Standard Power MOSFETs IRF140, IRF 141, IRF142, IRF143 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 24 A and 27 A, 60 V - 100 V losion = 0.085 Q and 0.112 Features: a SOA is power-dissipation limited m= Nanosecond switching speeds a Linear transfer characteristics @ High input impedance a Majority carrier device The IRF140, 1RF141, IRF142, and IRF143 are n-channel enhancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regula- tors, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requir- ing high speed and Sow gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AE metal package. Absolute Maximum Ratings File Number 2306 N-CHANNEL ENHANCEMENT MODE 0 Ss 92CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION ORAIN SOURCE (FLANGE ) GATE g2Cs- 37801 JEDEC TO-204AE Parameter IRF140 IRF141 IRF142 IRF 143 Units Vos Drain - Source Voltage 100 60 100 60 v VDGR Drain - Gate Voltage (R@g = 20 ko) O 100 60 100 60 Vv [op @Tce = 26C Continuous Drain Current 27 27 24 24 A Ip @ Tc = 100C Continuous Drain Current 17 17 15 15 A lom Pulsed Drain Current @ 108 108 96 96 A Ves Gate - Source Voltage +20 Vv Pp @Tc = 25C Max. Power Dissipation 925 (See Fig. 14} Ww Linear Derating Factor 1.0 (See Fig. 14} W/G ILM Inductive Current, Clamped (See Fig. 15 and 16) L = 100uH A ios 108 I 96 | 96 . i ncti . i oe 35 0 180 re Lead Temperature 300 (0.063 in. (1.6mm) from case for tOs} C 3-64Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVpss_ Drain - Source Breakdown Voltage IRF140 = inzian | 100 | - - v V@g = OV IRF 141 _ IRF143 60 = - Vv Ip = 250A VGSith) Gate Threshold Voltage ALL 2.0 = 4.0 Vv Vos = Vos. 'p = 250nA loss _ Gate-Source Leakage Forward ALL = = 100 nA Ve6sg = 20V less Gate-Source Leakage Reverse ALL - -100 nA Vgs = -20V loss Zero Gate Voltage Drain Current ALL = _ 250 uA Vos = Max. Rating, Vgg = OV = [1000 { 4A Vpg = Max. Rating x 0.8, Vgg = OV, Tc = 125C Ip(on) On-State Drain Current @ IRF140 wrat | 27 | Ty a Vos)! R Veg = 10V DS ? 'Dion) * DS{on) max.' GS = IRF142 | 4, _ _ A IRF143 RDS(on) Static Drain-Source On-State IRF140 Resistance mmgia1 | ~ [0-07 10.088) & ne = 10V. In = 18A IRFI42 | _ loos} oit] o see IRF143 . . ats Forward Transconductance @) ALL 6.0 10 = $ (0) Vos >'pton) * Rpston) max. 'p = 194 Cigs Input Capacitance ALL = 1275 _ pF Vag = OV, Vpg = 25V, f = 1.0MHz Coss Output Capacitance ALL _ 550 _ pF See Fig. 10 Cregg Reverse Transfer Capacitance ALL = 160 pF tdion) _ Turn-On Delay Time ALL = 16 30 ns Vop = 30V, Ip = 154A, Z, = 4.72 tr Rise Time ALL _ 27 60 ns See Fig. 17 tdioffy) _ Turn-Off Delay Time ALL - 38 80 ns (MOSFET switching times are essentially ty Fall Time ALL _ 14 30 ns independent of operating temperature.) a, Total Gate Charge Vae = 10V, In = 344, Voc = 0.8 Max. Rating 9 : ALL - 60 Cc GS D DS (Gate-Source Plus Gate-Drain} 38 See Fig. 18 for test circuit. (Gate charge is essentially Qgs Gate- Source Charge ALL _ 17 26 nc independent of operating temperature.) Qga Gate- Drain (Miller) Charge ALL - 21 32 nc Lp internal Drain Inductance ALL _ 5.0 _ nk Measured between Maditied MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances. and center of die. 0 ls Internal Source Inductance ALL _ 12.5 - nH Measured from the source pin, 6mm 6 (0.25 in.) from header and source bonding 3 pad. Thermal Resistance Rihyc Junction-to-Case ALL _ = 1.0 C/W Rthcs _Case-to-Sink ALL = 0.1 _ C/W Mounting surface flat, smooth, and greased. Rthga _Junction-to-Ambient ALL = _ 30 C/W Free Air Operation Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current IRF140 _ _ 27 A Modified MOSFET symbol {Body Diode) IRF141 showing the integral IRF142 reverse P-N junction rectifier. IRF143 _ 7 24 A . Ism Pulse Source Current IRF140 6 (Body Diode) @ meia1 | ~ | 7 | 08] A , IRF142 : inpiaa | | | % | 4 Vsp__ Diode Forward Voltage @ IRF140 _ 9R0 _ _ IRFIA1 - - | 25 v Te = 25C, Ig = 27A, Vgg = OV IRF142 _ one _ _ IRE143 - | 23 v To = 28C, Ig = 24A, Veg = OV ter Reverse Recovery Time ALL = 500 ~ ns Tj = 150C, Ip = 27A, dip/dt = 100A/us Orr Reverse Recovered Charge ALL = 2.9 - ze Ty = 180C, Ip = 27A, dip/dt = 1O0A/zs ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. @Ty = 25C to 150C. @Puise Test: Pulse width < 300zs, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal! Impedance Curve (Fig. 5). Standard Power MOSFETs IRF 140, IRF 141, IRF142, IRF143 3-65Standard Power MOSFETs IRF140, IRF141, IRF142, IRF143 50 us PULSE 40 30 Ip, DRAIN CURRENT (AMPERES) 0 10 20 30 40 Vps, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Ip, DRAIN CURRENT {AMPERES} 0 1 2 3 4 Vos, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics . Ss an Ss re 2 o a SINGLE PULSE THERMAL IMPEDANCE (PER UNIT) o o S Zensclt)/Rinjc. NORMALIZED EFFECTIVE TRANSIENT 0.01 10-5 2 5 10-4 2 5 10-3 ip, DRAIN CURRENT (AMPERES) 10-2 8G ps PULSE TEST ' Vos > "dion) * _ Rps(on)} max. an Mad a a = = e =z lad e oc > Qo = < = o Ss 0 2 4 6 8 10 Veg, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 2 Typical Transfer Characteristics 1000 500 OPERATION IN THIS AREA IS LIMITED BY Rosion} 200 IRF 140, 1 100 IRF 142, 3 50 IRF 140, 1 20 [ 1RF142,3 10- Tr = 25C 5 [ 1y= 150% MAX. 10 ms Renuc = 1.0 KAW 2 SINGLE PULSE 100 ms ARF141,3 to IRF 140, 2 oc 102 5 10 20 50 100 200 Vos. DRAIN-TO-SOURCE VOLTAGE {VOLTS} 500 Fig. 4 Maximum Safe Operating Area et o t 2 1, DUTY FACTOR, O= + . 2, PER UNIT BASE = Ringe * 1.0 DEG. C/W, 3. Tym - Te = Pom Zniclt. 2 5 1071 2 5 1.0 2 5 10 ty, SQUARE WAVE PULSE OURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-66Standard Power MOSFETs C, CAPACITANCE (pF) BVpgs, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE 80 us PULSE TEST Vos > !p(an) * Ras(on} max. Ogg, TRANSCONDUCTANCE (SIEMENS) Ipg. REVERSE DRAIN CURRENT (AMPERES) 0 20 30 Ip, DRAIN CURRENT (AMPERES) 40 50 Fig. 6 Typical Transconductance Vs. Drain Current 1.25 1.15 S 1.05 a w w N = z = z = ro S o 2 095 2 0.85 Rps(on}. ORAIN-TO-SQURCE ON-STATE RESISTANCE 075 40 0 40 80 Ty, JUNCTION TEMPERATURE (C} 120 160 Fig. 8 Breakdown Voltage Vs. Temperature Fig 2000 Cigg = Cos + Cog, Cp SHORTED Ves *0V C ras * Goel f= 1 MHz Coe Cog Ty Cpa Cy + Cog 1600 Coss = Cas + 1200 400 Vgs. GATE-TO-SOURCE VOLTAGE (VOLTS) 10 Vos, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage 1 20 2 = 30 35 400 45s Fig. 1 IRF140, IRF141, IRF142, IRF143 Ty= 150C 0.4 0.8 12 1.6 Vsp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) 2.0 Fig. 7 Typical Source-Drain Diode Forward Voltage 25 2.0 mn > 0.8 a -40 0 40 80 Ty, SUNCTION TEMPERATURE (C) 120 160 . 9 Normalized On-Resistance Vs. Temperature 20 an Vos * Vos" Vpg = 80V, 1RF 140, o Ip = 348 a R TEST CIRCUIT FIGURE 18 20 40 60 Oy, TOTAL GATE CHARGE (nC) 80 1 Typical Gate Charge Vs. Gate-to-Source Voltage 3-67Standard Power MOSFETs IRF 140, IRF141, IRF142, IRF143 03 30 g Rosion) MEASURED WITH CURRENT PULSE OF z 2.0 us DURATION. INITIAL Ty = 25C. (HEATING S EFFECT OF 2.0 us PULSE IS MINIMAL.) "4 w o z _ 5 @ B a @ 2 = = 18 IRF 140, 141 o Veg 2 10V ra wd =z 8 a x => ec 3 3 3 Zz . << Zo x = YY aa 3 - + pee oy ~ cs* 6 B Oo o 0 20 40 60 80 100 120 ae 50 15 100 425 150 1p, DRAIN CURRENT (AMPERES) Tp, CASE TEMPERATURE (C} Fig. 12 Typical On-Resistance Vs. Drain Current Fig. 13 Maximum Drain Current Vs. Case Temperature VARY ty TO OBTAIN REQUIRED PEAK |, z 3 xy S Vgg = 10V bey 5 E}=O05BVpsg Ec = 0.75 BVggg o 3 Fig. 15 Clamped Inductive Test Circuit 2 o Pp, POWER DISSIPATION (WATTS) = = sy S 0 20 40 60 80 100 120 140 Tg, CASE TEMPERATURE (C) Fig. 14 ~ Power Vs. Temperature Derating Curve Fig. 16 Clamped Inductive Waveforms 6 Vos (ISOLATED SUPPLY) CURRENT REGULATOR SAME TYPE ADJUST A, TO OBTAIN SPECIFIED Ip Vos Ves Tou E OU.T. _ GENERATOR | 15 mA SOURCE J] | 0 ee i MPenance . J -Vpg ~~ | CURRENT CURRENT SAMPLING SAMPLING = RESISTOR RESISTOR Fig. 17 Switching Time Test Circuit Fig. 18 ~ Gate Charge Test Circuit