Agilent ATF-331M4 Low Noise
Pseudomorphic HEMT in a
Miniature Leadless Package
Data Sheet
Description
Agilent Technologies’s
ATF-331M4 is a high linearity,
low noise pHEMT housed in a
miniature leadless package.
The ATF-331M4’s small size and
low profile makes it ideal for the
design of hybrid modules and
other space-constraint devices.
Based on its featured perfor-
mance, ATF-331M4 is ideal for
the first or second stage of base
station LNA due to the excellent
combination of low noise figure
and enhanced linearity [1]. The
device is also suitable for appli-
cations in Wireless LAN,
WLL/RLL, MMDS, and other
systems requiring super low
noise figure with good intercept
in the 450 MHz to 10 GHz
frequency range.
Note:
1. From the same PHEMT FET family, the
smaller geometry ATF-34143 may also be
considered for the higher gain performance,
particularly in the higher frequency band
(1.8 GHz and up).
Features
Low noise figure
Excellent uniformity in product
specifications
1600 micron gate width
Miniature leadless package
1.4 mm x 1.2 mm x 0.7 mm
Tape-and-reel packaging option
available
Specifications
2 GHz; 4 V, 60 mA (Typ.)
0.6 dB noise figure
15 dB associated gain
19 dBm output power at 1 dB gain
compression
31 dBm output 3rd order intercept
Applications
Tower mounted amplifier, low noise
amplifier and driver amplifier for
GSM/TDMA/CDMA base stations
LNA for WLAN, WLL/RLL, MMDS
and wireless data infrastructures
General purpose discrete PHEMT for
other ultra low noise applications
MiniPak 1.4 mm x 1.2 mm Package
Pin Connections and
Package Marking
Note:
Top View. Package marking provides orientation,
product identification and date code.
P = Device Type Code
x = Date code character. A different
character is assigned for each month
and year.
Px
Source
Pin 3
Gate
Pin 2
Source
Pin 1
Drain
Pin 4
Px
2
ATF-331M4 Absolute Maximum Ratings[1]
Absolute
Symbol Parameter Units Maximum
VDS Drain-Source Voltage[2] V 5.5
VGS Gate-Source Voltage[2] V-5
VGD Gate Drain Voltage[2] V-5
IDS Drain Current[2] mA Idiss[3]
Pdiss Total Power Dissipation[4] mW 400
Pin max. RF Input Power dBm 20
TCH Channel Temperature[5] °C 160
TSTG Storage Temperature °C -65 to 160
θjc Thermal Resistance[6] °C/W 200
Notes:
1. Operation of this device above any one of
these parameters may cause permanent
damage.
2. Assumes DC quiescent conditions.
3. VGS = 0 V
4. Source lead temperature is 25°C. Derate
5 mW/°C for TL > 40°C.
5. Please refer to failure rates in reliability data
sheet to assess the reliability impact of
running devices above a channel temperature
of 140°C.
6. Thermal resistance measured using 150°C
Liquid Crystal Measurement method.
Product Consistency Distribution Charts [8, 9]
V
DS
(V)
Figure 1. Typical Pulsed I-V Curves
[7]
.
(V
GS
= -0.2 V per step)
I
DS
(mA)
02 468
500
400
300
200
100
0
-0.6 V
0 V
+0.6 V
NF (dBm)
Figure 2. NF @ 2 GHz, 4 V, 60 mA.
LSL = 28.5, Nominal = 0.6, USL = 0.8.
0.2 0.4 0.5 0.6 0.70.3 0.8 0.9
100
80
60
40
20
0
-3 Std +3 Std
Cpk = 1.05
Stdev = 0.07
OIP3 (dBm)
Figure 3. OIP3 @ 2 GHz, 4 V, 60 mA.
LSL = 28.5, Nominal = 31.0, USL = 36.0
28 3230 34 36
-3 Std +3 Std
150
120
90
60
30
0
Cpk = 1.00
Stdev = 1.07
GAIN (dB)
Figure 4. Gain @ 2 GHz, 4 V, 60 mA.
LSL = 13.5, Nominal = 15.0, USL = 16.5
13 1514 16 17
-3 Std +3 Std
120
100
80
60
40
20
0
Cpk = 4.37
Stdev = 1.11
Notes:
8. Distribution data sample size is 349 samples from 4 different wafers. Future wafers allocated to this product may have nominal values anywhere within
the upper and lower spec limits.
9. Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match based on
production test requirements. Circuit losses have been de-embedded from actual measurements.
Note:
7. Under large signal conditions, VGS may swing
positive and the drain current may exceed
Idss. These conditions are acceptable as long
as the Maximum Pdiss and Pin max ratings are
not exceeded.
3
ATF-331M4 DC Electrical Specifications
TA = 25°C, RF parameters measured in a test circuit for a typical device
Symbol Parameter and Test Condition Units Min. Typ.[2] Max.
Idss[1] Saturated Drain Current Vds = 1.5V, Vgs = 0V mA 175 237 305
Vp[1] Pinch-off Voltage Vds = 1.5V, Ids = 10% of Idss V -0.65 -0.5 -0.35
Id Quiescent Bias Current Vgs = -0.51V, Vds = 4V mA 60
Gm[1] Transconductance Vds = 1.5V, Gm = Idss/Vp mmho 360 440
Igdo Gate to Drain Leakage Current Vgd = -5 V µA 1000
Igss Gate Leakage Current Vgd = Vgs = -4V µA 42 600
NF Noise Figure f = 2 GHz Vds = 4V, Ids = 60 mA dB 0.6 0.8
f = 900 MHz Vds = 4V, Ids = 60 mA dB 0.5
Ga Associated Gain f = 2 GHz Vds = 4V, Ids = 60 mA dB 13.5 15 16.5
f = 900 MHz Vds = 4V, Ids = 60 mA dB 21
OIP3 Output 3rd Order f = 2 GHz, 5 dBm Pout/Tone Vds = 4V, Ids = 60 mA dBm 28.5 31
Intercept Point[3] f = 900 MHz, 5 dBm Pout/Tone Vds = 4V, Ids = 60 mA dBm 30.8
P1dB 1dB Compressed f = 2 GHz Vds = 4V, Ids = 60 mA dBm 19
Output Power[3] f = 900 MHz Vds = 4V, Ids = 60 mA dBm 18
Notes:
1. Guaranteed at wafer probe level
2. Typical values are determined from a sample size of 349 parts from 4 wafers.
3. Measurements obtained using production test board described in Figure 5.
Input 50 Input
Transmission Line
Including
Gate Bias T
(0.3 dB loss)
Input
Matching Circuit
Γ_mag = 0.13
Γ_ang = 113°
(0.3 dB loss)
50 Output
Transmission Line
Including
Gate Bias T
(0.5 dB loss)
DUT
Output
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit
represents a trade-off between an optimal noise match and a realizable match based on production test requirements. Circuit losses have been
de-embedded from actual measurements.
4
ATF-331M4 Typical Performance Curves
Notes:
1. Measurements made on fixed tuned
production test board that was tuned for
optimal gain match with reasonable noise
figure at 4V 60 mA bias. This circuit
represents a trade-off between an optimal
noise match, maximum gain match and a
realizable match based on production test
board requirements. Circuit losses have been
de-embedded from actual measurements.
2. Quiescent drain current, Idsq, is set with zero
RF drive applied. As P1dB is approached, the
drain current may increase or decrease
depending on frequency and dc bias point. At
lower values of Idsq the device is running
closer to class B as power output approaches
P1dB. This results in higher P1dB and higher
PAE (power added efficiency) when compared
to a device that is driven by a constant
current source as is typically done with active
biasing.
Figure 8. P1dB vs. Bias
[1,2]
2 GHz.
I
dsq
(mA)
P1dB (dBm)
0 1004020 8060
2V
3V
4V
25
20
15
10
5
0
Figure 10. NF & Gain vs. Bias
[1]
at 2 GHz.
I
d
(mA)
GAIN (dB)
NOISE FIGURE (dB)
0 1004020 8060
2V
3V
4V
16
15
14
13
12
11
10
1.4
1.2
1.0
0.8
0.6
0.4
0.2
Figure 6. OIP3, IIP3 & Bias
[1]
at 2 GHz.
I
ds
(mA)
OIP3, IIP3 (dBm)
0 1004020 8060
2V
3V
4V
40
30
20
10
0
Figure 7. OIP3, IIP3 & Bias
[1]
at 900 MHz.
I
ds
(mA)
OIP3, IIP3 (dBm)
0 1004020 8060
2V
3V
4V
40
30
20
10
0
Figure 9. P1dB vs. Bias
[1]
900 MHz.
I
dsq
(mA)
P1dB (dBm)
0 1004020 8060
2V
3V
4V
25
20
15
10
5
0
Figure 11. NF & Gain vs. Bias
[1]
at 900 MHz.
I
d
(mA)
GAIN (dB)
NOISE FIGURE (dB)
0 1204020 80 10060
2V
3V
4V
22
21
20
19
18
17
16
1.4
1.2
1.0
0.8
0.6
0.4
0.2
5
Notes:
1. Measurements made on fixed tuned
production test board that was tuned for
optimal gain match with reasonable noise
figure at 4V 60 mA bias. This circuit
represents a trade-off between an optimal
noise match, maximum gain match and a
realizable match based on production test
board requirements. Circuit losses have been
de-embedded from actual measurements.
2. Quiescent drain current, Idsq, is set with zero
RF drive applied. As P1dB is approached, the
drain current may increase or decrease
depending on frequency and dc bias point. At
lower values of Idsq the device is running
closer to class B as power output approaches
P1dB. This results in higher P1dB and higher
PAE (power added efficiency) when compared
to a device that is driven by a constant
current source as is typically done with active
biasing.
ATF-331M4 Typical Performance Curves, continued
Figure 12. Fmin vs. Frequency at 4 V, 60 mA.
FREQUENCY (GHz)
Fmin (dB)
0104286
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
Figure 14. Fmin & Ga vs. Frequency and Temp.
Vd = 4V , Ids = 60 mA.
FREQUENCY (GHz)
GAIN (dB)
NOISE FIGURE (dB)
08426
85°C
25°C
-40°C
25
20
15
10
5
2.0
1.5
1.0
0.5
0
Figure 15. P1dB, OIP3 vs. Frequency and
Temp at Vd = 4V , Ids = 60 mA.
FREQUENCY (GHz)
P1dB, OIP3 (dBm)
0845 7213 6
85°C
25°C
-40°C
35
30
25
20
15
10
5
0
Figure 16. OIP3, P1dB, NF and Gain vs.
Bias
[1,2]
at 3.9 GHz.
I
dsq
(mA)
OIP3, P1dB (dBm), GAIN (dB)
NOISE FIUGRE (dB)
0 1004020 8060
P1dB
OIP3
Gain
NF
35
30
25
20
15
10
5
0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
Figure 13. Associated Gain vs. Frequency
at 4V , 60 mA.
FREQUENCY (GHz)
GAIN (dB)
0104286
30
25
20
15
10
5
0
Figure 17. OIP3, P1dB, NF at 5.8 GHz.
I
dsq
(mA)
OIP3, P1dB (dBm), GAIN (dB)
NOISE FIGURE (dB)
0 1004020 8060
P1dB
OIP3
Gain
NF
35
30
25
20
15
10
5
0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
6
ATF-331M4 Typical Scattering Parameters, VDS = 2V, IDS = 40 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. dB
0.5 0.82 -91.90 22.10 12.74 127.90 -27.13 0.044 53.30 0.40 -163.10 24.62
0.8 0.79 -119.10 18.85 8.76 112.80 -25.19 0.055 46.70 0.47 -169.67 22.02
1.0 0.78 -132.10 18.06 8.00 106.00 -24.44 0.060 44.70 0.49 -173.83 21.25
1.5 0.76 -151.40 14.75 5.46 93.73 -22.73 0.073 42.73 0.53 177.77 18.74
1.8 0.75 -159.60 13.55 4.76 88.20 -21.72 0.082 42.13 0.53 173.73 17.64
2.0 0.74 -163.60 13.36 4.65 85.00 -21.31 0.086 41.93 0.54 171.27 17.33
2.5 0.72 -170.70 10.33 3.29 77.97 -20.09 0.099 41.33 0.53 165.20 15.21
3.0 0.69 -174.30 9.60 3.02 71.83 -18.12 0.124 40.57 0.55 162.60 13.86
4.0 0.71 163.10 6.62 2.14 53.23 -17.20 0.138 30.30 0.56 138.03 10.77
5.0 0.73 150.00 4.98 1.77 41.60 -16.65 0.147 24.97 0.56 134.30 9.25
6.0 0.71 140.90 3.94 1.57 28.80 -16.08 0.157 17.23 0.57 115.73 7.71
7.0 0.73 123.90 2.92 1.40 14.70 -15.39 0.170 7.10 0.57 109.93 6.97
8.0 0.74 112.90 2.77 1.38 6.70 -15.04 0.177 2.57 0.58 108.90 6.98
9.0 0.76 97.70 2.60 1.35 -4.77 -14.99 0.178 -6.27 0.59 93.03 6.78
10.0 0.79 83.60 2.00 1.26 -18.20 -14.75 0.183 -17.47 0.59 78.30 6.54
11.0 0.86 61.90 0.08 1.01 -32.50 -14.80 0.182 -29.77 0.58 66.00 6.03
12.0 0.87 62.10 -0.71 0.92 -37.90 -14.33 0.192 -33.90 0.65 59.73 5.63
13.0 0.88 51.90 -1.54 0.84 -49.90 -14.89 0.180 -44.67 0.69 49.07 5.20
14.0 0.88 44.60 -2.09 0.79 -58.90 -15.44 0.169 -52.47 0.73 40.13 5.04
15.0 0.91 38.70 -4.00 0.63 -67.70 -15.81 0.162 -60.63 0.75 30.57 4.34
16.0 0.93 33.30 -5.66 0.52 -74.80 -18.71 0.116 -67.27 0.78 24.73 4.04
17.0 0.93 28.40 -5.68 0.52 -80.50 -17.86 0.128 -73.07 0.79 18.67 4.02
18.0 0.92 25.20 -6.58 0.47 -84.00 -17.99 0.126 -77.40 0.81 13.87 3.03
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.50 0.37 0.39 0.6 0.07 21.16
0.90 0.41 0.381 26.3 0.06 18.36
1.00 0.41 0.38 32.9 0.06 18.19
1.50 0.46 0.38 63.6 0.05 15.96
1.80 0.48 0.385 80 0.05 15.43
2.00 0.5 0.39 90.1 0.05 14.56
2.50 0.54 0.407 112.8 0.04 13.29
3.00 0.59 0.431 132 0.04 12.18
4.00 0.67 0.492 161.3 0.03 10.4
5.00 0.76 0.565 -179 0.02 8.94
6.00 0.85 0.638 -166 0.02 7.96
7.00 0.93 0.702 -156.9 0.04 7
8.00 1.02 0.747 -148.9 0.07 6.16
9.00 1.11 0.762 -139 0.11 5.8
10.00 1.19 0.737 -124.5 0.18 4.89
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of
the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 2V, IDS = 40 mA
Figure 18. MSG/MAG and |S
21
|
2
vs.
Frequency at 2V , 40 mA.
MSG
MAG
FREQUENCY (GHz)
MSG/MAG and |S21|2 (dB)
02010515
40
30
20
10
0
-10
|S21|2
7
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.50 0.37 0.377 0.7 0.07 21.42
0.90 0.41 0.367 24.5 0.06 18.53
1.00 0.42 0.366 31.1 0.06 18.28
1.50 0.46 0.365 61.6 0.05 15.95
1.80 0.49 0.37 77.8 0.05 15.42
2.00 0.51 0.374 87.9 0.05 14.61
2.50 0.55 0.392 110.5 0.04 13.33
3.00 0.59 0.416 129.6 0.04 12.25
4.00 0.68 0.479 159.2 0.03 10.5
5.00 0.77 0.553 179.4 0.02 9.06
6.00 0.86 0.627 -167.2 0.02 8.05
7.00 0.95 0.69 -157.6 0.04 7.13
8.00 1.04 0.733 -149.2 0.06 6.38
9.00 1.13 0.742 -139.1 0.1 5.97
10.00 1.22 0.709 -124.7 0.18 5
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of
the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 3V, IDS = 40 mA
Figure 19. MSG/MAG and |S
21
|
2
vs.
Frequency at 3V , 40 mA.
MSG
MAG
FREQUENCY (GHz)
MSG/MAG and |S21|2 (dB)
02010515
40
30
20
10
0
-10
|S21|2
ATF-331M4 Typical Scattering Parameters, VDS = 3V, IDS = 40 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. dB
0.5 0.82 -90.50 22.45 13.27 128.40 -27.54 0.042 53.80 0.38 -155.50 24.99
0.8 0.78 -117.70 19.31 9.24 113.30 -25.35 0.054 47.10 0.44 -165.77 22.33
1.0 0.77 -130.90 18.50 8.41 106.40 -24.58 0.059 45.10 0.46 -170.63 21.54
1.5 0.75 -150.40 15.23 5.77 93.93 -22.97 0.071 43.03 0.49 180.17 19.10
1.8 0.74 -158.70 14.02 5.02 88.30 -21.94 0.080 42.33 0.49 -184.17 17.98
2.0 0.74 -162.70 13.79 4.89 85.10 -21.51 0.084 42.13 0.50 173.27 17.65
2.5 0.72 -170.00 10.81 3.47 77.97 -20.18 0.098 41.53 0.50 166.80 15.49
3.0 0.69 -174.10 9.60 3.02 71.63 -18.24 0.122 40.67 0.52 163.70 13.92
4.0 0.71 163.70 7.13 2.27 53.03 -17.33 0.136 30.70 0.52 139.43 11.20
5.0 0.73 150.50 5.46 1.87 41.40 -16.83 0.144 25.67 0.52 136.10 9.63
6.0 0.71 141.50 4.37 1.65 28.50 -16.31 0.153 18.13 0.54 118.23 8.02
7.0 0.73 124.40 3.34 1.47 14.10 -15.55 0.167 8.10 0.54 111.83 7.28
8.0 0.74 113.40 3.14 1.44 6.00 -15.19 0.174 3.57 0.54 110.90 7.28
9.0 0.76 98.20 2.94 1.40 -5.57 -15.14 0.175 -4.97 0.55 95.33 7.05
10.0 0.79 84.10 2.33 1.31 -19.10 -14.94 0.179 -16.07 0.55 80.50 6.83
11.0 0.86 62.40 0.44 1.05 -33.40 -14.94 0.179 -28.27 0.55 67.80 6.40
12.0 0.87 62.50 -0.38 0.96 -38.90 -14.47 0.189 -32.20 0.61 61.73 6.00
13.0 0.88 52.30 -1.20 0.87 -50.90 -14.99 0.178 -42.87 0.66 50.97 5.55
14.0 0.89 44.90 -1.79 0.81 -60.20 -15.55 0.167 -50.87 0.70 41.63 5.33
15.0 0.91 39.00 -3.64 0.66 -69.10 -15.81 0.162 -59.03 0.73 32.17 4.81
16.0 0.93 33.40 -5.30 0.54 -76.40 -18.64 0.117 -65.67 0.76 26.13 4.49
17.0 0.93 28.50 -5.40 0.54 -82.40 -17.79 0.129 -71.87 0.78 19.77 4.48
18.0 0.92 25.10 -6.34 0.48 -86.10 -17.92 0.127 -76.40 0.80 14.87 3.39
8
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.50 0.36 0.35 0.2 0.06 21.97
0.90 0.4 0.341 24.3 0.06 18.96
1.00 0.41 0.34 31.1 0.05 18.77
1.50 0.45 0.341 62.5 0.04 16.31
1.80 0.48 0.346 79.3 0.05 15.79
2.00 0.5 0.351 89.6 0.05 14.93
2.50 0.54 0.37 112.8 0.04 13.67
3.00 0.59 0.395 132.4 0.04 12.62
4.00 0.68 0.461 162.3 0.03 10.78
5.00 0.77 0.538 -177.6 0.02 9.28
6.00 0.86 0.616 -164.4 0.02 8.34
7.00 0.95 0.683 -155.3 0.04 7.37
8.00 1.04 0.729 -147.2 0.07 6.63
9.00 1.13 0.742 -137.3 0.11 6.19
10.00 1.22 0.712 -122.6 0.19 5.23
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of
the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 3V, IDS = 60 mA
Figure 20. MSG/MAG and |S
21
|
2
vs.
Frequency at 3V , 60 mA.
MSG
MAG
FREQUENCY (GHz)
MSG/MAG and |S21|2 (dB)
02010515
40
30
20
10
0
-10
|S21|2
ATF-331M4 Typical Scattering Parameters, VDS = 3V, IDS = 60 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. dB
0.5 0.81 -93.60 22.93 14.01 127.00 -28.64 0.037 54.00 0.39 -167.20 25.78
0.8 0.78 -120.70 19.68 9.64 112.10 -26.56 0.047 48.30 0.46 -172.07 23.12
1.0 0.77 -133.60 18.81 8.72 105.40 -25.68 0.052 46.80 0.48 -175.73 22.24
1.5 0.75 -152.50 15.50 5.96 93.43 -23.88 0.064 46.03 0.51 176.57 19.69
1.8 0.74 -160.50 14.27 5.17 88.00 -22.73 0.073 45.93 0.51 172.73 18.50
2.0 0.74 -164.40 14.02 5.02 84.80 -22.16 0.078 46.03 0.52 170.47 18.09
2.5 0.72 -171.30 11.06 3.57 77.97 -20.72 0.092 45.93 0.52 164.60 15.89
3.0 0.70 -175.30 9.80 3.09 71.93 -18.40 0.120 45.37 0.53 161.90 14.10
4.0 0.71 162.70 7.39 2.34 53.33 -17.52 0.133 35.20 0.54 137.43 11.21
5.0 0.73 149.70 5.70 1.93 41.90 -16.95 0.142 29.87 0.54 134.20 9.70
6.0 0.71 140.60 4.61 1.70 29.10 -16.31 0.153 21.73 0.55 116.23 8.18
7.0 0.73 123.70 3.54 1.50 15.10 -15.55 0.167 11.40 0.56 110.13 7.39
8.0 0.74 112.70 3.33 1.47 7.10 -15.09 0.176 6.37 0.56 109.10 7.35
9.0 0.76 97.60 3.12 1.43 -4.37 -15.04 0.177 -2.77 0.57 93.43 7.16
10.0 0.79 83.40 2.52 1.34 -17.80 -14.75 0.183 -14.27 0.57 78.70 6.95
11.0 0.86 61.80 0.66 1.08 -32.10 -14.80 0.182 -26.87 0.57 66.20 6.68
12.0 0.87 62.00 -0.15 0.98 -37.60 -14.29 0.193 -31.00 0.63 60.03 6.21
13.0 0.88 52.00 -0.96 0.90 -49.50 -14.80 0.182 -41.97 0.68 49.47 5.74
14.0 0.89 44.50 -1.56 0.84 -58.70 -15.34 0.171 -50.27 0.71 40.23 5.55
15.0 0.92 38.80 -3.38 0.68 -67.60 -15.65 0.165 -58.43 0.74 30.87 5.16
16.0 0.94 33.20 -5.04 0.56 -74.90 -18.42 0.120 -65.47 0.77 25.03 4.92
17.0 0.94 28.20 -5.15 0.55 -80.90 -17.65 0.131 -71.67 0.78 18.87 4.96
18.0 0.93 24.60 -6.11 0.50 -84.90 -17.79 0.129 -76.30 0.80 14.17 3.76
9
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.50 0.4 0.335 0.5 0.07 21.8
0.90 0.43 0.332 27.9 0.06 18.83
1.00 0.44 0.332 34.3 0.06 18.59
1.50 0.48 0.338 63.8 0.05 16.22
1.80 0.51 0.345 79.6 0.05 15.46
2.00 0.52 0.352 89.3 0.05 14.61
2.50 0.57 0.373 111.3 0.05 13.34
3.00 0.61 0.4 130 0.04 12.29
4.00 0.69 0.467 158.9 0.03 10.47
5.00 0.78 0.542 178.7 0.03 8.96
6.00 0.86 0.617 -167.8 0.02 8.05
7.00 0.95 0.68 -158.1 0.04 7.19
8.00 1.03 0.724 -149.3 0.06 6.41
9.00 1.12 0.738 -138.9 0.1 6.15
10.00 1.2 0.712 -124.2 0.18 5.07
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of
the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 4V, IDS = 40 mA
Figure 21. MSG/MAG and |S
21
|
2
vs.
Frequency at 4V , 40 mA.
MSG
MAG
FREQUENCY (GHz)
MSG/MAG and |S21|2 (dB)
02010515
40
30
20
10
0
-10
|S21|2
ATF-331M4 Typical Scattering Parameters, VDS = 4V, IDS = 40 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. dB
0.5 0.82 -89.80 22.59 13.48 128.80 -27.54 0.042 54.00 0.36 -149.40 25.06
0.8 0.78 -116.90 19.49 9.43 113.60 -25.51 0.053 47.30 0.41 -162.57 22.50
1.0 0.77 -130.00 18.68 8.59 106.60 -24.73 0.058 45.20 0.43 -167.93 21.70
1.5 0.75 -149.70 15.42 5.90 94.13 -22.97 0.071 42.93 0.46 -177.83 19.20
1.8 0.74 -158.00 14.21 5.13 88.40 -22.05 0.079 42.23 0.46 177.53 18.13
2.0 0.74 -162.20 13.70 4.84 85.10 -21.51 0.084 41.93 0.47 174.77 17.61
2.5 0.72 -169.50 11.50 3.76 77.87 -20.26 0.097 41.33 0.48 168.10 15.88
3.0 0.69 -173.80 10.20 3.24 71.53 -18.20 0.123 40.47 0.49 164.80 14.20
4.0 0.70 164.10 7.34 2.33 52.63 -17.46 0.134 30.50 0.50 140.63 11.39
5.0 0.73 150.90 5.66 1.92 40.90 -16.95 0.142 25.67 0.50 137.60 9.81
6.0 0.71 141.80 4.54 1.69 28.00 -16.42 0.151 18.43 0.51 120.43 8.14
7.0 0.73 124.70 3.52 1.50 13.40 -15.65 0.165 8.40 0.52 113.63 7.45
8.0 0.74 113.70 3.29 1.46 5.20 -15.29 0.172 4.07 0.52 112.80 7.42
9.0 0.76 98.50 3.08 1.43 -6.37 -15.29 0.172 -4.27 0.53 97.33 7.18
10.0 0.79 84.30 2.45 1.33 -20.00 -15.04 0.177 -15.27 0.53 82.40 6.94
11.0 0.86 62.60 0.59 1.07 -34.50 -15.04 0.177 -27.37 0.53 69.40 6.64
12.0 0.87 62.70 -0.26 0.97 -40.00 -14.56 0.187 -31.00 0.59 63.63 6.29
13.0 0.88 52.60 -1.08 0.88 -52.10 -15.09 0.176 -41.67 0.64 52.57 5.80
14.0 0.89 45.10 -1.66 0.83 -61.60 -15.55 0.167 -49.77 0.69 43.13 5.59
15.0 0.92 39.20 -3.49 0.67 -70.50 -15.81 0.162 -58.03 0.71 33.47 5.35
16.0 0.94 33.50 -5.16 0.55 -78.00 -18.64 0.117 -64.67 0.75 27.23 4.93
17.0 0.94 28.40 -5.30 0.54 -84.20 -17.72 0.130 -71.07 0.77 20.77 4.97
18.0 0.93 24.90 -6.29 0.49 -88.30 -17.86 0.128 -75.90 0.79 15.87 3.70
10
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of
the gate pad. The output reference plane is at the end of the drain pad.
ATF-331M4 Typical Scattering Parameters, VDS = 4V, IDS = 60 mA
Freq. S11 S21 S12 S22
MSG/MAG
GHz Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. dB
0.5 0.81 -93.00 23.11 14.30 127.30 -28.64 0.037 53.90 0.37 -161.30 25.87
0.8 0.78 -120.00 19.90 9.89 112.40 -26.56 0.047 48.30 0.43 -169.07 23.23
1.0 0.77 -133.00 19.03 8.94 105.60 -25.68 0.052 46.80 0.45 -173.33 22.35
1.5 0.75 -152.00 15.74 6.12 93.43 -23.88 0.064 45.83 0.48 178.37 19.81
1.8 0.74 -160.00 14.50 5.31 87.90 -22.85 0.072 45.73 0.48 174.33 18.68
2.0 0.74 -164.00 14.24 5.15 84.80 -22.27 0.077 45.83 0.49 171.87 18.25
2.5 0.72 -171.00 11.29 3.67 77.77 -20.82 0.091 45.73 0.49 165.90 16.06
3.0 0.69 -175.00 10.21 3.24 71.63 -19.25 0.109 45.27 0.51 162.80 14.73
4.0 0.71 163.00 7.64 2.41 52.93 -17.65 0.131 35.20 0.51 138.63 11.41
5.0 0.73 150.00 5.93 1.98 41.40 -17.08 0.140 30.07 0.51 135.70 9.89
6.0 0.71 141.00 4.81 1.74 28.60 -16.48 0.150 22.23 0.52 118.43 8.31
7.0 0.73 124.00 3.75 1.54 14.30 -15.65 0.165 11.90 0.53 111.93 7.56
8.0 0.74 113.00 3.52 1.50 6.20 -15.24 0.173 7.07 0.53 111.10 7.52
9.0 0.76 97.90 3.29 1.46 -5.37 -15.14 0.175 -1.87 0.54 95.43 7.31
10.0 0.79 83.70 2.67 1.36 -18.90 -14.89 0.180 -13.17 0.54 80.60 7.10
11.0 0.86 62.10 0.83 1.10 -33.30 -14.89 0.180 -25.67 0.54 67.90 6.92
12.0 0.87 62.30 0.00 1.00 -38.80 -14.42 0.190 -29.70 0.60 61.93 6.50
13.0 0.88 52.20 -0.82 0.91 -50.80 -14.89 0.180 -40.67 0.65 51.07 5.93
14.0 0.89 44.70 -1.41 0.85 -60.10 -15.39 0.170 -48.97 0.69 41.93 5.76
15.0 0.92 39.00 -3.22 0.69 -69.20 -15.65 0.165 -57.33 0.72 32.27 5.53
16.0 0.94 33.30 -4.88 0.57 -76.60 -18.42 0.120 -64.27 0.75 26.33 5.19
17.0 0.94 28.20 -5.04 0.56 -82.80 -17.59 0.132 -70.77 0.77 19.97 5.22
18.0 0.93 24.70 -6.02 0.50 -86.90 -17.72 0.130 -75.60 0.79 15.07 3.90
Freq Fmin Γopt Γopt Rn/50 Ga
GHz dB Mag. Ang. dB
0.50 0.38 0.316 0.7 0.06 22.33
0.90 0.42 0.314 28.9 0.06 19.23
1.00 0.43 0.314 35.5 0.06 19.1
1.50 0.47 0.321 65.7 0.05 16.63
1.80 0.5 0.329 81.9 0.05 15.86
2.00 0.52 0.336 91.9 0.05 14.96
2.50 0.56 0.358 114.3 0.04 13.73
3.00 0.61 0.386 133.2 0.04 12.58
4.00 0.7 0.454 162.3 0.03 10.78
5.00 0.79 0.53 -178.1 0.03 9.3
6.00 0.88 0.606 -165.1 0.02 8.32
7.00 0.97 0.67 -155.8 0.04 7.44
8.00 1.06 0.714 -147.4 0.07 6.59
9.00 1.16 0.728 -137.1 0.11 6.36
10.00 1.25 0.703 -121.9 0.19 5.27
Typical Noise Parameters, VDS = 4V, IDS = 60 mA
Figure 22. MSG/MAG and |S
21
|
2
vs.
Frequency at 4V , 60 mA.
MSG
MAG
FREQUENCY (GHz)
MSG/MAG and |S21|2 (dB)
02010515
40
30
20
10
0
-10
|S21|2
11
S and Noise Parameter Measurements
The position of the reference
planes used for the measurement
of both S and Noise Parameter
measurements is shown in Figure
23. The reference plane can be
described as being at the center
of both the gate and drain pads.
S and noise parameters are
measured with a 50 ohm
microstrip test fixture made with
a 0.010" thickness aluminum
substrate. Both source pads are
connected directly to ground via
a 0.010" thickness metal rib
which provides a very low
inductance path to ground for
both source pads. The inductance
associated with the addition of
printed circuit board plated
through holes and source bypass
capacitors must be added to the
computer circuit simulation to
properly model the effect of
grounding the source leads in a
typical amplifier design.
Gate
Pin 2
Source
Pin 3
Drain
Pin 4
Source
Pin 1
Reference
Plane
Microstrip
Transmission Lines
Px
Figure 23. Position of the Reference Planes.
Noise Parameter Applications
Information
The Fmin values are based on a
set of 16 noise figure measure-
ments made at 16 different
impedances using an ATN NP5
test system. From these measure-
ments, a true Fmin is calculated.
Fmin represents the true mini-
mum noise figure of the device
when the device is presented
with an impedance matching
network that transforms the
source impedance, typically 50,
to an impedance represented by
the reflection coefficient Γo. The
designer must design a matching
network that will present Γo to
the device with minimal associ-
ated circuit losses. The noise
figure of the completed amplifier
is equal to the noise figure of the
device plus the losses of the
matching network preceding the
device. The noise figure of the
device is equal to Fmin only
when the device is presented
with Γo. If the reflection coeffi-
cient of the matching network is
other than Γo, then the noise
figure of the device will be
greater than Fmin based on the
following equation.
NF = F
min
+ 4 R
n
|Γ
s
Γ
o
| 2
Zo (|1 + Γ
o
|2)(1 - |Γ
s
|2)
Where Rn/Zo is the normalized
noise resistance, Γo is the opti-
mum reflection coefficient
required to produce Fmin and
Γ
s
is the reflection coefficient of the
source impedance actually
presented to the device.
The losses of the matching
networks are non-zero and they
will also add to the noise figure
of the device creating a higher
amplifier noise figure. The losses
of the matching networks are
related to the Q of the compo-
nents and associated printed
circuit board loss. Γo is typically
fairly low at higher frequencies
and increases as frequency is
lowered. Larger gate width
devices will typically have a
lower Γo as compared to nar-
rower gate width devices. Typi-
cally for FETs, the higher Γo
usually infers that an impedance
much higher than 50 is re-
quired for the device to produce
Fmin. At VHF frequencies and
even lower L Band frequencies,
the required impedance can be in
the vicinity of several thousand
ohms. Matching to such a high
impedance requires very hi-Q
components in order to minimize
circuit losses. As an example at
900 MHz, when air wound coils
(Q>100)are used for matching
networks, the loss can still be up
to 0.25 dB which will add di-
rectly to the noise figure of the
device. Using multilayer molded
inductors with Qs in the 30 to 50
range results in additional loss
over the air wound coil. Losses as
high as 0.5 dB or greater add to
the typical 0.15 dB Fmin of the
device creating an amplifier
noise figure of nearly 0.65 dB.
SMT Assembly
The package can be soldered
using either lead-bearing or lead-
free alloys (higher peak tempera-
tures). Reliable assembly of
surface mount components is a
complex process that involves
many material, process, and
equipment factors, including:
method of heating (e.g. IR or
vapor phase reflow, wave solder-
ing, etc) circuit board material,
conductor thickness and pattern,
type of solder alloy, and the
thermal conductivity and thermal
mass of components. Components
with a low mass, such as the
Minipak 1412 package, will reach
solder reflow temperatures faster
than those with a greater mass.
The recommended leaded solder
time-temperature profile is
shown in Figure 24. This profile
is representative of an IR reflow
type of surface mount assembly
process. After ramping up from
room temperature, the circuit
board with components attached
to it (held in place with solder
paste) passes through one or
more preheat zones. The preheat
zones increase the temperature
of the board and components to
prevent thermal shock and begin
12
TIME (seconds)
T
MAX
TEMPERATURE (°C)
0
0
50
100
150
200
250
60
Preheat
Zone Cool Down
Zone
Reflow
Zone
120 180 240 300
Figure 25. Lead-free Solder Reflow Profile.
Figure 24. Leaded Solder Reflow Profile.
TIME (seconds)
Peak Temperature
Min. 240°C
Max. 255°C
TEMPERATURE (°C)
0
0
50
150
100
221
200
250
300
350
60 9030 120 150 210180 270 300 330240 360
Preheat 130 170°C
Min. 60s
Max. 150s
Reflow Time
Min. 60s
Max. 90s
evaporating solvents from the
solder paste. The reflow zone
briefly elevates the temperature
sufficiently to produce a reflow
of the solder.
The rates of change of tempera-
ture for the ramp-up and cool-
down zones are chosen to be low
enough to not cause deformation
of board or damage to compo-
nents due to thermal shock. The
maximum temperature in the
reflow zone (Tmax) should not
exceed 235°C for leaded solder.
These parameters are typical for
a surface mount assembly
process for the ATF-331M4. As a
general guideline, the circuit
board and components should
only be exposed to the minimum
temperatures and times the
necessary to achieve a uniform
reflow of solder.
The recommended lead-free
reflow profile is shown in
Figure 25.
Electrostatic Sensitivity
FETs and RFICs are electrostatic
discharge (ESD) sensitive de-
vices. Agilent devices are manu-
factured using a very robust and
reliable PHEMT process, however,
permanent damage may occur to
these devices if they are sub-
jected to high-energy electrostatic
discharges. Electrostatic charges
as high as several thousand volts
(which readily accumulate on the
human body and on test equip-
ment) can discharge without
detection and may result in
failure or degradation in perfor-
mance and reliability.
Electronic devices may be
subjected to ESD damage in any
of the following areas:
• Storage & handling
• Inspection
• Assembly & testing
• In-circuit use
The ATF-331M4 is an ESD
Class 1 device. Therefore, proper
ESD precautions are recom-
mended when handling, inspect-
ing, testing, and assembling these
devices to avoid damage.
Any user-accessible points in
wireless equipment (e.g. antenna
or battery terminals) provide an
opportunity for ESD damage.
For circuit applications in which
the ATF-331M4 is used as an
input or output stage with close
coupling to an external antenna,
the device should be protected
from high voltage spikes due to
human contact with the antenna.
A good practice, illustrated in
Figure 26, is to place a shunt
inductor or RF choke at the
antenna connection to protect
the receiver and transmitter
circuits. It is often advantageous
to integrate the RF choke into the
design of the diplexer or T/R
switch control circuitry.
Figure 26. In-circuit ESD Protection.
13
ATF-331M4 Minipak Model
NFET=yes
PFET=no
Vto=0.95
Beta=0.48
Lambda=0.09
Alpha=4
B=0.8
Tnom=27
Idstc=
Vbi=0.7
Tau=
Betatce=
Delta1=0.2
Delta2=
Gscap=3
Cgs=1.764 pF
Gdcap=3
Cgd=0.338 pF
Rgd=
Tqm=
Vmax=
Fc=
Rd=0.125
Rg=1
Rs=0.0625
Ld=0.0034 nH
Lg=0.0039 nH
Ls=0.0012 nH
Cds=0.0776 pF
Crf=0.1
Rc=62.5
Gsfwd=1
Gsrev=0
Gdfwd=1
Gdrev=0
Vjr=1
Is=1 nA
Ir=1 nA
Imax=0.1
Xti=
N=
Eg=
Vbr=
Vtotc=
Rin=
Taumdl=no
Fnc=1 E6
R=0.17
C=0.2
P=0.65
wVgfwd=
wBvgs=
wBvgd=
wBvds=
wldsmax=
wPmax=
AllParams=
Advanced_Curtice2_Model
MESFETM1
GATE
SOURCE
INSIDE Package
Port
G
Num=1
C
C1
C=0.28 pF
Port
S1
Num=2
SOURCE
DRAIN
Port
S2
Num=4
Port
D
Num=3
L
L6
L=0.147 nH
R=0.001
C
C2
C=0.046 pF
L
L7
L=0.234 nH
R=0.001
MSub
TLINP
TL3
Z=Z2 Ohm
L=23.6 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL9
Z=Z2 Ohm
L=11 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
VAR
VAR1
K=5
Z2=85
Z1=30
Var
Egn TLINP
TL1
Z=Z2/2 Ohm
L=22 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL2
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL7
Z=Z2/2 Ohm
L=5.2 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL5
Z=Z2 Ohm
L=27.5 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
L
L1
L=0.234 nH
R=0.001
L
L4
L=0.281 nH
R=0.001
GaAsFET
FET1
Mode1=MESFETM1
Mode=Nonlinear
MSUB
MSub2
H=25.0 mil
Er=9.6
Mur=1
Cond=1.0E+50
Hu=3.9e+034 mil
T=0.15 mil
TanD=0
Rough=0 mil
ATF-331M4 Die Model
This model can be used as a design tool. It has been tested on ADS for various specifications. However, for
more precise and accurate design, please refer to the measured data in this data sheet. For future
improvements, Agilent reserves the right to change these models without prior notice.
14
MiniPak Package Outline Drawing
Ordering Information
Part Number No. of Devices Container
ATF-331M4-TR1 3000 7 Reel
ATF-331M4-TR2 10000 13 Reel
ATF-331M4-BLK 100 antistatic bag
1.44 (0.058)
1.40 (0.056)
Top view
Side view
Dimensions are in millimeteres (inches)
Bottom view
1.20 (0.048)
1.16 (0.046)
0.70 (0.028)
0.58 (0.023)
1.12 (0.045)
1.08 (0.043)
3
2
4
1
0.82 (0.033)
0.78 (0.031)
0.32 (0.013)
0.28 (0.011)
-0.07 (-0.003)
-0.03 (-0.001)
0.00
-0.07 (-0.003)
-0.03 (-0.001)
0.42 (0.017)
0.38 (0.015)
0.92 (0.037)
0.88 (0.035)
1.32 (0.053)
1.28 (0.051)
0.00
Px
Solder Pad Dimensions
15
USER
FEED
DIRECTION COVER TAPE
CARRIER
TAPE
REEL
END VIEW
8 mm
4 mm
TOP VIEW
Note: Px represents Package Marking Code.
Device orientation is indicated by package marking.
Px
Px
Px
Px
Device Orientation for Outline 4T, MiniPak 1412
Tape Dimensions
P
P
0
P
2
FW
C
D
1
D
E
A
0
5° MAX.
t
1
(CARRIER TAPE THICKNESS) T
t
(COVER TAPE THICKNESS)
5° MAX.
B
0
K
0
DESCRIPTION SYMBOL SIZE (mm) SIZE (INCHES)
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
A
0
B
0
K
0
P
D
1
1.40 ± 0.05
1.63 ± 0.05
0.80 ± 0.05
4.00 ± 0.10
0.80 ± 0.05
0.055 ± 0.002
0.064 ± 0.002
0.031 ± 0.002
0.157 ± 0.004
0.031 ± 0.002
CAVITY
DIAMETER
PITCH
POSITION
D
P
0
E
1.50 ± 0.10
4.00 ± 0.10
1.75 ± 0.10
0.060 ± 0.004
0.157 ± 0.004
0.069 ± 0.004
PERFORATION
WIDTH
THICKNESS W
t
1
8.00 + 0.30 - 0.10
0.254 ± 0.02 0.315 + 0.012 - 0.004
0.010 ± 0.0008
CARRIER TAPE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
CAVITY TO PERFORATION
(LENGTH DIRECTION)
F
P
2
3.50 ± 0.05
2.00 ± 0.05
0.138 ± 0.002
0.079 ± 0.002
DISTANCE
WIDTH
TAPE THICKNESS C
T
t
5.40 ± 0.10
0.062 ± 0.001 0.213 ± 0.004
0.0024 ± 0.00004
COVER TAPE
A
0
B
0
www.agilent.com/semiconductors
For product information and a complete list of
distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312 or
(408) 654-8675
Europe: +49 (0) 6441 92460
China: 10800 650 0017
Hong Kong: (+65) 271 2451
India, Australia, New Zealand: (+65) 271 2394
Japan: (+81 3) 3335-8152(Domestic/International), or
0120-61-1280(Domestic Only)
Korea: (+65) 271 2194
Malaysia, Singapore: (+65) 271 2054
Taiwan: (+65) 271 2654
Data subject to change.
Copyright © 2002 Agilent Technologies, Inc.
January 30, 2002
5988-4993EN