PKM 4000 PI
15-20A DC/DC Power Modules
48V Input, (1.5V-1.8V-2.5V-3.3V-5V) Outputs
High efficiency 92% Typ (5V) at full load
Fast dynamic response, 100µs,
+
- 150 mVpeak Typ
Low output ripple, 60 mVp-p Typ
High power density, 44 W/in3 (5.0V)
Wide input voltage range (36-75V)
Industry standard footprint & pin-out
1,500Vdc isolation voltage
Max case temperature +100ºC
• UL 1950/ULc1950 Recognized
TUV to EN60 950 Type Approved
The PKM 4000 series represents a “third generation” of High
Density DC/DC Power Modules in an industry standard quarter-
brick package with unparalleled power densities and efficiencies.
These breakthrough performance features have been achieved by
using the most advanced patented topology, utilizing integrated
magnetics and synchronous rectification on a low resistivity
multilayer PCB. The product features fast dynamic response
times and low output ripple, which are important parameters
when supplying low voltage logics. The PKM 4000 series is
especially suited for limited board space and high dynamic load
applications such as demanding microprocessors.
Ericsson’s PKM 4000 Power Modules address the converging
“New Telecoms” market by specifying the input voltage range
in accordance with ETSI specifications. The PKM 4000 series
also offers over-voltage protection, under-voltage protection,
over-temperature protection, soft-start, and is short circuit proof.
These products are manufactured using highly automated
manufacturing lines with a world-class quality commitment
and a five-year warranty. Ericsson Inc., Microelectronics has
been an ISO 9001 certified supplier since 1991.
For a complete product program please reference the back page.
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
Characteristics min max Unit
TCMaximum Operating Case Temperature -40 +100 °C
TSStorage temperature -40 +125 °C
VIInput voltage -0.5 +80 Vdc
VISO Isolation voltage 1,500 Vdc
(input to output test voltage)
VRC Remote control voltage 12 Vdc
I2t Inrush transient 1 A2s
Characteristics Conditions min typ max Unit
VIInput voltage 36 75 Vdc
range
VIoff Turn-off input Ramping from 31 33 Vdc
voltage higher voltage
VIon Turn-on input Ramping from 34 36 Vdc
voltage lower voltage
CIInput capacitance 1.5 µF
IIac Reflected 5 Hz to 20 MHz 10 mA p-p
ripple current
IImax Maximum input VI= VImin 75 W 1.8 A
current 100 W 2.3
PIi Input idling power IO= 0 2.6 4.6 W
PRC Input
stand-by power VI= 50V RC open 0.4 0.6 W
(turned off with RC)
VTRIM Maximum input 6 Vdc
voltage on trim pin
Characteristics Test procedure & conditions
Random IEC 68-2-34FcFrequency 10...500 Hz
Vibration Spectral density 0.025 g2/Hz
Duration 10 min in each
direction
Sinusoidal IEC 68-2-6 Fc Frequency 10-500 Hz
Vibration Amplitude 0.75mm
Acceleration 10g
Number of cycles 10 in each axis
Shock IEC 68-2-27 EaPeak acceleration 100 g
(half sinus) Duration 3ms
Temperature IEC 68-2-14 NaTemperature -40°C...+100°C
change Number of cycles 300
Accelerated IEC 68-2-3 Ca Temperature 85°C
damp heat with bias Humidity 85% RH
Duration 1000 hours
Solder IEC 68-2-20 Tb Temperature, solder 260° C
resistibility method IA Duration 10...13 s
General
Absolute Maximum Ratings
Input TC < TCmax
Environmental Characteristics
2
Stress in excess of Absolute Maximum Ratings may cause
permanent damage. Absolute Maximum Ratings,
sometimes referred to as no destruction limits, are
normally tested with one parameter at a time exceeding
the limits of Output data or Electrical Characteristics.
If exposed to stress above these limits, function and
performance may degrade in an unspecified manner.
For design margin and to enhance system reliability, it is
recommended that the PKM 4000 series DC/DC power
modules are operated at case temperatures below 90°C.
Safety
The PKM 4000 Series DC/DC power modules are
designed in accordance with EN 60 950, Safety of
Information Technology Equipment Including
Electrical Business Equipment and are TUV Type
Approved.
The PKM 4000 DC/DC power modules are also
recognized by UL and meet the applicable
requirements in UL 1950, Safety of Information
Technology Equipment and applicable Canadian
safety requirements, i.e. ULc 1950.
The isolation is an operational insulation in
accordance with EN 60 950. The DC/DC power
module should be installed in end-use equipment,
in compliance with the requirements of the
ultimate application, and is intended to be
supplied by an isolated secondary circuit.
Consideration should be given to measuring the
case temperature to comply with TCmax when in
operation.
When the supply to the DC/DC power
module meets all the requirements for SELV
(<60Vdc), the output is considered to remain
within SELV limits (level 3). If connected to a 60V
DC power system, reinforced insulation must be
provided in the power supply that isolates the
input from the mains. Single fault testing in the
power supply must be performed in combination
with the DC/DC power module to demonstrate
that the output meets the requirement for SELV.
One pole of the input and one pole of the output is
to be grounded or both are to be kept floating.
3
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
Designation Function Pin # (for ref.)
-IN Negative input 1
ON/OFF Remote control (primary). To turn-on 2
and turn-off the output
+IN Positive input 3
-OUT Negative output 4
-SEN Negative remote sense 5
Trim Output voltage adjust 6
+SEN Positive remote sense 7
+OUT Positive output 8
Connections
Weight
55 grams
Case
Aluminum baseplate with metal standoffs.
Pins
Pin material: Brass
Pin plating: Tin/Lead over Nickel.
Mechanical Data
Safety (continued)
The galvanic isolation is verified in an electric strength test. The
test voltage (VISO) between input and output is 1,500 Vdc or 60 sec.
Leakage current is less than 1µA @ 50Vdc.
Flammability ratings of the terminal support and internal plastic
construction details meet UL 94V-0.
A fuse should be used at the input of each PKM 4000 series power
module. If a fault occurs in the power module, that imposes a short
on the input source, this fuse will provide the following two functions:
• Isolate the failed module from the input source so that the
remainder of the system may continue operation.
• Protect the distribution wiring from overheating.
A fast blow fuse should be used with a rating of 10A or less. It is
recommended to use a fuse with the lowest current rating, that is
suitable for the application.
4Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
0
0102030405060708090100
5
10
15
20
Output Current Derating (No Heatsink) for 1.5V/20A
PKM4318PIOA
2.0 m/s
1.5 m/s
1.0 m/s
0.5 m/s
0.2 m/s
Natural Convection
3.0 m/s
2.5 m/s
0 1020304050 60708090100
0
5
10
15
Output Current Derating (No Heatsink) for 1.5V/15A
PKM4218PIOA
2.0 m/s
2.5 m/s
3.0 m/s
1.5 m/s
1.0 m/s
0.5 m/s
0.2 m/s
Natural Convection
0102030405060708090100
0
5
10
15
20
Output Current Derating (No Heatsink) for 1.8V/20A
PKM4318PI
2.0 m/s
1.5 m/s
1.0 m/s
0.5 m/s
0.2 m/s
Natural Convection
3.0 m/s
2.5 m/s
0 1020304050 60708090100
0
5
10
15
Output Current Derating (No Heatsink) for 1.8V/15A
PKM4218PI
2.0 m/s
2.5 m/s
3.0 m/s
1.5 m/s
1.0 m/s
0.5 m/s
0.2 m/s
Natural Convection
0 1020304050 60708090100
0
5
10
15
20
Output Current Derating (No Heatsink) for 2.5V/20A
PKM4519PI
2.0 m/s
1.5 m/s
1.0 m/s
0.5 m/s
0.2 m/s
Natural Convection
3.0 m/s
2.5 m/s
0 1020304050 60708090100
0
5
10
15
Output Current Derating (No Heatsink) for 2.5V/15A
PKM4319PI
2.0 m/s
2.5 m/s
3.0 m/s
1.5 m/s
1.0 m/s
0.5 m/s
0.2 m/s
Natural Convection
Airflow Conversion Table
m/s lfm
0.5 100
1.0 200
1.5 300
2.0 400
2.5 500
3.0 600
Note: Natural Convection average airflow speed can vary from 0.05 m/s to 0.2 m/s.
Thermal Data
The PKM 4000 series DC/DC power modules has a robust thermal
design which allows operation at case (baseplate) temperatures (TC)
up to +100°C. The main cooling mechanism is convection (free or
forced) through the case or optional heatsinks.
The graphs below show the allowable maximum output current to
maintain a maximum +100°C case temperature. Note that the ambient
temperature is the air temperature adjacent to the power module which
is typically elevated above the room environmental temperature.
0 1020304050 60708090100
0
5
10
15
20
Output Current Derating (No heatsink) for 3.3V
PKM 4610PI and PKM 4510PI
1.5 m/s
1.0 m/s
0.5 m/s
0.2 m/s
Natural Convection
3.0 m/s
2.5 m/s
2.0 m/s
0
0102030405060708090100
5
10
15
20
Output Current Derating (No Heatsink) for 5V
PKM4111PI and PKM4711PI
1.0 m/s
0.5 m/s
0.2 m/s
Natural Convection
3.0 m/s
2.5 m/s
2.0 m/s
1.5 m/s
5
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
Thermal Data
The graphs below can be used to estimate case temperatures
for given system operating conditions (see Thermal Design).
For further information on optional heatsinks, please contact
your local Ericsson sales office.
0 10 20 30 40 50 60 70 80 90 100
6
5
4
3
2
1
0
Allowable Power Dissipation vs. Ambient Temp for 1.5V
PKM4318PIOA and PKM4218PIOA
2.0 m/s
1.5 m/s
1.0 m/s
0.5 m/s
0.2 m/s
Natural Convection
3.0 m/s
2.5 m/s
0 1020304050 60708090100
7
6
5
4
3
2
1
0
Allowable Power Dissipation vs. Ambient Temp for 1.8V
PKM4318PI and PKM4218PI
2.0 m/s
1.5 m/s
1.0 m/s
0.5 m/s
0.2 m/s
Natural Convection
3.0 m/s
2.5 m/s
All Bending Points
are at 5.5W
0
0 1020304050 60708090100
2
4
6
8
10
12
Allowable Power Dissipation vs. Ambient Temp for 3.3V
PKM 4610PI and PKM 4510PI
1.5 m/s
1.0 m/s
0.5 m/s
0.2 m/s
Natural Convection
3.0 m/s
2.5 m/s
2.0 m/s
0 1020304050 60708090100
9
8
7
6
5
4
3
2
1
0
Allowable Power Dissipation vs. Ambient Temp for 2.5V
PKM4519PI and PKM4319PI
1.0 m/s
0.5 m/s
0.2 m/s
Natural Convection
3.0 m/s
2.5 m/s
2.0 m/s
1.5 m/s
All Bending Points
are at 6W
0 1020304050 60708090100
16
14
12
10
8
6
4
2
0
Allowable Power Dissipation vs. Ambient Temp for 5V
PKM4111PI and PKM4711PI
1.0 m/s
0.5 m/s
0.2 m/s
Natural Convection
3.0 m/s
2.5 m/s
2.0 m/s
1.5 m/s
Note: For conversion from m/s to lfm please see conversion table on pg. 4.
6Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
Thermal Data
0 5 10 15
5
4
3
2
1
0
Power Dissipation vs. Output Current for 1.5V/15A
PKM4218PIOA
Vi=72v
Vi=60v
Vi=48v
Vi=36v
Power Dissipation (W)
Output Current (A)
0 5 10 15 20
7
6
5
4
3
2
1
0
Power Dissipation vs. Output Current for 1.8V/20A
PKM4318PI
Vi=72v
Vi=60v
Vi=48v
Vi=36v
Power Dissipation (W)
Output Current (A)
0 5 10 15
Power Dissipation vs. Output Current for 1.8V/15A
PKM4218PI
Vi=72v
Vi=60v
Vi=48v
Vi=36v
Power Dissipation (W)
Output Current (A)
6
5
4
3
2
1
0
0 5 10 15 20
8
6
4
2
0
Power Dissipation vs. Output Current for 2.5V/20A
PKM4519PI
Vi=72v
Vi=60v
Vi=48v
Vi=36v
Power Dissipation (W)
Output Current (A)
6
5
4
3
2
1
0
0 5 10 15
Power Dissipation vs. Output Current for 2.5V/15A
PKM4319PI
Vi=72v
Vi=60v
Vi=48v
Vi=36v
Power Dissipation (W)
Output Current (A)
0 5 10 15 20
6
5
4
3
2
1
0
Power Dissipation vs. Output Current for 1.5V/20A
PKM4318PIOA
Vi=72v
Vi=60v
Vi=48v
Vi=36v
Power Dissipation (W)
Output Current (A)
7
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
0 5 10 15
6
5
4
3
2
1
0
Power Dissipation vs. Output Current for 3.3V/15A
PKM4510PI
Vi=72v
Vi=60v
Vi=48v
Vi=36v
Power Dissipation (W)
Output Current (A)
0 5 10 15 20
12
10
8
6
4
2
0
Power Dissipation vs. Output Current for 5V/20A
PKM4111PI
Vi=72v
Vi=60v
Vi=48v
Vi=36v
Power Dissipation (W)
Output Current (A)
0 5 10 15
8
7
6
5
4
3
2
1
0
Power Dissipation vs. Output Current for 5V/15A
PKM4711PI
Vi=72v
Vi=60v
Vi=48v
Vi=36v
Power Dissipation (W)
Output Current (A)
Thermal Data
0
0 5 10 15 20
2
4
6
8
10
Power Dissipation vs. Output Current for 3.3V/20A
PKM4610PI
Vi=72v
Vi=60v Vi=48v
Vi=36v
Power Dissipation (W)
Output Current (A)
8Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
0
0 0.5 1 1.5 2 32.5
2
4
6
8
10
Air Flow (m/s)
Case to Ambient Thermal Resistance
PKM 4000 Series
Thermal Design
The thermal data can be used to determine thermal performance
without a heatsink.
Case temperature is calculated by the following formula:
TC= TA+ Pdx RthC-A (˚C/W)where Pd= PO(1/η- 1)
Where:
TC: Case Temperature
TA: Local Ambient Temperature
Pd: Dissipated Power
RthC-A: Thermal Resistance from TCto TA
Po: Output Power
η: Efficiency
The efficiency ηcan be found in the tables on the following pages.
For design margin and to enhance system reliability, it is recommended
that the PKM 4000 series DC/DC power modules are operated at case
temperatures below 90°C.
9
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
PKM 4318 PIOA (30W)
TC= -40...+100°C, VI= 36...75V dc unless otherwise specified.
Characteristics Conditions Output
min typ max Unit
VOi Output voltage initial TC= +25°C, VI= 53V, IO= IOmax 1.48 1.5 1.52 V
setting and accuracy
Output adjust range IO= 0 to IOmax 1.2 1.66 V
VOOutput voltage IO= 0 to IOmax 1.43 1.58 V
tolerance band
Line regulation IO= IOmax 310 mV
Load regulation VI= 53V, IO= 0 to IOmax 310 mV
V
tr Load transient Load step = 0.25 x IOmax ±150 mVpeak
voltage deviation dI/dt = 1A/µs
ttr Load transient 100 µs
recovery time
tsStart-up time From VIconnection to VO= 0.9 x VOnom 25 40 ms
IOOutput current 0 20 A
POmax Max output power At VO= VOnom 30 W
IIim Current limit threshold VO= 0.96 VOnom @ TC<100°C 212426 A
ISC Short circuit current 24 28 A
VOac Output ripple and noise IO= IOmax f<20 MHz 70 150 mVp-p
SVR Supply voltage f<1kHz -53 dB
rejection (ac)
OVP Over voltage protection Vin = 50V 2.2 2.5 2.8 V
Output
Characteristics Conditions min typ max Unit
ηEfficiency TA= +25°C, VI= 53V, IO= IOmax 87 %
PdPower dissipation TA= +25°C, VI= 53V, IO= IOmax 4.5 W
fOSwitching frequency IO= 0...1.0 x IOmax 200 kHz
Miscellaneous
10 Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
PKM 4218 PIOA (22.5W)
TC= -40...+100°C, VI= 36...75V dc unless otherwise specified.
Characteristics Conditions Output
min typ max Unit
VOi Output voltage initial TC= +25°C, VI= 53V, IO= IOmax 1.48 1.5 1.52 V
setting and accuracy
Output adjust range IO= 0 to IOmax 1.2 1.66 V
VOOutput voltage IO= 0 to IOmax 1.43 1.58 V
tolerance band
Line regulation IO= IOmax 310 mV
Load regulation VI= 53V, IO= 0 to IOmax 310 mV
V
tr Load transient Load step = 0.25 x IOmax ±150 mVpeak
voltage deviation dI/dt = 1A/µs
ttr Load transient 100 µs
recovery time
tsStart-up time From VIconnection to VO= 0.9 x VOnom 25 40 ms
IOOutput current 0 15 A
POmax Max output power At VO= VOnom 22.5 W
IIim Current limit threshold VO= 0.96 VOnom @ TC<100°C 161821 A
ISC Short circuit current 20 23 A
VOac Output ripple and noise IO= IOmax f<20 MHz 70 150 mVp-p
SVR Supply voltage f<1kHz -53 dB
rejection (ac)
OVP Over voltage protection Vin = 50V 2.2 2.5 2.8 V
Output
Characteristics Conditions min typ max Unit
ηEfficiency TA= +25°C, VI= 53V, IO= IOmax 87 %
PdPower dissipation TA= +25°C, VI= 53V, IO= IOmax 3.4 W
fOSwitching frequency IO= 0...1.0 x IOmax 200 kHz
Miscellaneous
11
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
PKM 4318 PI (36W)
TC= -40...+100°C, VI= 36...75V dc unless otherwise specified.
Characteristics Conditions Output
min typ max Unit
VOi Output voltage initial TC= +25°C, VI= 53V, IO= IOmax 1.77 1.8 1.83 V
setting and accuracy
Output adjust range IO= 0 to IOmax 1.44 2.0 V
VOOutput voltage IO= 0 to IOmax 1.71 1.89 V
tolerance band
Line regulation IO= IOmax 310 mV
Load regulation VI= 53V, IO= 0 to IOmax 310 mV
V
tr Load transient Load step = 0.25 x IOmax ±150 mVpeak
voltage deviation dI/dt = 1A/µs
ttr Load transient 100 µs
recovery time
tsStart-up time From VIconnection to VO= 0.9 x VOnom 25 40 ms
IOOutput current 0 20 A
POmax Max output power At VO= VOnom 36 W
IIim Current limit threshold VO= 0.96 VOnom @ TC<100°C212426A
ISC Short circuit current 24 28 A
VOac Output ripple and noise IO= IOmax f<20 MHz 70 150 mVp-p
SVR Supply voltage f<1kHz -53 dB
rejection (ac)
OVP Over voltage protection Vin = 50V 2.5 2.8 3.0 V
Output
Characteristics Conditions min typ max Unit
ηEfficiency TA= +25°C, VI= 53V, IO= IOmax 88 %
PdPower dissipation TA= +25°C, VI= 53V, IO= IOmax 4.9 W
fOSwitching frequency IO= 0...1.0 x IOmax 200 kHz
Miscellaneous
12 Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
PKM 4218 PI (27W)
TC= -40...+100°C, VI= 36...75V dc unless otherwise specified.
Characteristics Conditions Output
min typ max Unit
VOi Output voltage initial TC= +25°C, VI= 53V, IO= IOmax 1.77 1.8 1.83 V
setting and accuracy
Output adjust range IO= 0 to IOmax 1.44 2.0 V
VOOutput voltage IO= 0 to IOmax 1.71 1.89 V
tolerance band
Line regulation IO= IOmax 310 mV
Load regulation VI= 53V, IO= 0 to IOmax 310 mV
V
tr Load transient Load step = 0.25 x IOmax ±150 mVpeak
voltage deviation dI/dt = 1A/µs
ttr Load transient 100 µs
recovery time
tsStart-up time From VIconnection to VO= 0.9 x VOnom 25 40 ms
IOOutput current 0 15 A
POmax Max output power At VO= VOnom 27 W
IIim Current limit threshold VO= 0.96 VOnom @ TC<100°C161821A
ISC Short circuit current 24 28 A
VOac Output ripple and noise IO= IOmax f<20 MHz 70 150 mVp-p
SVR Supply voltage f<1kHz -53 dB
rejection (ac)
OVP Over voltage protection Vin = 50V 2.5 2.8 3.0 V
Output
Characteristics Conditions min typ max Unit
ηEfficiency TA= +25°C, VI= 53V, IO= IOmax 89 %
PdPower dissipation TA= +25°C, VI= 53V, IO= IOmax 3.3 W
fOSwitching frequency IO= 0...1.0 x IOmax 200 kHz
Miscellaneous
13
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
PKM 4519 PI (50W)
TC= -40...+100°C, VI= 36...75V dc unless otherwise specified.
Characteristics Conditions Output
min typ max Unit
VOi Output voltage initial TC= +25°C, VI= 53V, IO= IOmax 2.45 2.5 2.55 V
setting and accuracy
Output adjust range IO= 0 to IOmax 2.0 2.75 V
VOOutput voltage IO= 0 to IOmax 2.4 2.6 V
tolerance band
Line regulation IO= IOmax 310 mV
Load regulation VI= 53V, IO= 0 to IOmax 310 mV
V
tr Load transient Load step = 0.25 x IOmax ±150 mVpeak
voltage deviation dI/dt = 1A/µs
ttr Load transient 100 µs
recovery time
tsStart-up time From VIconnection to VO= 0.9 x VOnom 25 40 ms
IOOutput current 020A
POmax Max output power At VO= VOnom 50 W
IIim Current limit threshold VO= 0.96 VOnom @ TC<100°C 212426 A
ISC Short circuit current 26 30 A
VOac Output ripple and noise IO= IOmax f<20 MHz 60 100 mVp-p
SVR Supply voltage f<1kHz -53 dB
rejection (ac)
OVP Over voltage protection Vin = 50V 3.2 3.7 4.2 V
Output
Characteristics Conditions min typ max Unit
ηEfficiency TA= +25°C, VI= 53V, IO= IOmax 89 %
PdPower dissipation TA= +25°C, VI= 53V, IO= IOmax 6.2 W
fOSwitching frequency IO= 0...1.0 x IOmax 200 kHz
Miscellaneous
14 Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
PKM 4319 PI (37.5W)
TC= -40...+100°C, VI= 36...75V dc unless otherwise specified.
Characteristics Conditions Output
min typ max Unit
VOi Output voltage initial TC= +25°C, VI= 53V, IO= IOmax 2.45 2.5 2.55 V
setting and accuracy
Output adjust range IO= 0 to IOmax 2.0 2.75 V
VOOutput voltage IO= 0 to IOmax 2.4 2.6 V
tolerance band
Line regulation IO= IOmax 310 mV
Load regulation VI= 53V, IO= 0 to IOmax 310 mV
V
tr Load transient Load step = 0.25 x IOmax ±150 mVpeak
voltage deviation dI/dt = 1A/µs
ttr Load transient 100 µs
recovery time
tsStart-up time From VIconnection to VO= 0.9 x VOnom 25 40 ms
IOOutput current 015A
POmax Max output power At VO= VOnom 37.5 W
IIim Current limit threshold VO= 0.96 VOnom @ TC<100°C 161821 A
ISC Short circuit current 26 30 A
VOac Output ripple and noise IO= IOmax f<20 MHz 60 100 mVp-p
SVR Supply voltage f<1kHz -53 dB
rejection (ac)
OVP Over voltage protection Vin = 50V 3.2 3.7 4.2 V
Output
Characteristics Conditions min typ max Unit
ηEfficiency TA= +25°C, VI= 53V, IO= IOmax 89 %
PdPower dissipation TA= +25°C, VI= 53V, IO= IOmax 4.6 W
fOSwitching frequency IO= 0...1.0 x IOmax 200 kHz
Miscellaneous
15
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
Characteristics Conditions Output
min typ max Unit
VOi Output voltage initial TC= +25°C, VI= 53V, IO= IOmax 3.25 3.30 3.35 V
setting and accuracy
Output adjust range IO= 0 to IOmax 2.64 3.63 V
VOOutput voltage IO= 0 to IOmax 3.2 3.4 V
tolerance band
Line regulation IO= IOmax 310 mV
Load regulation VI= 53V, IO= 0 to IOmax 310 mV
Vtr Load transient Load step = 0.25 x IOmax ±150 mVpeak
voltage deviation dI/dt = 1A/µs
ttr Load transient 100 µs
recovery time
tsStart-up time From VIconnection to VO= 0.9 x VOnom 25 40 ms
IOOutput current 0 20 A
POmax Max output power At VO= VOnom 66 W
Ilim Current limit threshold VO= 0.90 x VOnom @ TC<100°C212426A
ISC Short circuit current 24 28 A
VOac Output ripple and noise IO= IOmax f < 20 MHz 60 100 mVp-p
SVR Supply voltage f<1 kHz -53 dB
rejection
OVP Overvoltage protection VI = 53V 3.9 4.4 5.0 V
Output
PKM 4610 PI (66W)
TC= -40...+100°C, VI= 36...75V dc unless otherwise specified.
Characteristics Conditions min typ max Unit
ηEfficiency TA= +25°C, VI= 53V, IO= IOmax 89 %
PdPower dissipation TA= +25°C, VI= 53V, IO= IOmax 8.2 W
fOSwitching frequency IO= 0...1.0 x IOmax 150 kHz
Miscellaneous
Characteristics Conditions Output
min typ max Unit
VOi Output voltage initial TC= +25°C, VI= 53V, IO= IOmax 3.25 3.30 3.35 V
setting and accuracy
Output adjust range IO= 0 to IOmax 2.64 3.63 V
VOOutput voltage IO= 0 to IOmax 3.2 3.4 V
tolerance band
Line regulation IO= IOmax 310 mV
Load regulation VI= 53V, IO= 0 to IOmax 310 mV
Vtr Load transient Load step = 0.25 x IOmax ±150 mVpeak
voltage deviation dI/dt = 1A/µs
ttr Load transient 100 µs
recovery time
tsStart-up time From VIconnection to VO= 0.9 x VOnom 25 40 ms
IOOutput current 0 15 A
POmax Max output power At VO= VOnom 50 W
Ilim Current limit threshold VO= 0.90 x VOnom @ TC<100°C161821A
ISC Short circuit current 20 23 A
VOac Output ripple and noise IO= IOmax f < 20 MHz 60 100 mVp-p
SVR Supply voltage f<1 kHz -53 dB
rejection
OVP Overvoltage protection VI = 53V 3.9 4.4 5.0 V
Output
PKM 4510 PI (50W)
TC= -40...+100°C, VI= 36...75V dc unless otherwise specified.
16 Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
Characteristics Conditions min typ max Unit
ηEfficiency TA= +25°C, VI= 53V, IO= IOmax 91 %
PdPower dissipation TA= +25°C, VI= 53V, IO= IOmax 4.9 W
fOSwitching frequency IO= 0...1.0 x IOmax 150 kHz
Miscellaneous
17
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
Characteristics Conditions Output
min typ max Unit
VOi Output voltage initial TC= +25°C, VI= 53V, IO= IOmax 4.9 5.0 5.1 V
setting and accuracy
Output adjust range IO= 0 to IOmax, VI= 38...75V dc 4.0 5.5 V
VOOutput voltage IO= 0 to IOmax 4.85 5.15 V
tolerance band
Line regulation VI= 38...75V, IO= IOmax 310 mV
Load regulation VI= 53V, IO= 0 to IOmax 310 mV
V
tr Load transient Load step = 0.25 x IOmax ±150 mVpeak
voltage deviation dI/dt = 1A/µs
ttr Load transient 200 µs
recovery time
tsStart-up time From VIconnection to VO= 0.9 x VOnom 60 90 ms
IOOutput current 020A
POmax Max output power At VO= VOnom 100 W
IIim Current limit threshold VO= 0.96 VOnom @ TC<100°C 212426 A
ISC Short circuit current 24 28 A
VOac Output ripple and noise IO= IOmax f<20 MHz 85 150 mVp-p
SVR Supply voltage f<1kHz -53 dB
rejection (ac)
OVP Over voltage protection Vin = 50V 5.8 6.2 6.5 V
Output
Characteristics Conditions min typ max Unit
ηEfficiency TA= +25°C, VI= 53V, IO= IOmax 90 %
PdPower dissipation TA= +25°C, VI= 53V, IO= IOmax 11.1 W
fOSwitching frequency IO= 0...1.0 x IOmax 200 kHz
Miscellaneous
PKM 4111 PI (100W)
TC= -40...+100°C, VI= 36...75V dc unless otherwise specified.
18 Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
Characteristics Conditions Output
min typ max Unit
VOi Output voltage initial TC= +25°C, VI= 53V, IO= IOmax 4.9 5.0 5.1 V
setting and accuracy
Output adjust range IO= 0 to IOmax, VI= 38...75V dc 4.0 5.5 V
VOOutput voltage IO= 0 to IOmax 4.85 5.15 V
tolerance band
Line regulation VI= 38...75V, IO= IOmax 310 mV
Load regulation VI= 53V, IO= 0 to IOmax 310 mV
V
tr Load transient Load step = 0.25 x IOmax ±150 mVpeak
voltage deviation dI/dt = 1A/µs
ttr Load transient 200 µs
recovery time
tsStart-up time From VIconnection to VO= 0.9 x VOnom 60 90 ms
IOOutput current 015A
POmax Max output power At VO= VOnom 75 W
IIim Current limit threshold VO= 0.96 VOnom @ TC<100°C 161821 A
ISC Short circuit current 24 28 A
VOac Output ripple and noise IO= IOmax f<20 MHz 85 150 mVp-p
SVR Supply voltage f<1kHz -53 dB
rejection (ac)
OVP Over voltage protection Vin = 50V 5.8 6.2 6.5 V
Output
Characteristics Conditions min typ max Unit
ηEfficiency TA= +25°C, VI= 53V, IO= IOmax 92 %
PdPower dissipation TA= +25°C, VI= 53V, IO= IOmax 6.5 W
fOSwitching frequency IO= 0...1.0 x IOmax 200 kHz
Miscellaneous
PKM 4711 PI (75W)
TC= -40...+100°C, VI= 36...75V dc unless otherwise specified.
19
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
PKM 4318 PIOA (30W)
PKM 4218 PIOA (22.5W)
5101520
60
65
70
75
80
85
90
95
36V
48V
60V
72V
Efficiency
Output Current (A)
Efficiency (%)
0 5 10 15 20 25 30
0
1
2
3
Output Characteristics
Output Current (A)
Output Voltage (V)
(48Vin)
51015
60
65
70
75
80
85
90
95
36V
48V
60V
72V
Efficiency
Output Current (A)
Efficiency (%)
0 5 10 15 20 25
0
1
2
3
Output Characteristics
Output Current (A)
Output Voltage (V)
(48Vin)
20 Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
PKM 4318 PI (36W)
PKM 4218 PI (27W)
5101520
60
65
70
75
80
85
90
95
36V
48V
60V
72V
Efficiency
Output Current (A)
Efficiency (%)
0 5 10 15 20 25 30
0
1
2
3
Output Characteristics
Output Current (A)
Output V oltage (V)
(48Vin)
51015
60
65
70
75
80
85
90
95
36V
48V
60V
72V
Efficiency
Output Current (A)
Efficiency (%)
0510152025
0
1
2
3
Output Characteristics
Output Current (A)
Output V oltage (V)
(48Vin)
21
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
PKM 4519 (50W)
PKM 4319 PI (37.5W)
5101520
72
74
76
78
80
82
84
86
88
90
92
36V
48V
60V
72V
Efficiency
Output Current (A)
Efficiency (%)
0 5 10 15 20 25 30
0
1
2
3
Output Characteristics
Output Current (A)
Output Voltage (V)
(48Vin)
51015
72
74
76
78
80
82
84
86
88
90
92
36V
48V
60V
72V
Efficiency
Output Current (A)
Efficiency (%)
0 5 10 15 20 25
0
1
2
3
Output Characteristics
Output Current (A)
Output Voltage (V)
(48Vin)
22 Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
PKM 4610 PI (66W)
PKM 4510 PI (50W)
5101520
82
84
86
88
90
92
94
36V
48V
60V
72V
Efficiency
Output Current (A)
Efficiency (%)
0 5 10 15 20 25
0
1
2
3
4
Output Characteristics
Output Current (A)
Output Voltage (V)
(48Vin)
51015
82
84
86
88
90
92
94
36V
48V
60V
72V
Efficiency
Output Current (A)
Efficiency (%)
0 5 10 15 20 25
0
1
2
3
4
Output Characteristics
Output Current (A)
Output Voltage (V)
(48Vin)
23
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
PKM 4111 PI (100W)
PKM 4711 PI (75W)
5101520
82
84
86
88
90
92
94
36V
48V
60V
72V
Efficiency
Output Current (A)
Efficiency (%)
0 5 10 15 20 25 30
0
1
2
3
4
5
6
Output Characteristics
Output Current (A)
Output Voltage (V)
(48Vin)
51015
82
84
86
88
90
92
94
36V
48V
60V
72V
Efficiency
Output Current (A)
Efficiency (%)
0 5 10 15 20 25
0
1
2
3
4
5
6
Output Characteristics
Output Current (A)
Output Voltage (V)
(48Vin)
EMC Specifications
The PKM power module is mounted on a double sided printed circuit board PCB with groundplane during EMC measurements.
The fundamental switching frequency is 150 kHz @ IO= IOmax.
Conducted EMI
Input terminal value with 100µF capacitor (typ) and additional PI filter.
0.68µF
L1
L3
L2
0.68µF
0.68µF
47µF
10nF
4.7nF
4.7nF
3.3nF
3.3nF
47µF
10nF
External Filter (class B)
Required external input filter in order to meet class B in EN 55022, CISPR 22 and FCC part 15J.
L1: 450µH TDK TF1028S-451Y3R-01
L2 & L3: 22µH Coilcraft D05ø22P-23
*The baseplate is floated.
24 Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
Class A
Class B
25
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
Remote Sense
All PKM 4000 series DC/DC power modules have remote sense
that can be used to compensate for moderate amounts of resistance
in the distribution system and allow for voltage regulation at the
load or other selected point. The remote sense lines will carry very
little current and do not need a large cross sectional area. However,
the sense lines on a PCB should be located close to a ground trace
or ground plane. In a discrete wiring situation, the usage of
twisted pair wires or other technique for reducing noise
susceptibility is recommended.
The power module will compensate for up to 0.5V voltage drop
between the sense voltage and the voltage at the power module
output pins. The output voltage and the remote sense voltage
offset must be less than the minimum overvoltage trip point.
Current Limiting
General Characteristics
All PKM 4000 series DC/DC power modules include current
limiting circuitry that makes them able to withstand continuous
overloads or short circuit conditions on the output. The output
voltage will decrease toward zero for heavy overloads.
The power module will resume normal operation after removal of
the overload. The load distribution system should be designed to
carry the maximum short circuit output current specified.
Operating Information
Input Voltage
The input voltage range 36...75V meets the requirements in the
European Telecom Standard ETS 300 132-2 for normal input
voltage range in -48V and -60V DC power systems, -40.5...-57.0V
and -50.0...-72.0V respectively. At input voltages exceeding 75V,
the power loss will be higher than at normal input voltage and TC
must be limited to absolute max +100º C. The absolute max
continuous input voltage is 80V DC.
Remote Control (RC)
The PKM 4000 series DC/DC power modules have two remote
on/off options available. Negative logic remote on/off is the standard
option orderable without a suffix added to the part number.
Negative logic remote on/off turns the module off during a logic
high voltage on the on/off pin, and on during a logic low state.
Positive logic remote on/off is orderable by adding the suffix “P” to
the end of the part number. Positive logic remote on/off turns the
module on during a logic high and off during a logic low state.
The RC pin can be wired directly to -In, to allow the module to
power up automatically without the need for control signals.
A mechanical switch or an open collector transistor or FET can be
used to drive the RC inputs. The device must be capable of
sinking up to 1mA at a low level voltage of 1.0V, maximum of
15V dc, for the primary RC.
RC (primary) Power module
Low ON
Open/High OFF
Over Voltage Protection (OVP)
All PKM 4000 DC/DC power modules have latching output
overvoltage protection. In the event of an overvoltage condition, the
power module will shut down. The power module can be restarted
by cycling the input voltage.
Turn-(on/off) Input Voltage (VIon/VIoff)
The power module monitors the input voltage and will turn on and
turn off at predetermined levels. See Input Table on page 2.
Output Voltage Adjust (Trim)
Voltage Trimming
All PKM 4000 series DC/DC power modules have an Output
Voltage Adjust pin. This pin can be used to adjust the output
voltage above or below VOi. When increasing the output voltage,
the voltage at the output pins (including any remote sensing offset)
must be kept below the overvoltage trip point. Also note that at
elevated output voltages the maximum power rating of the module
remains the same, and the output current capability will decrease
correspondingly. These modules trim exactly like the other major
competitors quarter-brick modules.
To decrease VOconnect Radj from - SEN to Trim
To increase VOconnect Radj from + SEN to Trim
Standard Remote Control
RC (primary) Power module
Low OFF
Open/High ON
Optional Remote Control (P)
26
Output Voltage Trim for 1.8V
Adjust resistor Value
(k Ohm)
Change in Output Voltage (%)
1
02 4 6 8 10 12 14 16 18 20
100
10
1000
10000
100000
Decrease
Increase
Output Voltage Trim for 2.5V
Adjust resistor Value
(k Ohm)
Change in Output Voltage (˘%)
1
02 4 6 8 10 12 14 16 18 20
100
10
1000
10000
100000
Decrease
Increase
Output Voltage Trim for 3.3V
Adjust resistor Value
(k Ohm)
Change in Output Voltage (˘%)
1
02 4 6 8 10 12 14 16 18 20
100
10
1000
10000
100000
Decrease
Increase
Output Voltage Trim for 5.0V
Adjust resistor Value
(k Ohm)
Change in Output Voltage (˘%)
1
02 4 6 8 10 12 14 16 18 20
100
10
1000
10000
1000000
100000
Decrease
Increase
Output Voltage Trim for 1.5V
Adjust resistor Value
(k Ohm)
Change in Output Voltage (%)
1
02 4 6 8 10 12 14 16 18 20
100
10
1000
10000
100000
Decrease
Increase
Decrease: Radj = 5.11(100 -2)k
%
Increase: Radj = 5.11[Vo (100+%) - (100+2%) ]k
1.225%%
Decrease: Radj = 5.11(100 -2)k
%
Increase: Radj = 5.11[Vo (100+%) - (100+2%) ]k
1.225%%
Decrease: Radj = 5.11(100 -2)k
%
Increase: Radj = 5.11[Vo (100+%) - (100+2%) ]k
1.225%%
Decrease: Radj = 5.11(100 -2)k
%
Increase: Radj = 5.11[Vo (100+%) - (100+2%) ]k
1.225%%
Decrease: Radj = 5.11(100 -2)k
%
Increase: Radj = 5.11[Vo (100+%) - (100+2%) ]k
1.225%%
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
Paralleling for Redundancy
The figure below shows how n + 1 redundancy can be achieved. The
diodes on the power module outputs allow a failed module to remove
itself from the shared group without pulling down the common output
bus. This configuration can be extended to additional numbers of
power modules and they can also be controlled individually or in
groups by means of signals to the primary RC inputs.
Output Ripple & Noise (VOac)
Output ripple is measured as the peak to peak voltage from 0 to
20MHz which includes the noise voltage and fundamental ripple.
Over Temperature Protection
The PKM 4000 DC/DC power modules are protected from thermal
overload by an internal over temperature shutdown circuit. When the
case temperature exceeds +110°C (+10, -5°C), the power module will
automatically shut down (latching). To restart the module the input
voltage must be cycled.
Input and Output Impedance
The impedance of both the power source and the load will interact
with the impedence of the DC/DC power module. It is most important
to have the ratio between L and C as low as possible, i.e. a low
characteristic impedance, both at the input and output, as the power
modules have a low energy storage capability. The PKM 4000 series of
DC/DC power modules has been designed to be completely stable
without the need for external capacitors on the input or output when
configured with low inductance input and output circuits. The
performance in some applications can be enhanced by the addition of
external capacitance as described below. If the distribution of the input
voltage source to the power module contains significant inductance,
the addition of a 220-470 µF capacitor across the input of the power
module will help insure stability. This capacitor is not required when
powering the module from a low impedance source with short, low
inductance, input power leads.
Output Capacitance
When powering loads with significant dynamic current requirements,
the voltage regulation at the load can be improved by the addition of
decoupling capacitance at the load. The most effective technique is to
locate low ESR ceramic capacitors as close to the load as possible, using
several capacitors to lower the effective ESR. These ceramic capacitors
will handle the short duration high frequency components of the
dynamic current requirement. In addition, higher values of electrolytic
capacitors should be used to handle the mid-frequency components. It
is equally important to use good design practices when configuring the
DC distribution system.
27
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001
Low resistance and low inductance PCB (printed circuit board) layouts
and cabling should be used. Remember that when using remote
sensing, all the resistance, inductance and capacitance of the
distribution system is within the feedback loop of the power module.
This can have an effect on the modules compensation and the resulting
stability and dynamic response performance.
As a rule of thumb, 100 µF/A of output current can be used without
any additional analysis. For example, with a 20A (max PO100W)
power module, values of decoupling capacitance up to 2000 µF can be
used without regard to stability. With larger values of capacitance, the
load transient recovery time can exceed the specified value. As much of
the capacitance as possible should be outside of the remote sensing
loop and close to the load.The absolute maximum value of output
capacitance is 10,000 µF. For values larger than this contact your local
Ericsson representative.
Quality
Reliability
The calculated MTBF of the PKM 4000 module family is greater than
(>) 2.8 million hours using Bellcore TR-332 methodology. The
calculation is valid for a 90ºC baseplate temperature. Demonstrated
MTBF has been in the range of 3.0 to 3.2 million hours.
Quality Statement
The power modules are designed and manufactured in an industrial
environment where quality systems and methods like ISO 9000, 6σ,
and SPC, are intensively in use to boost the continuous improvements
strategy. Infant mortality or early failures in the products are screened
out and they are subjected to an ATE-based final test.
Conservative design rules, design reviews and product qualifications,
plus the high competence of an engaged work force, contribute to the
high quality of our products.
Warranty
Ericsson Inc., Microelectronics warrants to the original purchaser or
end user that the products conform to this Data Sheet and are free
from material and workmanship defects for a period of five (5) years
from the date of manufacture, if the product is used within specified
conditions and not opened.
In case the product is discontinued, claims will be accepted up to three
(3) years from the date of the discontinuation. For additional details on
this limited warranty we refer to Ericsson’s “General Terms and
Conditions of Sales,” EKA 950701, or individual contract documents.
Limitation of Liability
Ericsson Inc., Microelectronics does not make any other warranties,
expressed or implied including any warranty of merchantability or
fitness for a particular purpose (including, but not limited to use in
life support applications, where malfunctions of product can cause
injury to a person’s health or life).
PKM
PKM1 PKM2
The PKM DC/DC power module may be ordered with the different options
listed in the Product Options table.
Ericsson Inc.
Microelectronics
1700 International Pkwy., Suite 200
Richardson, Texas 75081
Phone: 877-ERICMIC
www.ericsson.com/microelectronics
For sales contacts, please refer to our website
or call: 877-374-2642 or fax: 972-583-8355
Product Program
VIVO/IOPOmax Ordering Number
48/60 V 1.5V/20A 30W PKM 4318 PIOA
48/60 V 1.5V/15A 22.5W PKM 4218 PIOA
48/60 V 1.8V/20A 36W PKM 4318 PI
48/60 V 1.8V/15A 27W PKM 4218 PI
48/60 V 2.5V/20A 50W PKM 4519 PI
48/60 V 2.5V/15A 37.5W PKM 4319 PI
48/60 V 3.3V/20A 66W PKM 4610 PI
48/60 V 3.3V/15A 50W PKM 4510 PI
48/60 V 5V/20A 100W PKM 4111 PI
48/60 V 5V/15A 75W PKM 4711 PI
Product Options
Option Suffix Example
Negative remote on/off logic PKM 4610 PI
Positive remote on/off logic P PKM 4610 PIP
Lead length of 0.145" ± 0.010" LA PKM 4610 PILA
The latest and most complete
information can be found on our website!
Preliminary Data Sheet
AE/LZT 108 4913 R2
© Ericsson Inc., Microelectronics, May 2001
Information given in this data sheet is
believed to be accurate and reliable. No
responsibility is assumed for the consequences
of its use for any infringement of patents or
other rights of third parties that may result
from its use. No license is granted by
implication or otherwise under any patent or
patent rights of Ericsson Inc., Microelectronics.
These products are sold only according to
Ericsson Inc., Microelectronics’ general conditions
of sale, unless otherwise confirmed in writing.
Specifications subject to change without notice.