International Rectifier HEXFET Power MOSFET PD-9.520D IRFR9120 IRFU9120 Dynamic dv/dt Rating * Repetitive Avalanche Rated D Vice = -100V Surface Mount (IRFR9120) DSS ~~ @ Straight Lead (IRFU9120) Available in Tape & Reel 6 Rpsvon) = 0.602 @ P-Channel e Fast Switching S Ip =-5.6A Description Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The D-Pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications. D-PAK EPAK TO-252AA TO-251AA Absolute Maximum Ratings | | Parameter Max. Units_| Ip @ Tc = 25C Continuous Drain Current, Vas @ -10 V -5.6 : Ip @ Tc = 100C | Continuous Drain Current, Vas @ -10 V -3.6 A \pm | Pulsed Drain Current 22 | Po @ Tc =25C_| Power Dissipation 42 Ww Pp @ Ta= 25C | Power Dissipation (PCB Mount)}** 2.5 Linear Derating Factor 0.33 We Linear Derating Factor (PCB Mount)* | _ 0.020 a Ves Gate-to-Source Voltage +20 ve Eas __| Single Pulse Avalanche Energy @ 210 | mJ -| lar Avalanche Current 5.6 A Ear | Repetitive Avalanche Energy 42 mJ dv/dt ' Peak Diode Recovery dv/dt @ 5.5 Vins Ta, Tste Junction and Storage Temperature Range -55 to +150 6 | | Soldering Temperature, for 10 seconds ____ 260 (1.6mm from case) Thermal Resistance Parameter Min. Typ. Max. Units Rosc Junction-to-Case _ = 3.0 Rasa Junction-to-Ambient (PCB mount)** _|[o- _ 50 Cw Resa Junction-to-Ambient _ _ 110 ** When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. 1205IRFR9120, IRFU9120 Electrical Characteristics @ Ty = 25C (unless otherwise specified) Parameter Min. | Typ. | Max. | Units Test Conditions Vierypss Drain-to-Source Breakdown Voltage -100 | _ VV | Ves=0V, Ip=-250HA AV erypss/ATy} Breakdown Voltage Temp. Coefficient |-0.098} | V/C | Reference to 25C, Ip=-1mA Ros(on) Static Drain-to-Source On-Resistance _ | 0.60 Q | Vas=-10V, Ipb=-3.4A Vasith) Gate Threshold Voltage -2.0 _ -4.0 V__ | Vps=Ves, lp=-250HA Gis Forward Transconductance 15 _ _ S| Vpos=-50V, ip=-3.4A loss Drain-to-Source Leakage Current _{ -100 HA Vne=-100V, Vas=0V _ _ -500 Vps=-80V, Vas=0V, Ty=125C lass Gate-to-Source Forward Leakage _ | -100 nA Ves=-20V Gate-to-Source Reverse Leakage _ - 100 Vas=20V Qg Total Gate Charge _ _ 18 Ip=-6.8A Qgs Gate-to-Source Charge | | 3.0 | nC | Vps=-80V Qga Gate-to-Drain (Miller) Charge _ = 9.0 Vas=-10V See Fig. 6 and 13 ta(on) Turn-On Delay Time = 9.6 = Vpp=-50V tr Rise Time _ 29 ns Ip=-6.8A taiofh Turn-Off Delay Time 21 Re=182 tr Fall Time = 25 _- Ro=7.1Q0 See Figure 10 Lo Interna! Drain Inductance _ 45 _ Bom zei) z nH | from package (ey Ls Internal Source Inductance - | 75) and center of die contact 8 Ciss Input Capacitance _ 390 _ Vas=0V Coss Output Capacitance | 170) pF | Vps=-25V Crss Reverse Transfer Capacitance _ 45 _ f=1.0MHz See Figure 5 Source-Drain Ratings and Characteristics Parameter Min. | Typ. | Max. | Units Test Conditions Is Continuous Source Current _ | 56 MOSFET symbol o (Body Diode) ' . A showing the Ism Pulsed Source Current _ _ 22 integral reverse g (Body Diode) p-n junction diode. 8 Vsp Diode Forward Voltage _ -6.3 V | Ty=25C, Is=-5.6A, Ves=0V tre Reverse Recovery Time _ 100 | 200 | ns | Ty=25C, Ir=-6.8A Qn Reverse Recovery Charge | 0.33 | 0.66 | uC | di/dt=100A/us @ ton Forward Turn-On Time Intrinsic turn-on time is neglegible (turn-on is dominated by Ls+Lp) Notes: Repetitive rating; pulse width limited by max. junction temperature (See Figure 11) Vpp=-25V, starting Ty=25C, L=10mH Ra@=25Q, las=-5.6A (See Figure 12) Isps-6.8A, di/dts110A/s, VopsV(BR)Dss; Tss150C @ Pulse width < 300 js; duty cycle <2%. 1206-Ip, Drain Current (Amps) -Ip, Drain Current (Amps) -4.59 190 20us PULSE WIDTH Te = 25C 109 tot -Vps, Drain-to-Source Voltage (volts) Fig 1. Typical Output Characteristics, To=25C to! 10 Vpg = ~S0V 20us PULSE WIDTH 4 5 6 7 8 9 40 -Vas, Gate-to-Source Voltage (volts) Fig 3. Typical Transfer Characteristics Rpsion), Drain-to-Source On Resistance IRFR9120, IRFU9120 g to! E = < 2 5 ) & g a A 4. 100 20us PULSE WIDTH To = 150C 102 1 -Vps, Drain-to-Source Voltage (volts) Fig 2. Typical Output Characteristics, To=150C 3.0 (Normalized) Ves = -10V 0.0 -60 -40 -20 0 20 40 60 B80 100 120 140 160 Ty, Junction Temperature (C) Fig 4. Normalized On-Resistance Vs. Temperature 1207IRFR9120, IRFU9120 900 Cgg + Cgq, Cgg SHORTED Cgq + 750 600 450 Capacitance (pF) 300 Coss 150 Cngs of 104 -Vps, Drain-to-Source Voltage (volts) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage to! -Igp, Reverse Drain Current (Amps) Veg = OV 1.0 2.0 3.0 4.0 -Vsp, Source-to-Drain Voltage (volts) 107! Fig 7. Typical Source-Drain Diode Forward Voltage -Vgs, Gate-to-Source Voltage (volts) -Ip, Drain Current (Amps) FOR TEST CIRCUIT SEE FIGURE 13 0 4 8 12 16 20 Qe, Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 103 5 OPERATION IN THIS AREA LIMITED Figs (ON) 2 102 5 2 10 5 2 1 5 Tp=25C 2 Ty=150C : SINGLE toa 2 5 2 5 410 2 6 102 2 5 103 1 -Vps, Drain-to-Source Voltage (volts) Fig 8. Maximum Safe Operating Area 1208IRFR9120, IRFU9120 -lp, Drain Current (Amps) Vos D.U.T. =, Voo )t-10v Pulse Width < tps Duty Factor < 0.1% aL Fig 10a. Switching Time Test Circuit tajon) tr tdoff) tt Ves rn iS, 10% } { | | | | | | | | | | 10 a5 50 75 4100 125 150 90% To, Case Temperature (C) Vps __/ Le / LL Fig 9. Maximum Drain Current Vs. Fig 10b. Switching Time Waveforms Case Temperature a e SINGLE PULSE Pol (THERMAL RESPONSE) anes Thermal Response (Zajc) NOTES: 4, DUTY FACTOR, D=ti/t2 2. PEAK T3=Ppy Xx Ztnjc + Te 108 10-4 1079 102 0.4 1 10 t;, Rectangular Pulse Duration (seconds) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1209IRFR9120, IRFU9120 Vary tp to obtain Vos > required las Fig 12a. Unclamped Inductive Test Circuit las Vps Vop ViBR)Dss Fig 12b. Unclamped Inductive Waveforms Q aov e> + as + Cap Ve Charge > Fig 13a. Basic Gate Charge Waveform 600 500 400 300 200 100 Eas, Single Pulse Energy (mJ) 0 25 73 100 125 150 50 Starting Ty, Junction Temperature(C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current Current Regulator Same Type as D.U.T. J Ves can) Current Sampling Resistors. Fig 13b. Gate Charge Test Circuit Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit - See page 1506 Appendix B: Package Outline Mechanical Drawing See pages 1512, 1513 Appendix C: Part Marking Information See page 1518 Appendix D: Tape & Reel Information See page 1523 Intemational Rectifier