North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
India Tel: +91.80.43537383 China Tel: +86.21.2407.1588
Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make
changes to the product(s) or information contained herein without notice.
1
Up Converter
17.0-34.0 GHz
XU1010-QH
ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions
is considering for development. Performance is based on target specifications, simulated results,
and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are
typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.
Commitment to produce in volume is not guaranteed.
Rev. V2
Features
Integrated Balanced Mixer, LO Buffer and LO
Doubler
+23.0 dBm Input Third Order Intercept (IIP3)
+2.0 dBm LO Drive Level
4x4mm QFN Package
100% RF and DC Testing
RoHS* Compliant and 260°C Reflow Compatible
Description
M/A-COM Tech’s 17.0-34.0 GHz GaAs
packaged up-converter has an input third order
intercept point of +23.0 dBm and 10.0 dB of
conversion loss. The device consists of a
balanced resistive pHEMT mixer, LO buffer
amplifier and LO doubler packaged in an
industry standard, fully molded 4x4mm QFN
package. IF and *IF mixer inputs are provided
and an external 180 degree hybrid is required.
The device includes on-chip ESD protection
structures and DC by-pass capacitors to ease
the implementation and volume assembly of the
packaged part. This device is well suited for
Millimeter-wave Point-to-Point Radio, LMDS,
SATCOM and VSAT applications.
Ordering Information
Part Number Package
XU1010-QH-0G00 bulk quantity
XU1010-QH-0G0T tape and reel
XU1010-QH-EV1 evaluation module
Functional Block Diagram
Pin Configuration
Pin No. Function Pin No. Function
1 Ground 14 LO Doubler
Drain
2 IF1 Input 15-16 Ground
3-4 Not Connected 17 Doubler/ESD
Bias
5 IF2 Input 18 LO Buffer Gate
6-8 Ground 19 LO Doubler/
Mixer Gate
7 Not Connected 20 Not Connected
8 Ground 21 Ground
9 LO Input 22 RF Input
10 Ground 23 Ground
11-12 Not Connected 24 Not Connected
13 LO Buffer Drain
1
2
3
4
22
21
20
19
16
15
14
13
7 8 9
10
IF1
GND
0o
180 o
BUF
MIXER
5
6
11
12
17
18
23
24
NC
NC
GND
IF2
NC GND GND NCLO NC
VD1
VD2
GND
GND
VSS
VG1
VG2,3NCGNDRF
GNDNC
x2
ESD
ESD
Absolute Maximum Ratings1
Parameter Absolute Max.
Drain Voltage Supply (Vdd) +4.3 V
Drain Current (Ids) 350 mA
Input Power (Pin) IF +5 dBm
Input Power (Pin) LO +10 dBm
Storage Temperature (Tstg) -65 °C to +165 °C
Operating Temperature (Tb) -55 °C to +85 °C
ESD Min. - Machine Model (MM) Class A
ESD Min. - Human Body Model
(HBM) Class 0
MSL Level MSL3
(1) Operation of this device above any one of these parameters may
cause permanent damage.
North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
India Tel: +91.80.43537383 China Tel: +86.21.2407.1588
Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make
changes to the product(s) or information contained herein without notice.
2
Up Converter
17.0-34.0 GHz
XU1010-QH
ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions
is considering for development. Performance is based on target specifications, simulated results,
and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are
typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.
Commitment to produce in volume is not guaranteed.
Rev. V2
Electrical Specifications: 17-34 GHz (RF) (Ambient Temperature T = 25°C)
Parameter Units Min. Typ. Max.
Frequency Range (RF) GHz 17 34
Frequency Range (LO) GHz 8 20
Frequency Range (IF) GHz DC 3.5
Conversion Loss (CL) dB 10
Input Third Order Intercept (IIP3) dBm 23
LO Input Drive dBm 2
RF Input Return Loss dB 15
LO Input Return Loss dB 15
IF Input Return Loss dB 15
2xLO Leakage at RF dBm -20
1xLO Leakage at RF dBm -30
Drain Bias Voltage (Vd1,2) VDC 4.0
Gate Bias Voltage (Vg1) VDC ~ -0.2
Gate Bias Voltage (Vg2,3) VDC -0.8
Gate Bias Voltage (Vss) VDC -4.0
Supply Current (Id1) mA 130
Supply Current (Id2) mA ~ 60
Supply Current (Iss) mA 45
North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
India Tel: +91.80.43537383 China Tel: +86.21.2407.1588
Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make
changes to the product(s) or information contained herein without notice.
3
Up Converter
17.0-34.0 GHz
XU1010-QH
ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions
is considering for development. Performance is based on target specifications, simulated results,
and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are
typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.
Commitment to produce in volume is not guaranteed.
Rev. V2
Typical Performance Curves
-20
-15
-10
-5
0
5
10
15
20
25
30
14 16 18 20 22 24 26 28 30 32 34 36 38
Loss, V D 2 (V)=4 .5, VG 2V G3 (V) =-0.8
Loss, V D 2 (V)=4 .5, VG 2V G3 (V) =-0.7
Loss, V D 2 (V)=4 .5, VG 2V G3 (V) =-0.6
Loss, VD 2 ( V)=5, VG2 VG 3 ( V )=-0. 8
Loss, VD2 (V) =5 , VG2 VG 3 (V)=-0 . 7
Loss, VD 2 ( V)=5, VG2VG 3 (V )=-0. 6
Loss, VD 2 ( V )=5.5, V G 2V G3 (V ) =-0.8
Loss, V D 2 (V)=5 .5, VG 2V G3 (V) =-0.7
Loss, VD 2 ( V )=5.5, V G 2V G3 (V ) =-0.6
II P3, VD 2 ( V) = 4.5 , VG 2 V G 3 ( V)= -0. 8
II P3, VD 2 ( V) = 4.5 , VG 2 V G 3 ( V)= -0. 7
II P3, VD 2 ( V) = 4.5 , VG 2 V G 3 ( V)= -0. 6
IIP3, VD 2 ( V)=5, VG 2VG 3 (V)=-0 .8
II P3, VD 2 ( V )= 5, VG 2V G 3 (V) =-0 .7
II P3, VD 2 ( V) = 5, V G 2V G 3 (V ) =-0 .6
II P3, VD 2 ( V) = 5.5 , VG 2 V G 3 ( V)= -0. 8
II P3, VD 2 ( V) = 5.5 , VG 2 V G 3 ( V)= -0. 7
II P3, VD 2 ( V) = 5.5 , VG 2 V G 3 ( V)= -0. 6
VD1 = 5 V, ID1 = 140 mA, VD2 = 5 V, VG2VG3 = - 0.8 V, VSS = - 5 V
IIP3
Loss
-20
-15
-10
-5
0
5
10
15
20
25
30
14 16 18 20 22 24 26 28 30 32 34 36 38
L oss , V D2 (V )=4 .5, VG 2V G3 (V) =- 0.8
L oss , V D2 (V )=4 .5, VG 2V G3 (V) =- 0.7
L oss , V D2 (V )=4 .5, VG 2V G3 (V) =- 0.6
Loss, VD 2 ( V )=5, VG2VG3 (V)= -0 .8
Loss, VD 2 (V)=5 , VG2VG 3 ( V)=-0 . 7
Loss, VD 2 ( V )=5, VG2 V G 3 ( V )=-0. 6
L oss , V D2 (V )=5 .5, VG 2V G3 (V )= -0. 8
L oss , V D2 (V )=5 .5, VG 2V G3 (V) =- 0.7
L oss , V D2 (V )=5 .5, VG 2V G3 (V )= -0. 6
II P3, VD 2 ( V) = 4.5 , VG 2 V G 3 ( V)= -0. 8
II P3, VD 2 ( V) = 4.5 , VG 2 V G 3 ( V)= -0. 7
II P3, VD 2 ( V )= 4.5 , V G 2V G 3 ( V)= - 0.6
II P3, VD 2 ( V) = 5, V G 2V G 3 (V)= -0 .8
II P3, VD 2 ( V )= 5, VG 2VG 3 (V )= -0 .7
II P3, VD 2 ( V) = 5, V G 2V G 3 (V)= -0 .6
II P3, VD 2 ( V) = 5.5 , VG 2 V G 3 ( V)= -0. 8
II P3, VD 2 ( V) = 5.5 , VG 2 V G 3 ( V)= -0. 7
II P3, VD 2 ( V) = 5.5 , VG 2 V G 3 ( V)= -0. 6
VD1 = 5 V, ID1 = 140 mA, VD2 = 5 V, VG2VG3 = - 0.8 V, VSS = - 5 V
IIP3
Loss
-20
-15
-10
-5
0
5
10
15
20
25
30
35
60 80 100 120 140 160 180 200
IIP3 , R F =16 , V D 1 (V) =4 .5
IIP3 , R F =16 , V D 1 (V) =5
II P3 , R F =16 , V D 1 (V)= 5 .5
IIP3 , R F =18 , V D 1 (V) =4 .5
II P3 , R F =18 , V D1 (V )= 5
IIP3 , R F =18 , V D 1 (V) =5 .5
IIP3 , R F =20 , V D 1 (V) =4 .5
II P3 , R F =20 , V D 1 (V)= 5
IIP3 , R F =20 , V D 1 (V) =5 .5
II P3 , R F =22 , V D 1 (V)= 4 .5
IIP3 , R F =22 , V D 1 (V) =5
II P3 , R F =22 , V D 1 (V)= 5 .5
II P3 , R F =24 , V D 1 (V)= 4 .5
IIP3 , R F =24 , V D 1 (V) =5
II P3 , R F =24 , V D 1 (V)= 5 .5
IIP3 , R F =26 , V D 1 (V) =4 .5
II P3 , R F =26 , V D 1 (V)= 5
IIP3 , R F =26 , V D 1 (V) =5 .5
II P3 , R F =28 , VD 1 (V) =4 .5
II P3 , R F =28 , V D 1 (V)= 5
IIP3 , R F =28 , V D 1 (V) =5 .5
II P3 , R F =30 , V D 1 (V)= 4 .5
IIP3 , R F =30 , V D 1 (V) =5
IIP3 , R F =30 , V D 1 (V) =5 .5
IIP3 , R F =32 , V D 1 (V) =4 .5
IIP3 , R F =32 , V D 1 (V) =5
II P3 , R F =32 , V D1 (V )= 5.5
IIP3 , R F =34 , V D 1 (V) =4 .5
II P3 , R F =34 , V D 1 (V)= 5
IIP3 , R F =34 , V D 1 (V) =5 .5
IIP3
Loss
VD1 = 4.5, 5 & 5.5 V, ID1 swept, VD2 = 5 V, VG2VG3 = - 0.8 V, VSS = - 5 V
-20
-15
-10
-5
0
5
10
15
20
25
30
35
60 80 100 120 140 160 180 200
IIP3 , R F =16 , V D 1 (V) =4 .5
IIP3 , R F =16 , V D 1 (V) =5
IIP3 , R F=16, VD1 (V)=5 .5
IIP3 , R F =18 , V D 1 (V) =4 .5
IIP3 , R F =18 , V D 1 (V) =5
IIP3 , R F =18 , V D 1 (V) =5 .5
IIP3 , R F =20 , V D 1 (V) =4 .5
IIP3 , R F=20, VD1 (V)=5
IIP3 , R F =20 , V D 1 (V) =5 .5
IIP3 , R F=22, VD1 (V)=4 .5
IIP3 , R F =22 , V D 1 (V) =5
IIP3 , R F=22, VD1 (V)=5 .5
IIP3 , R F=24, VD1 (V)=4 .5
IIP3 , R F =24 , V D 1 (V) =5
IIP3 , R F=24, VD1 (V)=5 .5
IIP3 , R F =26 , V D 1 (V) =4 .5
IIP3 , R F=26, VD1 (V)=5
IIP3 , R F =26 , V D 1 (V) =5 .5
IIP3 , R F =28 , V D 1 (V) =4 .5
IIP3 , R F=28, VD1 (V)=5
IIP3 , R F =28 , V D 1 (V) =5 .5
IIP3 , R F=30, VD1 (V)=4 .5
IIP3 , R F =30 , V D 1 (V) =5
IIP3 , R F =30 , V D 1 (V) =5 .5
IIP3 , R F =32 , V D 1 (V) =4 .5
IIP3 , R F =32 , V D 1 (V) =5
IIP3 , R F=32, VD1 (V)=5 .5
IIP3 , R F =34 , V D 1 (V) =4 .5
IIP3 , R F=34, VD1 (V)=5
IIP3 , R F =34 , V D 1 (V) =5 .5
IIP3
Loss
VD1 = 4.5, 5 & 5.5 V, ID1 swept, VD2 = 5 V, VG2VG3 = - 0.8 V, VSS = - 5 V
-60
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1x LO , S id e=L S B, PL O ( dB m )= 0
1x LO , S id e=L S B, PL O ( dB m )= 2
1x LO , S id e=L S B, PL O ( dB m )= 4
1x LO , S id e =LS B, PL O ( dB m ) =5
1x LO , S id e=U S B , PL O (d Bm )= 0
1x LO , S id e=U S B , PL O (d Bm )= 2
1x LO , S id e=U S B , PL O (d Bm )= 4
1x LO , S id e=U S B , PL O (d Bm )= 5
VD1 = 5 V, ID1 = 140 mA, VD2 = 5 V, VG2VG3 = - 0.8 V, VSS = - 5 V
-60
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
2x LO , S id e =LS B, PL O ( dB m )= 0
2x LO , S id e =LS B, PL O ( dB m )= 2
2x LO , S id e =LS B, PL O ( dB m )= 4
2x LO , S id e =LS B, PL O (dBm ) =5
2xLO , Sid e =USB , P L O (d Bm) = 0
2xLO , Sid e =USB , P L O (d Bm) = 2
2xLO , Sid e =USB , P L O (d Bm) = 4
2xLO , Sid e =USB , P L O (d Bm) = 5
VD1 = 5 V, ID1 = 140 mA, VD2 = 5 V, VG2VG3 = - 0.8 V, VSS = - 5 V
North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
India Tel: +91.80.43537383 China Tel: +86.21.2407.1588
Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make
changes to the product(s) or information contained herein without notice.
4
Up Converter
17.0-34.0 GHz
XU1010-QH
ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions
is considering for development. Performance is based on target specifications, simulated results,
and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are
typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.
Commitment to produce in volume is not guaranteed.
Rev. V2
App Note [1] Biasing - As shown in the Pin Designations table, the device is operated by biasing VD1 and VD2
at 4.0 V with 130 mA and approximately 60 mA respectively. VG2,3 and VSS require fixed voltage biasing with
VSS biased at -4.0 V and 45 mA. It is recommended to use active bias on VG1 to keep the current in VD1 con-
stant in order to maintain the best performance over temperature. Depending on the supply voltage available
and the power dissipation constraints, the bias circuit may be a single transistor or a low power operational am-
plifier, with a low value resistor in series with the drain supply used to sense the current. The gate of the pHEMT
is controlled to maintain correct drain current and thus drain voltage. The typical gate voltage needed to do this
is -0.2 V. Make sure to sequence the applied voltage to ensure negative gate bias is available before applying
the positive drain supply.
App Note [2] Board Layout - As shown in the board layout, it is recommended to provide 100pF decoupling
caps as close to the bias pins as possible, with additional 10μF decoupling caps.
Recommended Board Layout
North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
India Tel: +91.80.43537383 China Tel: +86.21.2407.1588
Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make
changes to the product(s) or information contained herein without notice.
5
Up Converter
17.0-34.0 GHz
XU1010-QH
ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions
is considering for development. Performance is based on target specifications, simulated results,
and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are
typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.
Commitment to produce in volume is not guaranteed.
Rev. V2
Handling Procedures
Please observe the following precautions to avoid
damage:
Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive
to electrostatic discharge (ESD) and can be
damaged by static electricity. Proper ESD control
techniques should be used when handling these
class 2 devices.
Lead-Free Package Dimensions/Layout