+
IN+
IN− OUT
OFFSET N1
Offset Null/Compensation
TL061 Only
OFFSET N2
Product
Folder
Sample &
Buy
Technical
Documents
Tools &
Software
Support &
Community
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
SLOS078L NOVEMBER 1978REVISED MAY 2015
TL06xx Low-Power JFET-Input Operational Amplifiers
1 Features 2 Applications
1 Very Low Power Consumption Tablets
Typical Supply Current: 200 μA (Per Amplifier) White goods
Wide Common-Mode and Differential Voltage Personal electronics
Ranges Computers
Low Input Bias and Offset Currents 3 Description
Common-Mode Input Voltage Range The JFET-input operational amplifiers of the TL06x
Includes VCC+ series are designed as low-power versions of the
Output Short-Circuit Protection TL08x series amplifiers. They feature high input
High Input Impedance: JFET-Input Stage impedance, wide bandwidth, high slew rate, and low
Internal Frequency Compensation input offset and input bias currents. The TL06x series
features the same terminal assignments as the TL07x
Latch-Up-Free Operation and TL08x series.
High Slew Rate: 3.5 V/μs Typical
On Products Compliant to MIL-PRF-38535, Device Information(1)
All Parameters Are Tested Unless Otherwise PART NUMBER PACKAGE BODY SIZE (NOM)
Noted. On All Other Products, Production TL06xxD SOIC (14) 8.65 mm × 3.91 mm
Processing Does Not Necessarily Include Testing TL06xxJ CDIP (14) 19.56 mm × 6.92 mm
of All Parameters. TL06xxN PDIP (14) 19.30 mm × 6.35 mm
TL06xxNS SO (14) 10.30 mm × 5.30 mm
TL06xxPW TSSOP (14) 5.00 mm × 4.40 mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Schematic Symbol
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
SLOS078L NOVEMBER 1978REVISED MAY 2015
www.ti.com
Table of Contents
8.2 Functional Block Diagram....................................... 14
1 Features.................................................................. 18.3 Feature Description................................................. 14
2 Applications ........................................................... 18.4 Device Functional Modes........................................ 15
3 Description............................................................. 19 Applications and Implementation ...................... 16
4 Revision History..................................................... 29.1 Application Information............................................ 16
5 Pin Configuration and Functions......................... 39.2 Typical Applications ................................................ 16
6 Specifications......................................................... 49.3 System Examples ................................................... 17
6.1 Absolute Maximum Ratings ...................................... 410 Power Supply Recommendations ..................... 19
6.2 ESD Ratings.............................................................. 511 Layout................................................................... 20
6.3 Recommended Operating Conditions....................... 511.1 Layout Guidelines ................................................. 20
6.4 Thermal Information - 8 Pins..................................... 511.2 Layout Examples................................................... 20
6.5 Thermal Information - 14 Pins................................... 512 Device and Documentation Support................. 21
6.6 Thermal Information - 20 Pins................................... 612.1 Documentation Support ........................................ 21
6.7 Electrical Characteristics for TL06xC and TL06xxC . 612.2 Related Links ........................................................ 21
6.8 Electrical Characteristics for TL06xxC and TL06xI... 712.3 Community Resources.......................................... 21
6.9 Electrical Characteristics for TL06xM and TL064M.. 712.4 Trademarks........................................................... 21
6.10 Operating Characteristics........................................ 812.5 Electrostatic Discharge Caution............................ 21
6.11 Typical Characteristics............................................ 912.6 Glossary................................................................ 21
7 Parameter Measurement Information ................ 13 13 Mechanical, Packaging, and Orderable
8 Detailed Description............................................ 14 Information ........................................................... 21
8.1 Overview................................................................. 14
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision K (January 2014) to Revision L Page
Added Applications................................................................................................................................................................. 1
Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional
Modes,Application and Implementation section, Power Supply Recommendations section, Layout section, Device
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1
Changes from Revision J (September 2004) to Revision K Page
Updated document to new TI data sheet format - no specification changes......................................................................... 1
Deleted Ordering Information table. ....................................................................................................................................... 1
Updated Features with Military Disclaimer............................................................................................................................. 1
2Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
3 2 1 20 19
9 10 11 12 13
4
5
6
7
8
18
17
16
15
14
4IN+
NC
VCC−
NC
3IN+
1IN+
NC
VCC+
NC
2IN+
1IN−
1OUT
NC
3OUT
3IN−
4OUT
4IN−
2IN−
2OUT
NC
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN−
1IN+
VCC+
2IN+
2IN−
2OUT
4OUT
4IN−
4IN+
VCC−
3IN+
3IN−
3OUT
1
2
3
4
8
7
6
5
1OUT
1IN−
1IN+
VCC−
VCC+
2OUT
2IN−
2IN+
NC
2OUT
NC
2IN−
NC
3 2 1 20 19
9 10 11 12 13
4
5
6
7
8
18
17
16
15
14
NC
1IN−
NC
1IN+
NC
NC
1OUT
NC
2IN+
NC NC
NC
NC
VCC−
VCC+
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
www.ti.com
SLOS078L NOVEMBER 1978REVISED MAY 2015
5 Pin Configuration and Functions
TL061x D, P, and PS Package TL062 FK Package
8-Pin SOIC, PDIP, and SO 20-Pin LCCC
Top View Top View
TL062x D, JG, P, PS, and PW Package
8-Pin SOIC, CDIP, PDIP, SO, and TSSOP
Top View
TL064 FK Package
20-Pin LCCC
Top View
TL064x D, J, N, NS, PW, and W Package
14-Pin SOIC, CDIP, PDIP, SO, TSSOP and CFP
Top View
Pin Functions
PIN
TL061 TL062 TL064 TYPE DESCRIPTION
NAME D, JG, P, D, J, N, NS,
D, P, PS FK FK
PS, PW PW, W
1IN– 2 5 2 3 I Negative input
1IN+ 3 7 3 4 I Positive input
1OUT 1 2 1 2 O Output
2IN– 6 15 6 9 I Negative input
2IN+ 5 12 5 8 I Positive input
2OUT 7 17 7 10 O Output
3IN– 9 13 I Negative input
3IN+ 10 14 I Positive input
3OUT 8 12 O Output
4IN– 13 19 I Negative input
4IN+ 12 18 I Positive input
4OUT 14 20 O Output
IN– 2 I Negative input
Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
SLOS078L NOVEMBER 1978REVISED MAY 2015
www.ti.com
Pin Functions (continued)
PIN
TL061 TL062 TL064 TYPE DESCRIPTION
NAME D, JG, P, D, J, N, NS,
D, P, PS FK FK
PS, PW PW, W
IN+ 3 I Positive input
11
3
45
6
87
9
NC 8 Do not connect
11 11
13
14 15
16
18 17
19
OFFSET N1 1 Input offset adjustment
OFFSET N2 5 Input offset adjustment
OUT 6 O Output
VCC– 4 4 10 11 16 Power supply
VCC+ 7 8 20 4 6 Power supply
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC+ 18
Supply voltage(2) V
VCC– –18
VID Differential input voltage(3) ±30 V
VIInput voltage(2)(4) ±15 V
Duration of output short circuit(5) Unlimited
TJOperating virtual junction temperature 150 °C
Case temperature for 60 seconds FK package 260 °C
Lead temperature 1.6 mm (1/16 inch) from J, JG, U, or W package 300 °C
case for 60 seconds
Lead temperature 1.6 mm (1/16 inch) from D, N, NS, P, PS, or PW package 260 °C
case for 10 seconds
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC.
(3) Differential voltages are at IN+, with respect to IN.
(4) The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
(5) The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the
dissipation rating is not exceeded.
4Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
www.ti.com
SLOS078L NOVEMBER 1978REVISED MAY 2015
6.2 ESD Ratings VALUE UNIT
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) 2000
V(ESD) Electrostatic discharge V
Charged-device model (CDM), per JEDEC specification JESD22- 2000
C101(2)
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT
VCC+ Supply voltage 5 15 V
VCC– Supply voltage –5 –15 V
VCM Common-mode voltage VCC– + 4 VCC+ 4 V
TL06xM –55 125
TL06xQ –40 125
TAAmbient temperature °C
TL06xI –40 85
TL06xC 0 70
6.4 Thermal Information - 8 Pins TL06xx
THERMAL METRIC(1) D (SOIC) P (PDIP) PS (SO) PW (TSSOP) JG (CDIP) UNIT
8 PINS 8 PINS 8 PINS 8 PINS 8 PINS
RθJJunction-to-ambient thermal 97 85 95 149 °C/W
Aresistance(2)(3)
RθJJunction-to-case (top) thermal
C(to 14.5 °C/W
resistance(4)(5)
p)
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
(2) Maximum power dissipation is a function of TJ(max), RθJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD= (TJ(max) TA)/RθJA. Operating at the absolute maximum TJof 150°C can affect reliability.
(3) The package thermal impedance is calculated in accordance with JESD 51-7.
(4) Maximum power dissipation is a function of TJ(max), RθJC, and TC. The maximum allowable power dissipation at any allowable ambient
temperature is PD= (TJ(max) TC) / RθJC. Operating at the absolute maximum TJof 150°C can affect reliability.
(5) The package thermal impedance is calculated in accordance with MIL-STD-883.
6.5 Thermal Information - 14 Pins TL06xx
D (SOIC) N (PDIP) NS (SO) PS (SO) PW J (CDIP) W (CFP)
THERMAL METRIC(1) UNIT
(TSSOP)
14 PINS 14 PINS 14 PINS 8 PINS 14 PINS 14 PINS 14 PINS
RθJJunction-to-ambient thermal 113
86 80 76 95 °C/W
Aresistance(2)(3)
RθJJunction-to-case (top) thermal
C(to 15.05 14.65 °C/W
resistance(2)(3)
p)
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
(2) Maximum power dissipation is a function of TJ(max), RθJC, and TC. The maximum allowable power dissipation at any allowable ambient
temperature is PD= (TJ(max) TC) / RθJC. Operating at the absolute maximum TJof 150°C can affect reliability.
(3) The package thermal impedance is calculated in accordance with MIL-STD-883.
Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
SLOS078L NOVEMBER 1978REVISED MAY 2015
www.ti.com
6.6 Thermal Information - 20 Pins TL06xx
THERMAL METRIC(1) FK (LCCC) UNIT
20 PINS
RθJA Junction-to-ambient thermal resistance(2)(3) °C/W
RθJC(top) Junction-to-case (top) thermal resistance(4)(5) 5.61 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
(2) Maximum power dissipation is a function of TJ(max), RθJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD= (TJ(max) TA)/RθJA. Operating at the absolute maximum TJof 150°C can affect reliability.
(3) The package thermal impedance is calculated in accordance with JESD 51-7.
(4) Maximum power dissipation is a function of TJ(max), RθJC, and TC. The maximum allowable power dissipation at any allowable ambient
temperature is PD= (TJ(max) TC) / RθJC. Operating at the absolute maximum TJof 150°C can affect reliability.
(5) The package thermal impedance is calculated in accordance with MIL-STD-883.
6.7 Electrical Characteristics for TL06xC and TL06xxC
VCC± = ±15 V (unless otherwise noted) TL061AC, TL062AC,
TL061C, TL062C, TL064C TL064AC
PARAMETER TEST CONDITIONS(1) UNIT
MIN TYP MAX MIN TYP MAX
TA= 25°C 3 15 3 6
VIO Input offset voltage VO= 0, RS= 50 mV
TA= Full range 20 7.5
Temperature coefficient
αVIO VO= 0, RS= 50 , TA= Full range 10 10 μV/°C
of input offset voltage
TA= 25°C 5 200 5 100 pA
IIO Input offset current VO= 0 TA= Full range 5 3 nA
TA= 25°C 30 400 30 200 pA
IIB Input bias current(2) VO= 0 TA= Full range 10 7 nA
–12 –12
Common-mode input
VICR TA= 25°C ±11 to ±11 to V
voltage range 15 15
RL= 10 k, TA= 25°C ±10 ±13.5 ±10 ±13.5
Maximum peak output
VOM V
voltage swing RL10 k, TA= Full range ±10 ±10
TA= 25°C 3 6 4 6
Large-signal differential VO= ±10 V,
AVD V/mV
voltage amplification RL2 kTA= Full range 3 4
B1Unity-gain bandwidth RL= 10 k, TA= 25°C 1 1 MHz
riInput resistance TA= 25°C
1012 1012
Common-mode VIC = VICRmin,
CMRR 70 86 80 86 dB
rejection ratio VO= 0, RS= 50 , TA= 25°C
Supply-voltage VCC = ±9 V to ±15 V,
kSVR rejection ratio 70 95 80 95 dB
VO= 0, RS= 50 , TA= 25°C
(ΔVCC±/ΔVIO)
Total power dissipation
PDVO= 0, No load, TA= 25°C 6 7.5 6 7.5 mW
(each amplifier)
Supply current
ICC VO= 0, No load, TA= 25°C 200 250 200 250 µA
(each amplifier)
VO1/VO2 Crosstalk attenuation AVD = 100, TA= 25°C 120 120 dB
(1) All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full
range for TAis 0°C to 70°C for TL06xC, TL06xAC, and TL06xBC and –40°C to 85°C for TL06xI.
(2) Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as
shown in Figure 12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
6Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
www.ti.com
SLOS078L NOVEMBER 1978REVISED MAY 2015
6.8 Electrical Characteristics for TL06xxC and TL06xI
VCC± = ±15 V (unless otherwise noted) TL061BC, TL062BC, TL061I, TL062I, TL064I
TL064BC
PARAMETER TEST CONDITIONS(1) UNIT
MIN TYP MAX MIN TYP MAX
TA= 25°C 2 3 3 6
VIO Input offset voltage VO= 0, RS= 50 mV
TA= Full range 5 9
Temperature coefficient
αVIO VO= 0, RS= 50 , TA= Full range 10 10 μV/°C
of input offset voltage
TA= 25°C 5 100 5 100 pA
IIO Input offset current VO= 0 TA= Full range 3 10 nA
TA= 25°C 30 200 30 200 pA
IIB Input bias current(2) VO= 0 TA= Full range 7 20 nA
–12 –12
Common-mode input
VICR TA= 25°C ±11 to ±11 to V
voltage range 15 15
RL= 10 k, TA= 25°C ±10 ±13.5 ±10 ±13.5
Maximum peak output
VOM V
voltage swing RL10 k, TA= Full range ±10 ±10
TA= 25°C 4 6 4 6
Large-signal differential VO= ±10 V,
AVD V/mV
voltage amplification RL2 kTA= Full range 4 4
B1Unity-gain bandwidth RL= 10 k, TA= 25°C 1 1 MHz
riInput resistance TA= 25°C
1012 1012
Common-mode VIC = VICRmin,
CMRR 80 86 80 86 dB
rejection ratio VO= 0, RS= 50 , TA= 25°C
Supply-voltage VCC = ±9 V to ±15 V,
kSVR rejection ratio 80 95 80 95 dB
VO= 0, RS= 50 , TA= 25°C
(ΔVCC±/ΔVIO)
Total power dissipation
PDVO= 0, No load, TA= 25°C 6 7.5 6 7.5 mW
(each amplifier)
Supply current
ICC VO= 0, No load, TA= 25°C 200 250 200 250 µA
(each amplifier)
VO1/VO2 Crosstalk attenuation AVD = 100, TA= 25°C 120 120 dB
(1) All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. Full
range for TAis 0°C to 70°C for TL06xC, TL06xAC, and TL06xBC and –40°C to 85°C for TL06xI.
(2) Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as
shown in Figure 12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
6.9 Electrical Characteristics for TL06xM and TL064M
VCC± = ±15 V (unless otherwise noted) TL061M, TL062M TL064M
PARAMETER TEST CONDITIONS(1) UNIT
MIN TYP MAX MIN TYP MAX
TA= 25°C 3 6 3 9
VIO Input offset voltage VO= 0, RS= 50 mV
TA= –55°C to 9 15
125°C
Temperature coefficient VO= 0, RS= 50 ,
αVIO 10 10 μV/°C
of input offset voltage TA= –55°C to 125°C
TA= 25°C 5 100 5 100 pA
IIO Input offset current VO= 0 TA= –55°C 20(2) 20(2) nA
TA= 125°C 20 20
TA= 25°C 30 200 30 200 pA
IIB Input bias current(3) VO= 0 TA= –55°C 50(2) 50(2) nA
TA= 125°C 50 50
–12 –12
Common-mode input
VICR TA= 25°C ±11 to ±11 to V
voltage range 15 15
(1) All characteristics are measured under open-loop conditions, with zero common-mode voltage, unless otherwise specified.
(2) This parameter is not production tested.
(3) Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as
shown in Figure 12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
SLOS078L NOVEMBER 1978REVISED MAY 2015
www.ti.com
Electrical Characteristics for TL06xM and TL064M (continued)
VCC± = ±15 V (unless otherwise noted) TL061M, TL062M TL064M
PARAMETER TEST CONDITIONS(1) UNIT
MIN TYP MAX MIN TYP MAX
RL= 10 k, TA= 25°C ±10 ±13.5 ±10 ±13.5
Maximum peak output
VOM V
voltage swing RL10 k, TA= –55°C to 125°C ±10 ±10
TA= 25°C 4 6 4 6
Large-signal differential VO= ±10 V,
AVD V/mV
TA= –55°C to
voltage amplification RL2 k4 4
125°C
B1Unity-gain bandwidth RL= 10 k, TA= 25°C MHz
riInput resistance TA= 25°C
1012 1012
Common-mode VIC = VICRmin,
CMRR 80 86 80 86 dB
rejection ratio VO= 0, RS= 50 , TA= 25°C
Supply-voltage VCC = ±9 V to ±15 V,
kSVR rejection ratio 80 95 80 95 dB
VO= 0, RS= 50 , TA= 25°C
(ΔVCC±/ΔVIO)
Total power dissipation
PDVO= 0, No load, TA= 25°C 6 7.5 6 7.5 mW
(each amplifier)
Supply current
ICC VO= 0, No load, TA= 25°C 200 250 200 250 µA
(each amplifier)
VO1/VO2 Crosstalk attenuation AVD = 100, TA= 25°C 120 120 dB
6.10 Operating Characteristics
VCC± = ±15 V, TA= 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VI= 10 V, CL= 100 pF,
SR Slew rate at unity gain(1) 1.5 3.5 V/μs
RL= 10 k, see Figure 16
trRise-time 0.2 μs
VI= 20 V, CL= 100 pF,
RL= 10 k, see Figure 16
Overshoot factor 10%
VnEquivalent input noise voltage RS= 20 f = 1 kHz 42 nV/Hz
(1) Slew rate at –55°C to 125°C is 0.7 V/μs min.
8Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
www.ti.com
SLOS078L NOVEMBER 1978REVISED MAY 2015
6.11 Typical Characteristics
Data at high and low temperatures are applicable only within the specified operating free-air temperature ranges of the
various devices.
Table 1. Table of Graphs
FIGURE
Maximum peak output voltage versus Supply voltage Figure 1
Maximum peak output voltage versus Free-air temperature Figure 2
Maximum peak output voltage versus Load resistance Figure 3
Maximum peak output voltage versus Frequency Figure 4
Differential voltage amplification versus Free-air temperature Figure 5
Large-signal differential voltage amplification versus Frequency Figure 6
Phase shift versus Frequency Figure 6
Supply current versus Supply voltage Figure 7
Supply current versus Free-air temperature Figure 8
Total power dissipation versus Free-air temperature Figure 9
Common-mode rejection ratio versus Free-air temperature Figure 10
Normalized unity-gain bandwidth versus Free-air temperature Figure 11
Normalized slew rate versus Free-air temperature Figure 11
Normalized phase shift versus Free-air temperature Figure 11
Input bias current versus Free-air temperature Figure 12
Voltage-follower large-signal pulse response versus Time Figure 13
Output voltage versus Elapsed time Figure 14
Equivalent input noise voltage versus Frequency Figure 15
Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
AVD
(left scale)
1
0.001
f Frequency Hz
10 100 1 k 10 k 100 k 1 M 10 M
0.01
0.1
1
10
100
Phase Shift
135°
90°
180°
45°
0°
VCC±=±15 V
Rext = 0
RL= 10 k
TA= 25°C
Phase Shift
(right scale)
Large-Signal Differential
AVD
Voltage Amplification V/mV
Differential Voltage Amplification V/mV
AVD
RL= 10 k
VCC±=±15 V
1
−75
TA Free-Air Temperature °C
−50 −25 0 25 50 75 100 125
2
4
10
7
See Figure 2
TA= 25°C
VCC±=±15 V
0
100
RL Load Resistance
1 k 10 k
2.5±
5±
7.5±
10±
12.5±
15±
200 400 700 2 k 4 k 7 k
Maximum Peak Output Voltage V
VOM
VCC±=±12 V
VCC±=±5 V
f Frequency Hz
1 k
0
10 k 100 k 1 M 10 M
2.5±
5±
7.5±
10±
12.5±
RL= 10 k
TA= 25°C
See Figure 2
VCC±=±15 V
Maximum Peak Output Voltage V
VOM
−75
0
TA Free-Air Temperature °C
2.5±
5±
7.5±
10±
12.5±
15±
−50 −25 0 25 50 75 100 125
VCC±=±15 V
RL= 10 k
See Figure 2
Maximum Peak Output Voltage V
VOM
0
0
Maximum Peak Output Voltage V
|VCC±| Supply Voltage V
2.5±
5±
7.5±
10±
12.5±
15±
2 4 6 8 10 12 14 16
RL= 10 k
TA= 25°C
See Figure 2
VOM
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
SLOS078L NOVEMBER 1978REVISED MAY 2015
www.ti.com
Figure 1. Maximum Peak Output Voltage vs Supply Voltage Figure 2. Maximum Peak Output Voltage vs Free-Air
Temperature
Figure 4. Maximum Peak Output Voltage vs Frequency
Figure 3. Maximum Peak Output Voltage vs Load
Resistance
Figure 5. Differential Voltage Amplification vs Free-Air Figure 6. Large-Signal Differential Voltage Amplification and
Temperature Phase Shift vs Frequency
10 Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
0.7
Normalized Unity-Gain Bandwidth and Slew Rate
125
1007550250−25−50
TA Free-Air Temperature °C
−75
0.8
0.9
1
1.1
1.2
1.3
1.02
1.01
1
0.99
0.98
0.97
Normalized Phase Shift
1.03
VCC±=±15 V
RL= 10 k
f = B1 for Phase Shift
Unity-Gain Bandwidth
(left scale) Phase Shift
(right scale)
Slew Rate
(left scale)
1251007550250−25
0.01
IIB Input Bias Current nA
−50
TA Free-Air Temperature °C
0.04
0.1
0.4
1
4
10
40
100
VCC±=±15 V
IIB
−75
0
TA Free-Air Temperature °C
5
10
15
20
25
30
−50 −25 0 25 50 75 100 125
VCC±=±15 V
No Signal
No Load
TL064
TL062
TL061
PD Total Power Dissipation mW
PD
81
CMRR Common-Mode Rejection Ratio dB
1251007550250−25−50
TA Free-Air Temperature °C
−75
82
83
84
85
86
87
VCC±=±15 V
RL= 10 k
TA= 25°C
No Signal
No Load
0
0
2 4 6 8 10 12 14 16
50
100
150
200
250
|VCC±| Supply Voltage V
ICC Supply Current µA
ICC±
ICC Supply Current µA
−75
0
TA Free-Air Temperature °C
50
100
150
200
250
ICC±
VCC±=±15 V
No Signal
No Load
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
www.ti.com
SLOS078L NOVEMBER 1978REVISED MAY 2015
Figure 8. Supply Current vs Free-Air Temperature
Figure 7. Supply Current vs Supply Voltage
Figure 10. All Except TL06_C Common-Mode Rejection
Figure 9. Total Power Dissipation vs Free-Air Temperature Ratio vs Free-Air Temperature
Figure 12. Input Bias Current vs Free-Air Temperature
Figure 11. Normalized Unity-Gain Bandwidth, Slew Rate,
and Phase Shift vs Free-Air Temperature
Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
Vn
0
Equivalent Input Noise Voltage
f Frequency Hz
10
20
30
40
50
60
70
80
90
100
10 40 100 400 1 k 4 k 10 k 40 k 100 k
VCC±=±15 V
RS= 20
TA= 25°C
nV/ Hz
−6
Input and Output Voltages V
t Time µs
Input
Output
VCC±=±15 V
RL= 10 k
CL= 100 pF
TA= 25°C
0 2 4 6 8 10
−4
−2
0
2
4
6
−4
Output Voltage mV
t Elapsed Time µs
0 0.2 0.4 0.6 0.8 1 1.2 1.4
0
4
8
12
16
20
24
28
VCC±=±15 V
RL= 10 k
TA= 25°C
10%
tr
Overshoot
VO
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
SLOS078L NOVEMBER 1978REVISED MAY 2015
www.ti.com
Figure 14. Output Voltage vs Elapsed Time
Figure 13. Voltage-Follower Large-Signal Pulse Response
vs Time
Figure 15. Equivalent Input Noise Voltage vs Frequency
12 Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
N2
N1
100 k
1.5 k
VCC−
+
TL061
IN−
OUT
IN+
VI
10 k
1 k
RLCL= 100 pF
+
OUT
VI
RL= 2 k
+
CL= 100 pF
OUT
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
www.ti.com
SLOS078L NOVEMBER 1978REVISED MAY 2015
7 Parameter Measurement Information
Figure 16. Unity-Gain Amplifier
Figure 17. Gain-of-10 Inverting Amplifier
Figure 18. Input Offset-Voltage Null Circuit
Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
IN+
50
100
C1
VCC+
OUT VCC−
OFFSET N1
TL061 Only
OFFSET N2
IN−
C1 = 10 pF on TL061, TL062, and TL064
Component values shown are nominal.
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
SLOS078L NOVEMBER 1978REVISED MAY 2015
www.ti.com
8 Detailed Description
8.1 Overview
The JFET-input operational amplifiers of the TL06x series are designed as low-power versions of the TL08x
series amplifiers. They feature high input impedance, wide bandwidth, high slew rate, and low input offset and
input bias currents. The TL06x series features the same terminal assignments as the TL07x and TL08x series.
Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar
transistors in an integrated circuit.
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for
operation from 40°C to 85°C, and the M-suffix devices are characterized for operation over the full military
temperature range of 55°C to 125°C.
8.2 Functional Block Diagram
8.3 Feature Description
8.3.1 Common-Mode Rejection Ratio
The common-mode rejection ratio (CMRR) of an amplifier is a measure of how well the device rejects unwanted
input signals common to both input leads. It is found by taking the ratio of the change in input offset voltage to
the change in the input voltage and converting to decibels. Ideally the CMRR is infinite, but in practice, amplifiers
are designed to have it as high as possible. The CMRR of this device is 86 dB.
8.3.2 Slew Rate
The slew rate is the rate at which an operational amplifier can change its output when there is a change on the
input. These devices have a 3.5-V/μs slew rate.
14 Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
www.ti.com
SLOS078L NOVEMBER 1978REVISED MAY 2015
8.4 Device Functional Modes
These devices are powered on when the supply is connected. This device can be operated as a single supply
operational amplifier or dual supply amplifier depending on the application.
Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
Vsup+
+VOUT
RF
VIN
RI
Vsup-
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
SLOS078L NOVEMBER 1978REVISED MAY 2015
www.ti.com
9 Applications and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
9.1 Application Information
The TL06x series of operational amplifiers can be used in countless applications. The few applications in this
section show principles used in all applications of these parts.
9.2 Typical Applications
9.2.1 Inverting Amplifier Application
A typical application for an operational amplifier in an inverting amplifier. This amplifier takes a positive voltage
on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes
negative voltages positive.
Figure 19. Schematic for Inverting Amplifier Application
9.2.1.1 Design Requirements
The supply voltage must be chosen such that it is larger than the input voltage range and output range. For
instance, this application will scale a signal of ±0.5 V to ±1.8 V. Setting the supply at ±12 V is sufficient to
accommodate this application.
9.2.1.2 Detailed Design Procedure
Determine the gain required by the inverting amplifier:
(1)
(2)
Once the desired gain is determined, choose a value for RI or RF. Choosing a value in the kilohm range is
desirable because the amplifier circuit will use currents in the milliamp range. This ensures the part will not draw
too much current. This example will choose 10 kΩfor RI which means 36 kΩwill be used for RF. This was
determined by Equation 3.
(3)
16 Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061
+
R2
R1
C1 C2
R3
C3 VCC−
VCC+
OutputInput
O
R1 R2 2 R3 1.5
C3
C1 C2 110 pF
2
1
f 1 kHz
R1 C1
= = ´ =
= = =
= =
´ ´
+
+
TL064 Output C
VCC+
VCC+
Output B
TL064
+
VCC+
Output A
TL064
+
VCC+
TL064
VCC+
100 k
100 µF
Input
1µF
1 M
100 k
100 k
TL061
+
−15 V
15 V
Output
1 k
9.1 k
3.3 k
CF= 3.3 µF
RF= 100 k
3.3 k
F F
1
f2π R C
=
´ ´
+
+
+
+
TL064
VCC+
VCC−
100 k
Input B
10 k
0.1% 0.1%
10 k
VCC−
VCC+
TL064
Input A
VCC+
TL064
VCC−
100 k
10 k
0.1%
10 k
0.1%
TL064
VCC−
VCC+
100 k
100 k
Output
1 M
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
0 0.5 1 1.5 2
Volts
Time (ms)
VIN
VOUT
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
www.ti.com
SLOS078L NOVEMBER 1978REVISED MAY 2015
Typical Applications (continued)
9.2.1.3 Application Curve
Figure 20. Input and Output Voltages of the Inverting Amplifier
9.3 System Examples
9.3.1 General Applications
Figure 21. Instrumentation Amplifier Figure 22. 0.5-Hz Square-Wave Oscillator
Figure 23. High-Q Notch Filter Figure 24. Audio-Distribution Amplifier
Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback 17
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
IN−
IN+
100 k
TL062
TL062
1 k
1 k
100 k
+
+
Output
1.2 M100 k
20 µF
+
0.1 µF
47 k
TL061
2.7 k
270 0.003 µF 0.001 µF
0.002 µF
1µF
10 k
100 k
50 k
0.06 µF
50 k
10 k100 k1 k
0.06 µF
10 k
0.02 µF
100 k
+
TL061
N2
+
0.1 Fµ
10 k
50
250 k
N1
Output
1 M
VCC+
10 k
10 k
0.1 µF
+
TIL601
10 k
15 V
Output
−15 V
5 k
100 pF TL061
10 k
10 k
10 k
10 k
10 k
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
SLOS078L NOVEMBER 1978REVISED MAY 2015
www.ti.com
System Examples (continued)
Figure 25. Low-Level Light Detector Preamplifier Figure 26. AC Amplifier
Figure 27. Microphone Preamplifier With Tone Figure 28. Instrumentation Amplifier
Control
18 Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL062
220 k
+
0.00375 µF
TL062
+
10 pF
68 k
0.003 µF
0.03 µF
0.03 µF
10 k3.3 k
0.003 µF
VCC−
VCC+
Output
Input
VCC−
VCC+
10 pF
MIN
MAX
100 k
Treble
MIN
MAX
100 k
Bass
10 k
10 k
0.01 µF27 k
100
Balance
100
50 pF
+
75 µF
47 µF
5 k
Gain
47 k
1µF
TA= 25°C
VCC±=±15 V
Max
Treble
Max Bass
200 10 k4 k2 k1 k40040 100
20
15
10
5
0
−5
−10
−15
−20
−25
20 k
25
f Frequency Hz
Voltage Amplification dB
20
IC PREAMPLIFIER RESPONSE CHARACTERISTICS
Min
Treble
Min Bass
+
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
www.ti.com
SLOS078L NOVEMBER 1978REVISED MAY 2015
System Examples (continued)
Figure 29. IC Preamplifier
10 Power Supply Recommendations
CAUTION
Supply voltages larger than 36 V for a single supply, or outside the range of ±18 V for
a dual supply can permanently damage the device (see the Absolute Maximum
Ratings).
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high
impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout.
Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback 19
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
NC
VCC+
IN1í
IN1+
VCCí
NC
OUT
NC
RG
RIN
RF
GND
VIN
VS-GND
VS+
GND
Run the input traces as far
away from the supply lines
as possible
Only needed for
dual-supply
operation
Place components close to
device and to each other to
reduce parasitic errors
Use low-ESR, ceramic
bypass capacitor
(or GND for single supply) Ground (GND) plane on another layerVOUT
+
RIN
RG RF
VOUT
VIN
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
SLOS078L NOVEMBER 1978REVISED MAY 2015
www.ti.com
11 Layout
11.1 Layout Guidelines
For best operational performance of the device, use good PCB layout practices, including:
Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance
power sources local to the analog circuitry.
Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single
supply applications.
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital
and analog grounds, paying attention to the flow of the ground current. For more detailed information, refer to
Circuit Board Layout Techniques,(SLOA089).
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If
it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as
opposed to in parallel with the noisy trace.
Place the external components as close to the device as possible. Keeping RF and RG close to the inverting
input minimizes parasitic capacitance, as shown in Layout Examples.
Keep the length of input traces as short as possible. Always remember that the input traces are the most
sensitive part of the circuit.
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce
leakage currents from nearby traces that are at different potentials.
11.2 Layout Examples
Figure 30. Operational Amplifier Schematic for Noninverting Configuration
Figure 31. Operational Amplifier Board Layout for Noninverting Configuration
20 Submit Documentation Feedback Copyright © 1978–2015, Texas Instruments Incorporated
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
TL061
,
TL061A
,
TL061B
TL062
,
TL062A
,
TL062B
,
TL064
,
TL064A
,
TL064B
www.ti.com
SLOS078L NOVEMBER 1978REVISED MAY 2015
12 Device and Documentation Support
12.1 Documentation Support
12.1.1 Related Documentation
For related documentation, see the following:
Circuit Board Layout Techniques,SLOA089
12.2 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 2. Related Links
TECHNICAL TOOLS & SUPPORT &
PARTS PRODUCT FOLDER SAMPLE & BUY DOCUMENTS SOFTWARE COMMUNITY
TL061 Click here Click here Click here Click here Click here
TL061A Click here Click here Click here Click here Click here
TL061B Click here Click here Click here Click here Click here
TL062 Click here Click here Click here Click here Click here
TL062A Click here Click here Click here Click here Click here
TL062B Click here Click here Click here Click here Click here
TL064 Click here Click here Click here Click here Click here
TL064A Click here Click here Click here Click here Click here
TL064B Click here Click here Click here Click here Click here
12.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
12.4 Trademarks
E2E is a trademark of Texas Instruments.
12.5 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
12.6 Glossary
SLYZ022 TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical packaging and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser based versions of this data sheet, refer to the left hand navigation.
Copyright © 1978–2015, Texas Instruments Incorporated Submit Documentation Feedback 21
Product Folder Links: TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B
PACKAGE OPTION ADDENDUM
www.ti.com 24-Aug-2018
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
81023022A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 81023022A
TL062MFKB
8102302PA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 8102302PA
TL062M
81023032A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 81023032A
TL064MFKB
8102303CA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 8102303CA
TL064MJB
8102303DA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 8102303DA
TL064MWB
TL061ACD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 061AC
TL061ACDE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 061AC
TL061ACDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 061AC
TL061ACP ACTIVE PDIP P 8 50 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type 0 to 70 TL061ACP
TL061BCP ACTIVE PDIP P 8 50 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type 0 to 70 TL061BCP
TL061BCPE4 ACTIVE PDIP P 8 50 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type 0 to 70 TL061BCP
TL061CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL061C
TL061CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL061C
TL061CP ACTIVE PDIP P 8 50 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type 0 to 70 TL061CP
TL061CPSR ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T061
TL061ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL061I
TL061IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL061I
PACKAGE OPTION ADDENDUM
www.ti.com 24-Aug-2018
Addendum-Page 2
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
TL061IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL061I
TL061IP ACTIVE PDIP P 8 50 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type -40 to 85 TL061IP
TL061IPE4 ACTIVE PDIP P 8 50 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type -40 to 85 TL061IP
TL062ACD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062AC
TL062ACDE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062AC
TL062ACDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062AC
TL062ACDRE4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062AC
TL062ACDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062AC
TL062ACP ACTIVE PDIP P 8 50 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type 0 to 70 TL062ACP
TL062ACPSR ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062A
TL062ACPSRG4 ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062A
TL062BCD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062BC
TL062BCDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062BC
TL062BCDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 062BC
TL062BCP ACTIVE PDIP P 8 50 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type 0 to 70 TL062BCP
TL062BCPE4 ACTIVE PDIP P 8 50 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type 0 to 70 TL062BCP
TL062CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C
TL062CDE4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C
PACKAGE OPTION ADDENDUM
www.ti.com 24-Aug-2018
Addendum-Page 3
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
TL062CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C
TL062CDRE4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C
TL062CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL062C
TL062CP ACTIVE PDIP P 8 50 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type 0 to 70 TL062CP
TL062CPE4 ACTIVE PDIP P 8 50 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type 0 to 70 TL062CP
TL062CPSR ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062
TL062CPW ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062
TL062CPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062
TL062CPWR ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062
TL062CPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T062
TL062ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL062I
TL062IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL062I
TL062IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL062I
TL062IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL062I
TL062IP ACTIVE PDIP P 8 50 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type -40 to 85 TL062IP
TL062IPE4 ACTIVE PDIP P 8 50 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type -40 to 85 TL062IP
TL062IPWR ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 Z062
TL062IPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 Z062
PACKAGE OPTION ADDENDUM
www.ti.com 24-Aug-2018
Addendum-Page 4
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
TL062MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 81023022A
TL062MFKB
TL062MJG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 TL062MJG
TL062MJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 8102302PA
TL062M
TL064ACD ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064AC
TL064ACDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064AC
TL064ACDRE4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064AC
TL064ACN ACTIVE PDIP N 14 25 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type 0 to 70 TL064ACN
TL064BCD ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064BC
TL064BCDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064BC
TL064BCDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064BC
TL064BCN ACTIVE PDIP N 14 25 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type 0 to 70 TL064BCN
TL064BCNE4 ACTIVE PDIP N 14 25 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type 0 to 70 TL064BCN
TL064CD ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064C
TL064CDE4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064C
TL064CDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064C
TL064CDRE4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064C
TL064CN ACTIVE PDIP N 14 25 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type 0 to 70 TL064CN
TL064CNSR ACTIVE SO NS 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 TL064
PACKAGE OPTION ADDENDUM
www.ti.com 24-Aug-2018
Addendum-Page 5
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
TL064CPW ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T064
TL064CPWE4 ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T064
TL064CPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T064
TL064CPWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 T064
TL064ID ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I
TL064IDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I
TL064IDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 85 TL064I
TL064IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I
TL064IN ACTIVE PDIP N 14 25 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type -40 to 85 TL064IN
TL064INE4 ACTIVE PDIP N 14 25 Green (RoHS
& no Sb/Br) CU NIPDAU N / A for Pkg Type -40 to 85 TL064IN
TL064INS ACTIVE SO NS 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I
TL064INSR ACTIVE SO NS 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 TL064I
TL064IPWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 Z064
TL064MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 81023032A
TL064MFKB
TL064MJ ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 TL064MJ
TL064MJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 8102303CA
TL064MJB
TL064MWB ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 8102303DA
TL064MWB
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
PACKAGE OPTION ADDENDUM
www.ti.com 24-Aug-2018
Addendum-Page 6
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TL062, TL062M, TL064, TL064M :
Catalog: TL062, TL064
Military: TL062M, TL064M
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
PACKAGE OPTION ADDENDUM
www.ti.com 24-Aug-2018
Addendum-Page 7
Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TL061ACDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL061CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL061CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL061CPSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1
TL061IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL061IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL062ACDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL062ACPSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1
TL062BCDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL062CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL062CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL062CPSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1
TL062CPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
TL062CPWRG4 TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
TL062IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL062IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TL062IPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
TL064ACDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 28-Apr-2016
Pack Materials-Page 1
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TL064BCDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TL064CPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
TL064IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TL064IDRG4 SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TL064INSR SO NS 14 2000 330.0 16.4 8.2 10.5 2.5 12.0 16.0 Q1
TL064IPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TL061ACDR SOIC D 8 2500 340.5 338.1 20.6
TL061CDR SOIC D 8 2500 340.5 338.1 20.6
TL061CDR SOIC D 8 2500 367.0 367.0 35.0
TL061CPSR SO PS 8 2000 367.0 367.0 38.0
TL061IDR SOIC D 8 2500 367.0 367.0 35.0
TL061IDR SOIC D 8 2500 340.5 338.1 20.6
TL062ACDR SOIC D 8 2500 340.5 338.1 20.6
TL062ACPSR SO PS 8 2000 367.0 367.0 38.0
TL062BCDR SOIC D 8 2500 340.5 338.1 20.6
TL062CDR SOIC D 8 2500 367.0 367.0 35.0
TL062CDR SOIC D 8 2500 340.5 338.1 20.6
PACKAGE MATERIALS INFORMATION
www.ti.com 28-Apr-2016
Pack Materials-Page 2
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TL062CPSR SO PS 8 2000 367.0 367.0 38.0
TL062CPWR TSSOP PW 8 2000 367.0 367.0 35.0
TL062CPWRG4 TSSOP PW 8 2000 367.0 367.0 35.0
TL062IDR SOIC D 8 2500 367.0 367.0 35.0
TL062IDR SOIC D 8 2500 340.5 338.1 20.6
TL062IPWR TSSOP PW 8 2000 367.0 367.0 35.0
TL064ACDR SOIC D 14 2500 367.0 367.0 38.0
TL064BCDR SOIC D 14 2500 367.0 367.0 38.0
TL064CPWR TSSOP PW 14 2000 367.0 367.0 35.0
TL064IDR SOIC D 14 2500 367.0 367.0 38.0
TL064IDRG4 SOIC D 14 2500 367.0 367.0 38.0
TL064INSR SO NS 14 2000 367.0 367.0 38.0
TL064IPWR TSSOP PW 14 2000 367.0 367.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 28-Apr-2016
Pack Materials-Page 3
www.ti.com
PACKAGE OUTLINE
C
14X .008-.014
[0.2-0.36]
TYP
-15
0
AT GAGE PLANE
-.314.308 -7.977.83[ ]
14X -.026.014 -0.660.36[ ]
14X -.065.045 -1.651.15[ ]
.2 MAX TYP
[5.08] .13 MIN TYP
[3.3]
TYP-.060.015 -1.520.38[ ]
4X .005 MIN
[0.13]
12X .100
[2.54]
.015 GAGE PLANE
[0.38]
A
-.785.754 -19.9419.15[ ]
B -.283.245 -7.196.22[ ]
CDIP - 5.08 mm max heightJ0014A
CERAMIC DUAL IN LINE PACKAGE
4214771/A 05/2017
NOTES:
1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for
reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This package is hermitically sealed with a ceramic lid using glass frit.
4. Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
5. Falls within MIL-STD-1835 and GDIP1-T14.
78
14
1
PIN 1 ID
(OPTIONAL)
SCALE 0.900
SEATING PLANE
.010 [0.25] C A B
www.ti.com
EXAMPLE BOARD LAYOUT
ALL AROUND
[0.05] MAX.002
.002 MAX
[0.05]
ALL AROUND
SOLDER MASK
OPENING
METAL
(.063)
[1.6]
(R.002 ) TYP
[0.05]
14X ( .039)
[1]
( .063)
[1.6]
12X (.100 )
[2.54]
(.300 ) TYP
[7.62]
CDIP - 5.08 mm max heightJ0014A
CERAMIC DUAL IN LINE PACKAGE
4214771/A 05/2017
LAND PATTERN EXAMPLE
NON-SOLDER MASK DEFINED
SCALE: 5X
SEE DETAIL A SEE DETAIL B
SYMM
SYMM
1
78
14
DETAIL A
SCALE: 15X
SOLDER MASK
OPENING
METAL
DETAIL B
13X, SCALE: 15X
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUAR Y 1997
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,16)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8
www.ti.com
PACKAGE OUTLINE
C
TYP
6.6
6.2
1.2 MAX
6X 0.65
8X 0.30
0.19
2X
1.95
0.15
0.05
(0.15) TYP
0 - 8
0.25
GAGE PLANE
0.75
0.50
A
NOTE 3
3.1
2.9
B
NOTE 4
4.5
4.3
4221848/A 02/2015
TSSOP - 1.2 mm max heightPW0008A
SMALL OUTLINE PACKAGE
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153, variation AA.
18
0.1 C A B
5
4
PIN 1 ID
AREA
SEATING PLANE
0.1 C
SEE DETAIL A
DETAIL A
TYPICAL
SCALE 2.800
www.ti.com
EXAMPLE BOARD LAYOUT
(5.8)
0.05 MAX
ALL AROUND 0.05 MIN
ALL AROUND
8X (1.5)
8X (0.45)
6X (0.65)
(R )
TYP
0.05
4221848/A 02/2015
TSSOP - 1.2 mm max heightPW0008A
SMALL OUTLINE PACKAGE
SYMM
SYMM
LAND PATTERN EXAMPLE
SCALE:10X
1
45
8
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
METAL
SOLDER MASK
OPENING
NON SOLDER MASK
DEFINED
SOLDER MASK DETAILS
NOT TO SCALE
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
SOLDER MASK
DEFINED
www.ti.com
EXAMPLE STENCIL DESIGN
(5.8)
6X (0.65)
8X (0.45)
8X (1.5)
(R ) TYP0.05
4221848/A 02/2015
TSSOP - 1.2 mm max heightPW0008A
SMALL OUTLINE PACKAGE
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
SYMM
SYMM
1
45
8
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:10X
IMPORTANT NOTICE
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and
services.
Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced
documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements
different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers
remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have
full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products
used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with
respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous
consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and
take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will
thoroughly test such applications and the functionality of such TI products as used in such applications.
TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,
including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to
assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any
way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource
solely for this purpose and subject to the terms of this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically
described in the published documentation for a particular TI Resource.
Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that
include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE
TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,
INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF
PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,
DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN
CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949
and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such
products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards
and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must
ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in
life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.
Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life
support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all
medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).
Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications
and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory
requirements in connection with such selection.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-
compliance with the terms and provisions of this Notice.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Texas Instruments:
TL064CN TL064CD TL064CPWR TL064ID TL064IN TL064INS TL064INSG4 TL064INSR TL064INSRG4
TL064CNSRG4 TL064CDBRG4 TL064CDG4 TL064CDRG4 TL064CPWG4 TL064CPWRG4 TL064CDBR
TL064CDBRE4 TL064CDE4 TL064CDR TL064CDRE4 TL064CNE4 TL064CNSR TL064CNSRE4 TL064CPW
TL064CPWE4 TL064CPWRE4 TL064IDE4 TL064IDG4 TL064IDR TL064IDRE4 TL064IDRG4 TL064INE4
TL064CP TL064IPWR