically two of the detectors are used for “loop-
up” and “loop-down” code detection. The user programs the codes to be detected in the receive up-code
definition (RUPCD1 and RUPCD2) registers and the receive down-code definition (RDNCD1 and
RDNCD2) registers, and the length of each pattern is selected through the IBCC register. There is a third
detector (spare) that is defined and controlled through the RSCD1/RSCD2 and RSCC registers. When
detecting a 16-bit pattern, both receive code-definition registers are used together to form a 16-bit
register. For 8-bit patterns, both receive code-definition registers are filled with the same value. Detection
of a 1-, 2-, 3-, 4-, 5-, 6-, and 7-bit pattern only requires the first receive code-definition register to be
filled. The framer detects repeating pattern codes in both framed and unframed circumstances with bit
error rates as high as 10E-2. The detectors are capable of handling both F-bit inserted and F-bit overwrite
patterns. Writing the least significant byte of the receive code-definition register resets the integration
period for that detector. The code detector has a nominal integration period of 36ms. Hence, after about
36ms of receiving a valid code, the proper status bit (LUP at SR3.5, LDN at SR3.6, and LSPARE at
SR3.7) is set to a 1. Normally codes are sent for a period of five seconds. It is recommended that the
software poll the framer every 50ms to 1000ms until five seconds has elapsed to ensure the code is
continuously present.
DS2155
164 of 238
Register Name: IBCC
Register Description: In-Band Code Control Register
Register Address: B6h
Bit # 7 6 5 4 3 2 1 0
Name TC1 TC0 RUP2 RUP1 RUP0 RDN2 RDN1 RDN0
Default 0 0 0 0 0 0 0 0
Bits 0 to 2/Receive Down-Code Length Definition Bits (RDN0 to RDN2)
RDN2 RDN1 RDN0 Length Selected (bits)
0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 5
1 0 1 6
1 1 0 7
1 1 1 8/16
Bits 3 to 5/Receive Up-Code Length Definition Bits (RUP0 to RUP2)
RUP2 RUP1 RUP0 Length Selected (bits)
0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 5
1 0 1 6
1 1 0 7
1 1 1 8/16
Bits 6, 7/Transmit Code Length Definition Bits (TC0 to TC1)
TC1 TC0 Length Selected (bits)
0 0 5
0 1 6/3
1 0 7
1 1 16/8/4/2/1
DS2155
165 of 238
Register Name: TCD1
Register Description: Transmit Code-Definition Register 1
Register Address: B7h
Bit # 7 6 5 4 3 2 1 0
Name C7 C6 C5 C4 C3 C2 C1 C0
Default 0 0 0 0 0 0 0 0
Bit 0/Transmit Code-Definition Bit 0 (C0). A don’t care if a 5-, 6-, or 7-bit length is selected.
Bit 1/Transmit Code-Definition Bit 1 (C1). A don’t care if a 5-bit or 6-bit length is selected.
Bit 2/Transmit Code-Definition Bit 2 (C2). A don’t care if a 5-bit length is selected.
Bits 3–6/Transmit Code-Definition Bits 3–6 (C3–C6)
Bit 7/Transmit Code-Definition Bit 7 (C7). First bit of the repeating pattern.
Register Name: TCD2
Register Description: Transmit Code Definition Register 2
Register Address: B8h
Bit # 7 6 5 4 3 2 1 0
Name C7 C6 C5 C4 C3 C2 C1 C0
Default 0 0 0 0 0 0 0 0
Least significant byte of 16 bit codes.
Bits 0–7/Transmit Code-Definition Bits 0–7 (C0–C7). A don’t care if a 5-, 6-, or 7-bit length is selected.
DS2155
166 of 238
Register Name: RUPCD1
Register Description: Receive Up-Code Definition Register 1
Register Address: B9h
Bit # 7 6 5 4 3 2 1 0
Name C7 C6 C5 C4 C3 C2 C1 C0
Default 0 0 0 0 0 0 0 0
Note: Writing this register resets the detector’s integration period.
Bit 0/Receive Up-Code Definition Bits 0 (C0). A don’t care if a 1-bit to 7-bit length is selected.
Bit 1/Receive Up-Code Definition Bit 1 (C1). A don’t care if a 1-bit to 6-bit length is selected.
Bit 2/Receive Up-Code Definition Bit 2 (C2). A don’t care if a 1-bit to 5-bit length is selected.
Bit 3/Receive Up-Code Definition Bit 3 (C3). A don’t care if a 1-bit to 4-bit length is selected.
Bit 4/Receive Up-Code Definition Bit 4 (C4). A don’t care if a 1-bit to 3-bit length is selected.
Bit 5/Receive Up-Code Definition Bit 5 (C5). A don’t care if a 1-bit or 2-bit length is selected.
Bit 6/Receive Up-Code Definition Bit 6 (C6). A don’t care if a 1-bit length is selected.
Bit 7/Receive Up-Code Definition Bit 7 (C7). First bit of the repeating pattern.
Register Name: RUPCD2
Register Description: Receive Up-Code Definition Register 2
Register Address: BAh
Bit # 7 6 5 4 3 2 1 0
Name C7 C6 C5 C4 C3 C2 C1 C0
Default 0 0 0 0 0 0 0 0
Bits 0–7/Receive Up-Code Definition Bits 0–7 (C0–C7). A don’t care if a 1-bit to 7-bit length is selected.
DS2155
167 of 238
Register Name: RDNCD1
Register Description: Receive Down-Code Definition Register 1
Register Address: BBh
Bit # 7 6 5 4 3 2 1 0
Name C7 C6 C5 C4 C3 C2 C1 C0
Default 0 0 0 0 0 0 0 0
Note: Writing this register resets the detector’s integration period.
Bit 0/Receive Down-Code Definition Bit 0 (C0). A don’t care if a 1-bit to 7-bit length is selected.
Bit 1/Receive Down-Code Definition Bit 1 (C1). A don’t care if a 1-bit to 6-bit length is selected.
Bit 2/Receive Down-Code Definition Bit 2 (C2). A don’t care if a 1-bit to 5-bit length is selected.
Bit 3/Receive Down-Code Definition Bit 3 (C3). A don’t care if a 1-bit to 4-bit length is selected.
Bit 4/Receive Down-Code Definition Bit 4 (C4). A don’t care if a 1-bit to 3-bit length is selected.
Bit 5/Receive Down-Code Definition Bit 5 (C5). A don’t care if a 1-bit or 2-bit length is selected.
Bit 6/Receive Down-Code Definition Bit 6 (C6). A don’t care if a 1-bit length is selected.
Bit 7/Receive Down-Code Definition Bit 7 (C7). First bit of the repeating pattern.
Register Name: RDNCD2
Register Description: Receive Down-Code Definition Register 2
Register Address: BCh
Bit # 7 6 5 4 3 2 1 0
Name C7 C6 C5 C4 C3 C2 C1 C0
Default 0 0 0 0 0 0 0 0
Bits 0–7/Receive Down-Code Definition Bits 0–7 (C0–C7). A don’t care if a 1-bit to 7-bit length is selected.
DS2155
168 of 238
Register Name: RSCC
Register Description: In-Band Receive Spare Control Register
Register Address: BDh
Bit # 7 6 5 4 3 2 1 0
Name — — — — — RSC2 RSC1 RSC0
Default 0 0 0 0 0 0 0 0
Bits 0 to 2/Receive Spare Code Length Definition Bits (RSC0 to RSC2)
RSC2 RSC1 RSC0 Length Selected (bits)
0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 5
1 0 1 6
1 1 0 7
1 1 1 8/16
Bits 3 to 7/Unused, must be set to 0 for proper operation
DS2155
169 of 238
Register Name: RSCD1
Register Description: Receive Spare-Code Definition Register 1
Register Address: BEh
Bit # 7 6 5 4 3 2 1 0
Name C7 C6 C5 C4 C3 C2 C1 C0
Default 0 0 0 0 0 0 0 0
Note: Writing this register resets the detector’s integration period.
Bit 0/Receive Spare-Code Definition Bit 0 (C0). A don’t care if a 1-bit to 7-bit length is selected.
Bit 1/Receive Spare-Code Definition Bit 1 (C1). A don’t care if a 1-bit to 6-bit length is selected.
Bit 2/Receive Spare-Code Definition Bit 2 (C2). A don’t care if a 1-bit to 5-bit length is selected.
Bit 3/Receive Spare-Code Definition Bit 3 (C3). A don’t care if a 1-bit to 4-bit length is selected.
Bit 4/Receive Spare-Code Definition Bit 4 (C4). A don’t care if a 1-bit to 3-bit length is selected.
Bit 5/Receive Spare-Code Definition Bit 5 (C5). A don’t care if a 1-bit or 2-bit length is selected.
Bit 6/Receive Spare-Code Definition Bit 6 (C6). A don’t care if a 1-bit length is selected.
Bit 7/Receive Spare-Code Definition Bit 7 (C7). First bit of the repeating pattern.
Register Name: RSCD2
Register Description: Receive Spare Code Definition Register 2
Register Address: BFh
Bit # 7 6 5 4 3 2 1 0
Name C7 C6 C5 C4 C3 C2 C1 C0
Default 0 0 0 0 0 0 0 0
Bits 0–7/Receive Spare-Code Definition Bits 0–7 (C0–C7). A don’t care if a 1-bit to 7-bit length is selected.
DS2155
170 of 238
26. BERT FUNCTION
The BERT block can generate and detect pseudorandom and repeating bit patterns. It is used to test and
stress data communication links, and it is capable of generating and detecting the following patterns:
The pseudorandom patterns 2E7, 2E11, 2E15, and QRSS
A repetitive pattern from 1 to 32 bits in length
Alternating (16-bit) words that flip every 1 to 256 words
Daly pattern
The BERT receiver has a 32-bit bit counter and a 24-bit error counter. The BERT receiver reports three
events: a change in receive synchronizer status, a bit error being detected, and if either the bit counter or
the error counter overflows. Each of these events can be masked within the BERT function through the
BERT control register 1 (BC1). If the software detects that the BERT has reported an event, then the
software must read the BERT information register (BIR) to determine which event(s) has occurred. To
activate the BERT block, the host must configure the BERT mux through the BIC register.
26.1 Status
SR9 contains the status information on the BERT function. The host can be alerted through this register
when there is a BERT change-of-state. A major change-of-state is defined as either a change in the
receive synchronization (i.e., the BERT has gone into or out of receive synchronization), a bit error has
been detected, or an overflow has occurred in either the bit counter or the error counter. The host must
read status register 9 (SR9) to determine the change-of-state.
26.2 Mapping
The BERT function can be assigned to the network direction or backplane direction through the direction
control bit in the BIC register (BIC.1). See Figure 26-1 and Figure 26-2. The BERT also can be assigned
on a per-channel basis. The BERT transmit control selector (BTCS) and BERT receive control selector
(BRCS) bits of the per-channel pointer register (PCPR) are used to map the BERT function into time slots
of the transmit and receive data streams. In T1 mode, the user can enable mapping into the F-bit position
for the transmit and receive directions through the RFUS and TFUS bits in the BERT interface control
(BIC) register.
DS2155
171 of 238
Figure 26-1. Simplified Diagram of BERT in Network Direction
Figure 26-2. Simplified Diagram of BERT in Backplane Direction
BERT
TRANSMITTER
BERT
RECEIVER
PER-CHANNEL AND
F-BIT (T1 MODE)
MAPPING
1
0
FROM RECEIVE
FRAMER
TO RECEIVE
SYSTEM
BACKPLANE
INTERFACE
FROM TRANSMIT
SYSTEM
BACKPLANE
INTERFACE
TO TRANSMIT
FRAMER
PER-CHANNEL AND
F-BIT (T1 MODE)
MAPPING BERT
TRANSMITTER
BERT
RECEIVER
1
0
FROM RECEIVE
FRAMER
TO RECEIVE
SYSTEM
BACKPLANE
INTERFACE
FROM TRANSMIT
SYSTEM
BACKPLANE
INTERFACE
TO TRANSMIT
FRAMER
DS2155
172 of 238
26.3 BERT Register Descriptions
Register Name: BC1
Register Description: BERT Control Register 1
Register Address: E0h
Bit # 7 6 5 4 3 2 1 0
Name TC TINV RINV PS2 PS1 PS0 LC RESYNC
Default 0 0 0 0 0 0 0 0
Bit 0/Force Resynchronization (RESYNC). A low-to-high transition forces the receive BERT synchronizer to
resynchronize to the incoming data stream. This bit should be toggled from low to high whenever the host wishes
to acquire synchronization on a new pattern. Must be cleared and set again for a subsequent resynchronization.
Bit 1/Load Bit and Error Counters (LC). A low-to-high transition latches the current bit and error counts into
registers BBC1/BBC2/BBC3/BBC4 and BEC1/BEC2/BEC3 and clears the internal count. This bit should be
toggled from low to high whenever the host wishes to begin a new acquisition period. Must be cleared and set
again for subsequent loads.
Bits 2 to 4/Pattern Select Bits (PS0 to PS2)
PS2 PS1 PS0 Pattern Definition
0 0 0 Pseudorandom 2E7 - 1
0 0 1 Pseudorandom 2E11 - 1
0 1 0 Pseudorandom 2E15 - 1
0 1 1
Pseudorandom pattern QRSS. A 220 - 1 pattern with 14 consecutive zero
restrictions.
1 0 0 Repetitive pattern
1 0 1 Alternating word pattern
1 1 0
Modified 55 octet (Daly) pattern. The Daly pattern is a repeating 55 octet
pattern that is byte-aligned into the active DS0 time slots. The pattern is
defined in an ATIS (Alliance for Telecommunications Industry Solutions)
Committee T1 Technical Report Number 25 (November 1993).
1 1 1 Pseudorandom 2E9 - 1
Bit 5/Receive Invert-Data Enable (RINV)
0 = do not invert the incoming data stream
1 = invert the incoming data stream
Bit 6/Transmit Invert-Data Enable (TINV)
0 = do not invert the outgoing data stream
1 = invert the outgoing data stream
Bit 7/Transmit Pattern Load (TC). A low-to-high transition loads the pattern generator with the pattern that is to
be generated. This bit should be toggled from low to high whenever the host wishes to load a new pattern. Must be
cleared and set again for subsequent loads.
DS2155
173 of 238
Register Name: BC2
Register Description: BERT Control Register 2
Register Address: E1h
Bit # 7 6 5 4 3 2 1 0
Name EIB2 EIB1 EIB0 SBE RPL3 RPL2 RPL1 RPL0
Default 0 0 0 0 0 0 0 0
Bits 0 to 3/Repetitive Pattern Length Bit 3 (RPL0 to RPL3). RPL0 is the LSB and RPL3 is the MSB of a nibble
that describes how long the repetitive pattern is. The valid range is 17 (0000) to 32 (1111). These bits are ignored if
the receive BERT is programmed for a pseudorandom pattern. To create repetitive patterns fewer than 17 bits in
length, the user must set the length to an integer number of the desired length that is less than or equal to 32. For
example, to create a 6-bit pattern, the user can set the length to 18 (0001) or to 24 (0111) or to 30 (1101).
Length
(bits) RPL3 RPL2 RPL1 RPL0
17 0 0 0 0
18 0 0 0 1
19 0 0 1 0
20 0 0 1 1
21 0 1 0 0
22 0 1 0 1
23 0 1 1 0
24 0 1 1 1
25 1 0 0 0
26 1 0 0 1
27 1 0 1 0
28 1 0 1 1
29 1 1 0 0
30 1 1 0 1
31 1 1 1 0
32 1 1 1 1
Bit 4/Single Bit-Error Insert (SBE). A low-to-high transition creates a single-bit error. Must be cleared and set
again for a subsequent bit error to be inserted.
Bits 5 to 7/Error Insert Bits 0 to 2 (EIB0 to EIB2). Automatically inserts bit errors at the prescribed rate into the
generated data pattern. Can be used for verifying error-detection features.
EIB2 EIB1 EIB0 Error Rate Inserted
0 0 0 No errors automatically inserted
0 0 1 10E-1
0 1 0 10E-2
0 1 1 10E-3
1 0 0 10E-4
1 0 1 10E-5
1 1 0 10E-6
1 1 1 10E-7
DS2155
174 of 238
Register Name: SR9
Register Description: Status Register 9
Register Address: 26h
Bit # 7 6 5 4 3 2 1 0
Name — BBED BBCO BEC0 BRA1 BRA0 BRLOS BSYNC
Default 0 0 0 0 0 0 0 0
Bit 0/BERT in Synchronization Condition (BSYNC). Set when the incoming pattern matches for 32 consecutive
bit positions. Refer to BSYNC in the INFO2 register for a real-time version of this bit. This is a double interrupt bit
(Section 6.2).
Bit 1/BERT Receive Loss-of-Synchronization Condition (BRLOS). A latched bit that is set whenever the
receive BERT begins searching for a pattern. Once synchronization is achieved, this bit remains set until read. This
is a double interrupt bit (Section 6.2).
Bit 2/BERT Receive All-Zeros Condition (BRA0). A latched bit that is set when 32 consecutive 0s are received.
Allowed to be cleared once a 1 is received. This is a double interrupt bit (Section 6.2).
Bit 3/BERT Receive All-Ones Condition (BRA1). A latched bit that is set when 32 consecutive 1s are received.
Allowed to be cleared once a 0 is received. This is a double interrupt bit (Section 6.2).
Bit 4/BERT Error-Counter Overflow (BECO) Event (BECO). A latched bit that is set when the 24-bit BERT
error counter (BEC) overflows. Cleared when read and is not set again until another overflow occurs.
Bit 5/BERT Bit-Counter Overflow Event (BBCO). A latched bit that is set when the 32-bit BERT bit counter
(BBC) overflows. Cleared when read and is not set again until another overflow occurs.
Bit 6/BERT Bit-Error Detected (BED) Event (BBED). A latched bit that is set when a bit error is detected. The
receive BERT must be in synchronization for it to detect bit errors. Cleared when read.
DS2155
175 of 238
Register Name: IMR9
Register Description: Interrupt Mask Register 9
Register Address: 27h
Bit # 7 6 5 4 3 2 1 0
Name — BBED BBCO BEC0 BRA1 BRA0 BRLOS BSYNC
Default 0 0 0 0 0 0 0 0
Bit 0/BERT in Synchronization Condition (BSYNC)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising and falling edges
Bit 1/Receive Loss-of-Synchronization Condition (BRLOS)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising and falling edges
Bit 2/Receive All-Zeros Condition (BRA0)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising and falling edges
Bit 3/Receive All-Ones Condition (BRA1)
0 = interrupt masked
1 = interrupt enabled—interrupts on rising and falling edges
Bit 4/BERT Error-Counter Overflow Event (BECO)
0 = interrupt masked
1 = interrupt enabled
Bit 5/BERT Bit-Counter Overflow Event (BBCO)
0 = interrupt masked
1 = interrupt enabled
Bit 6/Bit-Error Detected Event (BBED)
0 = interrupt masked
1 = interrupt enabled
BERT Alternating Word-Count Rate. When the BERT is programmed in the alternating word mode, the words
repeat for the count loaded into this register then flip to the other word and again repeat for the number of times
loaded into this register.
Register Name: BAWC
Register Description: BERT Alternating Word-Count Rate
Register Address: DBh
Bit # 7 6 5 4 3 2 1 0
Name ACNT7 ACNT6 ACNT5 ACNT4 ACNT3 ACNT2 ACNT1 ACNT0
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Alternating Word-Count Rate Bits 0 to 7 (ACNT0 to ACNT7). ACNT0 is the LSB of the 8-bit
alternating word-count rate counter.
DS2155
176 of 238
26.4 BERT Repetitive Pattern Set
These registers must be properly loaded for the BERT to generate and synchronize to a repetitive pattern,
a pseudorandom pattern, alternating word pattern, or a Daly pattern. For a repetitive pattern that is fewer
than 32 bits, the pattern should be repeated so that all 32 bits are used to describe the pattern. For
example, if the pattern was the repeating 5-bit pattern …01101… (where the rightmost bit is the one sent
first and received first), then BRP1 should be loaded with ADh, BRP2 with B5h, BRP3 with D6h, and
BRP4 with 5Ah. For a pseudorandom pattern, all four registers should be loaded with all 1s (i.e., FFh).
For an alternating word pattern, one word should be placed into BRP1 and BRP2 and the other word
should be placed into BRP3 and BRP4. For example, if the DDS stress pattern “7E” is to be described,
the user would place 00h in BRP1, 00h in BRP2, 7Eh in BRP3, and 7Eh in BRP4 and the alternating
word counter would be set to 50 (decimal) to allow 100 bytes of 00h followed by 100 bytes of 7Eh to be
sent and received.
Register Name: BRP1
Register Description: BERT Repetitive Pattern Set Register 1
Register Address: DCh
Bit # 7 6 5 4 3 2 1 0
Name RPAT7 RPAT6 RPAT5 RPAT4 RPAT3 RPAT2 RPAT1 RPAT0
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/BERT Repetitive Pattern Set Bits 0 to 7 (RPAT0 to RPAT7). RPAT0 is the LSB of the 32-bit
repetitive pattern set.
Register Name: BRP2
Register Description: BERT Repetitive Pattern Set Register 2
Register Address: DDh
Bit # 7 6 5 4 3 2 1 0
Name RPAT15 RPAT14 RPAT13 RPAT12 RPAT11 RPAT10 RPAT9 RPAT8
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/BERT Repetitive Pattern Set Bits 8 to 15 (RPAT8 to RPAT15)
Register Name: BRP3
Register Description: BERT Repetitive Pattern Set Register 3
Register Address: DEh
Bit # 7 6 5 4 3 2 1 0
Name RPAT23 RPAT22 RPAT21 RPAT20 RPAT19 RPAT18 RPAT17 RPAT16
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/BERT Repetitive Pattern Set Bits 16 to 23 (RPAT16 to RPAT23)
Register Name: BRP4
Register Description: BERT Repetitive Pattern Set Register 4
Register Address: DFh
Bit # 7 6 5 4 3 2 1 0
Name RPAT31 RPAT30 RPAT29 RPAT28 RPAT27 RPAT26 RPAT25 RPAT24
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/BERT Repetitive Pattern Set Bits 24 to 31 (RPAT24 to RPAT31). RPAT31 is the LSB of the 32-bit
repetitive pattern set.
DS2155
177 of 238
26.5 BERT Bit Counter
Once BERT has achieved synchronization, this 32-bit counter increments for each data bit (i.e., clock)
received. Toggling the LC control bit in BC1 can clear this counter. This counter saturates when full and
sets the BBCO status bit.
Register Name: BBC1
Register Description: BERT Bit Count Register 1
Register Address: E3h
Bit # 7 6 5 4 3 2 1 0
Name BBC7 BBC6 BBC5 BBC4 BBC3 BBC2 BBC1 BBC0
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/BERT Bit Counter Bits 0 to 7 (BBC0 to BBC7). BBC0 is the LSB of the 32-bit counter.
Register Name: BBC2
Register Description: BERT Bit Count Register 2
Register Address: E4h
Bit # 7 6 5 4 3 2 1 0
Name BBC15 BBC14 BBC13 BBC12 BBC11 BBC10 BBC9 BBC8
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/BERT Bit Counter Bits 8 to 15 (BBC8 to BBC15)
Register Name: BBC3
Register Description: BERT Bit Count Register 3
Register Address: E5h
Bit # 7 6 5 4 3 2 1 0
Name BBC23 BBC22 BBC21 BBC20 BBC19 BBC18 BBC17 BBC16
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/BERT Bit Counter Bits 16 to 23 (BBC16 to BBC23)
Register Name: BBC4
Register Description: BERT Bit Count Register 4
Register Address: E6h
Bit # 7 6 5 4 3 2 1 0
Name BBC31 BBC30 BBC29 BBC28 BBC27 BBC26 BBC25 BBC24
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/BERT Bit Counter Bits 24 to 31 (BBC24 to BBC31). BBC31 is the MSB of the 32-bit counter.
DS2155
178 of 238
26.6 BERT Error Counter
Once BERT has achieved synchronization, this 24-bit counter increments for each data bit received in
error. Toggling the LC control bit in BC1 can clear this counter. This counter saturates when full and sets
the BECO status bit.
Register Name: BEC1
Register Description: BERT Error-Count Register 1
Register Address: E7h
Bit # 7 6 5 4 3 2 1 0
Name EC7 EC6 EC5 EC4 EC3 EC2 EC1 EC0
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Error Counter Bits 0 to 7 (EC0 to EC7). EC0 is the LSB of the 24-bit counter.
Register Name: BEC2
Register Description: BERT Error-Count Register 2
Register Address: E8h
Bit # 7 6 5 4 3 2 1 0
Name EC15 EC14 EC13 EC12 EC11 EC10 EC9 EC8
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Error Counter Bits 8 to 15 (EC8 to EC15)
Register Name: BEC3
Register Description: BERT Error-Count Register 3
Register Address: E9h
Bit # 7 6 5 4 3 2 1 0
Name EC23 EC22 EC21 EC20 EC19 EC18 EC17 EC16
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Error Counter Bits 16 to 23 (EC16 to EC23). EC0 is the MSB of the 24-bit counter.
DS2155
179 of 238
Register Name: BIC
Register Description: BERT Interface Control Register
Register Address: EAh
Bit # 7 6 5 4 3 2 1 0
Name — RFUS TBAT TFUS BERTDIR BERTEN
Default 0 0 0 0 0 0 0 0
Bit 0/BERT Enable (BERTEN)
0 = BERT disabled
1 = BERT enabled
Bit 1/BERT Direction (BERTDIR)
0 = network
BERT transmits toward the network (TTIP and TRING) and receives from the network (RTIP and
RRING). The BERT pattern can be looped back to the receiver internally by using the framer loopback
function.
1 = system
BERT transmits toward the system backplane (RSER) and receives from the system backplane (TSER).
Bits 2, 5, 7/Unused, must be set to 0 for proper operation
Bit 3/Transmit Framed/Unframed Select (TFUS)
0 = BERT does not source data into the F-bit position (framed)
1 = BERT does source data into the F-bit position (unframed)
Bit 4/Transmit Byte-Align Toggle (TBAT). A 0-to-1 transition forces the BERT to byte align its pattern with the
transmit formatter. This bit must be transitioned in order to byte align the Daly pattern.
Bit 6/Receive Framed/Unframed Select (RFUS)
0 = BERT is not sent data from the F-bit position (framed)
1 = BERT is sent data from the F-bit position (unframed)
DS2155
180 of 238
27. PAYLOAD ERROR-INSERTION FUNCTION (T1 MODE ONLY)
An error-insertion function is available in the DS2155 and is used to create errors in the payload portion
of the T1 frame in the transmit path. This function is only available in T1 mode. Errors can be inserted
over the entire frame or the user can select which channels are to be corrupted. Errors are created by
inverting the last bit in the count sequence. For example, if the error rate 1 in 16 is selected, the 16th bit is
inverted. F-bits are excluded from the count and are never corrupted. Error rate changes occur on frame
boundaries. Error-insertion options include continuous and absolute number with both options supporting
selectable insertion rates.
Table 27-A. Transmit Error-Insertion Setup Sequence
STEP ACTION
1 Enter desired error rate in the ERC register. Note: If ER3 through ER0 = 0, no errors
are generated even if the constant error-insertion feature is enabled.
2A
or
2B
For constant error insertion, set CE = 1 (ERC.4).
For a defined number of errors:
Set CE = 0 (ERC.4)
Load NOE1 and NOE2 with the number of errors to be inserted
Toggle WNOE (ERC.7) from 0 to 1 to begin error insertion
DS2155
181 of 238
Register Name: ERC
Register Description: Error-Rate Control Register
Register Address: EBh
Bit # 7 6 5 4 3 2 1 0
Name WNOE CE ER3 ER2 ER1 ER0
Default 0 0 0 0 0 0 0 0
Bits 0 to 3/Error-Insertion Rate Select Bits (ER0 to ER3)
ER3 ER2 ER1 ER0 Error Rate
0 0 0 0 No errors inserted
0 0 0 1 1 in 16
0 0 1 0 1 in 32
0 0 1 1 1 in 64
0 1 0 0 1 in 128
0 1 0 1 1 in 256
0 1 1 0 1 in 512
0 1 1 1 1 in 1024
1 0 0 0 1 in 2048
1 0 0 1 1 in 4096
1 0 1 0 1 in 8192
1 0 1 1 1 in 16,384
1 1 0 0 1 in 32,768
1 1 0 1 1 in 65,536
1 1 1 0 1 in 131,072
1 1 1 1 1 in 262,144
Bit 4/Constant Errors (CE). When this bit is set high (and the ER0 to ER3 bits are not set to 0000), the error-
insertion logic ignores the number-of-error registers (NOE1, NOE2) and generates errors constantly at the selected
insertion rate. When CE is set to 0, the NOEx registers determine how many errors are to be inserted.
Bits 5, 6/Unused, must be set to 0 for proper operation
Bit 7/Write NOE Registers (WNOE). If the host wishes to update to the NOEx registers, this bit must be toggled
from a 0 to a 1 after the host has already loaded the prescribed error count into the NOEx registers. The toggling of
this bit causes the error count loaded into the NOEx registers to be loaded into the error-insertion circuitry on the
next clock cycle. Subsequent updates require that the WNOE bit be set to 0 and then 1 once again.
DS2155
182 of 238
27.1 Number-of-Errors Registers
The number-of-error registers determine how many errors are generated. Up to 1023 errors can be
generated. The host loads the number of errors to be generated into the NOE1 and NOE2 registers. The
host can also update the number of errors to be created by first loading the prescribed value into the NOE
registers and then toggling the WNOE bit in the error-rate control registers.
Table 27-B. Error Insertion Examples
VALUE WRITE READ
000h Do not create any errors No errors left to be inserted
001h Create a single error One error left to be inserted
002h Create two errors Two errors left to be inserted
3FFh Create 1023 errors 1023 errors left to be inserted
Register Name: NOE1
Register Description: Number-of-Errors 1
Register Address: ECh
Bit # 7 6 5 4 3 2 1 0
Name C7 C6 C5 C4 C3 C2 C1 C0
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Number-of-Errors Counter Bits 0 to 7 (C0 to C7). Bit C0 is the LSB of the 10-bit counter.
Register Name: NOE2
Register Description: Number-of-Errors 2
Register Address: EDh
Bit # 7 6 5 4 3 2 1 0
Name — — — — — C9 C8
Default 0 0 0 0 0 0 0 0
Bits 0, 1/Number-of-Errors Counter Bits 8 to 9 (C8 to C9). Bit C9 is the MSB of the 10-bit counter.
DS2155
183 of 238
27.1.1 Number-of-Errors Left Register
The host can read the NOELx registers at any time to determine how many errors are left to be inserted.
Register Name: NOEL1
Register Description: Number-of-Errors Left 1
Register Address: EEh
Bit # 7 6 5 4 3 2 1 0
Name C7 C6 C5 C4 C3 C2 C1 C0
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Number-of-Errors Left Counter Bits 0 to 7 (C0 to C7). Bit C0 is the LSB of the 10-bit counter.
Register Name: NOEL2
Register Description: Number-of-Errors Left 2
Register Address: EFh
Bit # 7 6 5 4 3 2 1 0
Name — — C9 C8
Default 0 0 0 0 0 0 0 0
Bits 0, 1/Number-of-Errors Left Counter Bits 8 to 9 (C8 to C9). Bit C9 is the MSB of the 10-bit counter.
DS2155
184 of 238
28. INTERLEAVED PCM BUS OPERATION (IBO)
In many architectures, the PCM outputs of individual framers are combined into higher speed PCM buses
to simplify transport across the system backplane. The DS2155 can be configured to allow PCM data to
be multiplexed into higher speed buses eliminating external hardware, saving board space and cost. The
DS2155 can be configured for channel or frame interleave.
The interleaved PCM bus operation (IBO) supports three bus speeds. The 4.096MHz bus speed allows
two PCM data streams to share a common bus. The 8.192MHz bus speed allows four PCM data streams
to share a common bus. The 16.384MHz bus speed allows eight PCM data streams to share a common
bus. See Figure 28-1 for an example of four transceivers sharing a common 8.192MHz PCM bus. The
receive elastic stores of each transceiver must be enabled. Through the IBO register, the user can
configure each transceiver for a specific bus position. For all IBO bus configurations, each transceiver is
assigned an exclusive position in the high-speed PCM bus. The 8kHz frame sync can be generated from
the system backplane or from the first device on the bus. All other devices on the bus must have their
frame syncs configured as inputs. Relative to this common frame sync, the devices await their turn to
drive or sample the bus according to the settings of the DA0, DA1, and DA2 bits of the IBOC register.
28.1 Channel Interleave
In channel interleave mode, data is output to the PCM data-out bus one channel at a time from each of the
connected DS2155s until all channels of frame n from each DS2155 have been placed on the bus. This
mode can be used even when the DS2155s are operating asynchronous to each other. The elastic stores
manage slip conditions (Figure 35-22).
28.2 Frame Interleave
In frame interleave mode, data is output to the PCM data-out bus one frame at a time from each of the
DS2155s. This mode is used only when all connected DS2155s are operating in a synchronous fashion
(all inbound T1 or E1 lines are synchronous) and are synchronous with the system clock (system clock
derived from T1 or E1 line). Slip conditions are not allowed in this mode (Figure 35-23).
DS2155
185 of 238
Register Name: IBOC
Register Description: Interleave Bus Operation Control Register
Register Address: C5h
Bit # 7 6 5 4 3 2 1 0
Name — IBS1 IBS0 IBOSEL IBOEN DA2 DA1 DA0
Default 0 0 0 0 0 0 0 0
Bits 0 to 2/Device Assignment Bits (DA0 to DA2)
DA2 DA1 DA0 Device Position on Bus
0 0 0 1st
0 0 1 2nd
0 1 0 3rd
0 1 1 4th
1 0 0 5th
1 0 1 6th
1 1 0 7th
1 1 1 8th
Bit 3/Interleave Bus Operation Enable (IBOEN)
0 = IBO disabled
1 = IBO enabled
Bit 4/Interleave Bus Operation Select (IBOSEL). This bit selects channel or frame interleave mode.
0 = channel interleave
1 = frame interleave
Bits 5, 6/IBO Bus Size Bit 1 (IBS0 to IBS1). Indicates how many devices are on the bus.
IBS1 IBS0 Bus Size
0 0 Two devices on bus
0 1 Four devices on bus
1 0 Eight devices on bus
1 1 Reserved for future use
Bit 7/Unused, must be set to 0 for proper operation
DS2155
186 of 238
Figure 28-1. IBO Example
RSYSCLK
TSYSCLK
RSYNC
TSSYNC
RSIG
TSIG
TSER
RSER
RSYSCLK
TSYSCLK
RSIG
TSIG
TSER
RSER
RSYSCLK
TSYSCLK
RSIG
TSIG
TSER
RSER
RSYSCLK
TSYSCLK
RSIG
TSIG
TSER
RSER
8.192MHz SYSTEM CLOCK IN
SYSTEM 8kHz FRAME SYNC IN
PCM DATA OUT
PCM DATA IN
PCM SIGNALING OUT
PCM SIGNALING IN
RSYNC
TSSYNC
RSYNC
TSSYNC RSYNC
TSSYNC
DS2155 #1
DS2155 #2 DS2155 #4
DS2155 #3
DS2155
187 of 238
29. EXTENDED SYSTEM INFORMATION BUS (ESIB)
The extended system information bus (ESIB) allows up to eight DS2155s to share an 8-bit CPU bus for
reporting alarms and interrupt status as a group. With a single bus read, the host can be updated with
alarm or interrupt status from all members of the group. There are two control registers (ESIBCR1 and
ESIBCR2) and four information registers (ESIB1, ESIB2, ESIB3, and ESIB4). For example, eight
DS2155s can be grouped into an ESIB group. A single read of the ESIB1 register of any member of the
group yields the interrupt status of all eight DS2155s. Therefore, the host can determine which device or
devices are causing an interrupt without polling all eight devices. Through ESIB2, the host can gather
synchronization status on all members of the group. ESIB3 and ESIB4 can be programmed to report
various alarms on a device-by-device basis.
There are three device pins involved in forming an ESIB group: ESIBS0, ESIBS1, and ESIBRD. A 10k
pullup resistor must be provided on ESIBS0, ESIBS1, and ESIBRD.
Figure 29-1. ESIB Group of Four DS2155s
ESIB0
ESIB1
ESIBRD
CPU I/F
DS2155 # 1
ESIB0
ESIB1
ESIBRD
CPU I/F
DS2155 # 2
ESIB0
ESIB1
ESIBRD
CPU I/F
DS2155 # 3
ESIB0
ESIB1
ESIBRD
CPU I/F
DS2155 # 4
VDD
10k (3)
DS2155
188 of 238
Register Name: ESIBCR1
Register Description: Extended System Information Bus Control Register 1
Register Address: B0h
Bit # 7 6 5 4 3 2 1 0
Name — ESIBSEL2 ESIBSEL1 ESIBSEL0 ESIEN
Default 0 0 0 0 0 0 0 0
Bit 0/Extended System Information Bus Enable (ESIEN)
0 = disabled
1 = enabled
Bits 1 to 3/Output Data Bus Line Select (ESIBSEL0 to ESIBSEL2). These bits tell the DS2155 what data bus
bit to output the ESIB data on when one of the ESIB information registers is accessed. Each member of the ESIB
group must have a unique bit selected.
ESIBSEL2 ESIBSEL1 ESIBSEL0 Bus Bit Driven
0 0 0 AD0
0 0 1 AD1
0 1 0 AD2
0 1 1 AD3
1 0 0 AD4
1 0 1 AD5
1 1 0 AD6
1 1 1 AD7
Bits 4 to 7/Unused, must be set to 0 for proper operation
DS2155
189 of 238
Register Name: ESIBCR2
Register Description: Extended System Information Bus Control Register 2
Register Address: B1h
Bit # 7 6 5 4 3 2 1 0
Name ESI4SEL2 ESI4SEL1 ESI4SEL0 ESI3SEL2 ESI3SEL1 ESI3SEL0
Default 0 0 0 0 0 0 0 0
Bits 0 to 2/Address ESI3 Data Output Select (ESI3SEL0 to ESI3SEL2). These bits select what status is to be
output when the DS2155 decodes an ESI3 address during a bus read operation.
ESI3SEL2 ESI3SEL1 ESI3SEL0 Status Output
(T1 Mode)
Status Output
(E1 Mode)
0 0 0 RBL RUA1
0 0 1 RYEL RRA
0 1 0 LUP RDMA
0 1 1 LDN V52LNK
1 0 0 SIGCHG SIGCHG
1 0 1 ESSLIP ESSLIP
1 1 0
1 1 1
Bit 3/Unused, must be set to 0 for proper operation
Bits 4 to 6/Address ESI4 Data-Output Select (ESI4SEL0 to ESI4SEL2). These bits select what status is to be
output when the DS2155 decodes an ESI4 address during a bus read operation.
ESI4SEL2 ESI4SEL1 ESI4SEL0 Status Output
(T1 Mode)
Status Output
(E1 Mode)
0 0 0 RBL RUA1
0 0 1 RYEL RRA
0 1 0 LUP RDMA
0 1 1 LDN V52LNK
1 0 0 SIGCHG SIGCHG
1 0 1 ESSLIP ESSLIP
1 1 0
1 1 1
Bit 7/Unused, must be set to 0 for proper operation
DS2155
190 of 238
Register Name: ESIB1
Register Description: Extended System Information Bus Register 1
Register Address: B2h
Bit # 7 6 5 4 3 2 1 0
Name DISn DISn DISn DISn DISn DISn DISn DISn
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Device Interrupt Status (DISn). Causes all devices participating in the ESIB group to output their
interrupt status on the appropriate data bus line selected by the ESIBSEL0 to ESIBSEL2 bits of the ESIBCR1
register.
Register Name: ESIB2
Register Description: Extended System Information Bus Register 2
Register Address: B3h
Bit # 7 6 5 4 3 2 1 0
Name DRLOSn DRLOSn DRLOSn DRLOSn DRLOSn DRLOSn DRLOSn DRLOSn
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/Device Receive Loss-of-Sync (DRLOSn). Causes all devices participating in the ESIB group to output
their frame synchronization status on the appropriate data bus line selected by the ESIBSEL0 to ESIBSEL2 bits of
the ESIBCR1 register.
Register Name: ESIB3
Register Description: Extended System Information Bus Register 3
Register Address: B4h
Bit # 7 6 5 4 3 2 1 0
Name UST1n UST1n UST1n UST1n UST1n UST1n UST1n UST1n
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/User-Selected Status 1 (UST1n). Causes all devices participating in the ESIB group to output status or
alarms as selected by the ESI3SEL0 to ESI3SEL2 bits in the ESIBCR2 configuration register on the appropriate
data bus line selected by the ESIBSEL0 to ESIBSEL2 bits of the ESIBCR2 register
Register Name: ESIB4
Register Description: Extended System Information Bus Register 4
Register Address: B5h
Bit # 7 6 5 4 3 2 1 0
Name UST2n UST2n UST2n UST2n UST2n UST2n UST2n UST2n
Default 0 0 0 0 0 0 0 0
Bits 0 to 7/User-Selected Status 2 (UST2n). Causes all devices participating in the ESIB group to output status or
alarms as selected by the ESI4SEL0 to ESI4SEL2 bits in the ESIBCR2 configuration register on the appropriate
data bus line selected by the ESIBSEL0 to ESIBSEL2 bits of the ESIBCR2 register
DS2155
191 of 238
30. PROGRAMMABLE BACKPLANE CLOCK SYNTHESIZER
The DS2155 contains an on-chip clock synthesizer that generates a user-selectable clock output on the
BPCLK pin, referenced to the recovered receive clock (RCLK). The synthesizer uses a phase-locked loop
to generate low-jitter clocks. Common applications include generation of port and backplane system
clocks. The CCR2 register is used to enable (CCR2.0) and select (CCR2.1 and CCR2.2) the clock
frequency of the BPCLK pin.
Register Name: CCR2
Register Description: Common Control Register 2
Register Address: 71h
Bit # 7 6 5 4 3 2 1 0
Name BPCS1 BPCS0 BPEN
Default 0 0 0 0 0 0 0 0
Bit 0/Backplane Clock Enable (BPEN)
0 = disable BPCLK pin (pin held at logic 0)
1 = enable BPCLK pin
Bits 1, 2/Backplane Clock Selects (BPCS0, BPCS1)
BPCS1 BPCS0 BPCLK Frequency (MHz)
0 0 16.384
0 1 8.192
1 0 4.096
1 1 2.048
Bits 3 to 7/ Unused, must be set to 0 for proper operation
31. FRACTIONAL T1/E1 SUPPORT
The DS2155 can be programmed to output gapped clocks for selected channels in the receive and
transmit paths to simplify connections into a USART or LAPD controller in fractional T1/E1 or ISDN-
PRI applications. The receive and transmit paths have independent enables. Channel formats supported
include 56kbps and 64kbps. This is accomplished by assigning an alternate function to the RCHCLK and
TCHCLK pins. Setting CCR3.0 = 1 causes the RCHCLK pin to output a gapped clock as defined by the
receive fractional T1/E1 function of the PCPR register. Setting CCR3.2 = 1 causes the TCHCLK pin to
output a gapped clock as defined by the transmit fractional T1/E1 function of the PCPR register. CCR3.1
and CCR3.3 can be used to select between 64kbps and 56kbps operation. See Section 7 for details about
programming the per-channel function. In T1 mode no clock is generated at the F-bit position.
When 56kbps mode is selected, the LSB clock in the channel is omitted. Only the seven most significant
bits of the channel have clocks.
DS2155
192 of 238
Register Name: CCR3
Register Description: Common Control Register 3
Register Address: 72h
Bit # 7 6 5 4 3 2 1 0
Name TMSS INTDIS - - TDATFMT TGPCKEN RDATFMT RGPCKEN
Default 0 0 0 0 0 0 0 0
Bit 0/Receive Gapped-Clock Enable (RGPCKEN)
0 = RCHCLK functions normally
1 = enable gapped bit-clock output on RCHCLK
Bit 1/Receive Channel-Data Format (RDATFMT)
0 = 64kbps (data contained in all 8 bits)
1 = 56kbps (data contained in seven out of the 8 bits)
Bit 2/Transmit Gapped-Clock Enable (TGPCKEN)
0 = TCHCLK functions normally
1 = enable gapped bit-clock output on TCHCLK
Bit 3/Transmit Channel-Data Format (TDATFMT)
0 = 64kbps (data contained in all 8 bits)
1 = 56kbps (data contained in seven out of the 8 bits)
Bit 4/ Unused, must be set to 0 for proper operation
Bit 5/ Unused, must be set to 0 for proper operation
Bit 6/Interrupt Disable (INTDIS). This bit is convenient for disabling interrupts without altering the various
interrupt mask register settings.
0 = interrupts are enabled according to the various mask register settings
1 = interrupts are disabled regardless of the mask register settings
Bit 7/Transmit Multiframe Sync Source (TMSS). Should be set = 0 only when transmit hardware signaling is
enabled.
0 = elastic store is source of multiframe sync
1 = framer or TSYNC pin is source of multiframe sync
DS2155
193 of 238
32. USER-PROGRAMMABLE OUTPUT PINS
The DS2155 provides four user-programmable output pins. The pins are automatically cleared to 0 at
power-up or as a result of a hardware- or software-issued reset.
Register Name: CCR4
Register Description: Common Control Register 4
Register Address: 73h
Bit # 7 6 5 4 3 2 1 0
Name RLT3 RLT2 RLT1 RLT0 UOP3 UOP2 UOP1 UOP0
Default 0 0 0 0 0 0 0 0
Bit 0/User-Defined Output 0 (UOP0)
0 = logic 0 level at pin
1 = logic 1 level at pin
Bit 1/User-Defined Output 1 (UOP1)
0 = logic 0 level at pin
1 = logic 1 level at pin
Bit 2/User-Defined Output 2 (UOP2)
0 = logic 0 level at pin
1 = logic 1 level at pin
Bit 3/User-Defined Output 3 (UOP3)
0 = logic 0 level at pin
1 = logic 1 level at pin
Bits 4 to 7/Receive Level Threshold Bits (RLT0 to RLT3)
RLT3 RLT2 RLT1 RLT0 Receive Level (dB)
0 0 0 0 Greater than -2.5
0 0 0 1 -2.5
0 0 1 0 -5.0
0 0 1 1 -7.5
0 1 0 0 -10.0
0 1 0 1 -12.5
0 1 1 0 -15.0
0 1 1 1 -17.5
1 0 0 0 -20.0
1 0 0 1 -22.5
1 0 1 0 -25.0
1 0 1 1 -27.5
1 1 0 0 -30.0
1 1 0 1 -32.5
1 1 1 0 -35.0
1 1 1 1 Less than -37.5
DS2155
194 of 238
33. TRANSMIT FLOW DIAGRAMS
Figure 33-1. T1 Transmit Flow Diagram
ESCR.4 TESE
TSER TSIG
HSIE1-3
through
PCPR TX
ESTORE
Off-Chip
Connection RDATA
From
T1_rcv_logic
LBCR1.1 PLB
HDLC
Engine
#1
THMS1 H1TC.4
H1TCS1-3
H1TTSBS
HDLC
Engine
#2 THMS2 H2TC.4
H2TCS1-3
H2TTSBS
PCLR1-3
T1 TRANSMIT
FLOW
DIAGRAM
KEY
- PIN
- SELECTOR
- REGISTER
Hardware
Signaling
Estore Mux
Payload
Loopback
HDLC Mux #1
HDLC Mux #2
HDLC FDL #2
HDLC FDL #1
TDATA
TESO
TLINK
H1TC.4
THMS1
FDL Mux
TFDL
Tx FDL
Zero
Stuffer
H2TC.4
THMS2
T1TCR2.5
TZSE
T1TCR1.2
TFDLS
TFDL
BOC
Engine
BOC Mux
BOCC.0 SBOC
Idle Code Mux
Idle
Code
Array
TCICE1-3
Loop
Code
Gen
Loop Code
D4 12th Fs
Yellow
alarm
FPS or
Ft/Fs
insertion
ESF Yellow
Alarm
T1CCR1.2 TFM
T1TCR2.2 TD4YM
T1TCR1.0 TYEL
Per-Channel
Loopback
Software Sig
Software
Sig
Registers
SSIE1-3
F-bit Mux TFPT T1TCR1.5
To FDL Mux
To ESF Yellow
Mux To FDL Mux
TLOOP T1CCR1.0
DS2155
195 of 238
B8ZS
Encoding
Bipolar/
NRZ
coding
T1TCR2.7 B8ZSE
IOCR1.0 ODF
1/2 CLK/
FULL CLK
CCR1.4 ODM
TPOS TNEG
FDL Mux
ESF Yellow
From BOC Mux From F-bit Mux
From ESF
Yellow Alarm
TFPT T1TCR1.5
TFM T1CCR1.2
TYEL T1TCR1.0
CRC Mux TCPT T1TCR1.5
D4 bit 2
Yellow
Alm
BERT
Engine
BERT Mux
F-bit
Corruption
Payload
error
insertion
TFM T1CCR1.2
TD4YM T1TCR2.2
TYEL T1TCR1.0
TFUS BIC.3
F-bit
BTCS1-3 from PCPR
BERTEN
BIC.0
T1TCR2.3 FBCT1
T1TCR2.4 FBCT2
NOEL != 0
PEICS1-3
ERC.4 CE
Bit 7
stuffing
Pulse
Density
Enforcer
CRC
Calculation
DS0
Monitor
Blue
Alarm
B7SE T1TCR2.0
SSIE1-3
GB7S T1TCR1.3
TPDV INFO1.6
T1CCR1.1 PDE
TCM0-4 TDS0SEL.0 - .3
TDSOM
T1TCR1.1 TBL
DS2155
196 of 238
Figure 33-2. E1 Transmit Flow Diagram
TSER TSIG
HSIE1-4
through
PCPR TX
ESTORE
ESCR.4 TESE
TESO
TDATA
Off-Chip
Connection
RDATA
From
E1_rcv_logic
LBCR1.1 PLB HDLC
Engine
#1
THMS1 H1TC.4
H1TCS1-4
H1TTSBS
T1SaBE4-
T1SaBE8
THMS1 H1TC.4
H1TTSBS.4 - H1TTSBS.0
HDLC
Engine #2
THMS2 H2TC.4
H2TCS1-4
H2TTSBS
T2SaBE4-T2SaBE8
THMS2 H2TC.4
H2TTSBS.4 - H2TTSBS.0
BTCS1-4
BERTEN (BIC.0)
from PCPR
BERT
Engine
To Per-Channel Mux
E1 TRANSMIT
FLOW
DIAGRAM
KEY
- PIN
- SELECTOR
- REGISTER
Hardware
Signaling
Estore Mux
Payload
Loopback Mux
HDLC DS0
Mux #1
HDLC Sa-bit
Mux #1
HDLC DS0
Mux #2
BERT Mux
HDLC Sa-bit
Mux #2
Idle Code MUX
Idle Code
Array
TCICE1-4
DS2155
197 of 238
Per-Channel
Loopback
From Idle
Code Mux RDATA
From E1_rcv_logic
PCLR1-4
Sa-bit Mux
TNAF
THMS1
THMS2
H1TC.4
H2TC.4
TS0 Mux
TAF/TNAF(non Sa)
Si-bit Mux
E1TCR1.4 TSIS
Auto E-
bit Gen
TLINK Mux
TLINK
Auto
RA Gen
TSaCR Mux
Sa4S - Sa8S
E1TCR2.2 AEBE
E1TCR2.5 - E1TCR2.7
E1TCR2.8 ARA
TSiAF
TSiNAF
TRA
TSa4
TSa5
TSa6
TSa7
TSa8
TSaCR
Software Sig
TSA1 E1TCR1.3
TS1-16
SSIE1-4
E1TCR1.0 T16S
Si/CRC4 MuxE1TCR1.0 TCRC4
Si = CRC4 MF Align Word
(Does not overwrite E-bits)
CRC
Calculate
CRC Re-
calculate
E1TCR1.0 TCRC4
CCR1.6 CRC4R
DS0
Monitor
TCM0-TCM4
TDSOM
Auto
AIS
Gen
UA1
Gen
E1TCR2.1 AAIS
E1TCR1.5 TUA1
HDB3
Encoding
E1TCR1.2 THDB3
To Bipolar/NRZ
coding Mux
E1 TRANSMIT
FLOW
DIAGRAM
TFPT E1TCR1.7
TDS0SEL.0 - TDS0SEL.4
DS2155
198 of 238
Bipolar/
NRZ
coding
IOCR1.0 ODF
FLB
Select
FLB LBCR1.0
TO RECEIVER
RLB Mux RLB Mux
RPOS RNEG
RLB
LBCR1.2
1/2 CLK/
FULL CLK
CCR1.4 ODM
TPOS TNEG
From HDB3
Encoding Mux E1 TRANSMIT
FLOW
DIAGRAM
DS2155
199 of 238
34. JTAG BOUNDARY SCAN ARCHITECTURE AND TEST ACCESS PORT
34.1 Description
The DS2155 IEEE 1149.1 design supports the standard instruction codes SAMPLE/PRELOAD,
BYPASS, and EXTEST. Optional public instructions included are HIGH-Z, CLAMP, and IDCODE
(Figure 34-1.). The DS2155 contains the following features as required by IEEE 1149.1 standard test
access port (TAP) and boundary scan architecture.
Test Access Port
TAP Controller
Instruction Register
Bypass Register
Boundary Scan Register
Device Identification Register
The DS2155 is pin-compatible with the DS2152, DS21x52 (T1) and DS2154, DS21x54 (E1) SCT
families. The JTAG feature uses pins that had no function in the DS2152 and DS2154. Details about
boundary scan architecture and the TAP are in IEEE 1149.1-1990, IEEE 1149.1a-1993, and IEEE
1149.1b-1994. NOTE: JTAG functionality is production tested at 25C only.
The TAP contains the necessary interface pins JTRST, JTCLK, JTMS, JTDI, and JTDO. See the pin
descriptions in Section 4 for details.
Figure 34-1. JTAG Functional Block Diagram
+V
BOUNDARY SCAN
REGISTER
IDENTIFICATION
REGISTER
BYPASS
REGISTER
INSTRUCTION
REGISTER
JTDI JTMS JTCLK JTRST JTDO
+V +V
TEST ACCESS PORT
CONTROLLER
MUX
10k 10k 10k
SELECT
OUTPUT ENABLE
DS2155
200 of 238
TAP Controller State Machine
The TAP controller is a finite state machine that responds to the logic level at JTMS on the rising edge of
JTCLK (Figure 34-2).
Test-Logic-Reset
Upon power-up, the TAP controller is in the Test-Logic-Reset state. The instruction register contains the
IDCODE instruction. All system logic of the device operates normally.
Run-Test-Idle
The Run-Test-Idle is used between scan operations or during specific tests. The instruction register and
test registers remain idle.
Select-DR-Scan
All test registers retain their previous state. With JTMS LOW, a rising edge of JTCLK moves the
controller into the Capture-DR state and initiates a scan sequence. JTMS HIGH during a rising edge on
JTCLK moves the controller to the Select-IR-Scan state.
Capture-DR
Data can be parallel-loaded into the test data registers selected by the current instruction. If the instruction
does not call for a parallel load or the selected register does not allow parallel loads, the test register
remains at its current value. On the rising edge of JTCLK, the controller goes to the Shift-DR state if
JTMS is LOW or it goes to the Exit1-DR state if JTMS is HIGH.
Shift-DR
The test data register selected by the current instruction is connected between JTDI and JTDO and shifts
data one stage toward its serial output on each rising edge of JTCLK. If a test register selected by the
current instruction is not placed in the serial path, it maintains its previous state.
Exit1-DR
While in this state, a rising edge on JTCLK puts the controller in the Update-DR state, which terminates
the scanning process, if JTMS is HIGH. A rising edge on JTCLK with JTMS LOW puts the controller in
the Pause-DR state.
Pause-DR
Shifting of the test registers is halted while in this state. All test registers selected by the current
instruction retain their previous state. The controller remains in this state while JTMS is LOW. A rising
edge on JTCLK with JTMS HIGH puts the controller in the Exit2-DR state.
Exit2-DR
A rising edge on JTCLK with JTMS HIGH while in this state puts the controller in the Update-DR state
and terminates the scanning process. A rising edge on JTCLK with JTMS LOW enters the Shift-DR state.
Update-DR
A falling edge on JTCLK while in the Update-DR state latches the data from the shift register path of the
test registers into the data output latches. This prevents changes at the parallel output because of changes
in the shift register.
DS2155
201 of 238
Select-IR-Scan
All test registers retain their previous state. The instruction register remains unchanged during this state.
With JTMS LOW, a rising edge on JTCLK moves the controller into the Capture-IR state and initiates a
scan sequence for the instruction register. JTMS HIGH during a rising edge on JTCLK puts the controller
back into the Test-Logic-Reset state.
Capture-IR
The Capture-IR state is used to load the shift register in the instruction register with a fixed value. This
value is loaded on the rising edge of JTCLK. If JTMS is HIGH on the rising edge of JTCLK, the
controller enters the Exit1-IR state. If JTMS is LOW on the rising edge of JTCLK, the controller enters
the Shift-IR state.
Shift-IR
In this state, the shift register in the instruction register is connected between JTDI and JTDO and shifts
data one stage for every rising edge of JTCLK toward the serial output. The parallel register and all test
registers remain at their previous states. A rising edge on JTCLK with JTMS HIGH moves the controller
to the Exit1-IR state. A rising edge on JTCLK with JTMS LOW keeps the controller in the Shift-IR state
while moving data one stage through the instruction shift register.
Exit1-IR
A rising edge on JTCLK with JTMS LOW puts the controller in the Pause-IR state. If JTMS is HIGH on
the rising edge of JTCLK, the controller enters the Update-IR state and terminates the scanning process.
Pause-IR
Shifting of the instruction shift register is halted temporarily. With JTMS HIGH, a rising edge on JTCLK
puts the controller in the Exit2-IR state. The controller remains in the Pause-IR state if JTMS is LOW
during a rising edge on JTCLK.
Exit2-IR
A rising edge on JTCLK with JTMS LOW puts the controller in the Update-IR state. The controller loops
back to Shift-IR if JTMS is HIGH during a rising edge of JTCLK in this state.
Update-IR
The instruction code shifted into the instruction shift register is latched into the parallel output on the
falling edge of JTCLK as the controller enters this state. Once latched, this instruction becomes the
current instruction. A rising edge on JTCLK with JTMS LOW puts the controller in the Run-Test-Idle
state. With JTMS HIGH, the controller enters the Select-DR-Scan state.
DS2155
202 of 238
Figure 34-2. TAP Controller State Diagram
34.2 Instruction Register
The instruction register contains a shift register as well as a latched parallel output and is 3 bits in length.
When the TAP controller enters the Shift-IR state, the instruction shift register is connected between JTDI
and JTDO. While in the Shift-IR state, a rising edge on JTCLK with JTMS LOW shifts the data one stage
toward the serial output at JTDO. A rising edge on JTCLK in the Exit1-IR state or the Exit2-IR state with
JTMS HIGH moves the controller to the Update-IR state. The falling edge of that same JTCLK latches
the data in the instruction shift register to the instruction parallel output. Instructions supported by the
DS2155 and its respective operational binary codes are shown in Table 17-A.
1
0
0
1
11
1
1
1
11
11
11
00
00
0
1
00
00
11
00
00
Select
DR-Scan
Capture DR
Shift DR
Exit DR
Pause DR
Exit2 DR
Update DR
Select
IR-Scan
Capture IR
Shift IR
Exit IR
Pause IR
Exit2 IR
Update IR
Test Logic
Reset
Run Test/
Idle
0
DS2155
203 of 238
Table 34-A. Instruction Codes for IEEE 1149.1 Architecture
INSTRUCTION SELECTED REGISTER INSTRUCTION CODES
SAMPLE/PRELOAD Boundary Scan 010
BYPASS Bypass 111
EXTEST Boundary Scan 000
CLAMP Bypass 011
HIGHZ Bypass 100
IDCODE Device Identification 001
SAMPLE/PRELOAD
This is a mandatory instruction for the IEEE 1149.1 specification that supports two functions. The digital
I/Os of the device can be sampled at the boundary scan register without interfering with the normal
operation of the device by using the Capture-DR state. SAMPLE/PRELOAD also allows the device to
shift data into the boundary scan register through JTDI using the Shift-DR state.
BYPASS
When the BYPASS instruction is latched into the parallel instruction register, JTDI connects to JTDO
through the 1-bit bypass test register. This allows data to pass from JTDI to JTDO without affecting the
device’s normal operation.
EXTEST
This allows testing of all interconnections to the device. When the EXTEST instruction is latched in the
instruction register, the following actions occur: Once enabled through the Update-IR state, the parallel
outputs of all digital output pins are driven. The boundary scan register is connected between JTDI and
JTDO. The Capture-DR samples all digital inputs into the boundary scan register.
CLAMP
All digital outputs of the device output data from the boundary scan parallel output while connecting the
bypass register between JTDI and JTDO. The outputs do not change during the CLAMP instruction.
HIGHZ
All digital outputs of the device are placed in a high-impedance state. The BYPASS register is connected
between JTDI and JTDO.
IDCODE
When the IDCODE instruction is latched into the parallel instruction register, the identification test
register is selected. The device identification code is loaded into the identification register on the rising
edge of JTCLK following entry into the Capture-DR state. Shift-DR can be used to shift the identification
code out serially through JTDO. During Test-Logic-Reset, the identification code is forced into the
instruction register’s parallel output. The ID code always has a 1 in the LSB position. The next 11 bits
identify the manufacturer’s JEDEC number and number of continuation bytes followed by 16 bits for the
device and 4 bits for the version (Table 34-B). Table 34-C lists the device ID codes for the SCT devices.
DS2155
204 of 238
Table 34-B. ID Code Structure
MSB LSB
Version
Contact Factory Device ID JEDEC 1
4 bits 16 bits 00010100001 1
Table 34-C. Device ID Codes
PART 16-BIT ID
DS2155 0010h
DS2156 0019h
DS21354 0005h
DS21554 0003h
DS21352 0004h
DS21552 0002h
34.3 Test Registers
IEEE 1149.1 requires a minimum of two test registers, the boundary scan register and the bypass register.
An optional test register, the identification register, has been included with the DS2155 design. It is used
with the IDCODE instruction and the Test-Logic-Reset state of the TAP controller.
34.4 Boundary Scan Register
This register contains both a shift register path and a latched parallel output for all control cells and digital
I/O cells. It is n bits in length. See Table 34-D for cell bit locations and definitions.
34.5 Bypass Register
This is a single one-bit shift register used with the BYPASS, CLAMP, and HIGH-Z instructions that
provides a short path between JTDI and JTDO.
34.6 Identification Register
The identification register contains a 32-bit shift register and a 32-bit latched parallel output. This register
is selected during the IDCODE instruction and when the TAP controller is in the Test-Logic-Reset state.
See Table 34-B and Table 34-C for more information on bit usage.
DS2155
205 of 238
Table 34-D. Boundary Scan Control Bits
BIT PIN NAME TYPE CONTROL BIT FUNCTION
3 1 RCHBLK O
— 2 JTMS I
2 — BPCLK.cntl
0 = BPCLK is an input
1 = BPCLK is an output
1 3 BPCLK I/O
— 4 JTCLK I
— 5 JTRST I
0 6 RCL O
— 7 JTDI I
98 — UOP0.cntl
0 = UOP0 is an input
1 = UOP0 is an output
97 8 UOP0 I/O
96 — UOP1.cntl
0 = UOP1 is an input
1 = UOP1 is an output
95 9 UOP1 I/O
10 JTDO O
94 11 BTS I
93 — LIUC.cntl
0 = LIUC is an input
1 = LIUC is an output
92 12 LIUC I/O
91 13 8XCLK O
90 14 TSTRST I
89 15 UOP2 O
16 RTIP I
17 RRING I
18 RVDD
19, 20, 24 RVSS
21 MCLK I
22 XTALD O
88 — UOP3.cntl
0 = UOP3 is an input
1 = UOP3 is an output
87 23 UOP3 I/O
86 25 INT O
85 26 TUSEL I
27, 28 N.C.
29 TTIP O
30 TVSS
31 TVDD
32 TRING O
84 — TCHBLK.cntl
0 = TCHBLK is an input
1 = TCHBLK is an output
83 33 TCHBLK I/O
82 — TLCLK.cntl
0 = TLCLK is an input
1 = TLCLK is an output
81 34 TLCLK I/O
80 35 TLINK I
79 — ESIBS0.cntl
0 = ESIBS0 is an input
1 = ESIBS0 is an output
78 36 ESIBS0 I/O
77 — TSYNC.cntl
0 = TSYNC is an input
1 = TSYNC is an output
76 37 TSYNC I/O
75 38 TPOSI I
DS2155
206 of 238
BIT PIN NAME TYPE CONTROL BIT FUNCTION
74 39 TNEGI I
73 40 TCLKI I
72 — TCLKO.cntl
0 = TCLKO is an input
1 = TCLKO is an output
71 41 TCLKO I/O
70 — TNEGO.cntl
0 = TNEGO is an input
1 = TNEGO is an output
69 42 TNEGO I/O
68 — TPOSO.cntl
0 = TPOSO is an input
1 = TPOSO is an output
67 43 TPOSO I/O
44 DVDD
45 DVSS
66 46 TCLK I
65 47 TSER I
64 48 TSIG I
63 49 TESO O
62 50 TDATA I
61 51 TSYSCLK I
60 52 TSSYNC I
59 — TCHCLK.cntl
0 = TCHCLK is an input
1 = TCHCLK is an output
58 53 TCHCLK I/O
57 — ESIBS1.cntl
0 = ESIBS1 is an input
1 = ESIBS1 is an output
56 54 ESIBS1 I/O
55 55 MUX I
54 — BUS.cntl
0 = D0–D7/AD0–AD7 are inputs
1 = D0–D7/AD0–AD7 are inputs
53 56 D0/AD0 I/O
52 57 D1/AD1 I/O
51 58 D2/AD2 I/O
50 59 D3/AD3 I/O
60, 80, 84 DVSS
61, 81, 83 DVDD
49 62 D4/AD4 I/O
48 63 D5/AD5 I/O
47 64 D6/AD6 I/O
46 65 D7/AD7 I/O
45 66 A0 I
44 67 A1 I
43 68 A2 I
42 69 A3 I
41 70 A4 I
40 71 A5 I
39 72 A6 I
38 73 ALE(AS)/A7 I
37 74 RD (DS) I
36 75 CS I
35 — ESIBRD.cntl
0 = ESIBRD is an input
1 = ESIBRD is an output
34 76 ESIBRD I/O
33 77 WR (R/W) I
32 78 RLINK O
31 79 RLCLK O
DS2155
207 of 238
BIT PIN NAME TYPE CONTROL BIT FUNCTION
30 82 RCLK O
29 85 RDATA O
28 — RPOSI.cntl
0 = RPOSI is an input
1 = RPOSI is an output
27 86 RPOSI I/O
26 — RNEGI.cntl
0 = RNEGI is an input
1 = RNEGI is an output
25 87 RNEGI I/O
24 — RCLKI.cntl
0 = RCLKI is an input
1 = RCLKI is an output
23 88 RCLKI I/O
22 89 RCLKO O
21 90 RNEGO O
20 91 RPOSO O
19 — RCHCLK.cntl I/O
0 = RCHCLK is an input
1 = RCHCLK is an output
18 92 RCHCLK I/O
17 — RSIGF.cntl
0 = RSIGF is an input
1 = RSIGF is an output
16 93 RSIGF I/O
15 — RSIG.cntl
0 = RSIG is an input
1 = RSIG is an output
14 94 RSIG I/O
13 95 RSER O
12 RMSYNC.cntl 0 = RMSYNC is an input
11 96 RMSYNC I/O
10 — RFSYNC.cntl
0 = RFSYNC is an input
1 = RFSYNC is an output
9 97 RFSYNC I/O
8 — RSYNC.cntl
0 = RSYNC is an input
1 = RSYNC is an output
7 98 RSYNC I/O
6 99 RLOS/LOTC O
5 — RSYSCLK.cntl
0 = RSYSCLK is an input
1 = RSYSCLK in an output
4 100 RSYSCLK I/O
DS2155
208 of 238
35. FUNCTIONAL TIMING DIAGRAMS
35.1 T1 Mode
Figure 35-1. Receive-Side D4 Timing
Note 1: RSYNC in the frame mode (IOCR1.5 = 0) and double-wide frame sync is not enabled (IOCR1.6 = 0).
Note 2: RSYNC in the frame mode (IOCR1.5 = 0) and double-wide frame sync is enabled (IOCR1.6 = 1).
Note 3: RSYNC in the multiframe mode (IOCR1.5 = 1).
Note 4: RLINK data (Fs bits) is updated one bit prior to even frames and held for two frames.
Figure 35-2. Receive-Side ESF Timing
Note 1: RSYNC in frame mode (IOCR1.4 = 0) and double-wide frame sync is not enabled (IOCR1.6 = 0).
Note 2: RSYNC in frame mode (IOCR1.4 = 0) and double-wide frame sync is enabled (IOCR1.6 = 1).
Note 3: RSYNC in multiframe mode (IOCR1.4 = 1).
Note 4: ZBTSI mode disabled (T1RCR2.2 = 0).
Note 5: RLINK data (FDL bits) is updated one bit time before odd frames and held for two frames.
Note 6: ZBTSI mode is enabled (T1RCR2.2 = 1).
Note 7: RLINK data (Z bits) is updated one bit time before odd frames and held for four frames.
FRAME# 12345678910111212345
4
RLINK
RLCLK
3
RSYNC
1
RSYNC
RFSYNC
2
RSYNC
123456789101112
1
2
3
6
RFSYNC
FRAME#
TLCLK
RSYNC
RSYNC
RSYNC
TLINK
13141516171819202122232412345
4
RLCLK
RLINK5
7
DS2155
209 of 238
Figure 35-3. Receive-Side Boundary Timing (Elastic Store Disabled)
Note 1: RCHBLK is programmed to block channel 24.
Note 2: Shown is RLINK/RLCLK in the ESF framing mode.
Figure 35-4. Receive-Side 1.544MHz Boundary Timing (Elastic Store
Enabled)
Note 1: RSYNC is in the output mode (IOCR1.4 = 0).
Note 2: RSYNC is in the input mode (IOCR1.4 = 1).
Note 3: RCHBLK is programmed to block channel 24.
CHANNEL 23 CHANNEL 24 CHANNEL 1
CHANNEL 23 CHANNEL 24 CHANNEL 1
RCLK
RSER
RSYNC
RFSYNC
RSIG
RCHCLK
RCHBLK1
RLCLK
RLINK 2
BA
C/A D/B AC/A D/B
LSB F
MSB MSB
LSB
AB
RSER
CHANNEL 23 CHANNEL 24 CHANNEL 1
RCHCLK
RCHBLK
RSYSCLK
RSYNC2
3
RSYNC1
RMSYNC
RSIG
LSB F
MSB MSB
LSB
CHANNEL 23 CHANNEL 24 CHANNEL 1
BA
C/A D/B AC/A D/B
AB
DS2155
210 of 238
Figure 35-5. Receive-Side 2.048MHz Boundary Timing (Elastic Store
Enabled)
RSER
CHANNEL 1
RCHCLK
RCHBLK
RSYSCLK
RSYNC
CHANNEL 31 CHANNEL 32
1
3
4
RSYNC
2
RMSYNC
RSIG
CHANNEL 31 CHANNEL 32
BA
C/A D/B C/A D/B
AB
CHANNEL 1
LSB MSB LSB F5
Note 1: RSER data in channels 1, 5, 9, 13, 17, 21, 25, and 29 are forced to 1.
Note 2: RSYNC is in the output mode (IOCR1.4 = 0).
Note 3: RSYNC is in the input mode (IOCR1.4 = 1).
Note 4: RCHBLK is forced to 1 in the same channels as RSER (see Note 1).
Note 5: The F-bit position is passed through the receive-side elastic store.
Figure 35-6. Transmit-Side D4 Timing
Note 1: TSYNC in the frame mode (IOCR1.2 = 0) and double-wide frame sync is not enabled (IOCR1.1 = 0).
Note 2: TSYNC in the frame mode (IOCR1.2 = 0) and double-wide frame sync is enabled (IOCR1.1 = 1).
Note 3: TSYNC in the multiframe mode (IOCR1.2 = 1).
Note 4: TLINK data (Fs bits) is sampled during the F-bit position of even frames for insertion into the outgoing T1 stream when enabled through
T1TCR1.2.
12345678910111212345
1
2
3
4
TSSYNC
FRAME#
TLCLK
TSYNC
TSYNC
TSYNC
TLINK
DS2155
211 of 238
Figure 35-7. Transmit-Side ESF Timing
Note 1: TSYNC in frame mode (IOCR1.2 = 0) and double-wide frame sync is not enabled (IOCR1.3 = 0).
Note 2: TSYNC in frame mode (IOCR1.2 = 0) and double-wide frame sync is enabled (IOCR1.3 = 1).
Note 3: TSYNC in multiframe mode (IOCR1.2 = 1).
Note 4: TLINK data (FDL bits) sampled during the F-bit time of odd frame and inserted into the outgoing T1 stream if enabled through TCR1.2.
Note 5: ZBTSI mode is enabled (T1TCR2.1 = 1).
Note 6: TLINK data (Z bits) sampled during the F-bit time of frames 1, 5, 9, 13, 17, and 21 and inserted into the outgoing stream if enabled
through T1TCR1.2.
Figure 35-8. Transmit-Side Boundary Timing (with Elastic Store Disabled)
Note 1: TSYNC is in the output mode (IOCR1.1 = 1).
Note 2: TSYNC is in the input mode (IOCR1.1 = 0).
Note 3: TCHBLK is programmed to block channel 2.
Note 4: Shown is TLINK/TLCLK in the ESF framing mode.
123456789101112
1
2
3
6
TSSYNC
FRAME#
TLCLK
TSYNC
TSYNC
TSYNC
TLINK
13141516171819202122232412345
4
TLCLK
TLINK
5
LSB F MSB LSB MSB LSB MSB
CHANNEL 1 CHANNEL 2
CHANNEL 1 CHANNEL 2
ABC/AD/B ABC/AD/B
TCLK
TSER
TSYNC
TSYNC
TSIG
TCHCLK
TCHBLK
TLCLK
TLINK
D/B
1
2
3
4DON'T CARE
DS2155
212 of 238
Figure 35-9. Transmit-Side 1.544MHz Boundary Timing (Elastic Store
Enabled)
Note 1: TCHBLK is programmed to block channel 24 (if the TPCSI bit is set, then the signaling data at TSIG is ignored during channel 24).
Figure 35-10. Transmit-Side 2.048MHz Boundary Timing (Elastic Store
Enabled)
Note 1: TSER data in channels 1, 5, 9, 13, 17, 21, 25, and 29 is ignored.
Note 2: TCHBLK is programmed to block channel 31 (if the TPCSI bit is set, then the signaling data at TSIG will be ignored).
Note 3: TCHBLK is forced to 1 in the same channels as TSER is ignored (see Note 1).
Note 4: The F-bit position for the T1 frame is sampled and passed through the transmit-side elastic store into the MSB bit position of channel 1.
(Normally, the transmit-side formatter overwrites the F-bit position unless the formatter is programmed to pass through the F-bit
position.)
LSB F MSBLSB MSB
CHANNEL 1CHANNEL 24
ABC/AD/B ABC/AD/B
TSYSCLK
TSER
TSSYNC
TSIG
TCHCLK
TCHBLK
CHANNEL 23
A
CHANNEL 23 CHANNEL 24 CHANNEL 1
1
LSB F
LSB MSB
CHANNEL 1CHANNEL 32
ABC/AD/B ABC/AD/B
TSYSCLK
TSER
TSSYNC
TSIG
TCHCLK
TCHBLK
CHANNEL 31
A
CHANNEL 31 CHANNEL 32 CHANNEL 1
14
2,3
DS2155
213 of 238
35.2 E1 Mode
Figure 35-11. Receive-Side Timing
Note 1: RSYNC in frame mode (IOCR1.5 = 0).
Note 2: RSYNC in multiframe mode (IOCR1.5 = 1).
Note 3: RLCLK is programmed to output just the Sa bits.
Note 4: RLINK always outputs all five Sa bits as well as the rest of the receive data stream.
Note 5: This diagram assumes the CAS MF begins in the RAF frame.
Figure 35-12. Receive-Side Boundary Timing (with Elastic Store Disabled)
Note 1: RCHBLK is programmed to block channel 1.
Note 2: RLCLK is programmed to mark the Sa4 bit in RLINK.
Note 3: Shown is a RNAF frame boundary.
Note 4: RSIG normally contains the CAS multiframe alignment nibble (0000) in channel 1.
CHANNEL 32 CHANNEL 1 CHANNEL 2
CHANNEL 32 CHANNEL 1 CHANNEL 2
RCLK
RSER
RSYNC
RFSYNC
RSIG
RCHCLK
RCHBLK1
RLCLK
RLINK 2
CD A
LSB MSB
AB
Si 1 A Sa4 Sa5 Sa6 Sa7 Sa8
Sa4 Sa5 Sa6 Sa7 Sa8
B
Note 4
FRAME# 123456789101112131415161
4
RLINK
RLCLK 3
RSYNC
1
RSYNC
RFSYNC
2
DS2155
214 of 238
Figure 35-13. Receive-Side Boundary Timing, RSYSCLK = 1.544MHz (Elastic
Store Enabled)
Note 1: Data from the E1 channels 1, 5, 9, 13, 17, 21, 25, and 29 is dropped (channel 2 from the E1 link is mapped to channel 1 of the T1 link,
etc.) and the F-bit position is added (forced to on 1).
Note 2: RSYNC in the output mode (IOCR1.4 = 0).
Note 3: RSYNC in the input mode (IOCR1.4 = 1).
Note 4: RCHBLK is programmed to block channel 24.
Figure 35-14. Receive-Side Boundary Timing, RSYSCLK = 2.048MHz (Elastic
Store Enabled)
Note 1: RSYNC is in the output mode (IOCR1.4 = 0).
Note 2: RSYNC is in the input mode (IOCR1.4 = 1).
Note 3: RCHBLK is programmed to block channel 1.
Note 4: RSIG normally contains the CAS multiframe alignment nibble (0000) in channel 1.
RSER
CHANNEL 23/31 CHANNEL 24/32 CHANNEL 1/2
RCHCLK
RCHBLK
RSYSCLK
RSYNC
2
3
RSYNC
1
RMSYNC
LSB F
MSB MSB
LSB
4
RSER
CHANNEL 1
RCHCLK
RCHBLK
RSYSCLK
RSYNC
CHANNEL 31 CHANNEL 32
1
3
RSYNC
2
RMSYNC
RSIG
CHANNEL 31 CHANNEL 32
CD
AB
CHANNEL 1
LSB MSB LSB MSB
CD
BA
Note 4
DS2155
215 of 238
Figure 35-15. Receive IBO Channel Interleave Mode Timing
Note 1: 4.096MHz bus configuration.
Note 2: 8.192MHz bus configuration.
Note 3: 16.384MHz bus configuration.
Note 4: RSYNC is in the input mode (IOCR1.4 = 0).
RSER LSB
RSYSCLK
RSYNC
FRAMER2, CHANNEL 32
MSB LSB
FRAMER 1, CHANNEL 1
RSIG
FRAMER2, CHANNEL 32 FRAMER 1, CHANNEL 1
MSB LSB
FRAMER2, CHANNEL 1
FRAMER2, CHANNEL 1
4
RSER
RSYNC
RSIG
RSER
RSIG
F3 32 F4 32 F1 C1 F2 C1 F3 C1 F4 C1 F1 C2 F2 C2 F3 C2 F4 C2
1
1
2
2
BIT LEVEL DETAIL (4.096MHz bus configurtation)
F2 C32 F1 C1 F2 C1 F1 C2 F2 C2
F2 C32 F1 C1 F2 C1 F1 C2 F2 C2
F3 C32 F4 C32 F1 C1 F2 C1 F3 C1 F4 C1 F1 C2 F2 C2 F3 C2 F4 C2
ABCD ABCD ABCD
RSER
RSIG
3
3
F1
C1
F2
C1
F3
C1
F4
C1
F5
C1
F6
C1
F7
C1
F8
C1
F1
C2
F2
C2
F3
C2
F4
C2
F5
C2
F6
C2
F7
C2
F8
C2
F5
C32
F6
C32
F7
C32
F8
C32
F1
C1
F2
C1
F3
C1
F4
C1
F5
C1
F6
C1
F7
C1
F8
C1
F1
C2
F2
C2
F3
C2
F4
C2
F5
C2
F6
C2
F7
C2
F8
C2
F5
C32
F6
C32
F7
C32
F8
C32
FRAMER #1, CHANNEL #1
DS2155
216 of 238
Figure 35-16. Receive IBO Frame Interleave Mode Timing
Note 1: 4.096MHz bus configuration.
Note 2: 8.192MHz bus configuration.
Note 3: 16.384MHz bus configuration.
Note 4: RSYNC is in the input mode (IOCR1.4 = 0).
RSER LSB
RSYSCLK
RSYNC
FRAMER2, CHANNEL 32
MSB LSB
FRAMER 1, CHANNEL 1
RSIG
FRAMER2, CHANNEL 32 FRAMER 1, CHANNEL 1
MSB LSB
FRAMER1, CHANNEL 2
FRAMER1, CHANNEL 2
4
RSER
RSYNC
RSIG
RSER
RSIG
F3 F4 F1 F2 F3 F4 F1 F2 F3 F4
1
1
2
2
BIT LEVEL DETAIL (4.096MHz bus configurtation)
F2 F1 F2 F1 F2
F2 F1 F2 F1 F2
F3 F4 F1 F2 F3 F4 F1 F2 F3 F4
ABCD ABCD ABCD
RSER
RSIG
3
3
F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 F5 F6 F7 F8
F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8F5 F6 F7 F8
FRAMER #1, CHANNELS 1 through 32
DS2155
217 of 238
Figure 35-17. G.802 Timing, E1 Mode Only
Note 1: RCHBLK or TCHBLK programmed to pulse high during time slots 1 through 15, 17 through 25, and bit 1 of time slot 26.
Figure 35-18. Transmit-Side Timing
Note 1: TSYNC in frame mode (IOCR1.2 = 0).
Note 2: TSYNC in multiframe mode (IOCR1.2 = 1).
Note 3: TLINK is programmed to source just the Sa4 bit.
Note 4: This diagram assumes both the CAS MF and the CRC4 MF begin with the TAF frame.
Note 5: TLINK and TLCLK are not synchronous with TSSYNC.
12345678910111213141516171819202122232425262728293031031 32
TS #
RSYNC
TSYNC
RCHCLK
TCHCLK
RCHBLK
TCHBLK
CHANNEL 26
CHANNEL 25
LSB MSB
RCLK / RSYSCLK
TCLK / TSYSCLK
RSER / TSER
RCHCLK / TCHCLK
RCHBLK / TCHBLK
120
12345 67891011 12
1
3
TSSYNC
FRAME#
TSYNC
TSYNC
13 14 15 16 12345
TLCLK
TLINK
14 15 16 678910
3
2
DS2155
218 of 238
Figure 35-19. Transmit-Side Boundary Timing (Elastic Store Disabled)
Note 1: TSYNC is in the output mode (IOCR1.1 = 1).
Note 2: TSYNC is in the input mode (IOCR1.1 = 0).
Note 3: TCHBLK is programmed to block channel 2.
Note 4: TLINK is programmed to source the Sa4 bit.
Note 5: The signaling data at TSIG during channel 1 is normally overwritten in the transmit formatter with the CAS MF alignment nibble (0000).
Note 6: Shown is a TNAF frame boundary.
Figure 35-20. Transmit-Side Boundary Timing, TSYSCLK = 1.544MHz
(Elastic Store Enabled)
Note 1: The F-bit position in the TSER data is ignored.
Note 2: TCHBLK is programmed to block channel 24.
LSB MSB LSB MSB
CHANNEL 1 CHANNEL 2
CHANNEL 1 CHANNEL 2
ABCD
TCLK
TSER
TSYNC
TSYNC
TSIG
TCHCLK
TCHBLK
TLCLK
TLINK
1
2
3
4DON'T CARE
Si 1 A Sa4 Sa5 Sa6 Sa7 Sa8
D
DON'T CARE
4
LSB F MSBLSB MSB
CHANNEL 1CHANNEL 24
TSYSCLK
TSER
TSSYNC
TCHCLK
TCHBLK
CHANNEL 23
1
2
DS2155
219 of 238
Figure 35-21. Transmit-Side Boundary Timing, TSYSCLK = 2.048MHz (Elastic
Store Enabled)
Note 1: TCHBLK is programmed to block channel 31.
LSB F
LSB MSB
CHANNEL 1CHANNEL 32
ABCD AB
TSYSCLK
TSER
TSSYNC
TSIG
TCHCLK
TCHBLK
CHANNEL 31
A
CHANNEL 31 CHANNEL 32 CHANNEL 1
14
2,3
CD
DS2155
220 of 238
Figure 35-22. Transmit IBO Channel Interleave Mode Timing
Note 1: 4.096MHz bus configuration.
Note 2: 8.192MHz bus configuration.
Note 3: 16.384MHz bus configuration.
Note 4: TSYNC is in input mode.
TSER LSB
TSYSCLK
TSYNC
FRAMER2, CHANNEL 32
MSB LSB
FRAMER 1, CHANNEL 1
TSIG
FRAMER2, CHANNEL 32 FRAMER 1, CHANNEL 1
MSB LSB
FRAMER2, CHANNEL 1
FRAMER2, CHANNEL 1
4
TSER
TSSYNC
TRSIG
TSER
TSIG
F3 32 F4 32 F1 C1 F2 C1 F3 C1 F4 C1 F1 C2 F2 C2 F3 C2 F4 C2
1
1
2
2
BIT LEVEL DETAIL (4.096MHz bus configurtation)
F2 C32 F1 C1 F2 C1 F1 C2 F2 C2
F2 C32 F1 C1 F2 C1 F1 C2 F2 C2
F3 C32 F4 C32 F1 C1 F2 C1 F3 C1 F4 C1 F1 C2 F2 C2 F3 C2 F4 C2
ABCD ABCD ABCD
TSER
TSIG
3
3
F1
C1
F2
C1
F3
C1
F4
C1
F5
C1
F6
C1
F7
C1
F8
C1
F1
C2
F2
C2
F3
C2
F4
C2
F5
C2
F6
C2
F7
C2
F8
C2
F5
C32
F6
C32
F7
C32
F8
C32
F1
C1
F2
C1
F3
C1
F4
C1
F5
C1
F6
C1
F7
C1
F8
C1
F1
C2
F2
C2
F3
C2
F4
C2
F5
C2
F6
C2
F7
C2
F8
C2
F5
C32
F6
C32
F7
C32
F8
C32
FRAMER #1, CHANNEL #1
DS2155
221 of 238
Figure 35-23. Transmit IBO Frame Interleave Mode Timing
Note 1: 4.096MHz bus configuration.
Note 2: 8.192MHz bus configuration.
Note 3: 16.384MHz bus configuration.
Note 4: TSYNC is in input mode.
TSER LSB
TSYSCLK
TSYNC
FRAMER2, CHANNEL 32
MSB LSB
FRAMER 1, CHANNEL 1
TSIG
FRAMER2, CHANNEL 32 FRAMER 1, CHANNEL 1
MSB LSB
FRAMER1, CHANNEL 2
FRAMER1, CHANNEL 2
4
TSER
TSSYNC
TSIG
TSER
TSIG
F3 F4 F1 F2 F3 F4 F1 F2 F3 F4
1
1
2
2
BIT LEVEL DETAIL (4.096MHz bus configurtation)
F2 F1 F2 F1 F2
F2 F1 F2 F1 F2
F3 F4 F1 F2 F3 F4 F1 F2 F3 F4
ABCD ABCD ABCD
TSER
TSIG
3
3
F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 F5 F6 F7 F8
F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8F5 F6 F7 F8
FRAMER #1, CHANNELS 1 through 32
DS2155
222 of 238
36. OPERATING PARAMETERS
ABSOLUTE MAXIMUM RATINGS
Voltage Range on Any Pin Relative to Ground -1.0V to +6.0V
Operating Temperature Range for DS 2155L 0°C to +70°C
Operating Temperature Range for DS2155LN -40°C to +85°C (Note 1)
Storage Temperature Range -55°C to +125°C
Soldering Temperature See IPC/JEDEC J-STD-020
This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.
Note 1: Specifications to -40°C are guaranteed by design and not production tested.
THERMAL CHARACTERISTICS
PARAMETER CONDITIONS MIN TYP MAX
Ambient Temperature (Note 2) -40°C +85°C
Junction Temperature +125°C
Theta-JA (θJA) in Still Air for
100-Pin LQFP (Note 3) +32°C/W
Theta-JA (θJA) in Still Air for
10mm CSBGA (Note 3) +40°C/W
THETA-JA (θJA) vs. AIRFLOW
FORCED AIR
(meters per second) THETA-JA (θJA)
100-PIN LQFP THETA-JA (θJA)
10mm CSBGA
0 +32°C/W 40°C/W
1 +27°C/W 34°C/W
2.5 +24°C/W 30°C/W
RECOMMENDED DC OPERATING CONDITIONS
(TA = 0°C to +70°C for DS 2155L; TA = -40°C to +85°C for DS2155LN.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Logic 1 VIH 2.0 5.5 V
Logic 0 VIL -0.3 +0.8 V
Supply VDD (Note 4) 3.135 3.3 3.465 V
CAPACITANCE
(TA = +25°C)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Input Capacitance CIN 5 pF
Output Capacitance COUT 7 pF
DS2155
223 of 238
DC CHARACTERISTICS
(VDD = 3.3V ±5%, TA = 0°C to +70°C for DS2155L; VDD = 3.3V ±5%, TA = -40°C to +85°C for DS2155LN.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Current IDD (Note 5) 75 mA
Input Leakage IIL (Note 6) -1.0 +1.0 μA
Output Leakage ILO (Note 7) 1.0
μA
Output Current (2.4V) IOH -1.0 mA
Output Current (0.4V) IOL +4.0 mA
Note 2: The package is mounted on a four-layer JEDEC standard test board.
Note 3: Theta-JA (θJA) is the junction to ambient thermal resistance, when the package is mounted on a four-layer JEDEC standard test board.
Note 4: Applies to RVDD, TVDD, and DVDD.
Note 5: TCLK = TCLKI = RCLKI = TSYSCLK = RSYSCLK = MCLK = 1.544MHz; outputs open-circuited.
Note 6: 0.0V < VIN < VDD
Note 7: Applied to INT when tri-stated.
DS2155
224 of 238
37. AC TIMING PARAMETERS AND DIAGRAMS
Capacitive test loads are 40pF for bus signals, 20pF for all others.
37.1 Multiplexed Bus AC Characteristics
AC CHARACTERISTICS: MULTIPLEXED PARALLEL PORT (MUX = 1)
(Figure 37-1, Figure 37-2, and Figure 37-3)
(VDD = 3.3V ±5%, TA = 0°C to +70°C for DS2155L; VDD = 3.3V ±5%, TA = -40°C to +85°C for DS2155LN.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Cycle Time tCYC 200 ns
Pulse Width, DS Low or RD High PWEL 100 ns
Pulse Width, DS High or RD Low PWEH 100 ns
Input Rise/Fall Times tR, tF 20 ns
R/W Hold Time tRWH 10 ns
R/W Setup Time Before DS High tRWS 50 ns
CS Setup Time Before DS, WR, or RD
Active tCS 20 ns
CS Hold Time tCH 0 ns
Read Data Hold Time tDHR 10 50 ns
Write Data Hold Time tDHW 0 ns
Muxed Address Valid to AS or ALE Fall tASL 15 ns
Muxed Address Hold Time tAHL 10 ns
Delay Time DS, WR, or RD to AS or ALE
Rise tASD 20 ns
Pulse Width AS or ALE High PWASH 30 ns
Delay Time, AS or ALE to DS, WR or RD tASED 10 ns
Output Data Delay Time from DS or RD tDDR 20 80 ns
Data Setup Time tDSW 50 ns
DS2155
225 of 238
Figure 37-1. Intel Multiplexed Bus Read Timing (BTS = 0/MUX = 1)
Figure 37-2. Intel Multiplexed Bus Write Timing (BTS = 0/MUX = 1)
ASH
PW
tCYC
tASD
tASD PW
PW
EH
EL
t
t
t
t
t
t
AHL
CH
CS
ASL
ASED
CS*
AD0-AD7
DHR
tDDR
ALE
RD*
WR*
ASH
PW
tCYC
tASD
tASD PW
PW
EH
EL
t
t
t
t
t
t
t
AHL DSW
DHW
CH
CS
ASL
ASED
CS*
AD0-AD7
RD*
WR*
ALE
DS2155
226 of 238
Figure 37-3. Motorola Multiplexed Bus Timing (BTS = 1/MUX = 1)
tASD
ASH
PW
t
t
ASL
AHL tCS
tASL
t
t
t
DSW
DHW
tCH
tt
t
DDR DHR
RWH
tASED PWEH
tRWS
AHL
PWEL tCYC
AS
DS
D0-AD7
(write)
D0-AD7
(read)
R/W*
CS*
DS2155
227 of 238
37.2 Nonmultiplexed Bus AC Characteristics
AC CHARACTERISTICS: NONMULTIPLEXED PARALLEL PORT (MUX = 0)
(Figure 37-4, Figure 37-5, Figure 37-6, and Figure 37-7)
(VDD = 3.3V ±5%, TA = 0°C to +70°C for DS2155L; VDD = 3.3V ±5%, TA = -40°C to +85°C; for DS2155LN.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Setup Time for A0 to A7, Valid to CS
Active t1 0 ns
Setup Time for CS Active to Either RD,
WR, or DS Active t2 0 ns
Delay Time from Either RD or DS Active
to Data Valid t3 75 ns
Hold Time from Either RD, WR, or DS
Inactive to CS Inactive t4 0 ns
Hold Time from CS Inactive to Data Bus
Tri-State t5 5 20 ns
Wait Time from Either WR or DS Active
to Latch Data t6 75 ns
Data Setup Time to Either WR or DS
Inactive t7 10 ns
Data Hold Time from Either WR or DS
Inactive t8 10 ns
Address Hold from Either WR or DS
Inactive t9 10 ns
DS2155
228 of 238
Figure 37-4. Intel Nonmultiplexed Bus Read Timing (BTS = 0/MUX = 0)
Figure 37-5. Intel Nonmultiplexed Bus Write Timing (BTS = 0/MUX = 0)
A
DDRESS VALID
DATA VALID
A0 to A7
D0 to D7
W
R
C
S
R
D
0ns (min)
0ns (min)
50ns (max)
0ns (min)
5ns (min) / 20ns (max)
t1
t2 t3 t4
t5
A
DDRESS VALID
A0 to A7
D0 to D7
R
D
C
S
W
R
0ns (min)
0ns (min)
75ns (min)
0ns (min)
10ns (min) 10ns (min)
t1
t2 t6 t4
t7 t8
DS2155
229 of 238
Figure 37-6. Motorola Nonmultiplexed Bus Read Timing (BTS = 1/MUX = 0)
Figure 37-7. Motorola Nonmultiplexed Bus Write Timing (BTS = 1/MUX = 0)
A
DDRESS VALID
A0 to A7
D0 to D7
R/
W
C
S
D
S
0ns (min)
0ns (min)
75ns (min)
0ns (min)
10ns (min) 10ns (min)
t1
t2 t6 t4
t7 t8
A
DDRESS VALID
DATA VALID
A0 to A7
D0 to D7
R/
W
C
S
D
S
0ns (min)
0ns (min)
75ns (max)
0ns (min)
5ns (min) / 20ns (max)
t1
t2 t3 t4
t5
DS2155
230 of 238
37.3 Receive-Side AC Characteristics
AC CHARACTERISTICS: RECEIVE SIDE
(Figure 37-8., Figure 37-9, and Figure 37-10)
(VDD = 3.3V ±5%, TA = 0°C to +70°C for DS2155L; VDD = 3.3V ±5%, TA = -40°C to +85°C for DS2155LN.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
488 (E1)
RCLKO Period tLP 648 (T1)
ns
tLH (Note 1) 200 0.5 tLP
RCLKO Pulse Width tLL (Note 1) 200 0.5 tLP ns
tLH (Note 2) 150 0.5 tLP
RCLKO Pulse Width tLL (Note 2) 150 0.5 tLP ns
488 (E1)
RCLKI Period tCP 648 (T1)
ns
tCH 20 0.5 tCP
RCLKI Pulse Width tCL 20 0.5 tCP ns
(Note 3) 648
(Note 4) 488 ns
(Note 5) 244 ns
(Note 6) 122
RSYSCLK Period tSP
(Note 7) 61
tSH 20 0.5 tSP ns
RSYSCLK Pulse Width tSL 20 0.5 tSP ns
RSYNC Setup to RSYSCLK Falling tSU 20 ns
RSYNC Pulse Width tPW 50 ns
RPOSI/RNEGI Setup to RCLKI Falling tSU 20 ns
RPOSI/RNEGI Hold From RCLKI
Falling tHD 20 ns
RSYSCLK, RCLKI Rise and Fall Times tR, tF 22 ns
Delay RCLKO to RPOSO, RNEGO Valid tDD 50 ns
Delay RCLK to RSER, RDATA, RSIG,
RLINK Valid tD1 50 ns
Delay RCLK to RCHCLK, RSYNC,
RCHBLK, RFSYNC, RLCLK tD2 50 ns
Delay RSYSCLK to RSER, RSIG Valid tD3 22 ns
Delay RSYSCLK to RCHCLK,
RCHBLK, RMSYNC, RSYNC tD4 22 ns
Note 1: Jitter attenuator enabled in the receive path.
Note 2: Jitter attenuator disabled or enabled in the transmit path.
Note 3: RSYSCLK = 1.544MHz
Note 4: RSYSCLK = 2.048MHz
Note 5: RSYSCLK = 4.096MHz
Note 6: RSYSCLK = 8.192MHz
Note 7: RSYSCLK = 16.384MHz
DS2155
231 of 238
Figure 37-8. Receive-Side Timing
Note 1: RSYNC is in the output mode.
Note 2: Shown is RLINK/RLCLK in the ESF framing mode.
Note 3: No relationship between RCHCLK and RCHBLK and other signals is implied.
Note 4: RLCLK only pulses high during Sa bit locations as defined in the E1RCR2 register.
tD1
1
tD2
RSER / RDATA / RSIG
RCHCLK
RCHBLK
RSYNC
RLCLK
RLINK (T1MODE)
tD1
RCLK
RFSYNC / RMSYNC
2
tD2
tD2
tD2
tD2
RLINK (E1 MODE) Sa4 to Sa8
Bit Position
4
1ST FRAME BIT
DS2155
232 of 238
Figure 37-9. Receive-Side Timing, Elastic Store Enabled
Note 1: RSYNC is in the output mode.
Note 2: RSYNC is in the input mode.
Note 3: F-bit when MSTRREG.1 = 0, MSB of TS0 when MSTREG.1 = 1.
Figure 37-10. Receive Line Interface Timing
F
t
tR
tD3
tD4
tD4
tD4
t
tSU
HD
RSER / RSIG
RCHCLK
RCHBLK
1
RSYNC
2
RSYNC
RSYSCLK
SL
t
tSP
SH
t
tD4
RMSYNC
SEE NOTE 3
tF
t
R
RPOSI, RNEGI
RCLKI
CL
t
tCP
CH
t
tSU
tHD
tDD
RPOSO, RNEGO
RCLKO
LL
t
tLP
LH
t
DS2155
233 of 238
37.4 Backplane Clock Timing: AC Characteristics
AC CHARACTERISTICS: BACKPLANE CLOCK SYNTHESIS
(Figure 37-11)
(VDD = 3.3V ±5%, TA = 0°C to +70°C for DS2155L; VDD = 3.3V ±5%, TA = -40°C to +85°C for DS2155LN.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Delay RCLK to BPCLK tD1 10 ns
Figure 37-11 Receive Timing Delay RCLK to BPCLK
tD1
BPCLK
RCLK
Note 1: If RCLK is 1.544 MHz, BPCLK will be asynchronous.
DS2155
234 of 238
37.5 Transmit AC Characteristics
AC CHARACTERISTICS: TRANSMIT SIDE
(Figure 37-12, Figure 37-13, and Figure 37-14)
(VDD = 3.3V ±5%, TA = -40°C to +85°C for DS2155L; VDD = 3.3V ±5%, TA = 0°C to +70°C for DS2155LN)
PARAMETER SYMBOL CONDITIONS MIN TYP (E1) MAX UNITS
488 (E1)
TCLK Period tCP 648 (T1)
ns
tCH 20 0.5 tCP
TCLK Pulse Width tCL 20 0.5 tCP ns
488 (E1)
TCLKI Period tLP 648 (T1) ns
tLH 20 0.5 tLP
TCLKI Pulse Width tLL 20 0.5 tLP ns
(Note 8) 648
(Note 9) 448
(Note 10) 244
(Note 11) 122
TSYSCLK Period tSP
(Note 12) 61
ns
20 0.5 tSP
TSYSCLK Pulse Width tSP 20 0.5 tSP ns
TSYNC or TSSYNC Setup to TCLK or
TSYSCLK Falling tSU 20 ns
TSYNC or TSSYNC Pulse Width tPW 50
ns
TSER, TSIG, TDATA, TLINK, TPOSI,
TNEGI Setup to TCLK, TSYSCLK,
TCLKI Falling
tSU
20
ns
TSER, TSIG, TDATA, TLINK Hold
from TCLK or TSYSCLK Falling tHD 20
ns
TPOSI, TNEGI Hold from TCLKI
Falling tHD 20
ns
TCLK, TCLKI or TSYSCLK Rise and
Fall Times tR, tF 25 ns
Delay TCLKO to TPOSO, TNEGO
Valid tDD 50 ns
Delay TCLK to TESO, UT-UTDO
Valid tD1 50 ns
Delay TCLK to TCHBLK, TCHCLK,
TSYNC, TLCLK tD2 50 ns
Delay TSYSCLK to TCHCLK,
TCHBLK tD3 22 ns
Note 8: TSYSCLK = 1.544MHz
Note 9: TSYSCLK = 2.048MHz
Note 10: TSYSCLK = 4.096MHz
Note 11: TSYSCLK = 8.192MHz
Note 12: TSYSCLK = 16.384MHz
DS2155
235 of 238
Figure 37-12. Transmit-Side Timing
Note 1: TSYNC is in the output mode (IOCR1.1 = 1).
Note 2: TSYNC is in the input mode (IOCR1.1 = 0).
Note 3: TSER is sampled on the falling edge of TCLK when the transmit-side elastic store is disabled.
Note 4: TCHCLK and TCHBLK are synchronous with TCLK when the transmit-side elastic store is disabled.
Note 5: In E1 mode, TLINK is only sampled during Sa bit locations as defined in E1TCR2; no relationship between TLCLK/TLINK and TSYNC
is implied.
tF
t
R
1
TCLK
TSER / TSIG /
TDATA
TCHCLK
t
t
CL
tCH
CP
TSYNC
TSYNC
TLINK
TLCLK
TCHBLK
tD2
tD2
tD2
t
t
t
t
t
t
HD
SU
D2
SU
HD
D1
tHD
2
5
TESO
tSU
DS2155
236 of 238
Figure 37-13. Transmit-Side Timing, Elastic Store Enabled
Note 1: TSER is only sampled on the falling edge of TSYSCLK when the transmit-side elastic store is enabled.
Note 2: TCHCLK and TCHBLK are synchronous with TSYSCLK when the transmit-side elastic store is enabled.
Figure 37-14. Transmit Line Interface Timing
TCLKO
TPOSO, TNEGO
tDD
tF
t
R
TCLKI
TPOSI, TNEGI
t
t
LL
tLH
LP
tHD
tSU
tF
t
R
TSYSCLK
TSER
TCHCLK
t
t
SL
tSH
SP
TSSYNC
TCHBLK
tD3
tD3
t
t
tSU
HD
SU
tHD
DS2155
237 of 238
38. PACKAGE INFORMATION
(The package drawing(s) in this data sheet may not reflect the most current specifications. The package number provided for
each package is a link to the latest package outline information.)
38.1 100-Pin LQFP (56-G5002-000)
DS2155
238 of 238
Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product.
No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserv es the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2007 Maxim Integrated Products
The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor.
38.2 100-Ball CSBGA (56-G6008-001)
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Maxim Integrated:
DS2155G DS2155G+ DS2155GN DS2155GC2 DS2155GN-W DS2155G/T&R DS2155G+T&R DS2155L+
DS2155LN+ DS2155L DS2155LN DS2155GB DS2155GB/T&R DS2155GNB