Integrated Silicon Solution, Inc. 1
Rev. H
07/22/2010
IS61LF25636A IS61VF25636A IS64LF25636A
IS61LF51218A IS61VF51218A
Copyright © 2010 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without
notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the lat-
est version of this device specification before relying on any published information and before placing orders for products.
Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reason-
ably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications
unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:
a.) the risk of injury or damage has been minimized;
b.) the user assume all such risks; and
c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances
FEATURES
Internal self-timed write cycle
Individual Byte Write Control and Global Write
Clock controlled, registered address, data and
control
Burst sequence control using MODE input
Three chip enable option for simple depth expan-
sion
and address pipelining
Common data inputs and data outputs
Auto Power-down during deselect
Single cycle deselect
Snooze MODE for reduced-power standby
JTAG Boundary Scan for PBGA package
Power Supply
LF: Vdd 3.3V + 5%, Vddq 3.3V/2.5V + 5%
VF: Vdd 2.5V + 5%, Vddq 2.5V + 5%
JEDEC 100-Pin TQFP, 119-pin PBGA, and 165-
pin PBGA packages
Lead-free available
Automotive temperature available
SEPTEMBER 2010
256K x 36, 512K x 18
9 Mb SYNCHRONOUS FLOW-THROUGH
STATIC RAM
DESCRIPTION
The ISSI IS61LF/VF25636A, IS64LF25636A and IS61LF/
VF51218A are high-speed, low-power synchronous
static
RAMs
designed to provide burstable,
high-performance
memory for communication and networking applications.
The IS61LF/VF25636A and IS64LF25636A are organized
as 262,144 words by 36 bits. The IS61LF/VF51218A is
organized as 524,288 words by 18 bits. Fabricated with
ISSI's advanced CMOS technology, the device integrates
a 2-bit burst counter, high-speed SRAM core, and high-
drive capability outputs into a single monolithic circuit. All
synchronous inputs pass through registers controlled by
a positive-edge-triggered single clock input.
Write cycles are internally self-timed and are initiated by the
rising edge of the clock input. Write cycles can be one to
four bytes wide as controlled by the write control inputs.
Separate byte enables allow individual bytes to be written.
Byte write operation is performed by using byte write en-
able (BWE) input combined with one or more individual
byte write signals (BWx). In addition, Global Write (GW)
is available for writing all bytes at one time, regardless of
the byte write controls.
Bursts can be initiated with either ADSP (Address Status
Processor) or ADSC (Address Status Cache Controller)
input pins. Subsequent burst addresses can be gener-
ated internally and controlled by the ADV (burst address
advance) input pin.
The mode pin is used to select the burst sequence order,
Linear burst is achieved when this pin is tied LOW. Inter-
leave burst is achieved when this pin is tied HIGH or left
floating.
FAST ACCESS TIME
Symbol Parameter -6.5 -7.5 Units
tkq Clock Access Time 6.5 7.5 ns
tkc Cycle Time 7.5 8.5 ns
Frequency 133 117 MHz
2 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
BLOCK DIAGRAM
18/19
BINARY
COUNTER
GW
CLR
CE
CLK Q0
Q1
MODE
A0'
A0
A1
A1'
CLK
ADV
ADSC
ADSP
16/17 18/19
ADDRESS
REGISTER
CE
D
CLK
Q
DQ(a-d)
BYTE WRITE
REGISTERS
D
CLK
Q
ENABLE
REGISTER
CE
D
CLK
Q
BWE
BW(a-d)
x18: a,b
x36: a-d
CE
CE2
CE2
256Kx36;
512Kx18;
MEMORY ARRAY
36,
or 18
INPUT
REGISTERS
CLK
OE
2/4/8
OE
DQa - DQd
36,
or 18
36,
or 18
A
POWER
DOWN
ZZ
Integrated Silicon Solution, Inc. 3
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
BOTTOM VIEW
BOTTOM VIEW
165-PIN BGA
165-Ball, 13x15 mm BGA
119-PIN BGA
119-Ball, 14x22 mm BGA
4 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
119 BGA PACKAGE PIN CONFIGURATION-256k x 36 (TOP VIEW)
PIN DESCRIPTIONS
12345 6 7
AVDDQ A A ADSP A A VDDQ
BNC CE2 A ADSC A A NC
CNC A A VDD A A NC
DDQc DQPc Vss NC Vss DQPb DQb
EDQc DQc Vss CE Vss DQb DQb
FVDDQ DQc Vss OE Vss DQb VDDQ
GDQc DQc BWc ADV BWb DQb DQb
HDQc DQc Vss GW Vss DQb DQb
JVDDQ VDD NC VDD NC VDD VDDQ
KDQd DQd Vss CLK Vss DQa DQa
LDQd DQd BWd NC BWa DQa DQa
MVDDQ DQd Vss BWE Vss DQa VDDQ
NDQd DQd Vss A1* Vss DQa DQa
PDQd DQPd Vss A0* Vss DQPa DQa
RNC A MODE VDD NC A NC
TNC NC A A A NC ZZ
UVDDQ TMS TDI TCK TDO NC VDDQ
Symbol Pin Name
A Address Inputs
A0, A1 Synchronous Burst Address Inputs
ADV Synchronous Burst Address
Advance
ADSP Address Status Processor
ADSC Address Status Controller
GW Global Write Enable
CLK Synchronous Clock
CE, CE2 Synchronous Chip Select
BWx (x=a-d) Synchronous Byte Write Controls
BWE Byte Write Enable
Symbol Pin Name
OE Output Enable
ZZ Power Sleep Mode
MODE Burst Sequence Selection
TCK, TDO JTAG Pins
TMS, TDI
NC No Connect
DQa-DQd Data Inputs/Outputs
DQPa-Pd Output Power Supply
Vdd Power Supply
Vddq Output Power Supply
Vss Ground
Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.
Integrated Silicon Solution, Inc. 5
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
119 BGA PACKAGE PIN CONFIGURATION
512kx18 (TOP VIEW)
PIN DESCRIPTIONS
Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.
1 2 3 4 5 6 7
AVDDQ A A ADSP A A VDDQ
BNC CE2 A ADSC A A NC
CNC A A VDD A A NC
DDQb NC Vss NC Vss DQPa NC
ENC DQb Vss CE Vss NC DQa
FVDDQ NC Vss OE Vss DQa VDDQ
GNC DQb BWb ADV Vss NC DQa
HDQb NC Vss GW Vss DQa NC
JVDDQ VDD NC VDD NC VDD VDDQ
KNC DQb Vss CLK Vss NC DQa
LDQb NC Vss NC BWa DQa NC
MVDDQ DQb Vss BWE Vss NC VDDQ
NDQb NC Vss A1* Vss DQa NC
PNC DQPb Vss A0* Vss NC DQa
RNC A MODE VDD NC A NC
TNC A A NC A A ZZ
UVDDQ TMS TDI TCK TDO NC VDDQ
Symbol Pin Name
A Address Inputs
A0, A1 Synchronous Burst Address Inputs
ADV Synchronous Burst Address
Advance
ADSP Address Status Processor
ADSC Address Status Controller
GW Global Write Enable
CLK Synchronous Clock
CE, CE2 Synchronous Chip Select
BWx (x=a,b) Synchronous Byte Write Controls
BWE Byte Write Enable
Symbol Pin Name
OE Output Enable
ZZ Power Sleep Mode
MODE Burst Sequence Selection
TCK, TDO JTAG Pins
TMS, TDI
NC No Connect
DQa-DQb Data Inputs/Outputs
DQPa-Pb Output Power Supply
Vdd Power Supply
Vddq Output Power Supply
Vss Ground
6 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
PIN DESCRIPTIONS
165 PBGA PACKAGE PIN CONFIGURATION
256k x 36 (TOP VIEW)
Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.
1 2 3 4 5 6 7 8 9 10 11
ANC A CE BWc BWb CE2 BWE ADSC ADV A NC
BNC A CE2 BWd BWa CLK GW OE ADSP A NC
CDQPc NC Vddq Vss Vss Vss Vss Vss Vddq Nc DQPb
DDQc DQc Vddq Vdd Vss Vss Vss Vdd Vddq DQb DQb
EDQc DQc Vddq Vdd Vss Vss Vss Vdd Vddq DQb DQb
FDQc DQc Vddq Vdd Vss Vss Vss Vdd Vddq DQb DQb
GDQc DQc Vddq Vdd Vss Vss Vss Vdd Vddq DQb DQb
HNC Vss NC Vdd Vss Vss Vss Vdd Nc Nc ZZ
JDQd DQd Vddq Vdd Vss Vss Vss Vdd Vddq dqadqa
KDQd DQd Vddq Vdd Vss Vss Vss Vdd Vddq dqadqa
LDQd DQd Vddq Vdd Vss Vss Vss Vdd Vddq dqadqa
MDQd DQd Vddq Vdd Vss Vss Vss Vdd Vddq dqadqa
NDQPd NC Vddq Vss NC NC NC Vss Vddq NC DQPa
PNC NC A A TDI A1* TDO A A A A
RMODE NC A A TMS A0* TCK A A A A
Symbol Pin Name
A Address Inputs
A0, A1 Synchronous Burst Address Inputs
ADV Synchronous Burst Address
Advance
ADSP Address Status Processor
ADSC Address Status Controller
GW Global Write Enable
CLK Synchronous Clock
CE, CE2, CE2 Synchronous Chip Select
BWx (x=a,b,c,d) Synchronous Byte Write
Controls
Symbol Pin Name
BWE Byte Write Enable
OE Output Enable
ZZ Power Sleep Mode
MODE Burst Sequence Selection
TCK, TDO JTAG Pins
TMS, TDI
NC No Connect
DQx Data Inputs/Outputs
DQPx Data Inputs/Outputs
Vdd 3.3V/2.5V Power Supply
Vddq Isolated Output Power Supply
3.3V/2.5V
Vss Ground
Integrated Silicon Solution, Inc. 7
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.
165 PBGA PACKAGE PIN CONFIGURATION
512k x 18 (TOP VIEW)
PIN DESCRIPTIONS
1 2 3 4 5 6 7 8 9 10 11
ANC A CE BWb NC CE2 BWE ADSC ADV A A
BNC A CE2 NC BWa CLK GW OE ADSP A NC
CNC NC Vddq Vss Vss Vss Vss Vss Vddq Nc DQPa
DNC DQb Vddq Vdd Vss Vss Vss Vdd Vddq NC DQa
ENC DQb Vddq Vdd Vss Vss Vss Vdd Vddq NC DQa
FNC DQb Vddq Vdd Vss Vss Vss Vdd Vddq NC DQa
GNC DQb Vddq Vdd Vss Vss Vss Vdd Vddq NC DQa
HNC Vss NC Vdd Vss Vss Vss Vdd Nc Nc ZZ
JDQb NC Vddq Vdd Vss Vss Vss Vdd Vddq dqaNc
KDQb NC Vddq Vdd Vss Vss Vss Vdd Vddq dqaNc
LDQb NC Vddq Vdd Vss Vss Vss Vdd Vddq dqaNc
MDQb NC Vddq Vdd Vss Vss Vss Vdd Vddq dqaNc
NDQPb NC Vddq Vss NC NC NC Vss Vddq NC NC
PNC NC A A TDI A1* TDO A A A A
RMODE NC A A TMS A0* TCK A A A A
Symbol Pin Name
A Address Inputs
A0, A1 Synchronous Burst Address Inputs
ADV Synchronous Burst Address
Advance
ADSP Address Status Processor
ADSC Address Status Controller
GW Global Write Enable
CLK Synchronous Clock
CE, CE2, CE2 Synchronous Chip Select
BWx (x=a,b) Synchronous Byte Write
Controls
Symbol Pin Name
BWE Byte Write Enable
OE Output Enable
ZZ Power Sleep Mode
MODE Burst Sequence Selection
TCK, TDO JTAG Pins
TMS, TDI
NC No Connect
DQx Data Inputs/Outputs
DQPx Data Inputs/Outputs
Vdd 3.3V/2.5V Power Supply
Vddq Isolated Output Power Supply
3.3V/2.5V
Vss Ground
8 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
DQPb
DQb
DQb
VDDQ
VSS
DQb
DQb
DQb
DQb
VSS
VDDQ
DQb
DQb
VSS
NC
VDD
ZZ
DQa
DQa
VDDQ
VSS
DQa
DQa
DQa
DQa
VSS
VDDQ
DQa
DQa
DQPa
A
A
CE
CE2
BWd
BWc
BWb
BWa
CE2
VDD
VSS
CLK
GW
BWE
OE
ADSC
ADSP
ADV
A
A
DQPc
DQc
DQc
VDDQ
VSS
DQc
DQc
DQc
DQc
VSS
VDDQ
DQc
DQc
NC
VDD
NC
VSS
DQd
DQd
VDDQ
VSS
DQd
DQd
DQd
DQd
VSS
VDDQ
DQd
DQd
DQPd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
MODE
A
A
A
A
A1
A0
NC
NC
VSS
VDD
NC
A
A
A
A
A
A
A
A
46 47 48 49 50
PIN DESCRIPTIONS
A0, A1 Synchronous Address Inputs. These
pins must tied to the two LSBs of the
address bus.
A Synchronous Address Inputs
ADSC
Synchronous Controller Address Status
ADSP
Synchronous Processor Address Status
ADV
Synchronous Burst Address Advance
BWa-BWd Synchronous Byte Write Enable
BWE Synchronous Byte Write Enable
CE, CE2, CE2 Synchronous Chip Enable
CLK Synchronous Clock
DQa-DQd Synchronous Data Input/Output
DQPa-DQPd Parity Data Input/Output
GW Synchronous Global Write Enable
MODE Burst Sequence Mode Selection
OE Output Enable
Vdd 3.3V/2.5V Power Supply
Vddq Isolated Output Buffer Supply:
3.3V/2.5V
Vss Ground
ZZ Snooze Enable
PIN CONFIGURATION
(3 Chip-Enable option)
100-PIN TQFP (256K X 36)
DQPb
DQb
DQb
V
DD
Q
VSS
DQb
DQb
DQb
DQb
VSS
V
DD
Q
DQb
DQb
VSS
NC
V
DD
ZZ
DQa
DQa
V
DD
Q
VSS
DQa
DQa
DQa
DQa
VSS
V
DD
Q
DQa
DQa
DQPa
A
A
CE
CE2
BWd
BWc
BWb
BWa
A
V
DD
VSS
CLK
GW
BWE
OE
ADSC
ADSP
ADV
A
A
DQPc
DQc
DQc
V
DD
Q
VSS
DQc
DQc
DQc
DQc
VSS
V
DD
Q
DQc
DQc
NC
V
DD
NC
VSS
DQd
DQd
V
DD
Q
VSS
DQd
DQd
DQd
DQd
VSS
V
DD
Q
DQd
DQd
DQPd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
MODE
A
A
A
A
A1
A0
NC
NC
VSS
VDD
NC
NC
A
A
A
A
A
A
A
46 47 48 49 50
(2 Chip-Enable option)
Integrated Silicon Solution, Inc. 9
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
PIN CONFIGURATION
(3 Chip-Enable Option)
PIN DESCRIPTIONS
A0, A1 Synchronous Address Inputs. These
pins must tied to the two LSBs of the
address bus.
A Synchronous Address Inputs
ADSC
Synchronous Controller Address Status
ADSP
Synchronous Processor Address Status
ADV
Synchronous Burst Address Advance
BWa-BWb Synchronous Byte Write Enable
BWE Synchronous Byte Write Enable
CE, CE2, CE2 Synchronous Chip Enable
CLK Synchronous Clock
DQa-DQb Synchronous Data Input/Output
DQPa-DQPb Parity Data I/O; DQPa is parity for
DQa1-8; DQPb is parity for DQb1-8
GW Synchronous Global Write Enable
MODE Burst Sequence Mode Selection
OE Output Enable
Vdd 3.3V/2.5V Power Supply
Vddq Isolated Output Buffer Supply:
3.3V/2.5V
Vss Ground
ZZ Snooze Enable
100-PIN TQFP (512K X 18)
A
NC
NC
VDDQ
VSS
NC
DQPa
DQa
DQa
VSS
VDDQ
DQa
DQa
VSS
NC
VDD
ZZ
DQa
DQa
VDDQ
VSS
DQa
DQa
NC
NC
VSS
VDDQ
NC
NC
NC
A
A
CE
CE2
NC
NC
BWb
BWa
CE2
VDD
VSS
CLK
GW
BWE
OE
ADSC
ADSP
ADV
A
A
NC
NC
NC
VDDQ
VSS
NC
NC
DQb
DQb
VSS
VDDQ
DQb
DQb
NC
VDD
NC
VSS
DQb
DQb
VDDQ
VSS
DQb
DQb
DQPb
NC
VSS
VDDQ
NC
NC
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
MODE
A
A
A
A
A1
A0
NC
NC
VSS
VDD
NC
A
A
A
A
A
A
A
A
46 47 48 49 50
(2 Chip-Enable Option)
A
NC
NC
VDDQ
VSS
NC
DQPa
DQa
DQa
VSS
VDDQ
DQa
DQa
VSS
NC
VDD
ZZ
DQa
DQa
VDDQ
VSS
DQa
DQa
NC
NC
VSS
VDDQ
NC
NC
NC
A
A
CE
CE2
NC
NC
BWb
BWa
A
V
DD
VSS
CLK
GW
BWE
OE
ADSC
ADSP
ADV
A
A
NC
NC
NC
VDDQ
VSS
NC
NC
DQb
DQb
VSS
VDDQ
DQb
DQb
NC
VDD
NC
VSS
DQb
DQb
VDDQ
VSS
DQb
DQb
DQPb
NC
VSS
VDDQ
NC
NC
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
MODE
A
A
A
A
A1
A0
NC
NC
VSS
V
DD
NC
NC
A
A
A
A
A
A
A
46 47 48 49 50
10 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
PARTIAL TRUTH TABLE
Function GW BWE BWa BWb BWc BWd
Read H H X X X X
Read H L H H H H
Write Byte 1 H L L H H H
Write All Bytes H L L L L L
Write All Bytes L X X X X X
TRUTH TABLE(1-8)
OPERATION ADDRESS
CE CE2
CE2 ZZ
ADSP ADSC ADV WRITE OE
CLK DQ
Deselect Cycle, Power-Down None H X X L X L X X X L-H High-Z
Deselect Cycle, Power-Down None L X L L L X X X X L-H High-Z
Deselect Cycle, Power-Down None L H X L L X X X X L-H High-Z
Deselect Cycle, Power-Down None L X L L H L X X X L-H High-Z
Deselect Cycle, Power-Down None L H X L H L X X X L-H High-Z
Snooze Mode, Power-Down None X X X H X X X X X X High-Z
Read Cycle, Begin Burst External L L H L L X X X L L-H Q
Read Cycle, Begin Burst External L L H L L X X X H L-H High-Z
Write Cycle, Begin Burst External L L H L H L X L X L-H D
Read Cycle, Begin Burst External L L H L H L X H L L-H Q
Read Cycle, Begin Burst External L L H L H L X H H L-H High-Z
Read Cycle, Continue Burst Next X X X L H H L H L L-H Q
Read Cycle, Continue Burst Next X X X L H H L H H L-H High-Z
Read Cycle, Continue Burst Next H X X L X H L H L L-H Q
Read Cycle, Continue Burst Next H X X L X H L H H L-H High-Z
Write Cycle, Continue Burst Next X X X L H H L L X L-H D
Write Cycle, Continue Burst Next H X X L X H L L X L-H D
Read Cycle, Suspend Burst Current X X X L H H H H L L-H Q
Read Cycle, Suspend Burst Current X X X L H H H H H L-H High-Z
Read Cycle, Suspend Burst Current H X X L X H H H L L-H Q
Read Cycle, Suspend Burst Current H X X L X H H H H L-H High-Z
Write Cycle, Suspend Burst Current X X X L H H H L X L-H D
Write Cycle, Suspend Burst Current H X X L X H H L X L-H D
NOTE:
1. X means “Don’t Care. H means logic HIGH. L means logic LOW.
2. For WRITE, L means one or more byte write enable signals (BWa-d) and BWE are LOW or GW is LOW. WRITE = H for all
BWx, BWE, GW HIGH.
3. BWa enables WRITEs to DQa’s and DQPa. BWb enables WRITEs to DQb’s and DQPb. BWc enables WRITEs to DQc’s and
DQPc. BWd enables WRITEs to DQd’s and DQPd. DQPa and DQPb are available on the x18 version. DQPa-DQPd are avail-
able on the x36 version.
4. All inputs except OE and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
5. Wait states are inserted by suspending burst.
6. For a WRITE operation following a READ operation, OE must be HIGH before the input data setup time and held HIGH during
the input data hold time.
7. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
8. ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write
enable signals and BWE LOW or GW LOW for the subsequent L-H edge of CLK. See WRITE timing diagram for clarification.
Integrated Silicon Solution, Inc. 11
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
INTERLEAVED BURST ADDRESS TABLE (MODE = VDD or No Connect)
External Address 1st Burst Address 2nd Burst Address 3rd Burst Address
A1 A0 A1 A0 A1 A0 A1 A0
00 01 10 11
01 00 11 10
10 11 00 01
11 10 01 00
LINEAR BURST ADDRESS TABLE (MODE = VSS)
0,0
1,0
0,1A1', A0' = 1,1
ABSOLUTE MAXIMUM RATINGS(1)
Symbol Parameter Value Unit
TsTg Storage Temperature –55 to +150 °C
Pd Power Dissipation 1.6 W
IOuT Output Current (per I/O) 100 mA
VIN, VOuT Voltage Relative to Vss for I/O Pins –0.5 to Vddq + 0.5 V
VIN Voltage Relative to Vss for –0.5 to Vdd + 0.5 V
for Address and Control Inputs
Vdd Voltage on Vdd Supply Relative to Vss –0.5 to 4.6 V
Notes:
1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause perma-
nent damage to the device. This is a stress rating only and functional operation of the device
at these or any other conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended
periods may affect reliability.
2. This device contains circuity to protect the inputs against damage due to high static voltages
or electric fields; however, precautions may be taken to avoid application of any voltage
higher than maximum rated voltages to this high-impedance circuit.
3. This device contains circuitry that will ensure the output devices are in High-Z at power up.
12 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
POWER SUPPLY CHARACTERISTICS(1) (Over Operating Range)
6.5
7.5
MAX MAX
Symbol Parameter Test Conditions
Temp. range x18 x36 x18 x36 Uni
t
Icc AC Operating Device Selected, Com. 185 185 175 175 mA
Supply Current OE = VIh, ZZ VIl, Ind. 190 190 185 185
All Inputs 0.2V or Vdd 0.2V, AuTO. 225 225
Cycle Time tkc min.
Isb Standby Current Device Deselected, Com. 140 140 140 140 mA
TTL Input Vdd = Max., Ind. 150 150 150 150
All Inputs VIl or VIh, AuTO. 150 150
ZZ VIl, f = Max.
IsbI Standby Current Device Deselected, Com. 80 80 80 80 mA
cMOs Input Vdd = Max., Ind. 85 85 85 85
VIN
Vss + 0.2V or Vdd 0.2V Auto. 130 130
f = 0
Note:
1. MODE pin has an internal pullup and should be tied to Vdd or Vss. It exhibits ±100 µA maximum leakage current when tied to Vss + 0.2V or Vdd – 0.2V.
DC ELECTRICAL CHARACTERISTICS (Over Operating Range)
3.3V 2.5V
Symbol Parameter Test Conditions Min. Max. Min. Max. Unit
VOh Output HIGH Voltage IOh = –4.0 mA (3.3V) 2.4 2.0 V
IOh = –1.0 mA (2.5V)
VOl Output LOW Voltage IOl = 8.0 mA (3.3V) 0.4 0.4 V
IOl = 1.0 mA (2.5V)
VIh Input HIGH Voltage 2.0 Vdd + 0.3 1.7 Vdd + 0.3 V
VIl Input LOW Voltage –0.3 0.8 –0.3 0.7 V
IlI Input Leakage Current Vss VIN Vdd(1) –5 5 –5 5 µA
IlO Output Leakage Current Vss VOuT Vddq, OE = VIh –5 5 –5 5 µA
OPERATING RANGE (IS61LFxxxxx)
Range Ambient Temperature VDD VDDq
Commercial 0°C to +70°C 3.3V ± 5% 3.3V/2.5V ± 5%
Industrial -40°C to +85°C 3.3V ± 5% 3.3V/2.5V ± 5%
OPERATING RANGE (IS61VFxxxxx)
Range Ambient Temperature VDD VDDq
Commercial 0°C to +70°C 2.5V ± 5% 2.5V ± 5%
Industrial -40°C to +85°C 2.5V ± 5% 2.5V ± 5%
OPERATING RANGE (IS64LFxxxxx)
Range Ambient Temperature VDD VDDq
Automotive -40°C to +125°C 3.3V ± 5% 3.3V/2.5V ± 5%
Integrated Silicon Solution, Inc. 13
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
CAPACITANCE(1,2)
Symbol Parameter Conditions Max. Unit
cIN Input Capacitance VIN = 0V 6 pF
cOuT Input/Output Capacitance VOuT = 0V 8 pF
Notes:
1. Tested initially and after any design or process changes that may affect these parameters.
2. Test conditions: T
A = 25°c, f = 1 MHz, Vdd = 3.3V.
3.3V I/O AC TEST CONDITIONS
Parameter Unit
Input Pulse Level 0V to 3.0V
Input Rise and Fall Times 1.5 ns
Input and Output Timing 1.5V
and Reference Level
Output Load See Figures 1 and 2
AC TEST LOADS
Figure 2
317
5 pF
Including
jig and
scope
351
OUTPUT
3.3V
Figure 1
OUTPUT
ZO
= 50
1.5V
50
14 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
2.5V I/O AC TEST CONDITIONS
Parameter Unit
Input Pulse Level 0V to 2.5V
Input Rise and Fall Times 1.5 ns
Input and Output Timing 1.25V
and Reference Level
Output Load See Figures 3 and 4
Z
O
= 50
1.25V
50
OUTPUT
Figure 3 Figure 4
2.5V I/O OUTPUT LOAD EQUIVALENT
Integrated Silicon Solution, Inc. 15
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
READ/WRITE CYCLE SWITCHING CHARACTERISTICS(1) (Over Operating Range)
6.5 7.5
Symbol Parameter Min. Max. Min. Max. Unit
fmax Clock Frequency 133 117 MHz
tkc Cycle Time 7.5 8.5 ns
tkh Clock High Time 2.2 2.5 ns
tkl Clock Low Time 2.2 2.5 ns
tkq Clock Access Time 6.5 7.5 ns
tkqx(2) Clock High to Output Invalid 2.5 2.5 ns
tkqlZ(2,3) Clock High to Output Low-Z 2.5 2.5 ns
tkqhZ(2,3) Clock High to Output High-Z 3.8 4.0 ns
tOEq Output Enable to Output Valid 3.2 3.4 ns
tOElZ(2,3) Output Enable to Output Low-Z 0 0 ns
tOEhZ(2,3) Output Disable to Output High-Z 3.5 3.5 ns
tAs Address Setup Time 1.5 1.5 ns
tss Address Status Setup Time 1.5 1.5 ns
tWs Read/Write Setup Time 1.5 1.5 ns
tcEs Chip Enable Setup Time 1.5 1.5 ns
tAVs Address Advance Setup Time 1.5 1.5 ns
tds Data Setup Time 1.5 1.5 ns
tAh Address Hold Time 0.5 0.5 ns
tsh Address Status Hold Time 0.5 0.5 ns
tWh Write Hold Time 0.5 0.5 ns
tcEh Chip Enable Hold Time 0.5 0.5 ns
tAVh Address Advance Hold Time 0.5 0.5 ns
tdh Data Hold Time 0.5 0.5 ns
Notes:
1. Configuration signal MODE is static and must not change during normal operation.
2. Guaranteed but not 100% tested. This parameter is periodically sampled.
3. Tested with load in Figure 2.
16 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
READ/WRITE CYCLE TIMING
Single Read
Flow-through
Single Write
High-Z
High-Z
DATA
OUT
DATA
IN
OE
CE2
CE2
CE
BWd-BWa
BWE
GW
Address
ADV
ADSC
ADSP
CLK
RD1 WR1
WR1
1a
1a
2a 2b 2c 2d
Unselected
Burst Read
tKQX
tKC
tKLtKH
tSS tSH ADSP is blocked by CE inactive
tSS tSH
tAS tAH
tWS tWH
tWS tWH
tWS tWH
RD2 RD3
tCES tCEH
tCES tCEH
tCES tCEH
tOEQ
tOELZ
CE2 and CE2 only sampled with ADSP or ADSC
CE Masks ADSP
Unselected with CE2
tKQ
tOEHZ
tDS tDH
tKQHZ
tKQLZ
High-Z
tKQLZ
tKQ
tKQX
Integrated Silicon Solution, Inc. 17
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
WRITE CYCLE TIMING
Single Write
DATA
OUT
DATA
IN
OE
CE2
CE2
CE
BWd-BWa
BWE
GW
Address
ADV
ADSC
ADSP
CLK
WR1 WR2
Unselected
Burst Write
t
KC
tKLtKH
tSS tSH
tAS tAH
tWS tWH
tWS tWH
WR3
t
CES tCEH
tCES tCEH
tCES tCEH
CE2 and CE3 only sampled with ADSP or ADSC
CE1 Masks ADSP
Unselected with CE2
ADSC initiate Write
ADSP is blocked by CE1 inactive
t
AVH
tAVS
ADV must be inactive for ADSP Write
WR1 WR2
t
WS tWH
WR3
t
WS tWH
High-Z
High-Z 1a 3a
t
DS tDH
BW4-BW1 only are applied to first cycle of WR2
Write
2c 2d2b2a
18 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
SNOOZE MODE TIMING
Don't Care
Deselect or Read Only Deselect or Read Only
tRZZI
CLK
ZZ
Isupply
All Inputs
(except ZZ)
Outputs
(Q)
ISB2
ZZ setup cycle ZZ recovery cycle
Normal
operation
cycle
tPDS tPUS
tZZI
High-Z
SNOOZE MODE ELECTRICAL CHARACTERISTICS
Symbol Parameter Conditions Temp. Range Min. Max. Unit
Isb2 Current during SNOOZE MODE ZZ Vih Com. 55 mA
Ind. 60
Auto. 95
tPds ZZ active to input ignored 2 cycle
tPus ZZ inactive to input sampled 2 cycle
tZZI ZZ active to SNOOZE current 2 cycle
trZZI ZZ inactive to exit SNOOZE current 0 ns
Integrated Silicon Solution, Inc. 19
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
IEEE 1149.1 SERIAL BOUNDARY SCAN (JTAG)
The IS61LF/VF25636A and IS61LF/VF51218A have a
serial boundary scan Test Access Port (TAP) in the PBGA
package only. This port operates in accordance with
IEEE
Standard 1149.1-1900, but does not include all functions
required for full 1149.1 compliance. These functions from
the
IEEE specification
are excluded because they place
added delay in the critical speed path of the SRAM. The
TAP controller operates in a manner that does not conflict
with the performance of other devices using 1149.1 fully
compliant TAPs. The TAP operates using JEDEC standard
2.5V I/O logic levels.
DISABLING THE JTAG FEATURE
The SRAM can operate without using the JTAG feature.
To disable the TAP controller, TCK must be tied LOW
(Vss) to prevent clocking of the device. TDI and TMS are
internally pulled up and may be disconnected. They may
alternately be connected to Vdd through a pull-up resistor.
TDO should be left disconnected. On power-up, the device
will start in a reset state which will not interfere with the
device operation.
TEST ACCESS PORT (TAP) - TEST CLOCK
The test clock is only used with the TAP controller. All inputs
are captured on the rising edge of TCK and outputs are
driven from the falling edge of TCK.
TEST MODE SELECT (TMS)
The TMS input is used to send commands to the TAP
controller and is sampled on the rising edge of TCK. This
pin may be left disconnected if the TAP is not used. The pin
is internally pulled up, resulting in a logic HIGH level.
TEST DATA-IN (TDI)
The TDI pin is used to serially input information to the
registers and can be connected to the input of any regis-
ter. The register between TDI and TDO is chosen by the
instruction loaded into the TAP instruction register. For
information on instruction register loading, see the TAP
Controller State Diagram. TDI is internally pulled up and
can be disconnected if the TAP is unused in an applica-
tion. TDI is connected to the Most Significant Bit (MSB)
on any register.
31 30 29 . . . 2 1 0
2 1 0
0
x . . . . . 2 1 0
Bypass Register
Instruction Register
Identification Register
Boundary Scan
Register*
TAP CONTROLLER
Selection Circuitry Selection Circuitry TDOTDI
TCK
TMS
TAP CONTROLLER BLOCK DIAGRAM
20 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
TEST DATA OUT (TDO)
The TDO output pin is used to serially clock data-out from
the registers. The output is active depending on the current
state of the
TAP
state machine (see
TAP
Controller State
Diagram). The output changes on the falling edge of TCK
and TDO is connected to the Least Significant Bit (LSB)
of any register.
PERFORMING A TAP RESET
A Reset is performed by forcing TMS HIGH (Vdd) for five
rising edges of TCK. RESET may be performed while the
SRAM is operating and does not affect its operation. At
power-up, the TAP is internally reset to ensure that TDO
comes up in a high-Z state.
TAP REGISTERS
Registers are connected between the TDI and TDO pins
and allow data to be scanned into and out of the SRAM
test circuitry. Only one register can be selected at a time
through the instruction registers. Data is serially loaded
into the TDI pin on the rising edge of TCK and output on
the TDO pin on the falling edge of TCK.
Instruction Register
Three-bit instructions can be serially loaded into the in-
struction register. This register is loaded when it is placed
between the
TDI
and
TDO
pins. (See
TAP
Controller Block
Diagram) At power-up, the instruction register is loaded
with the IDCODE instruction. It is also loaded with the
IDCODE instruction if the controller is placed in a reset
state as previously described.
When the TAP controller is in the CaptureIR state, the two
least significant bits are loaded with a binary “01” pattern to
allow for fault isolation of the board level serial test path.
Bypass Register
To save time when serially shifting data through registers,
it is sometimes advantageous to skip certain states. The
bypass register is a single-bit register that can be placed
between TDI and TDO pins. This allows data to be shifted
through the
SRAM
with minimal delay. The bypass reg-
ister is set LOW (Vss) when the BYPASS instruction is
executed.
Boundary Scan Register
The boundary scan register is connected to all input and
output pins on the
SRAM
. Several no connect
(NC)
pins are
also included in the scan register to reserve pins for higher
density devices. The x36 configuration has a 75-bit-long
register and the x18 configuration also has a 75-bit-long
register. The boundary scan register is loaded with the
contents of the RAM Input and Output ring when the TAP
controller is in the Capture-DR state and then placed be-
tween the
TDI
and
TDO
pins when the controller is moved
to the
Shift-DR
state. The EXTEST, SAMPLE/PRELOAD
and SAMPLE-Z instructions can be used to capture the
contents of the Input and Output ring.
The Boundary Scan Order tables show the order in which
the bits are connected. Each bit corresponds to one of the
bumps on the SRAM package. The MSB of the register is
connected to TDI, and the LSB is connected to TDO.
Identification (ID) Register
The ID register is loaded with a vendor-specific, 32-bit
code during the Capture-DR state when the IDCODE com-
mand is loaded to the instruction register. The IDCODE
is hardwired into the SRAM and can be shifted out when
the TAP controller is in the Shift-DR state. The ID register
has vendor code and other information described in the
Identification Register Definitions table.
Scan Register Sizes
Register Name Bit Size Bit Size
(x18) (x36)
Instruction 3 3
Bypass 1 1
ID 32 32
Boundary Scan 75 75
IDENTIFICATION REGISTER DEFINITIONS
Instruction Field Description 256K x 36 512K x 18
Revision Number (31:28) Reserved for version number. xxxx xxxx
Device Depth (27:23) Defines depth of SRAM. 256K or 512K 00111 01000
Device Width (22:18) Defines with of the SRAM. x36 or x18 00100 00011
ISSI Device ID (17:12) Reserved for future use. xxxxx xxxxx
ISSI JEDEC ID (11:1) Allows unique identification of SRAM vendor. 00011010101 00011010101
ID Register Presence (0) Indicate the presence of an ID register. 1 1
Integrated Silicon Solution, Inc. 21
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
TAP INSTRUCTION SET
Eight instructions are possible with the three-bit instruction
register and all combinations are listed in the Instruction
Code table. Three instructions are listed as
RESERVED
and should not be used and the other five instructions are
described below. The TAP controller used in this SRAM
is not fully compliant with the 1149.1 convention because
some mandatory instructions are not fully implemented.
The TAP controller cannot be used to load address, data or
control signals and cannot preload the
Input
or
Output
buf-
fers. The
SRAM
does not implement the
1149.1
commands
EXTEST
or
INTEST
or the
PRELOAD
portion of
SAMPLE/
PRELOAD
; instead it performs a capture of the
Inputs and
Output
ring when these instructions are executed. Instruc-
tions are loaded into the TAP controller during the Shift-IR
state when the instruction register is placed between TDI
and TDO. During this state, instructions are shifted from
the instruction register through the TDI and TDO pins. To
execute an instruction once it is shifted in, the TAP control-
ler must be moved into the Update-IR state.
EXTEST
EXTEST is a mandatory 1149.1 instruction which is to be
executed whenever the instruction register is loaded with
all 0s. Because EXTEST is not implemented in the TAP
controller, this device is not 1149.1 standard compliant.
The TAP controller recognizes an all-0 instruction. When an
EXTEST instruction is loaded into the instruction register,
the SRAM responds as if a SAMPLE/PRELOAD instruction
has been loaded. There is a difference between the instruc-
tions, unlike the
SAMPLE/PRELOAD
instruction, EXTEST
places the SRAM outputs in a High-Z state.
IDCODE
The IDCODE instruction causes a vendor-specific, 32-
bit code to be loaded into the instruction register. It also
places the instruction register between the TDI and TDO
pins and allows the IDCODE to be shifted out of the device
when the TAP controller enters the Shift-DR state. The
IDCODE instruction is loaded into the instruction register
upon power-up or whenever the TAP controller is given a
test logic reset state.
SAMPLE-Z
The SAMPLE-Z instruction causes the boundary scan
register to be connected between the TDI and TDO pins
when the TAP controller is in a Shift-DR state. It also places
all SRAM outputs into a High-Z state.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The
PRELOAD portion of this instruction is not implemented, so
the TAP controller is not fully 1149.1 compliant. When the
SAMPLE/PRELOAD instruction is loaded to the instruc-
tion register and the TAP controller is in the Capture-DR
state, a snapshot of data on the inputs and output pins is
captured in the boundary scan register.
It is important to realize that the TAP controller clock oper-
ates at a frequency up to 10 MHz, while the SRAM clock
runs more than an order of magnitude faster. Because of
the clock frequency differences, it is possible that during
the Capture-DR state, an input or output will under-go a
transition. The TAP may attempt a signal capture while in
transition (metastable state). The device will not be harmed,
but there is no guarantee of the value that will be captured
or repeatable results.
To guarantee that the boundary scan register will capture
the correct signal value, the SRAM signal must be stabilized
long enough to meet the TAP controller’s capture set-up
plus hold times (tcs and tch). To insure that the SRAM clock
input is captured correctly, designs need a way to stop (or
slow) the clock during a SAMPLE/PRELOAD instruction.
If this is not an issue, it is possible to capture all other
signals and simply ignore the value of the CLK and CLK
captured in the boundary scan register.
Once the data is captured, it is possible to shift out the data
by putting the TAP into the Shift-DR state. This places the
boundary scan register between the TDI and TDO pins.
Note that since the
PRELOAD
part of the command is not
implemented, putting the
TAP
into the
Update
to the
Update-
DR
state while performing a
SAMPLE/PRELOAD
instruction
will have the same effect as the Pause-DR command.
BYPASS
When the BYPASS instruction is loaded in the instruc-
tion register and the TAP is placed in a Shift-DR state,
the bypass register is placed between the TDI and TDO
pins. The advantage of the BYPASS instruction is that it
shortens the boundary scan path when multiple devices
are connected together on a board.
RESERVED
These instructions are not implemented but are reserved
for future use. Do not use these instructions.
22 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
INSTRUCTION CODES
Code Instruction Description
000 EXTEST Captures the Input/Output ring contents. Places the boundary scan register be-
tween the TDI and TDO. Forces all SRAM outputs to High-Z state. This
instruction is not 1149.1 compliant.
001 IDCODE Loads the ID register with the vendor ID code and places the register between TDI
and TDO. This operation does not affect SRAM operation.
010 SAMPLE-Z Captures the Input/Output contents. Places the boundary scan register between
TDI and TDO. Forces all SRAM output drivers to a High-Z state.
011 RESERVED Do Not Use: This instruction is reserved for future use.
100
SAMPLE/PRELOAD
Captures the Input/Output ring contents. Places the boundary scan register
between
TDI and TDO. Does not affect the SRAM operation. This instruction does not
implement 1149.1 preload function and is therefore not 1149.1 compliant.
101 RESERVED Do Not Use: This instruction is reserved for future use.
110 RESERVED Do Not Use: This instruction is reserved for future use.
111 BYPASS Places the bypass register between TDI and TDO. This operation does not
affect SRAM operation.
Select DR
Capture DR
Shift DR
Exit1 DR
Pause DR
Exit2 DR
Update DR
Select IR
Capture IR
Shift IR
Exit1 IR
Pause IR
Exit2 IR
Update IR
Test Logic Reset
Run Test/Idle 1 1 1
1 1
1 1
1
1
11
11
1
0
0
0
0
1
0 0
0
0
0
0
0
0
0
0
0
1 0
TAP CONTROLLER STATE DIAGRAM
Integrated Silicon Solution, Inc. 23
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
TAP Electrical Characteristics Over the Operating Range(1,2)
Symbol Parameter Test Conditions Min. Max. Units
VOh1 Output HIGH Voltage IOh = –2.0 mA 1.7 V
VOh2 Output HIGH Voltage IOh = –100 µA 2.1 V
VOl1 Output LOW Voltage IOl = 2.0 mA 0.7 V
VOl2 Output LOW Voltage IOl = 100 µA 0.2 V
VIh Input HIGH Voltage 1.7 Vdd +0.3 V
VIl Input LOW Voltage IOlT = 2mA –0.3 0.7 V
Ix Input Load Current Vss V I Vddq –5 5 mA
Notes:
1. All Voltage referenced to Ground.
2. Overshoot: VIh (AC) Vdd +1.5V for t tTcyc/2,
Undershoot: Vil (AC) 0.5V for t tTcyc/2,
Power-up: VIh < 2.6V and Vdd < 2.4V and Vddq < 1.4V for t < 200 ms.
TAP AC ELECTRICAL CHARACTERISTICS(1,2) (OVER OPERATING RANGE)
Symbol Parameter Min. Max. Unit
tTcyc TCK Clock cycle time 100 ns
fTf TCK Clock frequency 10 MHz
tTh TCK Clock HIGH 40 ns
tTl TCK Clock LOW 40 ns
tTMss TMS setup to TCK Clock Rise 10 ns
tTdIs TDI setup to TCK Clock Rise 10 ns
tcs Capture setup to TCK Rise 10 ns
tTMsh
TMS hold after TCK Clock Rise
10 ns
tTdIh TDI Hold after Clock Rise 10 ns
tch Capture hold after Clock Rise 10 ns
tTdOV TCK LOW to TDO valid 20 ns
tTdOx TCK LOW to TDO invalid 0 ns
Notes:
1. Both tcs and tch refer to the set-up and hold time requirements of latching data from the boundary scan register.
2. Test conditions are specied using the load in TAP AC test conditions. tr/tf = 1 ns.
24 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
DON'T CARE
UNDEFINED
TCK
TMS
TDI
TDO
tTHTL
tTLTH
tTHTH
tMVTH tTHMX
tDVTH tTHDX
1 2 3 4 5 6
tTLOX
tTLOV
TAP TIMING
20 pF
TDO
GND
50
1.25V/1.5V
Z
0
= 50
TAP Output Load Equivalent
TAP AC TEST CONDITIONS
Input pulse levels 0 to 2.5V/0 to 3.0V
Input rise and fall times 1ns
Input timing reference levels 1.25V/1.5V
Output reference levels 1.25V/1.5V
Test load termination supply voltage 1.25V/1.5V
Integrated Silicon Solution, Inc. 25
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
119 BGA BOUNDARY SCAN ORDER (256K X 36)
Signal Bump Signal Bump Signal Bump Signal Bump
Bit # Name ID Bit # Name ID Bit # Name ID Bit # Name ID
1 A 2R 19 DQb 7G 37 BWa 5L 55 DQd 2K
2 A 3T 20 DQb 6F 38 BWb 5G 56 DQd 1L
3 A 4T 21 DQb 7E 39 BWc 3G 57 DQd 2M
4 A 5T 22 DQb 7D 40 BWd 3L 58 DQd 1N
5 A 6R 23 DQb 7H 41 CE2 2B 59 DQd 1P
6 A 3B 24 DQb 6G 42 CE 4E 60 DQd 1K
7 A 5B 25 DQb 6E 43 A 3A 61 DQd 2L
8 DQa 6P 26 DQb 6D 44 A 2A 62 DQd 2N
9 DQa 7N 27 A 6A 45 DQc 2D 63 DQd 2P
10 DQa 6M 28 A 5A 46 DQc 1E 64 MODE 3R
11 DQa 7L 29 ADV 4G 47 DQc 2F 65 A 2C
12 DQa 6K 30 ADSP 4A 48 DQc 1G 66 A 3C
13 DQa 7P 31 ADSC 4B 49 DQc 2H 67 A 5C
14 DQa 6N 32 OE 4F 50 DQc 1D 68 A 6C
15 DQa 6L 33 BWE 4M 51 DQc 2E 69 A1 4N
16 DQa 7K 34 GW 4H 52 DQc 2G 70 A0 4P
17 ZZ 7T 35 CLK 4K 53 DQc 1H
18 DQb 6H 36 A 6B 54 NC 5R
119 BGA BOUNDARY SCAN ORDER (512K X 18)
Signal Bump Signal Bump Signal Bump Signal Bump
Bit # Name ID Bit # Name ID Bit # Name ID Bit # Name ID
1 A 2R 14 DQa 7G 27 CLK 4K 40 DQb 2K
2 A 2T 15 DQa 6F 28 A 6B 41 DQb 1L
3 A 3T 16 DQa 7E 29 BWa 5L 42 DQb 2M
4 A 5T 17 DQa 6D 30 BWb 3G 43 DQb 1N
5 A 6R 18 A 6T 31 CE2 2B 44 DQb 2P
6 A 3B 19 A 6A 32 CE 4E 45 MODE 3R
7 A 5B 20 A 5A 33 A 3A 46 A 2C
8 DQa 7P 21 ADV 4G 34 A 2A 47 A 3C
9 DQa 6N 22 ADSP 4A 35 DQb 1D 48 A 5C
10 DQa 6L 23 ADSC 4B 36 DQb 2E 49 A 6C
11 DQa 7K 24 OE 4F 37 DQb 2G 50 A1 4N
12 ZZ 7T 25 BWE 4M 38 DQb 1H 51 A0 4P
13 DQa 6H 26 GW 4H 39 NC 5R
26 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
165 PBGA BOUNDARY SCAN ORDER (x 36)
Signal Bump Signal Bump Signal Bump Signal Bump
Bit # Name ID Bit # Name ID Bit # Name ID Bit # Name ID
1 MODE 1R 21 DQb 11G 41 NC 1A 61 DQd 1J
2 NC 6N 22 DQb 11F 42 CE2 6A 62 DQd 1K
3 A 11P 23 DQb 11E 43 BWa 5B 63 DQd 1L
4 A 8P 24 DQb 11D 44 BWb 5A 64 DQd 1M
5 A 8R 25 DQb 10G 45 BWc 4A 65 DQd 2J
6 A 9R 26 DQb 10F 46 BWd 4B 66 DQd 2K
7 A 9P 27 DQb 10E 47 CE2 3B 67 DQd 2L
8 A 10P 28 DQb 10D 48 CE 3A 68 DQd 2M
9 A 10R 29 DQb 11C 49 A 2A 69 DQd 1N
10 A 11R 30 NC 11A 50 A 2B 70 A 3P
11 ZZ 11H 31 A 10A 51 NC 1B 71 A 3R
12 DQa 11N 32 A 10B 52 DQc 1C 72 A 4R
13 DQa 11M 33 ADV 9A 53 DQc 1D 73 A 4P
14 DQa 11L 34 ADSP 9B 54 DQc 1E 74 A1 6P
15 DQa 11K 35 ADSC 8A 55 DQc 1F 75 A0 6R
16 DQa 11J 36 OE 8B 56 DQc 1G
17 DQa 10M 37 BWE 7A 57 DQc 2D
18 DQa 10L 38 GW 7B 58 DQc 2E
19 DQa 10K 39 CLK 6B 59 DQc 2F
20 DQa 10J 40 NC 11B 60 DQc 2G
Integrated Silicon Solution, Inc. 27
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
165 PBGA BOUNDARY SCAN ORDER (x 18)
Signal Bump Signal Bump Signal Bump Signal Bump
Bit # Name ID Bit # Name ID Bit # Name ID Bit # Name ID
1 MODE 1R 21 DQa 11G 41 NC 1A 61 DQb 1J
2 NC 6N 22 DQa 11F 42 CE2 6A 62 DQb 1K
3 A 11P 23 DQa 11E 43 BWa 5B 63 DQb 1L
4 A 8P 24 DQa 11D 44 NC 5A 64 DQb 1M
5 A 8R 25 DQa 11C 45 BWb 4A 65 DQb 1N
6 A 9R 26 NC 10F 46 NC 4B 66 NC 2K
7 A 9P 27 NC 10E 47 CE2 3B 67 NC 2L
8 A 10P 28 NC 10D 48 CE 3A 68 NC 2M
9 A 10R 29 NC 10G 49 A 2A 69 NC 2J
10 A 11R 30 A 11A 50 A 2B 70 A 3P
11 ZZ 11H 31 A 10A 51 NC 1B 71 A 3R
12 NC 11N 32 A 10B 52 NC 1C 72 A 4R
13 NC 11M 33 ADV 9A 53 NC 1D 73 A 4P
14 NC 11L 34 ADSP 9B 54 NC 1E 74 A1 6P
15 NC 11K 35 ADSC 8A 55 NC 1F 75 A0 6R
16 NC 11J 36 OE 8B 56 NC 1G
17 DQa 10M 37 BWE 7A 57 DQb 2D
18 DQa 10L 38 GW 7B 58 DQb 2E
19 DQa 10K 39 CLK 6B 59 DQb 2F
20 DQa 10J 40 NC 11B 60 DQb 2G
28 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
ORDERING INFORMATION (VDD = 3.3V/VDDq = 2.5V/3.3V)
Commercial Range: 0°C to +70°C
Configuration Access Time Order Part Number Package(1)
256Kx36 6.5 IS61LF25636A-6.5TQ 100 TQFP, 3CE
IS61LF25636A-6.5B2 119 PBGA
IS61LF25636A-6.5B3 165 PBGA
256Kx36 7.5 IS61LF25636A-7.5TQ 100 TQFP, 3CE
IS61LF25636A-7.5B2 119 PBGA
IS61LF25636A-7.5B3 165 PBGA
512Kx18 6.5 IS61LF51218A-6.5TQ 100 TQFP, 3CE
IS61LF51218A-6.5TQL 100 TQFP, 3CE, Lead-free
IS61LF51218A-6.5B2 119 PBGA
IS61LF51218A-6.5B3 165 PBGA
512Kx18 7.5 IS61LF51218A-7.5TQ 100 TQFP, 3CE
IS61LF51218A-7.5B2 119 PBGA
IS61LF51218A-7.5B3 165 PBGA
Industrial Range: -40°C to +85°C
Configuration Access Time Order Part Number Package(1)
256Kx36 6.5 IS61LF25636A-6.5TQI 100 TQFP, 3CE
IS61LF25636A-6.5B2I 119 PBGA
IS61LF25636A-6.5B3I 165 PBGA
256Kx36 7.5 IS61LF25636A-7.5TQI 100 TQFP, 3CE
IS61LF25636A-7.5TQLI 100 TQFP, 3CE, Lead-free
IS61LF25636A-7.5B2I 119 PBGA
IS61LF25636A-7.5B3I 165 PBGA
512Kx18 6.5 IS61LF51218A-6.5TQI 100 TQFP, 3CE
IS61LF51218A-6.5B2I 119 PBGA
IS61LF51218A-6.5B3I 165 PBGA
512Kx18 7.5 IS61LF51218A-7.5TQI 100 TQFP, 3CE
IS61LF51218A-7.5TQLI 100 TQFP, 3CE, Lead-free
IS61LF51218A-7.5B2I 119 PBGA
IS61LF51218A-7.5B3I 165 PBGA
Note:
1. For 100 TQFP, 2CE option contact SRAM Marketing at sram@issi.com
Automotive Range: -40°C to +125°C
Configuration Access Time Order Part Number Package(1)
256Kx36 7.5 IS64LF25636A-7.5TQLA3 100 TQFP, 3CE, Lead-free
IS64LF25636A-7.5B3LA3 165 PBGA, Lead-free
512Kx18 7.5 IS64LF51218A-7.5TQLA3 100 TQFP, 3CE, Lead-free
Integrated Silicon Solution, Inc. 29
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
ORDERING INFORMATION (VDD = 2.5V /VDDq = 2.5V)
Commercial Range: 0°C to +70°C
Configuration Access Time Order Part Number Package(1)
256Kx36 6.5 IS61VF25636A-6.5TQ 100 TQFP, 3CE
IS61VF25636A-6.5B2 119 PBGA
IS61VF25636A-6.5B3 165 PBGA
256Kx36 7.5 IS61VF25636A-7.5TQ 100 TQFP, 3CE
IS61VF25636A-7.5B2 119 PBGA
IS61VF25636A-7.5B3 165 PBGA
512Kx18 6.5 IS61VF51218A-6.5TQ 100 TQFP, 3CE
IS61VF51218A-6.5B2 119 PBGA
IS61VF51218A-6.5B3 165 PBGA
512Kx18 7.5 IS61VF51218A-7.5TQ 100 TQFP, 3CE
IS61VF51218A-7.5B2 119 PBGA
IS61VF51218A-7.5B3 165 PBGA
Industrial Range: -40°C to +85°C
Configuration Access Time Order Part Number Package(1)
256Kx36 6.5 IS61VF25636A-6.5TQI 100 TQFP, 3CE
IS61VF25636A-6.5B2I 119 PBGA
IS61VF25636A-6.5B3I 165 PBGA
256Kx36 7.5 IS61VF25636A-7.5TQI 100 TQFP, 3CE
IS61VF25636A-7.5B2I 119 PBGA
IS61VF25636A-7.5B3I 165 PBGA
512Kx18 6.5 IS61VF51218A-6.5TQI 100 TQFP, 3CE
IS61VF51218A-6.5B2I 119 PBGA
IS61VF51218A-6.5B3I 165 PBGA
512Kx18 7.5 IS61VF51218A-7.5TQI 100 TQFP, 3CE
IS61VF51218A-7.5B2I 119 PBGA
IS61VF51218A-7.5B3I 165 PBGA
Note:
1. For 100 TQFP, 2CE option contact SRAM Marketing at sram@issi.com
30 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
Integrated Silicon Solution, Inc. 31
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
1. CONTROLLING DIMENSION : MM .
NOTE :
2. Reference document : JEDEC MS-028
10/02/2008
Package Outline
32 Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
1. CONTROLLING DIMENSION : MM .
NOTE :
Package Outline 08/28/2008