Key Features
Wide input, 3.0-5.5 Vdc
Programmable output, 0.75 - 3.6 Vdc
Under voltage protection
Short circuit protection
Remote sense
Remote On/Off
Design for Environment (DfE)
European Commission Directive 2002/95/EC
(RoHs) compliant
EDatasheet
DC/DC regulator
Input 3.0 - 5.5 V
Output 10 A
PMC 4318T WS
The PMC series of surface mount DC/DC regulators
(POL) are intended to be used as local distributed
power sources in distributed power architecture
level 4. The high efficiency and high reliability of the
PMC series makes them particularly suited for the
communications equipment of today and tomorrow.
These products are manufactured using the most
advanced technologies and materials to comply
with environmental requirements.
Designed to meet high reliability requirements of sys-
tems manufacturers, the PMC responds to world-class
specifications.
Ericsson Power Modules is an ISO 9001/14001
certified supplier.
Contents
Product Program ......................2
Mechanical Data ......................3
Connections .........................3
Absolute Maximum Ratings . . . . . . . . . . . . . 4
Input ...............................4
Product Qualification Specification . . . . . . . . 5
Safety Specification . . . . . . . . . . . . . . . . . . . 6
Adjusted to 1.0 V out - Data . . . . . . . . . . . . . 7
Adjusted to 1.2 V out - Data . . . . . . . . . . . . 10
Adjusted to 1.5 V out - Data . . . . . . . . . . . . 13
Adjusted to 1.8 V out - Data . . . . . . . . . . . . 16
Adjusted to 2.5 V out - Data . . . . . . . . . . . . 19
Adjusted to 3.3 V out - Data . . . . . . . . . . . . 22
EMC Specification . . . . . . . . . . . . . . . . . . . . 25
Operating Information . . . . . . . . . . . . . . . . . 25
Thermal Considerations . . . . . . . . . . . . . . . 28
Soldering Information . . . . . . . . . . . . . . . . . 29
Delivery Package Information . . . . . . . . . . . 30
Reliability ...........................30
Compatibility with RoHS requirements . . . . 30
Sales Offices and Contact Information . . . . 31
2 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Product Program
Delivery option M.o.q. Suffix Example
Tape & Reel 200 pcs /C PMC 4xxxT WS /C
Ordering Information
* Input voltage limited to 3.8-5.5V for 3.3 Vout and for output voltages of 3.3V and 4.5-5.5 for output voltages above 3.3V.
VI
VO/IO max PO max Ordering No. Comment
Output 1
3.0-5.5 V* 0.75-3.3 V/10 A 33 W PMC 4318T WS Standard version
3.0-5.5 V 1.0 V/10 A 10 W PMC 4118N WS On request
3.0-5.5 V 1.2 V/10 A 12 W PMC 4118L WS On request
3.0-5.5 V 1.5 V/10 A 15 W PMC 4118H WS On request
3.0-5.5 V 1.8 V/10 A 18 W PMC 4118G WS On request
3.0-5.5 V 2.5 V/10 A 25 W PMC 4219 WS On request
3.8-5.5 V* 3.3 V/10 A 33 W PMC 4310 WS On request
Option Suffix Example
Negative Remote Control logic N PMC 4318T WS N
3 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Pin Designation Function
1 RC Remote Control
2 + In Positive input
3 Gnd Ground
4 + Out Positive output
5 Vadj External output adjust
6 + Sense Positive remote sense
Dimensions in mm[inch]
Tolerances (unless specified):
x,xx ±0,25[0,01]
Pin true position w ithin 0,4[0,016]
4,83(3x)
[0.190]
7,54
<>
7,87
[0.310]
10,92
<>
10,29
[0.405]
3,80
<>
2,6
[0.102]
3FDPNNFOEFEGPPUQSJOU
5PQ7JFX
max 8,25
[0.324]
Co-planarity max 0,1[0,004]
33,00
[1.299]
13,46
[0.530]
2,70(6x)
[0.106]
4,83(3x)
[0.190]
[0.310]
7,87 7,54
[0.297]
10,29
[0.405]
10,92
[0.430]
1,50(6x)
[0.059]

<>

<>
#PUUPN7JFX
3$
*O
4FOTF 7BEK 0VU (OE
Connections Weight
7 g
Mechanical Data
Pins
Material: Copper
Plating: Flash gold over nickel
3$ *O
4FOTF7BEK0VU(OE
4 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Characteristics min typ max Unit
Tref Operating Reference Temperature, see pg. 27 -45 +115 ˚C
TSStorage temperature -55 +125 ˚C
VIInput voltage -0.3 +5.5 Vdc
Characteristics Conditions min typ max Unit
VIInput voltage range 3.0 5.5 Vdc
VIoff Turn-off input voltage
Ramp from higher voltage, Vout set to 1.0-2.5 V 2.6
Vdc
Ramp from higher voltage, Vout set to 3.3 V 3.5
VIon Turn-on input voltage
Ramp from lower voltage, Vout set to 1.0-2.5 V 2.7
Vdc
Ramp from lower voltage, Vout set to 3.3 V 3.6
CIInput capacitance 20 µF
PIi Input idling power Io = 0 A, VI = 5 V 570 mW
PRC Input stand-by power (RC active) Non operation, VI = 5 V 7.5 mW
VIac Input ripple 1) 20 Hz ... 5 MHz, Iomax, VI = 5 V 300 mV
Input
Stress in excess of Absolute Maximum Ratings may cause permanent damage.
Absolute Maximum Ratings, sometimes referred to as no destruction limits, are
normally tested with one parameter at a time exceeding the limits of Output data
or Electrical Characteristics. If exposed to stress above these limits, function and
performance may degrade in an unspecified manner.
Absolute Maximum Ratings
Tref = -30 ... +90 ˚C, VI = 3.0...5.5 V unless otherwise specified
Typ values specified at: Tref = +25 ˚C, VInom, Iomax = 10A
1) Measured with 2 x 22 µF ceramic capacitors
Fundamental Circuit Diagram
GND
GND
PWM
+IN +OUT
+SENSE
Vadj
controller
Ref
GND
Error
amplifier
RC RC
GND
Block
5 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Characteristics
Random Vibration JESD 22-B103-B Frequency
Acceleration density
2 ... 500 Hz
0.008 ... 0.2 g2/Hz
Sinusoidal vibration JESD 22-B103-B Frequency
Acceleration
10 ... 1000 Hz
10 g
Mechanical shock
(half sinus) JESD 22-B104-B Peak acceleration
Duration
200 g
1.5 ms
Lead integrity JESD 22-B105-C Weight of 1000 g All terminals
Temperature cycling JESD 22-A104-B Temperature
Number of cycles
-40 ... +125 ˚C
300
Accelerated damp heat JESD 22-A101-B
Temperature
Humidity
Duration
Bias
+85 ˚C
85 % RH
1000 hours
max input voltage
Solderability
IEC 60068-2-54
(Aged according to JESD 22-
A101-B, 240h no bias)
Solder immersion depth
Time for onset of wetting
Wetting force
1 mm
< 4 s
> 100 mN/m
Cold (in operation) IEC 60068-2-1A, test AdTemperature
Duration
-45 ˚C
72 h
High temperature storage JESD 22-A103-B Temperature
Duration
+125 ˚C
1000 h
Product Qualification Specification
6 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Ericsson Power Modules DC/DC converters and DC/DC regulators
are designed in accordance with safety standards
IEC/EN/UL 60 950, Safety of Information Technology Equipment.
IEC/EN/UL60950 contains requirements to prevent injury or
damage due to the following hazards:
Electrical shock
Energy hazards
Fire
Mechanical and heat hazards
Radiation hazards
Chemical hazards
On-board DC-DC converters are defined as component power
supplies. As components they cannot fully comply with the
provisions of any Safety requirements without “Conditions of
Acceptability”. It is the responsibility of the installer to ensure that
the final product housing these components complies with the
requirements of all applicable Safety standards and Directives for
the final product.
Component power supplies for general use should comply with
the requirements in IEC60950, EN60950 and UL60950 “Safety of
information technology equipment”.
There are other more product related standards, e.g.
IEC61204-7 “Safety standard for power supplies",
IEEE802.3af “Ethernet LAN/MAN Data terminal equipment
power”, and ETS300132-2 “Power supply interface at the input
to telecommunications equipment; part 2: DC”, but all of these
standards are based on IEC/EN/UL60950 with regards to safety.
Ericsson Power Modules DC/DC converters and DC/DC regulators
are UL 60 950 recognized and certified in accordance with EN 60
950.
The flammability rating for all construction parts of the products
meets UL 94V-0.
The products should be installed in the end-use equipment, in
accordance with the requirements of the ultimate application.
Normally the output of the DC/DC converter is considered as SELV
(Safety Extra Low Voltage) and the input source must be isolated by
minimum Double or Reinforced Insulation from the primary circuit
(AC mains) in accordance with IEC/EN/UL 60 950.
Safety Specification
Isolated DC/DC converters.
The input voltage to the DC/DC regulator is SELV (Safety Extra Low
Voltage) and the output remains SELV under normal and abnormal
operating conditions.
It is recommended that a slow blow fuse with a rating
twice the maximum input current per selected product
be used at the input of each DC/DC regulator.
Non-isolated DC/DC regulators.
24 V dc systems.
The input voltage to the DC/DC converter is SELV (Safety Extra Low
Voltage) and the output remains SELV under normal and abnormal
operating conditions.
48 and 60 V dc systems.
If the input voltage to Ericsson Power Modules DC/DC converter
is 75 V dc or less, then the output remains SELV (Safety Extra Low
Voltage) under normal and abnormal operating conditions.
Single fault testing in the input power supply circuit should be
performed with the DC/DC converter connected to demonstrate
that the input voltage does not exceed 75 V dc.
If the input power source circuit is a DC power system, the source
may be treated as a TNV2 circuit and testing has demonstrated
compliance with SELV limits and isolation requirements equivalent
to Basic Insulation in accordance with IEC/EN/UL 60 950.
It is recommended that a fast blow fuse with a rating
twice the maximum input current per selected product
be used at the input of each DC/DC converter. If an input filter is
used in the circuit the fuse should be placed in front of the input
filter.
In the rare event of a component problem in the input filter or in the
DC/DC converter that imposes a short circuit on the input source,
this fuse will provide the following functions:
• Isolate the faulty DC/DC converter from the input power source
so as not to affect the operation of other parts of the system.
• Protect the distribution wiring from excessive current and power
loss thus preventing hazardous overheating.
The galvanic isolation is verified in an electric strength test. The test
voltage (VISO) between input and output is 1500 Vdc or 2250 Vdc for
60 seconds (refer to product specification). Leakage current is less
than 1µA at nominal input voltage.
General information.
7 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Characteristics Conditions
Output
Unit
min typ max
VOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax, Radj 80 k0.98 1.00 1.02 V
VO
Output voltage tolerance band IO = 0.01...1.0 x IOmax 0.97 1.03 V
Idling voltage IO = 0 0.98 1.02 V
Line regulation VImin ... VImax, IOmax 11 mV
Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV
Vtr Load transient
voltage deviation Load step = 0.25 ... 0.75 x IOmax,
dI/dt = 5 A/µs, CO = 150 µF,
VI = 3.3 V
100 mV
ttr Load transient recovery time 60 µs
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.1 0 +0.1 mV/°C
tsStart-up time From VI connected to VO = 0.9 x VOI,
IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms
trRamp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms
trFall time, VO x 0.1 IO = IOmax, VInom 0.2 ms
trFall time, VO x 0.1 IO = 0 A, VInom 5 s
tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms
tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms
tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 10 s
IOOutput current 0 10 A
POmax Max output power At VO = VOnom 10 W
Ilim Current limit threshold Tref < Trefmax 16 20 24 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 10 20 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 88.4 %
ηEfficiency - 100% load IO = IOmax, VI = 5 V 84.5 87.1 %
PdPower Dissipation IO = IOmax, VI = 5 V 1.6 1.8 W
Fo Switching frequency IO = 0 ... 1.0 x IOmax 250 300 350 kHz
Isense Remote sense current 8 mA
IIStatic input current VI = 3.0 V, IO = IOmax, Tref = 25 °C 3.9 A
MTBF Predicted reliability Tref = 40 °C 6 million
hours
Tref = -30 ... +90 °C, VI = 3.0 ... 5.5 V unless otherwise specified. Input filter 2 x 22 µF, Output filter 1 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 10 A. Note: +Sense connected to +Out
Adjusted to 1.0 V out - Data
8 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Output Current Derating at 5 V input
Start-Up
Output voltage vs. load current.
Available load current vs. ambient air temperature and
airflow at Vin = 5 V. See conditions on page 27.
Start-up at IO = 10 A resistive load at Tref = +25 °C,
Vin = 3.3 V. Start enabled by connecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Output Characteristics
Adjusted to 1.0 V out - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C







<">
<>
7
7
7
7






<">
<7>
7
7
7
7

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
Output Current Derating at 3.3 V input
Available load current vs. ambient air temperature and
airflow at Vin = 3.3 V. See conditions on page 27.
      


<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
      


<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
9 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Turn Off Output Ripple
Transient with 150 µF output capacitor
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Transient with 300 µF output capacitor
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20mV/div.) at Tref=+25 °C, Vin=3.3 V,
IO=10A resistive load.
Band width=5MHz.
Time scale: 2µs / div.
Turn-off at IO=10 A resistive load at Tref=+25 °C,
Vin=3.3 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Adjusted to 1.0 V out - Typical Characteristics
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
10 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Tref = -30 ... +90 °C, VI = 3.0 ...5.5 V unless otherwise specified. Input filter 2 x 22 µF, Output filter 1 x 150 µF
Typ values specified at: Tref = +25 °C and VInom, IOmax = 10 A. Note: +Sense connected to +Out
Adjusted to 1.2 V out - Data
Characteristics Conditions
Output
Unit
min typ max
VOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax, Radj 42 k1.176 1.20 1.224 V
VO
Output voltage tolerance band IO = 0.01...1.0 x IOmax 1.164 1.236 V
Idling voltage IO = 0 1.18 1.22 V
Line regulation VImin ... VImax, IOmax 11 mV
Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV
Vtr Load transient
voltage deviation Load step = 0.25 ... 0.75 x IOmax,
dI/dt = 5 A/µs, CO = 150 µF,
VI = 3.3 V
100 mV
ttr Load transient recovery time 60 µs
Tcoeff Temperature coefficient Tref = -30 ... +90°C, IOmax -0.1 0 +0.1 mV/°C
tsStart-up time From VI connected to VO = 0.9 x VOI,
IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms
trRamp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms
trFall time, VO x 0.1 IO = IOmax, VInom 0.2 ms
trFall time, VO x 0.1 IO = 0 A, VInom 5 s
tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms
tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms
tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 5 s
IOOutput current 0 10 A
POmax Max output power At VO = VOnom 12 W
Ilim Current limit threshold Tref < Trefmax 16 20 24 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 10 20 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 89.7 %
ηEfficiency - 100% load IO = IOmax, VI = 5 V 86.5 88.6 %
PdPower Dissipation IO = IOmax, VI = 5 V 1.5 1.9 W
Fo Switching frequency IO = 0 ... 1.0 x IOmax 250 300 350 kHz
Isense Remote sense current 8 mA
IIStatic input current VI = 3.0 V, IO = IOmax, Tref = 25 °C 4.5 A
MTBF Predicted reliability Tref = 40 °C 6 million
hours
11 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Output Current Derating at 5 V input
Output Characteristic Start-Up
Output voltage vs. load current.
Available load current vs. ambient air temperature and
airflow at Vin = 5 V. See conditions on page 27.
Start-up at IO = 10 A resistive load at Tref = +25 °C,
Vin = 3.3 V. Start enabled by connecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 1.2 V - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C







<">
<>
7
7
7
7

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
Output Current Derating at 3.3 V input
Available load current vs. ambient air temperature and
airflow at Vin = 3.3 V. See conditions on page 27.
      


<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
      


<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
12 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Turn Off Output Ripple
Transient with 150 µF output capacitor
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Transient with 300 µF output capacitor
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20mV/div.) at Tref=+25 °C, Vin=3.3 V,
IO=10A resistive load.
Band width=5MHz.
Time scale: 2µs / div.
Turn-off at IO=10 A resistive load at Tref=+25 °C,
Vin=3.3 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Adjusted to 1.2 V - Typical Characteristics
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
13 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Characteristics Conditions
Output
Unit
min typ max
VOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax, Radj 23 k1.47 1.5 1.53 V
VO
Output voltage tolerance band IO = 0.01...1.0 x IOmax 1.455 1.545 V
Idling voltage IO = 0 1.48 1.52 V
Line regulation VImin ... VImax, IOmax 11 mV
Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV
Vtr Load transient
voltage deviation Load step = 0.25 ... 0.75 x IOmax,
dI/dt = 5 A/µs, CO = 150 µF,
VI = 3.3 V
100 mV
ttr Load transient recovery time 60 µs
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.1 0 +0.1 mV/°C
tsStart-up time From VI connected to VO = 0.9 x VOI,
IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms
trRamp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms
trFall time, VO x 0.1 IO = IOmax, VInom 0.2 ms
trFall time, VO x 0.1 IO = 0 A, VInom 5 s
tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms
tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms
tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 5 s
IOOutput current 0 10 A
POmax Max output power At VO = VOnom 15 W
Ilim Current limit threshold Tref < Trefmax 16 20 24 A
VOac Output ripple 20Hz ... 5MHz, IOmax 15 25 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 92 %
ηEfficiency - 100% load IO = IOmax, VI = 5 V 88 90.5 %
PdPower Dissipation IO = IOmax, VI = 5 V 1.6 2.1 W
Fo Switching frequency IO = 0 ... 1.0 x IOmax 250 300 350 kHz
Isense Remote sense current 8 mA
IIStatic input current VI = 3.0 V, IO = IOmax, Tref = 25 °C 5.5 A
MTBF Predicted reliability Tref = 40 °C 6 million
hours
Tref = -30 ... +90 °C, VI = 3.0 ...5.5 V unless otherwise specified. Input filter 2 x 22 µF, Output filter 1 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 10 A. Note: +Sense connected to +Out
Adjusted to 1.5 V out - Data
14 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Output Current Derating at 5 V input
Output Characteristic Start-Up
Output voltage vs. load current.
Available load current vs. ambient air temperature and
airflow at Vin = 5 V. See conditions on page 27.






<">
<7>
7
7
7
7
Start-up at IO = 10 A resistive load at Tref = +25 °C,
Vin = 3.3 V. Start enabled by connecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 1.5V out - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C







<">
<>
7
7
7
7

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
Output Current Derating at 3.3 V input
Available load current vs. ambient air temperature and
airflow at Vin = 3.3 V. See conditions on page 27.
      


<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
      


<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
15 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Turn Off Output Ripple
Transient with 150 µF output capacitor
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Transient with 300 µF output capacitor
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20mV/div.) at Tref=+25 °C, Vin=3.3 V,
IO=10A resistive load.
Band width=5MHz.
Time scale: 2µs / div.
Turn-off at IO=10 A resistive load at Tref=+25 °C,
Vin=3.3 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Adjusted to 1.5V out - Typical Characteristics
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
16 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Tref = –30…+90 °C, VI = 3.0 ... 5.5 V unless otherwise specified. Input filter 2 x 22 µF, Output filter 1 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 10 A. Note: +Sense connected to +Out
Adjusted to 1.8 V out - Data
Characteristics Conditions
Output
Unit
min typ max
VOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax, Radj 15 k1.764 1.80 1.836 V
VO
Output voltage tolerance band IO = 0.01...1.0 x IOmax 1.746 1.854 V
Idling voltage IO = 0 1.78 1.82 V
Line regulation VImin ... VImax, IOmax 11 mV
Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV
Vtr Load transient
voltage deviation Load step = 0.25 ... 0.75 x IOmax,
dI/dt = 5 A/µs, CO = 150 µF,
VI = 3.3 V
110 mV
ttr Load transient recovery time 60 µs
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.1 0 +0.1 mV/°C
tsStart-up time From VI connected to VO = 0.9 x VOI,
IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms
trRamp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms
trFall time, VO x 0.1 IO = IOmax, VInom 0.2 ms
trFall time, VO x 0.1 IO = 0 A, VInom 5 s
tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms
tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms
tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 5 s
IOOutput current 0 10 A
POmax Max output power At VO = VOnom 18 W
Ilim Current limit threshold Tref < Trefmax 16 20 24 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 15 25 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 92.4 %
ηEfficiency - 100% load IO = IOmax, VI = 5 V 90 92.1 %
PdPower Dissipation IO = IOmax, VI = 5 V 1.6 2.0 W
Fo Switching frequency IO = 0 ... 1.0 x IOmax 250 300 350 kHz
Isense Remote sense current 8 mA
IIStatic input current VI = 3.0 V, IO = IOmax, Tref = 25 °C 6.5 A
MTBF Predicted reliability Tref = 40 °C 6 million
hours
17 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Efficiency
Output Current Derating at 3.3 V input Output Current Derating at 5 V input
Adjusted to 1.8 V - Typical Characteristics
Output Characteristic Start-Up
Output voltage vs. load current.
Available load current vs. ambient air temperature and
airflow at Vin = 5 V. See conditions on page 27.
Efficiency vs. load current and input voltage at Tref = +25 °C







<">
<>
7
7
7
7






<">
<7>
7
7
7
7
Start-up at IO = 10 A resistive load at Tref = +25 °C,
Vin = 3.3 V. Start enabled by connecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Available load current vs. ambient air temperature and
airflow at Vin = 3.3 V. See conditions on page 27.
Power Dissipation

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref=+25 °C
      


<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
      


<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
18 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Turn Off Output Ripple
Adjusted to 1.8 V out - Typical Characteristics
Transient with 150 µF output capacitor
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Transient with 300 µF output capacitor
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20mV/div.) at Tref=+25 °C, Vin=3.3 V,
IO=10A resistive load.
Band width=5MHz.
Time scale: 2µs / div.
Turn-off at IO=10 A resistive load at Tref=+25 °C,
Vin=3.3 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (0.5 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
19 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Characteristics Conditions
Output
Unit
min typ max
VOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax, Radj 7 k2.45 2.5 2.55 V
VO
Output voltage tolerance band IO = 0.01...1.0 x IOmax 2.425 2.575 V
Idling voltage IO = 0 2.48 2.52 V
Line regulation VImin ... VImax, IOmax 11 mV
Load regulation IO = 0.01...1.0 x IOmax, VInom 10 mV
Vtr Load transient
voltage deviation Load step = 0.25 ... 0.75 x IOmax,
dI/dt = 5 A/µs, CO = 150 µF,
VI = 3.3 V
140 mV
ttr Load transient recovery time 60 µs
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.1 0 +0.1 mV/°C
tsStart-up time From VI connected to VO = 0.9 x VOI,
IO = 0.1 ...1.0 x IOmax, VInom 8.5 ms
trRamp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax, VInom 4 ms
trFall time, VO x 0.1 IO = IOmax, VInom 0.2 ms
trFall time, VO x 0.1 IO = 0 A, VInom 5 s
tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VInom 0.2 ms
tRCon RC start-up time to VO x 0.9 IO = IOmax, VInom 8 ms
tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VInom 5 s
IOOutput current 0 10 A
POmax Max output power At VO = VOnom 25 W
Ilim Current limit threshold Tref < Trefmax 16 20 24 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 20 30 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 94 %
ηEfficiency - 100% load IO = IOmax, VI = 5 V 92 94 %
PdPower Dissipation IO = IOmax, VI = 5 V 1.6 2.2 W
Fo Switching frequency IO = 0 ... 1.0 x IOmax 250 300 350 kHz
Isense Remote sense current 8 mA
IIStatic input current VI = 3.0 V, IO = IOmax, Tref = 25 °C 8.8 A
MTBF Predicted reliability Tref = 40 °C 6 million
hours
Tref = -30 ... +90 °C, VI = 3.0 ...5.5 V unless otherwise specified. Input filter 2 x 22 µF, Output filter 1 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 10 A. Note: +Sense connected to +Out
Adjusted to 2.5 V out - Data
20 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Output Current Derating at 5 V input
Output Characteristic Start-Up
Output voltage vs. load current.
Available load current vs. ambient air temperature and
airflow at Vin = 5 V. See conditions on page 27.






<">
<7>
7
7
7
7
Start-up at IO = 10 A resistive load at Tref = +25 °C,
Vin = 3.3 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 2.5 V out - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C







<">
<>
7
7
7
7

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
Output Current Derating at 3.3 V input
Available load current vs. ambient air temperature and
airflow at Vin = 3.3 V. See conditions on page 27.
      


<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
      


<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
21 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Turn Off Output Ripple
Transient with 150 µF output capacitor
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Transient with 300 µF output capacitor
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref =+25 °C, Vin = 3.3 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20mV/div.) at Tref=+25 °C, Vin=3.3 V,
IO=10A resistive load.
Band width=5MHz.
Time scale: 2µs / div.
Turn-off at IO=10 A resistive load at Tref=+25 °C,
Vin=3.3 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Adjusted to 2.5 V out - Typical Characteristics
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
22 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Tref = -30 ... +90 °C, VI = 3.8 ... 5.5 V unless otherwise specified. Input filter 2 x 22 µF, Output filter 1 x 150 µF
Typ values specified at: Tref = +25 °C and VI = 5.0 V. IOmax = 10 A. Note: +Sense connected to +Out
Adjusted to 3.3 V out - Data
Characteristics Conditions
Output
Unit
min typ max
VOi Output voltage adjusted setting Tref = +25 °C, VI > 3.8 V, IOmax, Radj 3.1 k3.234 3.3 3.366 V
VO
Output voltage tolerance band IO = 0.1...1.0 x IOmax 3.201 3.399 V
Idling voltage IO = 0 3.28 3.32 V
Line regulation VI = 5 V ... VImax, IOmax 11 mV
Load regulation IO = 0.01...1.0 x IOmax, VI = 5 V 10 mV
Vtr Load transient
voltage deviation Load step = 0.25 ... 0.75 x IOmax,
dI/dt = 5 A/µs, CO = 150 µF,
VI = 5 V
120 mV
ttr Load transient recovery time 60 µs
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.1 0 +0.1 mV/°C
tsStart-up time From VI connected to VO = 0.9 x VOadj,
IO = 0.1 ...1.0 x IOmax, VI = 5 V 8.5 ms
trRamp-up time 0.1...0.9 x VO, IO = 0.1 ...1.0 x IOmax,
VI = 5 V 4 ms
trFall time, VO x 0.1 IO = IOmax, VI = 5 V 0.2 ms
trFall time, VO x 0.1 IO = 0 A, VI = 5 V 5 s
tRCoff RC shut-down time to VO x 0.1 IO = IOmax, VI = 5 V 0.2 ms
tRCon RC start-up time to VO x 0.9 IO = IOmax, VI = 5 V 8 ms
tRC RC fall time, VO x 0.1 ... 0.9 IO = 0 A, VI = 5 V 5 s
IOOutput current 0 10 A
POmax Max output power At VO = VOnom 33 W
Ilim Current limit threshold Tref < Trefmax 16 20 24 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 20 30 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VI = 5 V 95.7 %
ηEfficiency - 100% load IO = IOmax, VI = 5 V 93 95.4 %
PdPower Dissipation IO = IOmax, VI = 5 V 1.6 2.5 W
Fo Switching frequency IO = 0 ... 1.0 x IOmax 250 300 350 kHz
Isense Remote sense current 8 mA
IIStatic input current VI = 3.8 V, IO = IOmax, Tref = 25 °C 9.2 A
MTBF Predicted reliability Tref = 40 °C 6 million
hours
23 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Output Current Derating at 5 V inputOutput Characteristic
Start-Up
Output voltage vs. load current. Available load current vs. ambient air temperature and
airflow at Vin = 5 V. See conditions on page 27.






<">
<7>
7
7
7
Start-up at IO = 10 A resistive load at Tref = +25 °C,
Vin = 5 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 3.3 V out - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C







<">
<>
7
7
7

<">
<8>
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
      


<«$>
<">
NTMGN
NTMGN
NTMGN
/BU$POW
NTMGN
NTMGN
Turn Off
Turn-off at IO=10 A resistive load at Tref=+25 °C,
Vin = 5 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 2 ms/div.
24 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Output Ripple Transient with 150 µF output capacitor
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref =+25 °C, Vin = 5 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Transient with 300 µF output capacitor
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref =+25 °C, Vin = 5 V. dI/dt = 5A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20mV/div.) at Tref=+25 °C, Vin = 5 V,
IO=10A resistive load.
Band width=5MHz.
Time scale: 2µs / div.
Adjusted to 3.3 V out - Typical Characteristics
General conditions: Input filter 2 x 22 µF, Output filter 1 x 150 µF
25 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
EMC Specification
Layout Recommendation
The radiated EMI performance of the DC/DC regulator will be
optimised by including a ground plane in the PCB area under
the DC/DC regulator. This approach will return switching
noise to ground as directly as possible, with improvements
to both emission and susceptibility.
Operating Information
All PMC 4000 Series DC/DC regulators have a positive re-
mote sense pin that can be used to compensate for moder-
ate amounts of resistance in the distribution system and al-
low for voltage regulation at the load or other selected point.
The remote sense line will carry very little current and does
not need a large cross sectional area. However, the sense
line on the PCB should be located close to a ground trace or
ground plane. The remote sense circuitry will compensate for
up to 10% voltage drop between the sense voltage and the
voltage at the output pins from VOnom. If the remote sense is
not needed the sense pin should be left open.
Remote Sense






-FWFM < E#¬">
L L L . . . . . . .
'S FRVFODZ < )[ >
RC Regulator
condition min typ max Unit
Low level
referenced to GND OFF -0.3 0.3 V
Open ON 1.7 5 V
Remote Control (RC)
The RC pin may be used to turn on or turn off the regulator
using a suitable open collector function.
Turn off is achieved by connecting the RC pin to ground.
The regulator will run in normal operation when the RC pin is
left open.
RC
+IN
Module
+IN
GND
26 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Operating Information
Output Voltage Adjust (Vadj)
The output voltage can be set by means of an external
resistor, connected to the Vadj pin. Nominal output voltage
0.75 V is set by leaving the Vadj pin open. Adjustment can
only be made to increase the output voltage setting.
To increase:
Connect a resistor between (Vadj) and (Gnd). The output
voltage increases with decreasing resistor value as shown
in the table below. Note that the maximum output voltage
3.63 V may not be exceeded.
Rext up (kohm) = (21.007 / (VO - 0.75225)) - 5.1
Circuit configuration for output voltage adjust
Increase
+Out
GND
Vadj Load
Radj
Sense
Output Voltage (V) Resistor (ohm)
0.75 Open
1.0 79.691 k
1.2 41.817 k
1.5 22.990 k
1.8 14.949 k
2.5 6.919 k
3.3 3.145 k
Current Limit Protection
The PMC 4000 Series DC/DC regulators include current
limiting circuitry that allows them to withstand continuous
overloads or short circuit conditions on the output. The cur-
rent limit is of hick-up mode type.
The regulator will resume normal operation after removal
of the overload. The load distribution system should be
designed to carry the maximum output short circuit current
specified.
Input And Output Impedance
The impedance of both the power source and the load will
interact with the impedance of the DC/DC regulator. It is
most important to have a low characteristic impedance,
both at the input and output, as the regulators have a low
energy storage capability. Use capacitors across the input if
the source inductance is greater than 4.7 µH. Suitable input
capacitors are 22 µF - 220 µF low ESR ceramics.
Maximum Capacitive Load
When powering loads with significant dynamic current
requirements, the voltage regulation at the load can be
improved by addition of decoupling capacitance at the load.
The most effective technique is to locate low ESR ceramic
capacitors as close to the load as possible, using several
capacitors to lower the total ESR. These ceramic capacitors
will handle short duration high-frequency components
of dynamic load changes. In addition, higher values of
capacitors (electrolytic capacitors) should be used to handle
the mid-frequency components. It is equally important
to use good design practice when configuring the DC
distribution system.
Low resistance and low inductance PCB layouts and
cabling should be used. Remember that when using remote
sensing, all resistance (including the ESR), inductance and
capacitance of the distribution system is within the feedback
loop of the regulator. This can affect on the regulators
compensation and the resulting stability and dynamic
response performance.
Very low ESR and high capacitance must be used with
care. A “rule of thumb” is that the total capacitance must
never exceed typically 500-700 µF if only low ESR (< 2 m)
ceramic capacitors are used. If more capacitance is needed,
a combination of low ESR type and electrolytic capacitors
should be used, otherwise the stability will be affected.
The PMC 4000 series regulator can accept up to 5 mF of
capacitive load on the output at full load. This gives <500
µF/A of IO. When using that large capacitance it is important
to consider the selection of output capacitors; the resulting
behavior is a combination of the amount of capacitance and
ESR.
Minimum Required External Capacitors
External input capacitors are required to increase the
lifetime of the internal capacitors and to further reduce the
input ripple. A minimum of 44 µF external input capacitanceµF external input capacitanceF external input capacitance
with low ESR should be added.
A minimum of 150 µF external output capacitance , lowµF external output capacitance , lowF external output capacitance , low
ESR, should be added for the converter to operate properly
at full load.
27 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Operating Information
A combination of low ESR and output capacitance
exceeding 5 mF can cause the regulator into over current
protection mode (hick-up) due to high start up current. The
output filter must therefore be designed without exceeding
the above stated capacitance levels if the ESR is lower than
30-40 m.
Parallel Operation
Input Undervoltage Lockout
The PMC 4000 Series DC/DC regulators are equipped with a
lockout function for low input voltage.When the input voltage
is below the undervoltage lockout limit of the regulator it will
shut off. When the input voltage increases above the lockout
level the regulator will turn on.
The PMC 4000 Series DC/DC regulators can be connected
in parallel with a common input. Paralleling is accomplished
by connecting the output voltage pins directly and using
a load sharing device on the input. Layout considerations
should be made to avoid load imbalance. For more details
on paralleling, please consult your local applications
support.
28 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Thermal Considerations
General
The PMC 4000 Series DC/DC regulators are designed
to operate in a variety of thermal environments, however
sufficient cooling should be provided to help ensure reliable
operation. Heat is removed by conduction, convection and
radiation to the surrounding environment. Increased airflow
enhances the heat transfer via convection.
Proper cooling can be verified by measuring the
temperature at the reference point (Tref).
Calculation of ambient temperature
By using the thermal resistance the maximum allowed
ambient temperature can be calculated.
A. The powerloss is calculated by using the formula
((1/η) - 1) × output power = power losses.
η = efficiency of regulator. Example: 95% = 0.95
B. Find the value of the thermal resistance Rth Tref-A in the dia-
gram by using the airflow speed at the module. Take the ther-
mal resistance × powerloss to get the temperature increase.
Thermal resistance vs. airspeed measured at the regulator.
C. Max allowed calculated ambient temperature is:
Max Tref of DC/DC regulator - temperature increase.
Example: 1.8 V output at 1m/s, full load, 3.3 V in:
B. 1.67 W × 9 °C/W = 15 °C
C. 115 °C - 15 °C = max ambient temperature is 100 °C
The real temperature will be dependent on several factors,
like PCB size and type, direction of airflow, air turbulence
etc. It is recommended to verify the temperature by testing.
A. ((1/0.915) - 1) × 18 W = 1.67 W
Tref
The PMC 4000 thermal testing is performed with the
product mounted on an FR4 board 254 × 254 mm with 8× 254 mm with 8 254 mm with 8
layers of
35 µm copper.
      



<NT>
<«$8>
7JO7PVU
7JO7PVU
7JO7PVU
AIRFLOW
(max 115 °C)
29 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
The PMC series DC/DC regulators are intended for reflow soldering
processes. Extra precautions must be taken when reflow soldering
the module. Neglecting the soldering information given below
may result in permanent damage or significant degradation of the
power module performance. No responsibility is assumed if these
recommendations are not strictly followed.
The module can be reflow soldered using vapour phase reflow (VPR)
or forced convection reflow.
To ensure proper soldering of the regulators the temperature should
be monitored on interconnection pin GND. The interconnection
GND is considered as representative due to the heavy copper path
characterisation. A thermocouple can be attached to the pin GND
by means of a suitable adhesive or heat conductive paste, see the
mechanical data on page 4.
The reflow profile should be optimised to avoid solder paste drying
and overheating of the module. Most important is to ensure that the
interconnection pins on the coldest aera reach sufficient soldering
temperature for sufficiently long time. A sufficiently extended soak
time is recommended to ensure an even temperature throughout
the PCB, for both small and large components. To reduce the risk of
overheating the power module, it is also recommended to minimise
the time in reflow as much as possible.
For lead free solder processes (solder melting point 217°C),
the PMC series is qualified for MSL 1 according to JEDEC standard
“J-STD-020c”. During reflow, the module temperature must not
exceed +245 °C at any time.
Soldering Information
For conventional Sn-Pb solder processes (solder melting point
179°C -183°C), The PMC series is qualified for MSL 1 according
to JEDEC standard “J-STD-020c”. During reflow, the module
temperature must not exceed +225 °C at any time.
070 140 210 280 350
0
50
100
150
200
250
300
[°C]
Time
reflow ramp-up
cooling
zone
preheat
max 3°/s
soak zone
(150°C-200°C)
60-180s
reflow
zone
max pin temperature
@ 225°C (Low temp solder)
@ 245°C (High temp solder)
(solid line)-High temperature solder
(dashed line)-Low temperature solder
Ramp up, ramp-down rate
Pre-heat Soak zone Reflow zone Cooling
max 3˚C/s max 0.5˚C/s max 3˚C/s max 4˚C/s
Temperature interval, time
Soak zone Reflow zone
130-170˚C, 60-120 s Above 183˚C, 30-80 s
Peak temperature, time
Reflow zone
210-225˚C, 10-30 s
Low temperature solder - reflow profile
Ramp up, ramp-down rate
Pre-heat Soak zone Reflow zone Cooling
max 3˚C/s max 0.5˚C/s max 3˚C/s max 4˚C/s
Temperature interval, time
Soak zone Reflow zone
150-200˚C, 60-180 s Above 220˚C, 30-80 s
Peak temperature, time
Reflow zone
235-245˚C, 10-30 s
High temperature solders - Reflow profile
Pin temperatures, graph of the 4-zones of reflow soldering.
30 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Reliability
The Mean Time Between Failure (MTBF) of the PMC 4000
series DC/DC regulator family is calculated to be greater
than 6 million hours at full output power and a reference
temperature of +40 °C using TelCordia SR 332.
The PMC 4000 series regulators are delivered in antistatic
tape & reel (EIA standards 481-2).
Tape & reel specification:
Material: Conductive
Tape width: 44 mm [1.73 in.]
Tape pitch: 24 mm [0.95 in.]
Total pocket height: 9.1 mm [0.36 in.]
Reel diameter: 330 mm [13 in.]
Reel capacity: 200 pieces
Full reel weight: typ. 2.0 kg
<>
<>
1*$,10*/5
'FFEEJSFDUJPO %JNFOTJPOTJONN<JODI>
5BQFMFBEFSNJO<>
5BQFUSBJMFSNJO<>
4&$5*0/""
"
QJUDI<>
3<>

<> 
<> "
£
<£>
<>
<>

<>

<>
Delivery Package Information
Compatibility with RoHS requirements
The products are compatible with the relevant clauses
and requirements of the RoHS directive 2002/95/EC and
have a maximum concentration value of 0.1% by weight
in homogeneous materials for lead, mercury, hexavalent
chromium, PBB and PBDE and of 0.01% by weight in
homogeneous materials for cadmium.
Exemptions in the RoHS directive utilized in Ericsson Power
Modules products include:
Lead in high melting temperature type solder (used to solder
the die in semiconductor packages)
Lead in glass of electronics components and in electronic
ceramic parts (e.g. fill material in chip resistors)
Lead as an alloying element in copper alloy containing up to
4% lead by weight (used in connection pins made of Brass)
31 EN/LZT 146 056 R4A © Ericsson Power Modules, March 2007
PMC 4318T WS Datasheet
Sales Offices and Contact Information
Company Headquarters
Ericsson Power Modules AB
LM Ericssons väg 30
SE-126 25 Stockholm
Sweden
Phone: +46-8-568-69620
Fax: +46-8-568-69599
China
Ericsson Simtek Electronics Co.
33 Fuhua Road
Jiading District
Shanghai 201 818
China
Phone: +86-21-5990-3258
Fax: +86-21-5990-0188
North and South America
Ericsson Inc. Power Modules
6300 Legacy Dr.
Plano, TX 75024
USA
Phone: +1-972-583-5254
+1-972-583-6910
Fax: +1-972-583-7839
Hong Kong (Asia Pacific)
Ericsson Ltd.
12/F. Devon House
979 King’s Road
Quarry Bay
Hong Kong
Phone: +852-2590-2453
Fax: +852-2590-7152
Italy, Spain (Mediterranean)
Ericsson Power Modules AB
Via Cadorna 71
20090 Vimodrone (MI)
Italy
Phone: +39-02-265-946-07
Fax: +39-02-265-946-69
All other countries
Contact Company Headquarters
or visit our website:
www.ericsson.com/powermodules
Information given in this data sheet is believed to be accurate and reliable.
No responsibility is assumed for the consequences of its use nor for any infringement
of patents or other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of
Ericsson Power Modules. These products are sold only according to
Ericsson Power Modules’ general conditions of sale, unless otherwise confirmed in
writing. Specifications subject to change without notice.
Germany, Austria
Ericsson Power Modules AB
Mühlhauser Weg 18
85737 Ismaning
Germany
Phone: +49-89-9500-6905
Fax: +49-89-9500-6911
Japan
Ericsson Power Modules AB
Kimura Daini Building, 3 FL.
3-29-7 Minami-Oomachi, Shinagawa-ka
Tokyo 140-0013
Japan
Phone: +81-3-5733-5107
Fax: +81-3-5753-5162