10-FZ07NMA100SM-M265F58
flowNPC 0 650 V/100 A
mixed voltage NPC topology
reactive power capability
low inductance layout
Common collector neutral connection
solar inverter
UPS
10-FZ07NMA100SM-M265F58
Tj=25°C, unless otherwise specified
Parameter Symbol Value Unit
Half Bridge IGBT
Th=80°C 79
Tc=80°C 107
Tj150°C
VCE<=VCES Th=80°C 136
Tc=80°C 206
Buck FWD
Th=80°C 50
Tc=80°C 66
Th=80°C 69
Tc=80°C 104
°C
VGE
Tjmax
Ptot
V
A
Power dissipation
Forward average current
Power dissipation
Turn off safe operating area
Maximum Junction Temperature
600Peak Repetitive Reverse Voltage
W
V
W
A
Features
Types
Maximum Ratings
flow 0 12 mm housing
Target Applications Schematic
Condition
Gate-emitter peak voltage
Ptot
IC
Collector-emitter break down voltage
Pulsed collector current
DC collector current
°C
V
A
175
A
300
175
±20
Tj=TjmaxIFAV
VRRM
VCES
ICpulse
Maximum Junction Temperature Tjmax
Tj=Tjmax
tp limited by Tjmax
Tj=Tjmax
300
Tj=Tjmax
650
copyright Vincotech 1 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Tj=25°C, unless otherwise specified
Parameter Symbol Value Unit
Maximum Ratings
Condition
Boost IGBT
Th=80°C 57
Tc=80°C 74
Tj150°C
VCE<=VCES Th=80°C 82
Tc=80°C 124
tSC Tj150°C 6 µs
VCC VGE=15V 360 V
Boost FWD
Th=80°C 47
Tc=80°C 63
IFSM 100 A
Th=80°C 70
Tc=80°C 106
Thermal Properties
Insulation Properties
t=2s DC voltage 4000 V
min 12,7 mm
min 12,7 mm
Surge forward current tp=10ms
225
100
Power dissipation
Repetitive peak forward current
Ptot Tj=Tjmax
IFRM tp limited by Tjmax
Clearance
Insulation voltage
Creepage distance
Top
Operation temperature under switching condition -40…+(Tjmax - 25) °C
Storage temperature Tstg -40…+125 °C
°CMaximum Junction Temperature Tjmax 175
650
VRRM
Tj=25°C
Peak Repetitive Reverse Voltage
Forward average current Tj=TjmaxIFAV
VGE ±20
600
225
Tj=Tjmax
Ptot
ICpuls
IC
W
A
V
A
°C
W
175
V
A
V
A
A
Short circuit ratings
DC collector current
Power dissipation
Turn off safe operating area
Gate-emitter peak voltage
Pulsed collector current
Collector-emitter break down voltage VCES
Maximum Junction Temperature Tjmax
tp limited by Tjmax
Tj=Tjmax
copyright Vincotech 2 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Parameter Symbol Unit
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
IC [A] or
IF [A] or
ID [A] TjMin Typ Max
Tj=25°C
3,3
4
4,7
Tj=125°C
Tj=25°C
1
1,63
2,4
Tj=125°C
1,78
Tj=25°C
0,07
Tj=125°C
Tj=25°C
400
Tj=125°C
Tj=25°C
70
Tj=125°C
71
Tj=25°C
18
Tj=125°C
21
Tj=25°C
78
Tj=125°C
94
Tj=25°C
13
Tj=125°C
22
Tj=25°C
0,14
Tj=125°C
0,27
Tj=25°C
0,18
Tj=125°C
0,32
Thermal resistance chip to heatsink per chip R
thJH
Phase-Change
Material 0,7 K/W
Tj=25°C
1,80
3
Tj=125°C
1,58
Tj=25°C
10
Tj=150°C
Tj=25°C
41
Tj=125°C
59
Tj=25°C
33
Tj=125°C
113
Tj=25°C
1,00
Tj=125°C
3,10
di(rec)max
Tj=25°C
/dt
Tj=125°C
Tj=25°C
0,084
Tj=125°C
0,306
Thermal resistance chip to heatsink per chip R
thJH
Phase-Change
Material 1,38 K/W
V
mWs
A
nC
µA
A/µs
ns
nA
V
mA
pF
µC
mWs
V
ns
240
Tj=25°C
Tj=25°C
±15
0
Rgon=4
±15
15
V
CE
=V
GE
20
I
GES
V
F
C
ies
E
off
Half Bridge IGBT
Collector-emitter saturation voltage
Turn-on delay time
Turn-on energy loss per pulse
Gate emitter threshold voltage
Gate-emitter leakage current
Integrated Gate resistor
Collector-emitter cut-off current incl. Diode
Fall time
Rise time
Turn-off delay time
100
6000
22
0
none
ValueConditions
Characteristic Values
V
CE(sat)
I
CES
Reverse transfer capacitance
Diode forward voltage
Gate charge
Buck FWD
t
rr
Erec
Q
Gate
Peak reverse recovery current
Peak rate of fall of recovery current
Reverse recovered charge
R
gint
V
GE(th)
0
t
d(on)
Rgoff=4
f=1MHz
t
r
t
d(off)
E
on
Rgon=4
C
rss
C
oss
Reverse recovered energy
I
RRM
Q
rr
Reverse recovery time
t
f
Reverse leakage current I
r
Output capacitance
Turn-off energy loss per pulse
Input capacitance
±15
100
50
25
150
600
300
60
650
520
0,0005
100
50
copyright Vincotech 3 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Parameter Symbol Unit
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
IC [A] or
IF [A] or
ID [A] TjMin Typ Max
ValueConditions
Characteristic Values
Tj=25°C
5
5,8
6,5
Tj=125°C
Tj=25°C
1,05
1,44
1,85
Tj=125°C
1,58
Tj=25°C
0,03
Tj=125°C
Tj=25°C
700
Tj=125°C
Tj=25°C
93
Tj=125°C
94
Tj=25°C
14
Tj=125°C
17
Tj=25°C
138
Tj=125°C
156
Tj=25°C
74
Tj=125°C
97
Tj=25°C
0,13
Tj=125°C
0,25
Tj=25°C
0,70
Tj=125°C
0,95
Thermal resistance chip to heatsink per chip R
thJH
Phase-Change
Material 1,16 K/W
Tj=25°C
1
1,62
2
Tj=125°C
1,53
Tj=25°C
27
Tj=125°C
Tj=25°C
37
Tj=125°C
43
Tj=25°C
144
Tj=125°C
290
Tj=25°C
1,98
Tj=125°C
4,21
di(rec)max
Tj=25°C
/dt
Tj=125°C
Tj=25°C
0,24
Tj=125°C
0,52
Thermal resistance chip to heatsink per chip R
thJH
Phase-Change
Material 1,36 K/W
T=25°C
T=25°C
T=25°C
K
B
3950
3998T=25°C
K
Reverse recovery time
Peak rate of fall of recovery current
t
rr
Reverse recovery energy
Reverse recovered charge
Tol. ±3%
Vincotech NTC Reference
B-value B(25/50) Tol. ±3%
B-value B(25/100)
Rgoff=4
none
150
0
f=1MHz
Rgon=4 150
650
±15
I
r
20
600
Rgon=4
75
15
0,0012
0 25
480 75
Tj=25°C
Q
rr
E
rec
V
F
I
RRM
V
CE
=V
GE
t
f
Q
Gate
E
off
Gate charge
Input capacitance
Boost FWD
±15
15
0 mA
nA
V
V
R/R R100=1486
Rated resistance R
Deviation of R100
Thermistor
Power dissipation constant
Power dissipation P 200
%
ns
nC
pF
mWs
µA
T=100°C
T=25°C
V
-12
mW/K
ns
mWs
µC
mW
A/µs
2
+14
22000
4620
137
288
t
d(off)
t
r
C
oss
C
ies
t
d(on)
I
CES
R
gint
I
GES
Collector-emitter cut-off incl diode
Integrated Gate resistor
Turn-on energy loss per pulse E
on
Turn-off energy loss per pulse
Reverse transfer capacitance
Output capacitance
C
rss
Turn-on delay time
V
GE(th)
Boost IGBT
Peak reverse recovery current
Gate emitter threshold voltage
Fall time
Gate-emitter leakage current
Collector-emitter saturation voltage
Diode forward voltage
Reverse leakage current
V
CE(sat)
Rise time
Turn-off delay time
60
50
50
Tj=25°C
470
A
copyright Vincotech 4 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 1 IGBT Figure 2 IGBT
Typical output characteristics
IC = f(VCE) IC = f(VCE)
At At
tp = 250 µstp = 250 µs
Tj = 25 °C Tj = 125 °C
VGE from 5 V to 15 V in steps of 1 V VGE from 5 V to 15 V in steps of 1 V
Figure 3 IGBT Figure 4 FWD
Typical transfer characteristics Typical diode forward current as
IC = f(VGE) a function of forward voltage
IF = f(VF)
At At
Tj = 25/125 °C Tj = 25/125 °C
tp = 250 µstp = 250 µs
VCE = 10 V
Half Bridge
Typical output characteristics
Half Bridge IGBT and Neutral Point FWD
0
50
100
150
200
250
300
0 1 2 3 4 5
V
CE
(V)
I
C
(A)
0
20
40
60
80
100
0 2 4 6 8
V
GE
(V)
I
C
(A)
0
40
80
120
160
200
240
0 1 2 3 4
V
F
(V)
I
F
(A)
0
50
100
150
200
250
300
012345
V
CE
(V)
I
C
(A)
copyright Vincotech 5 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 5 IGBT Figure 6 IGBT
Typical switching energy losses Typical switching energy losses
as a function of collector current as a function of gate resistor
E = f(IC) E = f(RG)
With an inductive load at With an inductive load at
Tj = 25/125 °C Tj = 25/125 °C
VCE =150 V VCE =150 V
VGE =±15 V VGE =±15 V
Rgon =4IC =50 A
Rgoff = 4
Figure 7 FWD Figure 8 FWD
Typical reverse recovery energy loss Typical reverse recovery energy loss
as a function of collector current as a function of gate resistor
Erec = f(Ic) Erec = f(RG)
With an inductive load at With an inductive load at
Tj = 25/125 °C Tj = 25/125 °C
VCE =150 V VCE =150 V
VGE =±15 V VGE =±15 V
Rgon =4IC =50 A
Half Bridge IGBT and Neutral Point FWD
Half Bridge
Eon High T
Eoff High T
Eon Low T
Eoff Low T
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0 25 50 75 100
I
C
(A)
E (mWs)
Eoff High T
Eon High T
Eon Low T
E
off Low T
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0 4 8 12 16 20
R
G
()
E (mWs)
Erec Low T
0
0,1
0,2
0,3
0,4
0 25 50 75 100
I
C
(A)
E (mWs)
E
rec High T
Erec High T
Erec Low T
0
0,1
0,2
0,3
0,4
0 4 8 12 16 20
R
G
()
E (mWs)
copyright Vincotech 6 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 9 IGBT Figure 10 IGBT
Typical switching times as a Typical switching times as a
function of collector current function of gate resistor
t = f(IC) t = f(RG)
With an inductive load at With an inductive load at
Tj = 125 °C Tj = 125 °C
VCE =150 V VCE =150 V
VGE =±15 V VGE =±15 V
Rgon =4IC =50 A
Rgoff = 4
Figure 11 FWD Figure 12 FWD
Typical reverse recovery time as a Typical reverse recovery time as a
function of collector current function of IGBT turn on gate resistor
trr = f(Ic) trr = f(Rgon)
At At
Tj = 25/125 °C Tj = 25/125 °C
VCE =150 V VR =150 V
VGE =±15 V IF =50 A
Rgon =4VGE =±15 V
Half Bridge IGBT and Neutral Point FWD
Half Bridge
tdoff
tf
tdon
tr
0,00
0,01
0,10
1,00
0 25 50 75 100
I
C
(A)
t (ms)
trr High T
trr Low T
0
0,03
0,06
0,09
0,12
0,15
0 4 8 12 16 20
R
gon
()
t
rr
(ms)
tdoff
tf
tdon
tr
0,00
0,01
0,10
1,00
0 4 8 12 16 20
R
G
()
t (ms)
trr High T
trr Low T
0
0,03
0,06
0,09
0,12
0,15
0 25 50 75 100
I
C
(A)
t
rr
(ms)
copyright Vincotech 7 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 13 FWD Figure 14 FWD
Typical reverse recovery charge as a Typical reverse recovery charge as a
function of collector current function of IGBT turn on gate resistor
Qrr = f(IC) Qrr = f(Rgon)
At At
Tj = 25/125 °C Tj = 25/125 °C
VCE =150 V VR =150 V
VGE =±15 V IF =50 A
Rgon =4VGE =±15 V
Figure 15 FWD Figure 16 FWD
Typical reverse recovery current as a Typical reverse recovery current as a
function of collector current function of IGBT turn on gate resistor
IRRM = f(IC) IRRM = f(Rgon)
At At
Tj = 25/125 °C Tj = 25/125 °C
VCE =150 V VR =150 V
VGE =±15 V IF =50 A
Rgon =4VGE =±15 V
Half Bridge IGBT and Neutral Point FWD
Half Bridge
IRRM High T
IRRM Low T
0
10
20
30
40
50
60
70
0 4 8 12 16 20
R
gon
()
I
rrM
(A)
Qrr High T
Q
rr Low T
0
1
2
3
4
5
0 4 8 12 16 20
R
gon
()
Q
rr
(µC)
IRRM High T
IRRM Low T
0
10
20
30
40
50
60
70
0 25 50 75 100
I
C
(A)
I
rrM
(A)
Qrr High T
Qrr Low T
0
1
2
3
4
5
025 50 75 100
I
C
(A)
Q
rr
(µC)
copyright Vincotech 8 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 17 FWD Figure 18 FWD
Typical rate of fall of forward Typical rate of fall of forward
and reverse recovery current as a and reverse recovery current as a
function of collector current function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Ic) dI0/dt,dIrec/dt = f(Rgon)
At At
Tj = 25/125 °C Tj = 25/125 °C
VCE =150 V VR =150 V
VGE =±15 V IF =50 A
Rgon =4VGE =±15 V
Figure 19 IGBT Figure 20 FWD
IGBT transient thermal impedance FWD transient thermal impedance
as a function of pulse width as a function of pulse width
ZthJH = f(tp) ZthJH = f(tp)
At At
D = tp / T D = tp / T
R
thJH
=0,70 K/W RthJH =1,38 K/W
IGBT thermal model values FWD thermal model values
R (C/W) Tau (s) R (C/W) Tau (s)
0,07 1,4E+00 0,08 4,0E+00
0,12 2,4E-01 0,20 6,3E-01
0,29 6,5E-02 0,71 1,1E-01
0,13 1,7E-02 0,22 3,7E-02
0,06 4,6E-03 0,10 5,3E-03
Half Bridge IGBT and Neutral Point FWD
Half Bridge
t
p
(s)
Z
thJH
(K/W)
10
1
10
0
10
-1
10
-2
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
t
p
(s)
Z
thJH
(K/W)
10
1
10
0
10
-1
10
-2
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
dI0/dt T
dIrec/dt T
0
1000
2000
3000
4000
5000
6000
0 4 8 12 16 20
R
gon
()
di
rec
/ dt (A/ms)
dIrec/dt T
dIo/dt T
0
1000
2000
3000
4000
5000
6000
0 25 50 75 100
I
C
(A)
di
rec
/ dt (A/ms)
copyright Vincotech 9 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 21 IGBT Figure 22 IGBT
Power dissipation as a Collector current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th) IC = f(Th)
At At
Tj =175 °C Tj = 175 °C
VGE =15 V
Figure 23 FWD Figure 24 FWD
Power dissipation as a Forward current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th) IF = f(Th)
At At
Tj = 175 °C Tj = 175 °C
Half Bridge IGBT and Neutral Point FWD
Half Bridge
0
50
100
150
200
250
0 50 100 150 200
T
h
(
o
C)
P
tot
(W)
0
25
50
75
100
125
0 50 100 150 200
T
h
(
o
C)
I
C
(A)
0
25
50
75
100
125
150
0 50 100 150 200
T
h
(
o
C)
P
tot
(W)
0
20
40
60
80
0 50 100 150 200
T
h
(
o
C)
I
F
(A)
copyright Vincotech 10 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 25 IGBT Figure 26 IGBT
Safe operating area as a function Gate voltage vs Gate charge
of collector-emitter voltage
IC = f(VCE) VGE = f(Qg)
At At
D = single pulse IC = 100 A
Th = 80 ºC
VGE = ±15 V
Tj = Tjmax ºC
Half Bridge IGBT and Neutral Point FWD
Half Bridge
V
CE
(V)
I
C
(A)
10
3
10
0
10
-1
10
1
10
2
10
1
10
2
10uS
100uS
1mS
10mS
100mS
DC
10
0
10
3
0
3
6
9
12
15
0 40 80 120 160 200 240
Qg (nC)
VGE (V)
130V
520V
copyright Vincotech 11 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 29 IGBT
Reverse bias safe operating area
IC = f(VCE)
At
Tj = 125 °C
Rgon =4
Rgoff = 4
Half Bridge IGBT and Neutral Point FWD
Half Bridge
0
50
100
150
200
250
0 100 200 300 400 500 600 700
V
CE
(V)
I
C
(A)
IC MAX
V
CE MAX
Ic MODULE
I
c
CHIP
copyright Vincotech 12 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 1 IGBT Figure 2 IGBT
Typical output characteristics Typical output characteristics
IC = f(VCE) IC = f(VCE)
At At
tp = 250 µstp = 250 µs
Tj = 25 °C Tj = 125 °C
VGE from 7 V to 17 V in steps of 1 V VGE from 7 V to 17 V in steps of 1 V
Figure 3 IGBT Figure 4 FWD
Typical transfer characteristics Typical diode forward current as
IC = f(VGE) a function of forward voltage
IF = f(VF)
At At
Tj = 25/125 °C Tj = 25/125 °C
tp = 250 µstp = 250 µs
VCE = 10 V
Neutral Point IGBT and Half Bridge FWD
Neutral point
0
50
100
150
200
250
300
0 1 2 3 4 5
V
CE
(V)
I
C
(A)
0
15
30
45
60
75
0 2 4 6 8 10 12
V
GE
(V)
I
C
(A)
0
50
100
150
200
0 0,5 1 1,5 2 2,5 3
V
F
(V)
I
F
(A)
0
50
100
150
200
250
300
0 1 2 3 4 5
V
CE
(V)
I
C
(A)
copyright Vincotech 13 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 5 IGBT Figure 6 IGBT
Typical switching energy losses Typical switching energy losses
as a function of collector current as a function of gate resistor
E = f(IC) E = f(RG)
With an inductive load at With an inductive load at
Tj = 25/125 °C Tj = 25/125 °C
VCE =150 V VCE =150 V
VGE =±15 V VGE =±15 V
Rgon =4IC = 50 A
Rgoff = 4
Figure 7 FWD Figure 8 FWD
Typical reverse recovery energy loss Typical reverse recovery energy loss
as a function of collector current as a function of gate resistor
Erec = f(Ic) Erec = f(RG)
With an inductive load at With an inductive load at
Tj = 25/125 °C Tj = 25/125 °C
VCE =150 V VCE =150 V
VGE =±15 V VGE =±15 V
Rgon =4IC = 50 A
Neutral point
Neutral Point IGBT and Half Bridge FWD
Erec High T
Erec Low T
0
0,15
0,3
0,45
0,6
0,75
0 25 50 75 100
I
C
(A)
E (mWs)
Erec High T
Erec Low T
0
0,15
0,3
0,45
0,6
0,75
0 4 8 12 16 20
RG (
)
E (mWs)
Eoff High T
Eon High T
Eon Low T
Eoff Low T
0
0,3
0,6
0,9
1,2
1,5
0 25 50 75 100
I
C
(A)
E (mWs)
Eoff High T
Eon High T
Eon Low T
Eoff Low T
0
0,3
0,6
0,9
1,2
1,5
0 4 8 12 16 20
RG(
)
E (mWs)
copyright Vincotech 14 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 9 IGBT Figure 10 IGBT
Typical switching times as a Typical switching times as a
function of collector current function of gate resistor
t = f(IC) t = f(RG)
With an inductive load at With an inductive load at
Tj = 125 °C Tj = 125 °C
VCE =150 V VCE =150 V
VGE =±15 V VGE =±15 V
Rgon =4IC = 50 A
Rgoff = 4
Figure 11 FWD Figure 12 FWD
Typical reverse recovery time as a Typical reverse recovery time as a
function of collector current function of IGBT turn on gate resistor
trr = f(Ic) trr = f(Rgon)
At At
Tj = 25/125 °C Tj = 25/125 °C
VCE =150 V VR =150 V
VGE =±15 V IF =50 A
Rgon =4VGE =±15 V
Neutral point
Neutral Point IGBT and Half Bridge FWD
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 25 50 75 100
I
C
(A)
t (µs)
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 4 8 12 16 20
RG(
)
t (µs)
trr High T
trr Low T
0,0
0,1
0,2
0,3
0,4
0 4 8 12 16 20
R
gon
()
t
rr
(ms)
trr High T
trr Low T
0,0
0,1
0,2
0,3
0,4
0 25 50 75 100
I
C
(A)
t
rr
(ms)
copyright Vincotech 15 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 13 FWD Figure 14 FWD
Typical reverse recovery charge as a Typical reverse recovery charge as a
function of collector current function of IGBT turn on gate resistor
Qrr = f(IC) Qrr = f(Rgon)
At
At At
Tj = 25/125 °C Tj = 25/125 °C
VCE =150 V VR =150 V
VGE =±15 V IF =50 A
Rgon =4VGE =±15 V
Figure 15 FWD Figure 16 FWD
Typical reverse recovery current as a Typical reverse recovery current as a
function of collector current function of IGBT turn on gate resistor
IRRM = f(IC) IRRM = f(Rgon)
At At
Tj = 25/125 °C Tj = 25/125 °C
VCE =150 V VR =150 V
VGE =±15 V IF =50 A
Rgon =4VGE =±15 V
Neutral Point IGBT and Half Bridge FWD
Neutral point
IRRM High T
IRRM Low T
0
10
20
30
40
50
60
0 4 8 12 16 20
R
gon
()
I
rrM
(A)
Qrr High T
Q
rr Low T
0
1
2
3
4
5
6
0 4 8 12 16 20
R
gon
()
Q
rr
(µC)
IRRM High T
IRRM Low T
0
10
20
30
40
50
60
0 25 50 75 100
I
C
(A)
I
rrM
(A)
Qrr High T
Qrr Low T
0
1
2
3
4
5
6
025 50 75 100
I
C
(A)
Q
rr
(µC)
copyright Vincotech 16 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 17 FWD Figure 18 FWD
Typical rate of fall of forward Typical rate of fall of forward
and reverse recovery current as a and reverse recovery current as a
function of collector current function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Ic) dI0/dt,dIrec/dt = f(Rgon)
At At
Tj = 25/125 °C Tj = 25/125 °C
VCE =150 V VR =150 V
VGE =±15 V IF =50 A
Rgon =4VGE =±15 V
Figure 19 IGBT Figure 20 FWD
IGBT transient thermal impedance FWD transient thermal impedance
as a function of pulse width as a function of pulse width
ZthJH = f(tp) ZthJH = f(tp)
At At
D = tp / T D = tp / T
RthJH =1,16 K/W RthJH =1,36 K/W
IGBT thermal model values FWD thermal model values
R (C/W) Tau (s) R (C/W) Tau (s)
5,64E-02 4,97E+00 6,09E-02 2,36E+00
1,45E-01 9,35E-01 1,41E-01 3,82E-01
4,55E-01 1,51E-01 6,52E-01 6,81E-02
3,75E-01 4,97E-02 2,75E-01 2,04E-02
7,15E-02 5,37E-03 1,29E-01 4,50E-03
5,72E-02 3,97E-04 1,02E-01 6,56E-04
Neutral point
Neutral Point IGBT and Half Bridge FWD
t
p
(s)
Z
thJH
(K/W)
10
1
10
0
10
-1
10
-2
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
t
p
(s)
Z
thJH
(K/W)
10
1
10
0
10
-1
10
-2
10
-4
10
-3
10
-2
10
-1
10
0
10
1
10
2
10
-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
dI0/dt T
dIrec/dt T
0
1500
3000
4500
6000
7500
0 4 8 12 16 20
R
gon
()
di
rec
/ dt (A/ms)
di0/dt T
dIrec/dt T
0
1500
3000
4500
6000
7500
0 25 50 75 100
I
C
(A)
di
rec
/ dt (A/ms)
copyright Vincotech 17 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 21 IGBT Figure 22 IGBT
Power dissipation as a Collector current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th) IC = f(Th)
At At
Tj = 175 ºC Tj = 175 ºC
VGE =15 V
Figure 23 FWD Figure 24 FWD
Power dissipation as a Forward current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th) IF = f(Th)
At At
Tj = 175 ºC Tj = 175 ºC
Neutral point
Neutral Point IGBT and Half Bridge FWD
0
25
50
75
100
125
150
175
0 50 100 150 200
T
h
(
o
C)
P
tot
(W)
0
20
40
60
80
100
0 50 100 150 200
T
h
(
o
C)
I
C
(A)
0
25
50
75
100
125
150
0 50 100 150 200
Th
(
o
C)
P
tot
(W)
0
20
40
60
80
0 50 100 150 200
Th
(
o
C)
I
F
(A)
copyright Vincotech 18 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 1 Thermistor
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
NTC-typical temperature characteristic
0
4000
8000
12000
16000
20000
24000
25 50 75 100 125
T (°C)
R/
copyright Vincotech 19 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
T
j
125 °C
R
gon
4
Rgoff 4
Figure 1 Half Bridge IGBT Figure 2 Half Bridge IGBT
Turn-off Switching Waveforms & definition of t
doff
, t
Eoff
Turn-on Switching Waveforms & definition of t
don
, t
Eon
(t
Eoff
= integrating time for E
off
) (t
Eon
= integrating time for E
on
)
VGE (0%) = -15 V VGE (0%) = -15 V
VGE (100%) = 15 V VGE (100%) = 15 V
VC (100%) = 300 V VC (100%) = 300 V
IC (100%) = 50 A IC (100%) = 50 A
tdoff = 0,094 µstdon = 0,071 µs
tEoff =0,171 µstEon =0,151 µs
Figure 3 Half Bridge IGBT Figure 4 Half Bridge IGBT
Turn-off Switching Waveforms & definition of t
f
Turn-on Switching Waveforms & definition of t
r
VC (100%) = 300 V VC (100%) = 300 V
IC (100%) = 50 A IC (100%) = 50 A
tf =0,022 µstr =0,021 µs
Switching Definitions Half Bridge
General conditions
=
=
=
IC 1%
VCE 90%
VGE 90%
-25
0
25
50
75
100
125
-0,05 0 0,05 0,1 0,15 0,2
time (us)
%tdoff
t
Eoff
VCE
IC
VGE
IC 10%
VGE 10%
tdon
VCE 3%
-50
0
50
100
150
200
250
2,95 3 3,05 3,1 3,15 3,2 3,25
time(us)
%IC
V
CE
tEon
V
GE
fitted
IC10%
IC 90%
IC 60%
IC 40%
-25
0
25
50
75
100
125
0 0,03 0,06 0,09 0,12 0,15
time (us)
%
VCE
IC
tf
IC 10%
IC 90%
-50
0
50
100
150
200
250
3,05 3,08 3,11 3,14 3,17
time(us)
%
tr
VCE
IC
copyright Vincotech 20 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 5 Half Bridge IGBT Figure 6 Half Bridge IGBT
Turn-off Switching Waveforms & definition of t
Eoff
Turn-on Switching Waveforms & definition of t
Eon
Poff (100%) = 14,97 kW Pon (100%) = 14,97 kW
Eoff (100%) = 0,32 mJ Eon (100%) = 0,27 mJ
tEoff =0,171 µstEon =0,151 µs
Figure 7 Half Bridge IGBT
Turn-off Switching Waveforms & definition of t
rr
Vd (100%) = 300 V
Id (100%) = 50 A
IRRM (100%) = -59 A
trr = 0,113 µs
Switching Definitions BUCK IGBT
IC 1%
VGE 90%
-25
0
25
50
75
100
125
-0,1 -0,05 0 0,05 0,1 0,15 0,2
time (us)
%
Poff
Eoff
tEoff
VCE 3%
VGE 10%
-25
0
25
50
75
100
125
2,95 3 3,05 3,1 3,15 3,2
time(us)
%
Pon
Eon
tEon
IRRM 10%
IRRM 90%
IRRM 100%
trr
-150
-100
-50
0
50
100
150
3,05 3,1 3,15 3,2 3,25 3,3
time(us)
%Id
Vdfitted
copyright Vincotech 21 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 8 Output inverter FRED Figure 9 Output inverter FRED
Turn-on Switching Waveforms & definition of t
Qrr
Turn-on Switching Waveforms & definition of t
Erec
(t
Qrr
= integrating time for Q
rr
) (t
Erec
= integrating time for E
rec
)
Id (100%) = 50 A Prec (100%) = 14,97 kW
Qrr (100%) = 3,10 µCErec (100%) = 0,31 mJ
tQrr =0,227 µstErec = 0,227 µs
Switching Definitions BUCK IGBT
tQrr
-150
-100
-50
0
50
100
150
3 3,1 3,2 3,3 3,4
time(us)
%IdQrr
-25
0
25
50
75
100
125
3 3,1 3,2 3,3 3,4
time(us)
%
Prec
E
rec
tErec
copyright Vincotech 22 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 10 Figure 11
BUCK stage switching measurement circuit BOOST stage switching measurement circuit
Measurement circuits
copyright Vincotech 23 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
T
j
125 °C
R
gon
4
Rgoff 4
Figure 1 Neutral Point IGBT Figure 2 Neutral Point IGBT
Turn-off Switching Waveforms & definition of t
doff
, t
Eoff
Turn-on Switching Waveforms & definition of t
don
, t
Eon
(t
Eoff
= integrating time for E
off
) (t
Eon
= integrating time for E
on
)
VGE (0%) = -15 V VGE (0%) = -15 V
VGE (100%) = 15 V VGE (100%) = 15 V
VC (100%) = 150 V VC (100%) = 150 V
IC (100%) = 50 A IC (100%) = 50 A
tdoff = 0,156 µstdon = 0,094 µs
tEoff =0,676 µstEon =0,217 µs
Figure 3 Neutral Point IGBT Figure 4 Neutral Point IGBT
Turn-off Switching Waveforms & definition of t
f
Turn-on Switching Waveforms & definition of t
r
VC (100%) = 150 V VC (100%) = 150 V
IC (100%) = 50 A IC (100%) = 50 A
tf =0,097 µstr =0,017 µs
Switching Definitions Neutral Point
General conditions
=
=
=
IC 1%
VCE 90%
VGE 90%
-25
0
25
50
75
100
125
-0,2 0 0,2 0,4 0,6 0,8
time (us)
%tdoff
t
Eoff
VCE
IC
VGE IC 10%
VGE 10%
tdon
VCE 3%
-50
0
50
100
150
200
2,9 3 3,1 3,2 3,3
time(us)
%IC
VCE
tEon
V
GE
fitted
IC10%
IC 90%
IC 60%
IC 40%
-25
0
25
50
75
100
125
0,05 0,1 0,15 0,2 0,25 0,3
time (us)
%VCE
IC
t
f
IC 10%
IC 90%
-50
0
50
100
150
200
3,05 3,1 3,15 3,2 3,25 3,3
time(us)
%
tr
VCE
IC
copyright Vincotech 24 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 5 Neutral Point IGBT Figure 6 Neutral Point IGBT
Turn-off Switching Waveforms & definition of t
Eoff
Turn-on Switching Waveforms & definition of t
Eon
Poff (100%) = 7,56 kW Pon (100%) = 7,56 kW
Eoff (100%) = 0,95 mJ Eon (100%) = 0,25 mJ
tEoff =0,676 µstEon =0,217 µs
Figure 7 Neutral Point IGBT
Turn-off Switching Waveforms & definition of t
rr
Vd (100%) = 150 V
Id (100%) = 50 A
IRRM (100%) = -43 A
trr = 0,290 µs
Switching Definitions Neutral Point
IC 1%
VGE 90%
-25
0
25
50
75
100
125
-0,2 0 0,2 0,4 0,6 0,8
time (us)
%
Poff
E
off
tEoff
VCE 3%
VGE 10%
-25
0
25
50
75
100
125
2,9 3 3,1 3,2 3,3
time(us)
%
Pon
Eon
tEon
IRRM 10%
IRRM 90%
IRRM 100%
trr
-150
-100
-50
0
50
100
150
3 3,1 3,2 3,3 3,4 3,5
time(us)
%Id
Vd
fitted
copyright Vincotech 25 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 8 Half Bridge FWD Figure 9 Half Bridge FWD
Turn-on Switching Waveforms & definition of t
Qrr
Turn-on Switching Waveforms & definition of t
Erec
(t
Qrr
= integrating time for Q
rr
) (t
Erec
= integrating time for E
rec
)
Id (100%) = 50 A Prec (100%) = 7,56 kW
Qrr (100%) = 4,21 µCErec (100%) = 0,52 mJ
tQrr =1,00 µstErec = 1,00 µs
Switching Definitions Neutral Point
tQrr
-100
-50
0
50
100
150
3 3,2 3,4 3,6 3,8 4 4,2
time(us)
%IdQrr
-25
0
25
50
75
100
125
3 3,2 3,4 3,6 3,8 4 4,2
time(us)
%
P
rec
E
rec
tErec
copyright Vincotech 26 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
Figure 10 Figure 11
BUCK stage switching measurement circuit BOOST stage switching measurement circuit
Measurement circuits
copyright Vincotech 27 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
in DataMatrix as in packaging barcode as
without thermal paste 12 mm housing
M265F58 M265F58
Pin X Y
1 33,6 0
2 30,8 0
3 22 0
4 19,2 0
5 10,1 0
6 2,8 0
7 0 0
8 0 7,1
9 0 9,9
10 0 12,7
11 0 15,5
12 0 22,6
13 2,8 22,6
14 10,1 22,6
15 19,2 22,6
16 22 22,6
17 30,8 22,6
18 33,6 22,6
19 33,6 14,8
20 33,6 8,2
Pin table
Pinout
Ordering Code & Marking
Ordering Code and Marking - Outline - Pinout
Version
Outline
Ordering Code
10-FZ07NMA100SM-M265F58
copyright Vincotech 28 21 Okt 2014 / Revision: 2
10-FZ07NMA100SM-M265F58
DISCLAIMER
LIFE SUPPORT POLICY
As used herein:
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
copyright Vincotech 29 21 Okt 2014 / Revision: 2