Data Sheet April 1998 microelectronics group Lucent Technologies Bell Labs Innovations T7290A DS1/T1/CEPT/E1 Line Interface Features a Fully integrated DS1/T1/CEPT/E1 line interface = For use in systems that are compliant with CB119, AT&T PUB 43801, AT&T PUB 43802, AT&T PUB 62411, TR-TSY-000170, TR-TSY-000009, ITU-T G.703, G.735, G.823, and 1.431 specifications s Dual-rail system interface a On-chip transmit equalization a On-chip jitter attenuator = Monolithic clock recovery with frequency- acquisition aide a High jitter accommodation (>0.4 U.!.) = No external crystal required Three clocking modes to accommodate multiple system clocking requirements a Multiple link-status and alarm features = Microprocessor interface option w AIS (blue alarm) transmission m Loopback modes for fault isolation a Minimal external circuitry required Description The Lucent Technologies Microelectronics Group T7290A DS1/T1/CEPT/E1 Line Interface is a fully integrated line transceiver capable of operation at the domestic DS1/T1 carrier rate (1.544 Mbits/s) or the international CEPT/E1 rate (2.048 Mbits/s). The T7290A device combines features found in existing line-interface devices with additional desirable fea- tures. The on-chip, low-impedance output drivers provide shaped waveforms to the transformer, guaranteeing template conformance. The T7290A device inter- faces to the digital cross connect (DSX) at lengths up to 655 feet during DS1 operation and interfaces to line impedances of 75 Q or 120 Q during CEPT oper- ation. The device line interface also can transmit waveforms compatible with T1 lines. The T7290A line interface provides phase-locked loop clock recovery and data retiming on received data. Also, on-chip, selectable jitter attenuation is available. The jitter attenuator can be placed in the receive or transmit data path. No external crystals are required with the T7290A device. Digital contro! circuitry allows for multiple loopbacks, testing, and alarm status monitoring. A microproces- sor interface option allows for either control via a microprocessor or direct pin-selectable control (hardware mode). The T7290A device is manufactured by using a low- power CMOS technology and is available in a 28-pin, plastic SOJ package or a 28-pin, plastic DIP pack- age. Note: Modification of an existing T7290 application may be required when migrating to a T7290A- based architecture. The functions of the TBS, TSC, LP1, DLOS, and LOS pins have been changed or modified. Please refer to the T7290A Migration from T7290 section of this data sheet. Me 00500e6 0032711 b1b MmData Sheet T7290A DS1/T1/CEPT/E1 Line Interface April 1998 Table of Contents Contents Page FOAtUICS ......ccccecccccesceccessccceesseeessnsssuceceussssccenesecscaaeceenessaaenseesonaneeasescescessseneeeessnanensnengenaeessasosaneccensensenseaseneanesenaegsnoree 1 D@SCTIPtON........cecesecsesecescesssceesesteectescrsesesesesessncasneseeesecaserseneseeerssserssessssseseneesauansusecensaanenceenenanssassensncoonoessanaseressensnss 1 Pin Information ...........::cc.c-ccceccsccsesscesscccescesceccerensansecenscneerssnacsescacecesarscceeesanaeessnsuereesesesaeccessossusssasousensenereceessseesesanes 4 ROCCIVED ...ccccccsseccccccssecscesssceescssccusssoeseccesscuscescecssnnneetansneeessnsrercsssasaususersceenannetecssuaneeseassgcauessssonaussonseneressseceeeassageaente 6 Data Interface .........:ccccccssecccsccececcssseecssssnsseecesssesasneecsuevscuseseseeesscestessssaessunsonsesseeesasseceesccronsssaaaensavseartorerscensessnanes snes 6 Clock Recovery and Data Retiming.............cscsssserecceccesssssrssssssensasssananeesesseaeassnsousensanensnnanenenncnsassanesserenenensaenes 6 Frequency-ACquisition Aide ...........csccssssssesssssseseseneneceeersssosssersesnsvsnscsnsnenesgensassnesssseasesesaneenerevenenensercocenaeassnenes 6 Witter ccccccccccocccsccsccsesccccececesscecocesesseeccsesscsccnenscesescessencneceeecersresssauasacuauansssssanenensseeccssseesreuseneaaneeceussoreseesenesepesseanaacanas 7 Data Patterns.........cccccccccssssesccocecesscsscssssssseensanesessusesceecsenecsseeesceceessuasecususansavecsecessseasesnaesensaesenenerserasseuanseeeeecaneansees 8 LOSS Of SIQKal .........ccssssescesesscsserstssssessssessesnearsesesesusceeesessesssensnenseenatanseasseasseeseessenessatneananseneneacssasicecseneacessonstetans 8 TrANSMitter .........cccscccsscecscsscecscocscsssscsssneccesscecenerseseecesseeesecscsueseoessseuesasseeerenesssessseanecesessaneonaneeserersunensecensaesenssaeennnees 8 Output Pulse Shape 0... cscsssesessesssssseeeeesesenensscestseseseeesnseensnscanansessssesesseeseneseneanscausnnaesesereegecssocsaessacasaasnenananenes 8 Output Pulse Generation .............sssssscssssssesessessenenenesescesessneneseeerseerenensonsesssseeesssseeneesensenenensscneesecenseecersaananenennes 10 Jitter AtteMUator ............ccccccccscccccccessecsessosnsceececeeececensnnensnsecerencecceeseseessoussseneseesessanssscuueaocsaonsessesessseauenseseesenuneenaaeeeees 11 Alarms and Maintenance..........0:...:cccccscccescccessecesssneceseeessnesvscesesccesecsssusntessecusasunnapesseressuaeessocsaeaseussanerssrassaeeeasseesaes 13 Digital Loss of Signal (DLOS)...........:cssssssssssssssssssseestseensessenerecsssnsnsvensuseesneassensnsscensassanensnasansnenassorsacoseesssesene ss 13 Output Loss of Signal (OUT-LOS)..........ccecsesseseesssseseecesseeeessenssneasensensesnsenaversesssensnseneaensenneneentaescnecssenaenecesanens 13 Jitter Attenuator Alarm (ESA) ........ccssssscseccssesscsssssssensnsensesensenserenessnseesnessescesessesasscsscevensseesesasenasensaeaeaneeauerenanse 14 Transmitter Short Circuit... .cccccccccecccessseecsccesssscecesneeecenanseressnseceesessccessssnsceeenesaaanseesnsspepaaeeesssosesseusanenscecereeneenesss 14 AIS (Blue Signal) Generator 0.0... sssscsseessssseessseeeenesesenseesesenstassscensnsnanansennseeneassaeseneenseneecenenconenssecesesasansaegetes 14 LOOPDACKS ........eeesesecesesceescseescsesnscsesesneessnsnsenesesnssnsescereccersenensessaasavaenesscesoseressscoseessssescanaeasacensnertececensscccecaeansenenss 14 Microprocessor Interface .........ssecsssecsecesserserscsecsenesesseseaesensesensseensssesesecessssessasssasnasnunsnseesrescassesenssaseananeanonenensates 14 IN-Circuit TeSting ............-ececesssssesseccescesseeessessesceeeseeasseseeanneesessesussseosssssussenasesategeaeusnsaneaserececesaaeccasanansosarensanstets 14 Absolute Maximum Rattings...........cscccccssesesesssssssseuseeseessesnesssssseessessecrscssesuaneesonecsossussatenssenaecauansaaeasnenseerareransaaes 15 Handling Precautions ..........sscesecessssssssesecessenanseeseossenseesescceseesacseesasssusunseosucaceesorscsseesenesenussnsaccantanesasataseccesessessensnts 15 Electrical Characteristics ......0.......cccccscssssssssecnssessecsscesersessecessesdseaceuscusoncesecnaaeseasceeaaneenssassesneaevarsasseoesoarensraeeeasenaes 16 Operating Conditions ............ccsssssssseseeeeseeseneeesenssssnesessenessneenenenensssnssseesessreceeseenasasaeenuauseacaseesensneecacsenananeasnnaes 16 Timing Characteristics 0.0.0... cscescssssessessssssseseeesseecanneeasscssnsseeceeceescssnsnsessessenausenesesenneanenessseseaseneenaanensenanenesecrses 17 Applications ...........c-cscesssessssscsesenserscsssssnsnseesesescenanaseanenenssnnteaesseesorsssseesseonsssaseustsasneseenanessensssanenanaacouaconsasscacanenesses 19 Lime Termination ..........:cccsccccsccessceccocnssccessssscesecssescccesaesecsceeenessencsausnaneasescauceeetsneeeesseenseasssaaacoueusnersuasersecsaanesaees 19 Outline Diagrams. ..........-.ccccsesceccsesessssssssssssssseesessseeseneesenseesensenessansasacaceeseracassseaseusucsecescesessnansustensenssesscasareneneessnaeatas 21 2B-Pin, Plastic SOU... csccssesssscccessnscesesecssasseeesesnsasusanaseesneeesscsenaasseeeneceseeeseeaaneeaseneensaesnreesseneeeseeneneeneeyennyegey 21 28-Pin, Plastic DIP............sssssssssccesssccssseesceesesenssausesseussnessesesensessesecuseesseasesesnnesensnscsssessenseeeeeneeasaaetnaesneanensece 22 Ordering Information............sescccssssesescssssesssessnsseeseansceeesececserenessssenssnssensnsvausnsusenesesearessneseseasarssssasnsnesennesenesescsnseses 22 T7290A Migration from T7290..........:.sssscssssssssssssereesseesssenesessessensssesasnenenerassesesesscssscsacsseseasancanstensnensaeacansesaseseneusanes 23 DS98-190TIC Replaces DS97-197TIC to Incorporate the Following Updates..............sssssscsssssersessscesnseeeeneatsces 23 2 Lucent Technologies Inc. M 0050026 0032712 552T7290A DS1/T1/CEPT/E1 Line Interface Description (continued) Data Sheet April 1998 5-2484(C)r.6 dQND a0qA, VOND voor o$f<> sgo i Ed] @d00710->| 300030 | zd1 dOO10__> bi dT ZaGOW O-> sova [2300 }3dOW 0--] 5 -_ 130w SOTLNO tat 030] gh }_ 93 Z03 0 |___ ge 205 Loa O> }____ 193 TOS $a o___-________ sal { TOWN 0X3 o> yx TyNDIS Y HOLINOW ed? zaqow Sa OSL | LIWSNVHL a ywOOTO | 4O SSO A r W1OLO- ry oa oO 2 WIVONIo VivddL 72 1) PAD PKA ene? le z | NN Oo Pt kK 2 ; SHSAING 72 0a 7204 104 w19S + NALLY | YaLLIt + sore on aL MIOXS { vSa f P| Nowisinooy | woxa Zz > oaus tt | zaqdow ' , you rea LdOW \ O MEASURED JITTER 8 Hz 40 kHz SIGNAL"]_ DETECTOR [? (700 Hz) (100 kHz) TRUE RMS VOLTMETER / | \ 2 ee J 10 Hz 40 Wz -o TO EACH POINT (20 Hz) (100 kHz) 1 SPECTRUM o ---"| ANALYZER -1163(F 2 Figure 8. Measurement of Generated Jitter 12 Lucent Technologies Inc. @! 0050026 0032722 4Tl omData Sheet April 1998 T7290A DS1/T1/CEPT/E1 Line Interface Jitter Attenuator (continued) 20 A PHASE STEP RESPONSE (lafl = 0 400 Hz) Var t -__ _- 15 _ of TY TT 5 READ COUNTER OFFSET (U.I.) TTTT TT T oOo 50 100 150 TIME (ms) -2485(C)r.3 Figure 9. Jitter Attenuator Phase Response Alarms and Maintenance Digital Loss of Signal (DLOS) A digital loss of signal (DLOS = 1) is indicated if 128 or more consecutive Os occur in the receive data stream during DS1/T1 operation. During CEPT operation, a DLOS is indicated when 32 or more consecutive 0s occur in the receive data stream. DLOS is then deacti- vated when the ones density exceeds 12.5% and there are no more than 15 consecutive Os (T1, DS1, and CEPT), signifying the return of good signal. DLOS deactivation monitors the data in fixed 32-bit windows. Each window must have at least four 1s with no more than 15 consecutive 0s. Consecutive Os are also moni- tored across the window boundary. This condition must persist for two consecutive 32-bit windows, at which time DLOS is deactivated at the end of the window. Upon DLOS detection, RCLK is phase-locked to the external clock (EXCLK) so that other system devices slaved to the line clock continue to operate without instantaneous phase hits or discontinuities. Either an analog loss of signal (ALOS) or a digital loss of signal (DLOS) activates the IN-LOS output pin. Lucent Technologies Inc. M@ 00500eb 0032723 338 Output Loss of Signal (OUT-LOS) An output loss of signal (OUT-LOS = 1) is indicated if either the transmit clock (TCLK) or the smoothing clock (SCLK) output of the jitter attenuator is absent. If the jit- ter attenuator is placed in the transmit path, SCLK is monitored. If the jitter attenuator is not used in the transmit path, TCLK is monitored. For every ten clock periods of the PLL oscillator clock, denoted as UGRCLK in Figure 1, a strobe is generated. If a single transmit clock period occurs between strobes, then OUT-LOS = 0. If no transmit clock period occurs between strobes, then OUT-LOS = 1, and the output drivers (T2 and R2) are placed into a high-impedance state and no data is transmitted. UGRCLK is always present, even in the absence of both EXCLK and T1/R1 input data; therefore, UGRCLK is the most suit- able clock for monitoring OUT-LOS. 13T7290A DS1/T1/CEPT/E1 Line Interface Data Sheet April 1998 Alarms and Maintenance (continued) Jitter Attenuator Alarm (ESA) A jitter attenuator alarm (ESA = 1) is indicated if the phase jitter exceeds the tolerance of the jitter attenua- tor. Bit errors occur when ESA is active. This signal is asserted until error-free operation resumes. See Figure 9 to determine the tolerance limits of the attenu- ator. Transmitter Short Circuit A transmitter monitor is provided to detect nonfunction- ing links and protect the device from damage. If one of the transmitter's line drivers (T2 or R2) is shorted to the power supply or ground, or if T2 and R2 are shorted together, internal circuitry protects the device from damage. After 35 transmit clock cycles, the transmitter is powered up in its normal operating mode. The drivers attempt to correctly transmit the next data bit (+1, 0, or 1). If the short is still present, the transmitter is again internally protected for 35 transmit clock cycles. This process is continuously repeated until the short has dis- appeared. The TSC alarm is not available off-chip. AIS (Blue Signal) Generator When the transmit blue signal is set (TBS = 1), a contin- uous stream of bipolar 1s is transmitted onto the line synchronous with EXCLK. The TPDATA and TNDATA inputs are ignored during this mode. If the IN-LOS output is externally connected to the TBS input, an IN-LOS error initiates a transmit blue signal as long as IN-LOS = 1. Also, TBS input is ignored when a remote loopback is selected. There is no microprocessor inter- face for the TBS input, i.e., any change on the TBS pin is fed directly into the device and is not impeded by the CS function. Loopbacks The T7290A device has three independent loopback paths, which are activated as shown in Table 7. A local loopback (LP1) connects the jitter attenuator's output clock and data to the receive clock and data out- put pins. MODE1:2 = 01 must be selected for this loop- back to operate (jitter attenuator in the transmit path). Valid transmit output data continues to be sent to the network. However, if the transmit blue is initiated (TBS = 1), an all-1s signal is sent to the network and 14 does not corrupt the looped data. The IN-LOS alarm still monitors the entire receive function. A remote loopback (LP2) loops the recovered clock and retimed data into the transmitter and back onto the line. The receive front end, receive PLL, jitter attenuator (if engaged), and transmit driver circuitry are all exercised. The transmit clock, transmit data, and TBS inputs are ignored. Valid receive output data continues to be sent. to RPDATA and RNDATA. This loop can be used to isolate failures between systems. A digital local loopback (LP3) directly loops the transmit clock and data to the receive clock and data output pins. The blue signal can be transmitted when in this loopback. LP (rather than LP1) must be selected if MODE2 = 0. Table 7. Loopback Control Operation Symbol; LOOPA| LOOPB Normal _ 0 0 Digital Local Loopback LP3 0 1 Remote Loopback LP2* 1 0 Local Loopback LP1 1 1 * TBS is ignored. Microprocessor Interface A chip-select input (CS) configures the device in either hardware mode or microprocessor mode. The chip-select function applies to the following inputs: MODE1, MODE2, EC1, EC2, EC3, LOOPA, and LOOPB. in the hardware mode, any change on these asynchronous input pins is fed directly into the device. To maintain hardware mode, set CS = 0. In the microprocessor mode, new digital con- trol inputs are loaded into the T7290A device on the fall- ing edge of CS and are latched on the rising edge of CS. Figure 11 shows a timing diagram of this function. Note that there are special requirements only when using microprocessor mode. For example, the state of the input should not change while CS = 0. Also, the state of the internal latch is undefined (unknown to the user) until the first falling edge of CS is encountered. In-Circuit Testing The device has the ability to allow for in-circuit testing by activating the high-impedance mode (TRI = 0). During this mode, all output buffers (T2, R2, RCLK, RPDATA, RNDATA, IN-LOS, ESA, and OUT-LOS) are 3-stated. During the 3-stated condition, the absolute maximum voltage ratings must not be exceeded on any pin. Lucent Technologies Inc. MB 0050026 0032724 274 mmData Sheet April 1998 T7290A DS1/T1/CEPT/E1 Line Interface Absolute Maximum Ratings Stresses in excess of the absolute maximum ratings can cause permanent or latent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability. External leads can be soldered safely at temperatures up to 300 C. Parameter Symbol Min Max Unit de Supply Voltage Range Vop -0.5 6.5 V Power Dissipation Pp _ 500 mw Storage Temperature Tstg -65 125 C Maximum Voitage (any pin) with Respect to Vpp 0.5 V Minimum Voltage (any pin) with Respect to GND _ -0.5 _ Vv Maximum Allowable Voltages (T1, R1) with Respect to GND _ -5.0 5.0 Vv Handling Precautions Although protection circuitry has been designed into this device, proper precautions should be taken to avoid expo- sure to electrostatic discharge (ESD) during handling and mounting. Lucent employs a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used to define the model. No industry-wide standard has been adopted for the CDM. However, a standard HBM (resistance = 1500 Q, capacitance = 1000 pF) is widely used and, therefore, can be used for comparison purposes. The HBM ESD threshold presented here is obtained by using these circuit parameters: Human-Body Model ESD Threshold Device Voltage T7290A-EL >1200V T7290A-PL >1200 V Lucent Technologies Inc. 15 M@@ 0050026 0032725 100 myData Sheet T7290A DS1/T1/CEPT/E1 Line Interface April 1998 Electrical Characteristics Operating Conditions 40 C < Tas +85 C, Vop = 5 V + 5%, except as noted. Vop rise time (0 V to 4.75 V) must be less than 15 ms. Table 8. Power Specifications Parameter Symbol Min Typ Max Unit Power Dissipation:* Pp Without Jitter Attenuator: T1 _ 125 131 mw psit 132 139 mW CEPT (75 Q) 126 132 mw CEPT (120 22) _ 120 126 mW With Jitter Attenuator: T1 _ 165 173 mw psit 172 181 mw CEPT (75 Q) _ 174 183 mw CEPT (120 Q) 168 176 mW * Conditions with 50% 1s on the transmit side, Ta = 25 C, Von = 5 V. t+ Equalizer settings: EC1 = 0, EC2=1, EC3=1. Table 9. Logic Interface Characteristics An internal pull-up device is provided on the TRI lead. Internal pull-down devices are provided on the following leads: CS, MODE1, MODE2, EC1, EC2, EC3, TBS, LOOPA, and LOOPB. The internal pull-up or pull-down devices require the input to source or sink no more than 20 pA. Parameter Symbol Min Max Unit input Voltage: Low Vit GNDb 0.8 Vv High Vin 2.0 Vopo Vv Output Voltage: Low VoL GNDb 0.4 Vv High Von 2.4 Vopp Vv Input Capacitance Ci 20 pF Load Capacitance CL _ 40 pF Source Current [source _ 4.9 mA Sink Current Isink _ 49 mA 16 Lucent Technologies Inc. me 005002b 00327?eb O87Data Sheet April 1998 T7290A DS1/T1/CEPT/E1 Line Interface Timing Characteristics All duty-cycle and timing relationships for receive and transmit data signals are referenced to a TTL, 1.4V threshold level. Figure 10 shows this timing. Table 10. Interface Data Timing (See Figure 10.) Symbol Parameter Min Typ Max Unit _ TCLK Duty Cycle 40 50 60 % tTCLTCL | TCLK Clock Period: DS1/T1 * 647.7 ns CEPT 488 ns tTDVTCL | Transmit Data Setup Time 50 _ _ ns tTCLTDX | Transmit Data Hold Time 40 _ ns tTCH1TCH2 | Clock Rise Time (10%90%) _ _ 40 ns tTCL2TCL1 | Clock Fall Time (10%90%) _ _ 40 ns tRDVRCH | Receive Data Setup Time 140 _ _ ns tRCHRDX | Receive Data Hold Time 180 ns tRCLRDV | Receive Propagation Delay _ _ 40 ns * A tolerance of +130 ppm. + Atolerance of +80 ppm. TCLK }e tTCLTCL tTCH1ITCH2 RPDATA | eTDVTCL {TCLTDX TPDATA OR x TNDATA tRCLRD RCLK PN of \ tROVRCH OR RNDATA F SV Figure 10. Interface Data Timing Lucent Technologies Inc. M! 0050026 O03e7e? T3835 5-1156(C)r.8 17Data Sheet T7290A DS1/T1/CEPT/E1 Line Interface April 1998 Timing Characteristics (continued) Table 11. Microprocessor Interface Timing (See Figure 11.) Symbol Parameter Min Max Unit tSVCSL Control Signal Setup Time 50 _ ns tCSLCSH Control Signal Pulse Width Time 40 _ ns tCSHSX Control Signal Hold Time 40 _ ns tCSH1CSH2 | Control Signal Rise Time (10%-90%) 40 ns tCSL2CSL1 Control Signal Rise Time (10%90%) _ 40 ns tCSL2CSL P tCSH1CSH2 cs MOpeD 1 tCSLCSH> EC1 x E02 XK EC3 4 LOOPA LOOPB tSVCSL bk+ w-| tCSHSX bqe Figure 11. Microprocessor Interface Timing -1165(F)r.4 18 Lucent Technologies Inc. MM 00S00cb 0032728 31TData Sheet April 1998 T7290A DS1/T1/CEPT/E1 Line Interface Applications Line Termination For the following applications (shown in Figures 12-15), the Lucent 2741 and 2745 Series transformers are rec- ommended. The same transformers used for the T7290 device can be used for the T7290A device. The tolerance of all transformer turns ratios is a maximum of +2%. The tolerance of all resistors in the transmit path (excluding the cable termination) is a maximum of +1%. RECEIVE DATA > ee Ti RPDATA } 500 2 RECEIVE RNDATA +} 200 2 INPUT = 500 Q RCLK ->_> + 12 L Ri Voop Pt 8 VDDA T7290A 1 uF GNDo - TRANSMIT DATA GNDa SS ee T2 = 1009 $ LoaD | TRANSMIT TPDATA |~+_ OUTPUT TNDATA }-_ % R2 TCLK 1.08:1 5-1152(C)r.6 Figure 12. DS1 Application for Twisted-Pair Interface RECEIVE DATA>- 1 RPDATA |} EQUAL: RECEIVE RNDATA }_ IZER INPUT ACK 12 7 I Rt FOR 0 dB LINE BUILD-OUT. GNDpb +_ TRANSMIT DATA GNDa 21.52 St e AWW T2 TPDATA be 100 08 LOAD TRANSMIT Vpop +5V WAVEFORM MEETS FIGURE 3 Vppa , i TEMPLATE AT THIS POINT T7290A 1 pF OUTPUT TNDATA e 21.52 95 1.36:1 WwW R2 TCLK + -1153(C) Figure 13.T1 Application Diagram Lucent Technologies Inc. 19 M 0050026 0032729 456 mmT7290A DS1/T1/CEPT/E1 Line interface Data Sheet April 1998 Applications (continued) Line Termination (continued) RECEIVE DATA _ ee 71 RPDATA L}-- 866 2 RECEIVE RNDATA +> 200 2 INPUT = 866 2 RCLK -> - 1:2 Rt Voop Rona 45V VDDA T7290A 1 pF GNDob <+_ TRANSMIT DATA 26.19 GNDA ee T2 = TRANSMIT TPDATA |___ 120 2 3 LOAD OUTPUT 26.10 TNDATA }_ R2 TCLK |4___ 1.36:1 5-1154(C) Figure 14. CEPT Application for Twisted-Pair Interface RECEIVE DATA = eo. Ti RPDATA |--> 2702 RECEIVE RNDATA - 200 2 INPUT = 2702 RCLK }> L ~ 4:2 RI = Vpop t+ +5V VDDA T7290A 1 pF GNDpb ~< TRANSMIT DATA 15.49 GNDa ee T2 = TRANSMIT TPDATA t+ 7523 LOAD OUTPUT 15.49 TNDATA - WA-] R2 TCLK tq_ L 1.36:1 5-1155(C)r.6 Figure 15. CEPT Application for Coaxial interface 20 Lucent Technologies Inc. M 0050026 0032730 575 aData Sheet April 1998 T7290A DS1/T1/CEPT/E1 Line Interface Outline Diagrams 28-Pin, Plastic SOJ Dimensions are in millimeters. rTz Oo ; PIN #1 IDENTIFIER ZONE Ww et __ __ __ __. SEATING PLANE |S [0.10 etter TYP 0.51 MAX _. = 0.79 MAX -4413(C).14 Number of Package Dimensions (SOJ) Pins (N) Maximum Length Maximum Width Maximum Width Maximum Height Including Leads (L) Without Leads (B) Inciuding Leads (W) Above Board (H) 28 18.03 7.62 8.87 3.18 Lucent Technologies Inc. 21 M@ 0050026 0032731 404 aT7290A DS1/T1/CEPT/E1 Line Interface Outline Diagrams (continued) 28-Pin, Plastic DIP Dimensions are in millimeters. Vv rc ch PIN #1 IDENTIFIER ZONE --0- / i Lt } SEATING PLANE 0.38 MIN Data Sheet April 1998 laa 2.54 TYP 0.58 MAX _,| __ 5-4410(C).12 Number of Package Dimensions (DIP) Pins (N) Maximum Length Maximum Width Maximum Width Maximum Height Including Leads (L) Without Leads (B) Including Leads (W) Above Board (H) 28 37.34 13.97 15.49 5.59 Ordering Information Device Code Package Temperature Comcode (Ordering Number) T - 7290A - - PL 28-Pin DIP ~40 C to +85 C 106785645 T - 7290A - - EL 28-Pin SOJ 40 C to +85 C 106785637 22 Lucent Technologies Inc. Mi 0050026 0032732 340 mmtp Data Sheet April 1998 T7290A DS1/T1/CEPT/E1 Line Interface T7290A Migration from T7290 The T7290A is a replacement for the T7290 family of devices that includes the T7290-EL, T7290-PL, T7290-EL2, and T7290-PL2. The following list describes the functional changes made to the T7290 to produce the T7290A. Modification of an existing T7290 application may be required. u The TBS input of the T7290A directly controls the TBS function. The TBS function of the T7290 is gated by chip - select (CS). = The transmitter short circuit (TSC) output alarm has been eliminated; however, the transmit drivers are still pow- ered down under short-circuit conditions. The pin is renamed as output loss of signal (OUT-LOS) and indicates when either the transmit clock (TCLK) or the smoothing clock (GCLK) output of the jitter attenuator is absent. ws Loopback 1 (LP1) has been modified to route signals through the jitter attenuator only. The MODE2 pin must be set high for this loopback to operate (jitter attenuator on). a The digital loss-of-signal (DLOS) functionality is now compatible for use in systems that must be compliant with Bellcore TR-TSY-000009. a The loss-of-signal (LOS) output indication is renamed as input loss of signal (IN-LOS) and is now the ORed func- tion of analog loss of signal (ALOS) and digital loss of signal (DLOS) regardless of the loopback setting. a The frequency acquisition mode is enabled when a digital loss-of-signal (DLOS) condition occurs, in which case the receive clock (RCLK) is frequency-locked/phase-locked to the external clock (EXCLK). a Improved ITU-T G.703 interference immunity for CEPT mode operation. DS98-190TIC Replaces DS97-197TIC to Incorporate the Following Updates Page 3, Figure 1, Block Diagram, updated. Page 21, 28-Pin, Plastic SOJ, changed dimensions to millimeters. Page 22, 28-Pin, Plastic DIP, changed dimensions to millimeters. fF ON = Page 22, corrected Device Code. Lucent Technologies Inc. 23 M@ 0050026 0032733 267