NOIP1SN1300A
www.onsemi.com
35
DATA OUTPUT FORMAT
The PYTHON 300, PYTHON 500, and PYTHON 1300
image sensors are available in two LVDS output
configuration, P1 and P3.
The P1 configuration utilizes four LVDS output channels
together with an LVDS clock output and an LVDS
synchronization output channel.
The P3 configuration consists of two LVDS output
channels together with an LVDS clock output and an LVDS
synchronization output channel.
The PYTHON 1300 is also available in a CMOS output
configuration − P2, which includes a 10−bit parallel CMOS
output together with a CMOS clock output and ‘frame valid’
and ‘line valid’ CMOS output signals.
P1−SN/SE/FN, P3−SN/SE/FN: LVDS Interface Version
LVDS Output Channels
The image data output occurs through four LVDS data
channels where a synchronization LVDS channel and an
LVDS output clock signal synchronizes the data. Referring
to Table 21, the four data channels on the P1 option are used
to output the image data only, while on the P3 option, two
data channel channels are utilized. The sync channel
transmits information about the data sent over these data
channels (includes codes indicating black pixels, normal
pixels, and CRC codes).
8−bit / 10−bit Mode
The sensor can be used in 8−bit or 10−bit mode.
In 10−bit mode, the words on data and sync channel have
a 10−bit length. The output data rate is 720 Mbps.
In 8−bit mode, the words on data and sync channel have
an 8−bit length, the output data rate is 576 Mbps.
Note that the 8−bit mode can only be used to limit the data
rate at the consequence of image data word depth. It is not
supported to operate the sensor in 8−bit mode at a higher
clock frequency to achieve higher frame rates.
The P1 option supports 10−bit/8−bit in ZROT/NROT
mode, while the P3 option supports 10−bit NROT mode
only.
Frame Format
The frame format in 8−bit mode is identical to the 10−bit
mode with the exception that the Sync and data word depth
is reduced to eight bits.
The frame format in 10−bit mode is explained by example
of the readout of two (overlapping) windows as shown in
Figure 31(a).
The readout of a frame occurs on a line−by−line basis. The
read pointer goes from left to right, bottom to top.
Figure 31 indicates that, after the FOT is completed, the
sensor reads out a number of black lines for black calibration
purposes. After these black lines, the windows are
processed. First a number of lines which only includes
information of ‘ROI 0’ are sent out, starting at position
y0_start. When the line at position y1_start is reached, a
number of lines containing data of ‘ROI 0’ and ‘ROI 1’ are
sent out, until the line position of y0_end is reached. From
there on, only data of ‘ROI 1’ appears on the data output
channels until line position y1_end is reached
During read out of the image data over the data channels,
the sync channel sends out frame synchronization codes
which give information related to the image data that is sent
over the four data output channels.
Each line of a window starts with a Line Start (LS)
indication and ends with a Line End (LE) indication. The
line start of the first line is replaced by a Frame Start (FS);
the line end of the last line is replaced with a Frame End
indication (FE). Each such frame synchronization code is
followed by a window ID (range 0 to 7). For overlapping
windows, the line synchronization codes of the overlapping
windows with lower IDs are not sent out (as shown in the
illustration: no LE/FE is transmitted for the overlapping part
of window 0).
NOTE: In Figure 31, only Frame Start and Frame End
Sync words are indicated in (b). CRC codes are
also omitted from the figure.
For additional information on the
synchronization codes, please refer to
Application Note AND5001.