2008 Microchip Technology Inc. DS22079A-page 1
34VL02
Features:
Permanent and Resettable Software Write-Protect
for Lower Half of the Array (00h-7Fh)
Single Supply with Operation Down to 1.5V
Low-Power CMOS Technology:
- Read current 1 mA, typical
- Standby current, 100 nA, typical
2-Wire Serial Interface Bus, I2C™ Compatible
Cascadable up to Eight Devices
Schmitt Trigger Inputs for Noise Suppression
Output Slope Control to Eliminate Ground Bounce
100 kHz and 400 kHz Compatibility
Page Write Time 3 ms, typical
Self-Timed Erase/Write Cycle
16-Byte Page Write Buffer
ESD Protection > 4,000V
Hardware Write Protection for Entire Array
More than 1 Million Erase/Write Cycles
Data Retention > 200 Years
8-Lead PDIP, SOIC, TSSOP, MSOP and TDFN
packages
6-Lead SOT-23 Package
Pb-free and RoHS Compliant
Temperature Range:
- -20°C to +85°C
Device Selection Table
Package Types
Description:
The Microchip Technology Inc. 34VL02 is a 2 Kbit
Electrically Erasable PROM capable of operation
across a broad voltage range (1.5V to 3.6V). This
device has two software write-protect features for the
lower half of the array, as well as an external pin that
can be used to write-protect the entire array. This
allows the system designer to protect none, half, or all
of the array, depending on the application. The device
is organized as one block of 256 x 8-bit memory with a
2-wire serial interface. Low-voltage design permits
operation down to 1.5V, with standby and active cur-
rents of only 100 nA and 1 mA, respectively. The
34VL02 also has a page write capability for up to 16
bytes of data. The 34VL02 is available in the standard
8-pin PDIP, surface mount SOIC, TSSOP, MSOP and
TDFN packages. The 34VL02 is also available in the
6-lead, SOT-23 package.
Part Number VCC
Range
Max. Clock
Frequency
34VL02 1.5-3.6 400 kHz(1)
Note 1: 100 kHz for VCC <1.8V
A0
A1
A2
VSS
1
2
3
4
8
7
6
5
VCC
WP
SCL
SDA
PDIP/SOIC/TSSOP/MSOP/TDFN
A0
A1
A2
V
SS
WP
SCL
SDA
V
CC
8
7
6
5
1
2
3
4
SOT-23
6
2
4
SDA
VCC
VSS A0
A1
5
3
1
SCL
2K I2C Serial EEPROM Software Write-Protect
34VL02
DS22079A-page 2 2008 Microchip Technology Inc.
Block Diagram
I/O
Control
Logic
Memory
Control
Logic XDEC
HV Generator
Standard
Array
Software write-
Write-Protect
Circuitry
YDEC
VCC
VSS
Sense Amp.
R/W Control
SDA SCL
A0 A1 A2 WP
protected area
(00h-7Fh)
2008 Microchip Technology Inc. DS22079A-page 3
34VL02
1.0 ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings(†)
VCC.............................................................................................................................................................................6.5V
All inputs and outputs w.r.t. VSS ..........................................................................................................-0.3V to VCC +1.0V
Storage temperature ...............................................................................................................................-65°C to +150°C
Ambient temperature with power applied..................................................................................................-20°C to +85°C
ESD protection on all pins  4kV
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. These are stress ratings only and functional operation of the device at these or any other conditions above
those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating
conditions for extended periods may affect device reliability.
TABLE 1-1: DC SPECIFICATIONS
DC CHARACTERISTICS VCC = +1.5V to +3.6V
Temperature Range: -20°C to +85°C
Param.
No. Symbol Characteristic Min. Typ. Max. Units Conditions
A0, A1, A2, SCL, SDA
and WP pins
——
D1 VIH High-level input voltage 0.7 VCC ——V
D2 VIL Low-level input voltage 0.3 VCC V0.2 VCC for VCC < 2.5V
D3 VHYS Hysteresis of Schmitt
Trigger inputs
0.05 VCC ——V(Note)
D4 VOL Low-level output voltage 0.40 V IOL = 3.0 mA, VCC = 2.5V
D5 VHV High-Voltage Detect 7 10 V A0 Pin only, VCC < 2.2V
VCC + 4.8 10 V A0 Pin only, VCC 2.2V
D6 ILI Input leakage current ±1 AVIN = VSS or VCC
D7 ILO Output leakage current ±1 AVOUT = VSS or VCC
D8 CIN,
COUT
Pin capacitance
(all inputs/outputs)
——10pFVCC = 3.6V (Note)
TA = 25°C
D9 ICC write Operating current 0.1 3 mA VCC = 3.6V
D10 ICC read 0.05 1 mA
D11 ICCS Standby current 0.01 1 A SDA = SCL = VCC
A0, A1, A2, WP = VSS
Note: This parameter is periodically sampled and not 100% tested.
34VL02
DS22079A-page 4 2008 Microchip Technology Inc.
TABLE 1-2: AC SPECIFICATIONS
AC CHARACTERISTICS VCC = +1.5V to +3.6V
Temperature Range: -20°C to +85°C
Param.
No. Symbol Characteristic Min. Max. Units Conditions
1F
CLK Clock frequency
100
400
kHz 1.5V VCC 1.8V
1.8V VCC 3.6V
2T
HIGH Clock high time 4000
600
ns 1.5V VCC 1.8V
1.8V VCC 3.6V
3T
LOW Clock low time 4700
1300
ns 1.5V VCC 1.8V
1.8V VCC 3.6V
4T
RSDA and SCL rise time (Note 1)
1000
300
ns 1.5V VCC 1.8V
1.8V VCC 3.6V
5T
FSDA and SCL fall time (Note 1)
1000
300
ns 1.5V VCC 1.8V
1.8V VCC 3.6V
6T
HD:STA Start condition hold time 4000
600
ns 1.5V VCC 1.8V
1.8V VCC 3.6V
7T
SU:STA Start condition setup time 4700
600
ns 1.5V VCC 1.8V
1.8V VCC 3.6V
8T
HD:DAT Data input hold time 0 ns (Note 2)
9T
SU:DAT Data input setup time 250
100
ns 1.5V VCC 1.8V
1.8V VCC 3.6V
10 TSU:STO Stop condition setup time 4000
600
ns 1.5V VCC 1.8V
1.8V VCC 3.6V
11 TSU:WP WP setup time 4000
600
ns 1.5V VCC 1.8V
1.8V VCC 3.6V
12 THD:WP WP hold time 4700
600
ns 1.5V VCC 1.8V
1.8V VCC 3.6V
13 TAA Output valid from clock (Note 2)
3500
900
ns 1.5V VCC 1.8V
1.8V VCC 3.6V
14 TBUF Bus free time: Time the bus must be
free before a new transmission can
start
1300
4700
ns 1.5V VCC 1.8V
1.8V VCC 3.6V
16 TSP Input filter spike suppression
(SDA and SCL pins)
—50ns(Note 1 and Note 3)
17 TWC Write cycle time (byte or page) 5 ms
18 Endurance 1M cycles 25°C, VCC = 3.6V, Block mode
(Note 4)
Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.
2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the
falling edge of SCL to avoid unintended generation of Start or Stop conditions.
3: The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs, which provide improved noise spike suppres-
sion. This eliminates the need for a TI specification for standard operation.
4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult
the Total Endurance™ Model which can be obtained from Microchip’s web site at www.microchip.com.
2008 Microchip Technology Inc. DS22079A-page 5
34VL02
FIGURE 1-1: BUS TIMING DATA
(unprotected)
(protected)
SCL
SDA
In
SDA
Out
WP
5
7
6
16
3
2
89
13
D4 4
10
11 12
14
34VL02
DS22079A-page 6 2008 Microchip Technology Inc.
2.0 FUNCTIONAL DESCRIPTION
The 34VL02 has two Software Write-Protect features
that allow you to protect half of the array from being
written (Addresses 00h-7Fh). One command, Software
Write-Protect (SWP) will prevent writes to half of the
array and is resettable by using the Clear Software
Write-Protect (CSWP) command. The other command
is Permanent Software Write-Protect (PSWP), which is
not resettable and will permanently lock half the array
from being written to. The device still has an external
pin (WP) that allows you to protect the entire array if so
desired.
The 34VL02 supports a bidirectional 2-wire bus and
data transmission protocol. A device that sends data
onto the bus is defined as a transmitter, and a device
receiving data, as a receiver. The bus has to be
controlled by a master device, which generates the
Serial Clock (SCL), controls the bus access and gener-
ates the Start and Stop conditions, while the 34VL02
works as slave. Both master and slave can operate as
transmitter or receiver, but the master device
determines which mode is activated.
3.0 BUS CHARACTERISTICS
The following bus protocol has been defined:
Data transfer may be initiated only when the bus
is not busy.
During data transfer, the data line must remain
stable whenever the clock line is high. Changes in
the data line while the clock line is high will be
interpreted as a Start or Stop condition.
Accordingly, the following bus conditions have been
defined (Figure 3-1).
3.1 Bus Not Busy (A)
Both data and clock lines remain high.
3.2 Start Data Transfer (B)
A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.
3.3 Stop Data Transfer (C)
A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must be ended with a Stop condition.
3.4 Data Valid (D)
The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.
The data on the line must be changed during the low
period of the clock signal. There is one clock pulse per
bit of data.
Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of data
bytes transferred between the Start and Stop
conditions is determined by the master device and is,
theoretically, unlimited; although only the last sixteen
will be stored when doing a write operation. When an
overwrite does occur, it will replace data in a first-in,
first-out (FIFO) fashion.
3.5 Acknowledge
Each receiving device, when addressed, is obliged to
generate an Acknowledge after the reception of each
byte. Exceptions to this rule relating to software write
protection are described in Section 7.0 “Write Protec-
tion”. The master device must generate an extra clock
pulse, which is associated with this Acknowledge bit.
The device that acknowledges has to pull down the
SDA line during the Acknowledge clock pulse in such a
way that the SDA line is stable low during the high
period of the acknowledge related clock pulse. Of
course, setup and hold times must be taken into
account. During reads, a master must signal an end-of-
data to the slave by not generating an Acknowledge bit
on the last byte that has been clocked out of the slave.
In this case, the slave (34VL02) will leave the data line
high to enable the master to generate the Stop
condition.
Note: The 34VL02 does not generate any
Acknowledge bits if an internal
programming cycle is in progress.
2008 Microchip Technology Inc. DS22079A-page 7
34VL02
FIGURE 3-1: DATA TRANSFER SEQUENCE ON THE SERIAL BUS
3.6 Device Addressing
A control byte is the first byte received following the
Start condition from the master device. The first part of
the control byte consists of a 4-bit control code which is
set to ‘1010’ for normal read and write operations and
0110’ for writing to the write-protect register. The
control byte is followed by three Chip Select bits (A2,
A1, A0). The Chip Select bits allow the use of up to
eight 34VL02 devices on the same bus and are used to
determine which device is accessed. The Chip Select
bits in the control byte must correspond to the logic lev-
els on the corresponding A2, A1 and A0 pins for the
device to respond.
The eighth bit of slave address determines if the master
device wants to read or write to the 34VL02
(Figure 3-2). When set to a one, a read operation is
selected. When set to a zero, a write operation is
selected.
FIGURE 3-2: CONTROL BYTE
ALLOCATION
4.0 WRITE OPERATIONS
4.1 Byte Write
Following the Start signal from the master, the device
code(4 bits), the Chip Select bits (3 bits) and the R/W
bit, which is a logic low, are placed onto the bus by the
master transmitter. This indicates to the addressed
slave receiver that a byte with a word address will follow,
once it has generated an Acknowledge bit during the
ninth clock cycle. Therefore, the next byte transmitted
by the master is the word address and will be written
into the Address Pointer of the 34VL02.
After receiving another Acknowledge signal from the
34VL02, the master device will transmit the data word to
be written into the addressed memory location. The
34VL02 acknowledges again and the master generates
a Stop condition. This initiates the internal write cycle,
which means that during this time, the 34VL02 will not
generate Acknowledge signals (Figure 4-1). If an
attempt is made to write to the array when the software
or hardware write protection has been enabled, the
device will acknowledge the command, but no data will
be written. The write cycle time must be observed even
if the write protection is enabled.
4.2 Page Write
The write control byte, word address and the first data
byte are transmitted to the 34VL02 in the same way as
in a byte write. Instead of generating a Stop condition,
the master transmits up to 15 additional data bytes to
the 34VL02, which are temporarily stored in the on-chip
page buffer and will be written into the memory after the
master has transmitted a Stop condition. Upon receipt
of each word, the four lower order Address Pointer bits
are internally incremented by one. The higher order
four bits of the word address remain constant. If the
master should transmit more than 16 bytes prior to gen-
erating the Stop condition, the address counter will roll
over and the previously received data will be overwrit-
ten. As with the byte write operation, once the Stop
condition is received, an internal write cycle will begin
SCL
SDA
(A) (B) (D) (D) (A)(C)
Start
Condition
Address or
Acknowledge
Valid
Data
Allowed
to Change
Stop
Condition
Operation Control
Code
Chip
Select R/W
Read 1010 A2 A1 A0 1
Write 1010 A2 A1 A0 0
Write-Protect Register 0110 A2 A1 A0 0
OR
Start Read/Write
Slave Address R/W A
1010A2 A1 A0
0110A2 A1 A0
34VL02
DS22079A-page 8 2008 Microchip Technology Inc.
(Figure 4-2). If an attempt is made to write to the array
when the hardware write protection has been enabled,
the device will acknowledge the command, but no data
will be written. The write cycle time must be observed
even if the write protection is enabled.
FIGURE 4-1: BYTE WRITE
FIGURE 4-2: PAGE WRITE
Note: Page write operations are limited to writing
bytes within a single physical page,
regardless of the number of bytes actually
being written. Physical page boundaries
start at addresses that are integer multi-
ples of the page buffer size (or ‘page size’)
and end at addresses that are integer mul-
tiples of [page size – 1]. If a Page Write
command attempts to write across a phys-
ical page boundary, the result is that the
data wraps around to the beginning of the
current page (overwriting data previously
stored there), instead of being written to
the next page, as might be expected. It is
therefore necessary for the application
software to prevent page write operations
that would attempt to cross a page
boundary.
S P
Bus Activity
Master
SDA Line
Bus Activity
S
T
A
R
T
S
T
O
P
Control
Byte
Word
Address Data
A
C
K
A
C
K
A
C
K
S P
Bus Activity
Master
SDA Line
Bus Activity
S
T
A
R
T
Control
Byte
Word
Address (n) Data (n) Data (n + 15)
S
T
O
P
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Data (n + 1)
2008 Microchip Technology Inc. DS22079A-page 9
34VL02
5.0 ACKNOWLEDGE POLLING
Since the device will not acknowledge during a write
cycle, this can be used to determine when the cycle is
complete (this feature can be used to maximize bus
throughput). Once the Stop condition for a Write
command has been issued from the master, the device
initiates the internally timed write cycle. ACK polling
can be initiated immediately. This involves the master
sending a Start condition followed by the control byte
for a Write command (R/W = 0). If the device is still
busy with the write cycle, then no ACK will be returned.
If the cycle is complete, then the device will return the
ACK and the master can then proceed with the next
Read or Write command. See Figure 5-1 for flow
diagram.
FIGURE 5-1: ACKNOWLEDGE
POLLING FLOW
Send
Write Command
Send Stop
Condition to
Initiate Write Cycle
Send Start
Send Control Byte
with R/W = 0
Did Device
Acknowledge
(ACK = 0)?
Next
Operation
No
Yes
34VL02
DS22079A-page 10 2008 Microchip Technology Inc.
6.0 READ OPERATION
Read operations are initiated in the same way as write
operations, with the exception that the R/W bit of the
slave address is set to1’. There are three basic types
of read operations: current address read, random read
and sequential read.
6.1 Current Address Read
The 34VL02 contains an address counter that
maintains the address of the last word accessed, inter-
nally incremented by ‘1’. Therefore, if the previous
access (either a read or write operation) was to
address n, the next current address read operation
would access data from address n+1. Upon receipt of
the slave address with R/W bit set to ‘1, the 34VL02
issues an acknowledge and transmits the 8-bit data
word. The master will not acknowledge the transfer, but
does generate a Stop condition and the 34VL02
discontinues transmission (Figure 6-1).
6.2 Random Read
Random read operations allow the master to access
any memory location in a random manner. To perform
this type of read operation, the word address must first
be set. This is done by sending the word address to the
34VL02 as part of a write operation. Once the word
address is sent, the master generates a Start condition
following the acknowledge. This terminates the write
operation, but not before the internal Address Pointer is
set. The master then issues the control byte again, but
with the R/W bit set to a ‘1’. The 34VL02 then issues an
acknowledge and transmits the 8-bit data word. The
master will not acknowledge the transfer, but does
generate a Stop condition and the 34VL02
discontinues transmission (Figure 6-2).
6.3 Sequential Read
Sequential reads are initiated in the same way as a
random read, with the exception that after the 34VL02
transmits the first data byte, the master issues acknowl-
edge, as opposed to a Stop condition in a random read.
This directs the 34VL02 to transmit the next sequentially
addressed 8-bit word (Figure 6-3).
To provide sequential reads, the 34VL02 contains an
internal Address Pointer, which is incremented by one
at the completion of each operation. This Address
Pointer allows the entire memory contents to be serially
read during one operation.
6.4 Contiguous Addressing Across
Multiple Devices
The Chip Select bits (A2, A1, A0) can be used to
expand the contiguous address space for up to 16K bits
by adding up to eight 34VL02 devices on the same bus.
In this case, software can use A0 of the control byte as
address bit A8; A1 as address bit A9, and A2 as
address bit A10. It is not possible to sequentially read
across device boundaries.
6.5 Noise Protection and Brown-Out
The 34VL02 employs a VCC threshold detector circuit
which disables the internal erase/write logic if the VCC
is below 1.35V at nominal conditions.
The SCL and SDA inputs have Schmitt Trigger and
filter circuits which suppress noise spikes to assure
proper device operation, even on a noisy bus.
FIGURE 6-1: CURRENT ADDRESS READ
SP
Bus Activity
Master
SDA Line
Bus Activity
S
T
O
P
Control
Byte Data (n)
A
C
K
N
O
A
C
K
S
T
A
R
T
2008 Microchip Technology Inc. DS22079A-page 11
34VL02
FIGURE 6-2: RANDOM READ
FIGURE 6-3: SEQUENTIAL READ
S P
S
Bus Activity
Master
SDA Line
Bus Activity
S
T
A
R
T
S
T
O
P
Control
Byte
A
C
K
Word
Address (n)
Control
Byte
S
T
A
R
T
Data (n)
A
C
K
A
C
K
N
O
A
C
K
P
Bus Activity
Master
SDA Line
Bus Activity
S
T
O
P
Control
Byte
A
C
K
N
O
A
C
K
Data (n) Data (n + 1) Data (n + 2) Data (n + X)
A
C
K
A
C
K
A
C
K
34VL02
DS22079A-page 12 2008 Microchip Technology Inc.
7.0 WRITE PROTECTION
The 34VL02 has two software write-protect features
(SWP and PSWP) that allows the lower half of the array
(addresses 00h-7Fh) to be write-protected, as well as
a WP pin that can be used to protect the entire array.
The permanent software write-protect feature is
enabled by sending the device a special command.
Once this feature has been enabled, it cannot be
reversed. The resettable software write-protect feature
is also enabled by sending the device a special
command but can be reset by issuing another special
command. In addition to the software protect features,
there is a WP pin that can be used to write-protect the
entire array, regardless of whether the software write-
protect register has been written or not.
Table 7-2 and Table 7-3 describe how the 34VL02 will
acknowledge specific commands under various
circumstances.
7.1 Hardware Write Protection
The WP pin allows the user to write-protect the entire
array (00-FF) when the pin is tied to VCC. If the pin is
tied to VSS the write protection is disabled.
7.2 Software Write Protection (SWP)
and Clear Software Write
Protection (CSWP)
In addition to hardware write-protect the 34VL02 has
an additional software write-protect feature that, when
set, protects the first 128 bytes (00-7Fh) of the array
from being written.
Setting the software write protection is done by sending
the SWP instruction. SWP can also then be cleared by
issuing a CSWP instruction (see Figure 7-1).
These two instructions follow the same format as the
BYTE WRITE instruction with the exception of the
Device Type Identifier, (typically 1010’, instead
changes to ‘0110’). Once this identifier is recognized
by the device, the rest of the Byte Write command,
address and data, are “don’t cares”. In addition to the
identifier, high voltage must be applied to the A0 pin of
the device and specific levels must be present on A1
and A2. See Table 7-1 for the available commands.
7.3 Permanent Software Write-Protect
(PSWP)
The Permanent software write protection, or PSWP is
another instruction that may be used to permanently
protect the first 128 byte of the array. Once this
command is issued, the user will no longer have the
ability to clear this feature regardless of instruction,
power cycling, or state of the WP pin. Also, once this
instruction has been executed, the device will no
longer acknowledge the device identifier ‘0110’.
FIGURE 7-1: SOFTWARE WRITE PROTECTION FOR SWP, CSWP, PSWP, OR CPSWP
Bus Activity
Master
SDA Line
Bus Activity
S
T
A
R
T
Control
Byte
Address
Byte Data
S
T
O
P
A
C
K
A
C
K
A
C
K
S0110 0
A
2A
1A
0P
“Don’t Care” “Don’t Care”
2008 Microchip Technology Inc. DS22079A-page 13
34VL02
TABLE 7-2: ACKNOWLEDGE TABLE FOR WRITE OR WRITE PROTECTION WITH R/W = 0
TABLE 7-3: ACKNOWLEDGE TABLE FOR WRITE OR WRITE PROTECTION WITH R/W = 1
TABLE 7-1: SOFTWARE WRITE PROTECTION INSTRUCTION SET WP = 0
Address Pins Device Type
Identifier Chip Select Bits R/W
A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0
SWP VSS VSS VHV 0 110 0 0 1 0
CSWP VSS VCC VHV 0 110 0 1 1 0
PSWP A2 A1 A0 0 110 A2 A1 A0 0
Read SWP VSS VSS VHV 0 110 0 0 1 1
Read CSWP VSS VCC VHV 0 110 0 1 1 1
Read PSWP A2 A1 A0 0 110 A2 A1 A0 1
1. A0 is used to detect VHV for the SWP and CSWP commands.
2. B3, B2 and B1 are compared to the A2, A1 and A0 external pins, respectively on the 34XX02.
Status Write-
Protect Instruction ACK Address ACK Data Byte ACK Write
Cycle
Permanently Protected x
PSWP, SWP, CSWP No
Ack Don’t Care No
Ack Don’t Care No Ack No
PAGE or BYTE
WRITE in lower 128
bytes
Ack Address Ack Data No Ack No
Protected with SWP
0
SWP No
Ack Don’t Care No
Ack Don’t Care No Ack No
CSWP Ack Don’t Care Ack Don’t Care Ack Yes
PSWP Ack Don’t Care Ack Don’t Care Ack Yes
PAGE or BYTE
WRITE in lower 128
bytes
Ack Address Ack Data No Ack No
1
SWP No
Ack Don’t Care No
Ack Don’t Care No Ack No
CSWP Ack Don’t Care Ack Don’t Care No Ack No
PSWP Ack Don’t Care Ack Don’t Care No Ack No
PAGE or BYTE
WRITE Ack Address Ack Data No Ack No
Not Protected
0
PSWP, SWP, or CSWP Ack Don’t Care Ack Don’t Care Ack Yes
PAGE or BYTE
WRITE Ack Address Ack Data Ack Yes
1
PSWP, SWP, or CSWP Ack Don’t Care Ack Don’t Care No Ack No
PAGE or BYTE
WRITE Ack Address Ack Address No Ack No
Status Instruction ACK
Permanently Protected PSWP, SWP, CSWP No Ack
Protected with SWP
SWP No Ack
CSWP Ack
PSWP Ack
Not protected PSWP, SWP, CSWP Ack
34VL02
DS22079A-page 14 2008 Microchip Technology Inc.
8.0 PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 8-1.
TABLE 8-1: PIN FUNCTION TABLE
8.1 A0, A1, A2
The levels on these inputs are compared with the
corresponding bits in the slave address. The chip is
selected if the compare is true.
Up to eight 34VL02 devices may be connected to the
same bus by using different Chip Select bit
combinations. These inputs must be connected to
either VSS or VCC.
The A0 pin is also used to detect VHV.
8.2 Serial Address/Data Input/Output
(SDA)
This is a bidirectional pin used to transfer addresses
and data into and data out of the device. It is an open
drain terminal. Therefore, the SDA bus requires a pull-
up resistor to VCC (typical 10 k for 100 kHz, 2 k for
400 kHz).
For normal data transfer, SDA is allowed to change
only during SCL low. Changes during SCL high are
reserved for indicating the Start and Stop conditions.
8.3 Serial Clock (SCL)
This input is used to synchronize the data transfer to
and from the device.
8.4 Write-Protect (WP)
This is the hardware write-protect pin. It can be tied to
VCC or VSS. If tied to VCC, the hardware write protection
is enabled. If the WP pin is tied to VSS, the hardware
write protection is disabled.
Symbol PDIP SOIC TSSOP MSOP TDFN SOT-23 Description
A0 1 1 1 1 1 5 Chip Address Input
A1 2 2 2 2 2 4 Chip Address Input
A2 3 3 3 3 3 NC Chip Address Input
VSS 4 4 4 4 4 2 Ground
SDA 5 5 5 5 5 3 Serial Address/Data I/O
SCL 6 6 6 6 6 1 Serial Clock
WP 7 7 7 7 7 NC Write-Protect Input
VCC 8 8 8 8 8 6 +1.5V to 3.6V Power Supply
2008 Microchip Technology Inc. DS22079A-page 15
34VL02
9.0 PACKAGING INFORMATION
9.1 Package Marking Information
XXXXXXXX
TXXXXNNN
YYWW
8-Lead PDIP (300 mil) Example:
8-Lead SOIC (3.90 mm) Example:
XXXXXXXT
XXXXYYWW
NNN
34VL02
/P 3EC
0810
34VL02
SN 0810
3EC
8-Lead MSOP Example:
XXXXXT
YWWNNN
34VL2
8103EC
8-Lead TSSOP Example:
XXXX
TYWW
NNN
34V2
810
3EC
8-Lead 2x3 TDFN
XXX
YWW
NN
Example:
3
e
3
e
AJ7
810
3E
Part Number
1st Line Marking Codes
TSSOP MSOP TDFN SOT-23
34VL02 34V2 34VL2T AJ7 SMNN
34VL02
DS22079A-page 16 2008 Microchip Technology Inc.
Example:
6-Lead SOT-23
XXNN SMEC
Legend: XX...X Part number or part number code
T Temperature (I, E)
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code (2 characters for small packages)
Pb-free JEDEC designator for Matte Tin (Sn)
Note: For very small packages with no room for the Pb-free JEDEC designator
, the marking will only appear on the outer carton or reel label.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
Note: Please visit www.microchip.com/Pbfree for the latest information on Pb-free conversion.
*Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.
2008 Microchip Technology Inc. DS22079A-page 17
34VL02


  !"#$%&"' ()"&'"!&)&#*&&&#
 +%&,&!&
- '!!#.#&"#'#%!&"!!#%!&"!!!&$#/!#
 '!#&.0
1,21!'!&$& "!**&"&&!
 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
6&! 7,8.
'!9'&! 7 7: ;
7"')%! 7 <
& 1,
&& = = 
##44!!   - 
1!&&   = =
"#&"#>#& .  - -
##4>#& .   <
: 9& -< -? 
&& 9  - 
9#4!! <  
69#>#& )  ? 
9*9#>#& )  < 
: *+ 1 = = -
N
E1
NOTE 1
D
12
3
A
A1
A2
L
b1
b
e
E
eB
c
  * ,<1
34VL02
DS22079A-page 18 2008 Microchip Technology Inc.
 ! ""#$%& !'

  !"#$%&"' ()"&'"!&)&#*&&&#
 +%&,&!&
- '!!#.#&"#'#%!&"!!#%!&"!!!&$#''!#
 '!#&.0
1,2 1!'!&$& "!**&"&&!
.32 %'!("!"*&"&&(%%'&"!!
 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
6&! 99..
'!9'&! 7 7: ;
7"')%! 7 <
& 1,
: 8& = = 
##44!!   = =
&#%%+  = 
: >#& . ?1,
##4>#& . -1,
: 9& 1,
,'%@&A  = 
3&9& 9  = 
3&& 9 .3
3& IB = <B
9#4!!  = 
9#>#& ) - = 
#%& DB = B
#%&1&&' EB = B
D
N
e
E
E1
NOTE 1
12 3
b
A
A1
A2
L
L1
c
h
h
φ
β
α
  * ,1
2008 Microchip Technology Inc. DS22079A-page 19
34VL02
 ! ""#$%& !'
 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
34VL02
DS22079A-page 20 2008 Microchip Technology Inc.
() )"* ! (+%+( !

  !"#$%&"' ()"&'"!&)&#*&&&#
 '!!#.#&"#'#%!&"!!#%!&"!!!&$#''!#
- '!#&.0
1,2 1!'!&$& "!**&"&&!
.32 %'!("!"*&"&&(%%'&"!!
 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
6&! 99..
'!9'&! 7 7: ;
7"')%! 7 <
& ?1,
: 8& = = 
##44!!  <  
&#%%   = 
: >#& . ?1,
##4>#& . -  
##49&  - -
3&9& 9  ? 
3&& 9 .3
3& IB = <B
9#4!!  = 
9#>#& )  = -
D
N
E
E1
NOTE 1
12
b
e
c
A
A1
A2
L1 L
φ
  * ,<?1
2008 Microchip Technology Inc. DS22079A-page 21
34VL02
," !*-, , !

  !"#$%&"' ()"&'"!&)&#*&&&#
 '!!#.#&"#'#%!&"!!#%!&"!!!&$#''!#
- '!#&.0
1,2 1!'!&$& "!**&"&&!
.32 %'!("!"*&"&&(%%'&"!!
 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
6&! 99..
'!9'&! 7 7: ;
7"')%! 7 <
& ?1,
: 8& = = 
##44!!   < 
&#%%   = 
: >#& . 1,
##4>#& . -1,
: 9& -1,
3&9& 9  ? <
3&& 9 .3
3& B = <B
9#4!! < = -
9#>#& )  = 
D
N
E
E1
NOTE 1
12
e
b
A
A1
A2
c
L1 L
φ
  * ,1
34VL02
DS22079A-page 22 2008 Microchip Technology Inc.
.$*-,/00%12(.
 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
2008 Microchip Technology Inc. DS22079A-page 23
34VL02
.$*-,/00%12(.
 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
34VL02
DS22079A-page 24 2008 Microchip Technology Inc.
3 !(""!( !(/

 '!!#.#&"#'#%!&"!!#%!&"!!!&$#''!#
 '!#&.0
1,2 1!'!&$& "!**&"&&!
 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
6&! 99..
'!9'&! 7 7: ;
7"')%! 7 ?
& 1,
:"&!#9#&  1,
: 8&  = 
##44!!  < = -
&#%%   = 
: >#& .  = -
##4>#& . - = <
: 9&  = -
3&9& 9  = ?
3&& 9 - = <
3& B = -B
9#4!! < = ?
9#>#& )  = 
b
E
4
N
E1
PIN1IDBY
LASER MARK
D
123
e
e1
A
A1
A2 c
L
L1
φ
  * ,<1
2008 Microchip Technology Inc. DS22079A-page 25
34VL02
APPENDIX A: REVISION HISTORY
Revision A (3/2008)
Original release of this document.
34VL02
DS22079A-page 26 2008 Microchip Technology Inc.
NOTES:
2008 Microchip Technology Inc. DS22079A-page 27
34VL02
THE MICROCHIP WEB SITE
Microchip provides online support via our WWW site at
www.microchip.com. This web site is used as a means
to make files and information easily available to
customers. Accessible by using your favorite Internet
browser, the web site contains the following
information:
Product Support – Data sheets and errata,
application notes and sample programs, design
resources, user’s guides and hardware support
documents, latest software releases and archived
software
General Technical Support – Frequently Asked
Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant
program member listing
Business of Microchip – Product selector and
ordering guides, latest Microchip press releases,
listing of seminars and events, listings of
Microchip sales offices, distributors and factory
representatives
CUSTOMER CHANGE NOTIFICATION
SERVICE
Microchip’s customer notification service helps keep
customers current on Microchip products. Subscribers
will receive e-mail notification whenever there are
changes, updates, revisions or errata related to a
specified product family or development tool of interest.
To register, access the Microchip web site at
www.microchip.com, click on Customer Change
Notification and follow the registration instructions.
CUSTOMER SUPPORT
Users of Microchip products can receive assistance
through several channels:
Distributor or Representative
Local Sales Office
Field Application Engineer (FAE)
Technical Support
Development Systems Information Line
Customers should contact their distributor,
representative or field application engineer (FAE) for
support. Local sales offices are also available to help
customers. A listing of sales offices and locations is
included in the back of this document.
Technical support is available through the web site
at: http://support.microchip.com
34VL02
DS22079A-page 28 2008 Microchip Technology Inc.
READER RESPONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.
Please list the following information, and use this outline to provide us with your comments about this document.
To: Technical Publications Manager
RE: Reader Response
Total Pages Sent ________
From: Name
Company
Address
City / State / ZIP / Country
Telephone: (_______) _________ - _________
Application (optional):
Would you like a reply? Y N
Device: Literature Number:
Questions:
FAX: (______) _________ - _________
DS22079A34VL02
1. What are the best features of this document?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this document easy to follow? If not, why?
4. What additions to the document do you think would enhance the structure and subject?
5. What deletions from the document could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
2008 Microchip Technology Inc. DS22079A-page29
34VL02
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO. X/XX
PackageTemperature
Range
Device
Device: 34VL02: = 1.5V, 2 Kbit I2C Serial EEPROM
34VL02T: = 1.5V, 2 Kbit I2C Serial EEPROM
(Tape and Reel)
Temperature
Range:
Blank = -20°C to +85°C
Package: OT = Plastic Small Outline (SOT-23), 6-lead
P = Plastic DIP (300 mil body), 8-lead
SN = Plastic SOIC (3.90 mm body), 8-lead
ST = Plastic TSSOP (4.4 mm), 8-lead
MS = Plastic Micro Small Outline (MSOP), 8-lead
MNY* = Plastic Dual Flat (TDFN), no lead package,
2x3 mm body, 8-lead
Examples:
a) 34VL02T/OT: Tape and Reel, 1.5V,
SOT-23 package
b) 34VL02T/ST: Tape and Reel, 1.5V,
TSSOP package
c) 34VL02T/MNY: Tape and Reel, 1.5V,
TDFN package
Note 1: “Y” indicates a Nickel Palladium Gold (NiPdAu) finish.
34VL02
DS22079A-page 30 2008 Microchip Technology Inc.
NOTES:
2008 Microchip Technology Inc. DS22079A-page 31
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PRO MATE, rfPIC and SmartShunt are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
DS22079A-page 32 2008 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
WORLDWIDE SALES AND SERVICE
01/02/08