Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.
BIPOLAR ANALOG INTEGRATED CIRCUIT
µ
PC8204TK
VARIABLE GAIN AMPLIFIER
FOR TRANSMITTER AGC
DESCRIPTION
The
µ
PC8204TK is a silicon monolithic integrated circuit designed as variable gain amplifier. T he package is 6-pin
lead-less minimold suitable for surface mount.
This IC is manufactured using our 30 GHz fmax UHS0 (Ultra High Speed Process) silicon bipolar process.
This IC is as same circuit current as conventional
µ
PC8119T and
µ
PC8120T, but operates at higher frequency and
wider gain control range.
FEATURES
Gain control range : GCR = 40 dB TYP. @ f = 1.9 GHz
: GCR = 40 dB TYP. @ f = 2.4 GHz
Maximum power gain : GPMAX = 14.5 dB TYP. @ f = 1.9 GHz
: GPMAX = 14.0 dB TYP. @ f = 2.4 GHz
Operating frequency : fin = 0.8 to 2.5 GHz
Supply voltage : VCC = 2.7 to 3.3 V
High-density surface mounting : 6-pin lead-less minimold package
APPLICATION
0.8 to 2.5 GHz transmitter/receiver system (PHS, WLAN and so on)
ORDERING INFORMATION
Part Number Order Number Package Marking Supplying Form
µ
PC8204TK-E2
µ
PC8204TK-E2-A 6-pin lead-less minimold
(1511 PKG) (Pb-Free) Note 6E • Embossed tape 8 mm wide
• Pin 1, 6 face the perforation side of the tape
• Qty 5 kpcs/reel
Note With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact
your nearby sales office.
Remark To order evaluation samples, contact your nearby sales office.
Part number for sample order:
µ
PC8204TK
Document No. PU10408EJ02V0DS (2nd edition)
Date Published October 2005 CP(K)
©
NEC Compound Semiconductor Devices, Ltd. 2003, 2005
The mark shows major revised points.
µ
PC8204TK
PIN CONNECTIONS
Pin No. Pin Name
1 INPUT
2 GND
3 GND
4 OUTPUT
5 VCC
1
2
3
6
(Top View)
5
4
6
5
4
1
(Bottom View)
2
3
6E
6 VAGC
VARIABLE GAIN AMPLIFIER PRODUCT LINE-UP
Parameter 0.95 GHz output port
matching frequency 1.44 GHz output port
matching frequency 1.9 GHz output port
matching frequency 2.4 GHz output port
matching frequency
Part No. ICC
(mA) GPMAX
(dB) GCR
(dB) NF
(dB) GPMAX
(dB) GCR
(dB) NF
(dB) GPMAX
(dB) GCR
(dB) NF
(dB) GPMAX
(dB) GCR
(dB) NF
(dB)
µ
PC8204TK 11.5 14.5 40 7.5 14.0 40 7.5
µ
PC8119T 11.0 12.5 50 8.5
13.0 45 7.5
(12.5) (22) (7.2)
µ
PC8120T 11.0 13.0 50 9.0 13.5 45 7.5 (13.0) (22) (7.3)
Remarks 1. Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail. ( ): reference.
2. To know the associated product, please refer to each latest data sheet.
Data Sheet PU10408EJ02V0DS
2
µ
PC8204TK
CONTENTS
1. PIN EXPLANATION...............................................................................................................................................4
2. ABSOLUTE MAXIMUM RATINGS.......................................................................................................................5
3. RECOMMENDED OPERATING RANGE.............................................................................................................5
4. ELECTRICAL CHARACTERISTICS .....................................................................................................................5
5. TEST CIRCUITS....................................................................................................................................................6
5. 1 f = 1.9 GHz...................................................................................................................................................6
5. 1. 1 Test circuit 1..................................................................................................................................6
5. 1. 2 Illustration of the test circuit 1 assembled on evaluation board .....................................................6
5. 1. 3 Component list..............................................................................................................................6
5. 2 f = 2.4 GHz...................................................................................................................................................7
5. 2. 1 Test circuit 2..................................................................................................................................7
5. 2. 2 Illustration of the test circuit 2 assembled on evaluation board .....................................................7
5. 2. 3 Component list..............................................................................................................................7
6. TYPICAL CHARACTERISTICS.............................................................................................................................8
6. 1 Inductor loading with external bias tee at output port...................................................................................9
6. 2 Output port matching at f = 1.9 GHz..........................................................................................................10
6. 3 Output port matching at f = 2.4 GHz..........................................................................................................22
7. PACKAGE DIMENSIONS....................................................................................................................................31
8. NOTES ON CORRECT USE .............................................................................................................................32
9. RECOMMENDED SOLDERING CONDITIONS .................................................................................................32
Data Sheet PU10408EJ02V0DS 3
µ
PC8204TK
1. PIN EXPLANATION
Pin
No. Pin
Name
Applied
Voltage
(V)
Pin
Voltage
(V) Note Function and Applications Internal Equivalent Circuit
1 INPUT 1.2 RF input pin.
This pin should be coupled with
capacitor (example 100 pF) for DC
cut. Input return loss can be
improved with external impedance
matching circuit.
2
3 GND 0 Ground pin.
This pin should be connected to
system ground with minimum
inductance. Ground pa- ttern on
the board should be formed as
wide as possible. Ground pins
must be connected together with
wide ground pattern to decrease
impedance difference.
4 OUTPUT Voltage
as same
as VCC
through
external
inductor
RF output pin.
This pin is de-signed as open
collector of high impedance. This
pin must be externally equipped
with matching circuits.
3
5
4
1
2
Control
circuit
Bias
circuit
GND
5 VCC 2.7 to 3.3 Supply voltage pin.
This pin must be equipped with
bypass capacitor (example 1 000
pF) to minimize its RF impedance.
⎯⎯⎯
6 VAGC 0 to 3.3 Gain control pin.
5
6
2
Control
circuit
Note Pin voltage is measured at VCC = 3.0 V
Data Sheet PU10408EJ02V0DS
4
µ
PC8204TK
2. ABSOLUTE MAXIMUM RATINGS
Parameter Symbol Test Conditions Ratings Unit
Supply Voltage VCC TA = +25°C, Pin 4, 5 3.6 V
Total Circuit Current ICC TA = +25°C 30 mA
Gain Control Voltage VAGC TA = +25°C 3.6 V
Power Dissipation PD TA = +85°C Note 203 mW
Operating Ambient Temperature TA 40 to +85 °C
Storage Temperature Tstg 55 to +150 °C
Input Power Pin +5 dBm
Note Mounted on double-sided copper-clad 50 × 50 × 1.6 mm epoxy glass PWB
3. RECOMMENDED OPERATING RANGE
Parameter Symbol MIN. TYP. MAX. Unit Remarks
Supply Voltage VCC 2.7 3.0 3.3 V Same voltage should be applied to pin
4 and pin 5.
Operating Ambient Temperature TA 40 +25 +85 °C
Operating Frequency fin 0.8 2.5 GHz With external output-matching
Gain Control Voltage VAGC 0 3.3 V
4. ELECTRICAL CHARACTERISTICS (TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 , external
matched output port, unless otherwise specified)
Parameter Symbol Test Conditions MIN. TYP. MAX. Unit
Circuit Current ICC No signal 8.5 11.5 15.0 mA
Maximum Power Gain GPMAX f = 1.9 GHz, Pin = 20 dBm
f = 2.4 GHz, Pin = 20 dBm
11.5
11.0
14.5
14.0
17.5
17.0
dB
Gain Control Range Note GCR f = 1.9 GHz, Pin = 20 dBm
f = 2.4 GHz, Pin = 20 dBm
35
35
40
40
dB
Gain 1 dB Compression Output
Power PO (1 dB) f = 1.9 GHz, GPMAX
f = 2.4 GHz, GPMAX
+2.0
+2.0
+5.0
+5.0
dBm
Input Return Loss RLin f = 1.9 GHz, GPMAX
f = 2.4 GHz, GPMAX
8
9
11
13
dB
Isolation ISL
f = 1.9 GHz, GPMAX
f = 2.4 GHz, GPMAX
25
25
30
30
dB
Noise Figure NF f = 1.9 GHz, GPMAX
f = 2.4 GHz, GPMAX
7.5
7.5
10.0
10.0
dB
Note Gain control range GCR specification : GCR = GPMAX GPMIN (dB)
Conditions GPMAX@VAGC = VCC, GPMIN@VAGC = 0 V
Data Sheet PU10408EJ02V0DS 5
µ
PC8204TK
5. TEST CIRCUITS
5. 1 f = 1.9 GHz
5. 1. 1 Test circuit 1
IN OUT
2.2 nH
4
2, 3
5
1
100 pF
0.75 pF
VCC
1 000 pF
61 000 pF
VAGC 1 000 pF
Strip line : 9 mm
1 000 pF
C3 C6
C4
C1
L1
C5
C2
5. 1. 2 Illustration of the test circuit 1 assembled on evaluation board
Out
VCC
In
0.75 pF
2.2 nH
100 pF
1 000 pF
1 000 pF
1 000 pF
C2 C3
C5
L1
C4
C1
C6
5. 1. 3 Component list
Symbol Form Rating Part Number Maker
C1 Chip Capacitor 0.75 pF GRM39 Murata
C2 Chip Capacitor 100 pF GRM39 Murata
C3, C4 Chip Capacitor 1 000 pF GRM39 Murata
C5 Chip Capacitor 1 000 pF GRM40 Murata
C6 Feed-through Capacitor 1 000 pF DFT301-801X7R102S50 Murata
L1 Chip Inductor 2.2 nH LL-2012 TOKO
Data Sheet PU10408EJ02V0DS
6
µ
PC8204TK
5. 2 f = 2.4 GHz
5. 2. 1 Test circuit 2
IN OUT
100 nH
4
2, 3
5
1
100 pF 100 pF
V
CC
1 000 pF
620 pF
V
AGC
1 000 pF 1 000 pF
2 pF 0.75 pF
Strip line : 16 mm
C6
C5
C1
C7
C4
C3
L1
C8
C2
5. 2. 2 Illustration of the test circuit 2 assembled on evaluation board
Out
In
20 pF
100 nH
1 000 pF
1 000 pF
100 pF
100 pF
2 pF 0.75 pF
V
CC
C5 C6
C7
C3
C4
C1
C2
L1
C8
5. 2. 3 Component list
Symbol Form Rating Part Number Maker
C1 Chip Capacitor 0.75 pF GRM39 Murata
C2 Chip Capacitor 2 pF GRM39 Murata
C3 Chip Capacitor 20 pF GRM39 Murata
C4, C5 Chip Capacitor 100 pF GRM39 Murata
C6 Chip Capacitor 1 000 pF GRM39 Murata
C7 Chip Capacitor 1 000 pF GRM40 Murata
C8 Feed-through Capacitor 1 000 pF DFT301-801X7R102S50 Murata
L1 Chip Inductor 100 nH LL-1608 TOKO
Data Sheet PU10408EJ02V0DS 7
µ
PC8204TK
6. TYPICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)
T
A
= –25˚C
T
A
= –40˚C
T
A
= +25˚C
T
A
= +85˚C
0
2
4
6
8
10
12
14
16
01234
0
0
20
40
60
80
100
120
140
160
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Gain Control Current I
AGC
( A)
0
2
4
6
8
12
14
10
01234
3.3 V_lV
CC
2.7 V_lV
CC
3.0 V_lV
CC
2.7 V_l
out
3.0 V_l
out
V
CC
= 2.7 V
V
CC
= 3.0 V
V
CC
= 3.3 V
No signals
No signals
3.3 V_l
out
CIRCUIT CURRENT vs. SUPPLY VOLTAGE,
GAIN CONTROL VOLTAGE
Circuit Current I
CC
(mA)
Supply Voltage V
CC
(V), Gain Control Voltage V
AGC
(V)
OUT BLOCK CURRENT AND VCC BLOCK
CURRENT vs. GAIN CONTROL VOLTAGE
Out Block Current I
out
(mA)
V
CC
Block Current IV
CC
(mA)
Gain Control Voltage V
AGC
(V)
GAIN CONTROL CURRENT vs.
GAIN CONTROL VOLTAGE
µ
Gain Control Voltage V
AGC
(V)
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS
8
µ
PC8204TK
6. 1 Inductor loading with external bias tee at output port
0
20
40
20
40
S11
–FREQUENCY
S21
–FREQUENCY
S12
–FREQUENCY
S22
–FREQUENCY
1
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
1
0
20
20
40
40
0
20
40
20
40
0
20
40
20
40
2
2
1
1
1
1 900.000 000 MHz 1 900.000 000 MHz
f =
1.9 GHz
2: 18.5 dB
f =
2.4 GHz
f =
1.9 GHz
2: 1.4481 dB
f =
2.4 GHz
f =
1.9 GHz
2: –35.465 dB
f =
2.4 GHz
1
2
1
S11
–FREQUENCY
S22
–FREQUENCY
1: 39.719
186.87
448.26 fF
2: 29.586
161.26
2.4 GHz
2
S
21
log MAG 10 dB/ REF 0 dB
1: 9.2875 dB
S
11
log MAG 10 dB/ REF 0 dB
1:
18.309 dB
S12 log MAG 10 dB/ REF 0 dB
1:
35.369 dB
S22 log MAG 10 dB/ REF 0 dB
1:
1.2789
dB
2
2
1: 45.092
13.975
5.9941 pF
2: 41.508
13.176
2.4 GHz
f =
1.9 GHz
2: 9.2187 dB
f =
2.4 GHz
VCC = VAGC = 3.0 V,
Pin = –20 dBm
VCC = 3.0 V,
VAGC = 3.0 V,
Pin =
20 dBm
VCC = 3.0 V,
VAGC = 0, 3.0 V,
Pin =
20 dBm
VCC = 3.0 V,
VAGC = 3.0 V,
Pin =
20 dBm
VCC = 3.0 V,
VAGC = 3.0 V,
Pin =
20 dBm
V
AGC
= 3.0 V
V
AGC
= 0 V
VCC = VAGC = 3.0 V,
Pin
= –20 dBm
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS 9
µ
PC8204TK
6. 2 Output port matching at f = 1.9 GHz
1
1
VCC = 3.0 V,
VAGC = 3.0 V
(GPMAX),
Pin = –20 dBm
VCC = 3.0 V,
VAGC = 3.0 V
(GPMAX),
Pin = –20 dBm
MARKER 1
1.9 GHz MARKER 1
1.9 GHz
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
0
20
40
20
40
0
20
40
20
40
0
20
40
20
40
1
1
S11 log MAG 10 dB/ REF 0 dB 1 :
11.017 dB
S22 log MAG 10 dB/ REF 0 dB 1 :
18.125 dB
S
12
log MAG 10 dB/ REF 0 dB 1 :
30
.329 dB
1;
35.969
–23.434
3.5746 pF
1; 38.654
3.5234
295.14 pH
START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
S11
–FREQUENCY
S22
–FREQUENCY
S11
–FREQUENCY
VCC = 3.0 V,
VAGC = 3.0 V (GPMAX),
Pin = –20 dBm
MARKER 1 f = 1.9 GHz
VCC = 3.0 V,
VAGC = 3.0 V (GPMAX),
Pin = –20 dBm
MARKER 1 f = 1.9 GHz
VCC = 3.0 V,
VAGC = 3.0 V (GPMAX),
Pin = –20 dBm
MARKER 1 f = 1.9 GHz
S12
–FREQUENCY
S22
–FREQUENCY
1
0
–20
–40
20
40
1
V
AGC
= 3.0 V
S
21
log
MAG
10 dB/ REF 0 dB 1 :
14.578
dB
START 100.000 000 MHz STOP 3 100.000 000 MHz
VCC = 3.0 V,
Pin = –20 dBm
MARKER 1 f = 1.9 GHz
S21
–FREQUENCY
V
AGC
= 0 V
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS
10
µ
PC8204TK
20
20
40
40
10
20
0
2
4
6
8
10
12
14
16
18
20
0
0
10
20
0
10
20
10
20
1
1
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V 1
S21 log MAG 2 dB/ REF 0 dB 1 :
14
.611
dB
S
12
log MAG 10 dB/ REF 0 dB 1 :
30
.494
dB
S
22
log MAG 5 dB/ REF 0 dB 1 :
18
.488
dB
VCC = 2.7 to 3.3 V
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
S
21
–FREQUENCY
V
AGC
= V
CC
(G
PMAX
),
P
in
=
20 dBm
MARKER 1
f = 1.9 GHz
V
AGC
= V
CC
(G
PMAX
),
P
in
=
20 dBm
MARKER 1 f = 1.9 GHz
V
AGC
= V
CC
(G
PMAX
),
P
in
=
20 dBm
MARKER 1 f = 1.9 GHz
S
11
–FREQUENCY
S
22
–FREQUENCY
S
12
–FREQUENCY
1
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
S11 log MAG 5 dB/ REF 0 dB
1 :
11
.014
dB
V
AGC
= V
CC
(G
PMAX
),
P
in
=
20 dBm
MARKER 1 f = 1.9 GHz
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS 11
µ
PC8204TK
0
2
4
6
8
10
12
14
16
18
20
1
11
T
A
= 40˚C
T
A
= +25˚C
T
A
= +25˚C
T
A
= +85˚C
T
A
= +85˚C T
A
= 40˚C
S
11
log MAG 5 dB/ REF 0 dB 1 :
–10.934
dB
1
T
A
= +25˚C
T
A
= +25˚C
T
A
= 40˚C
T
A
= +85˚C
T
A
= 40˚C
T
A
= +85˚C
S21 log MAG 2 dB/ REF 0 dB 1 :
14.508
dB
S
22
log MAG 5 dB/ REF 0 dB 1 :
–17.378
dB
S
12
log MAG
10
dB/ REF 0 dB 1 :
–29.584
dB
0
–10
–20
10
20
0
–10
–20
10
20
20
40
0
–20
–40
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
S
11
–FREQUENCY
S
22
–FREQUENCY
S
12
–FREQUENCY
S
21
–FREQUENCY
V
CC
= 3.0 V
,
V
AGC
= 3.0 V (G
PMAX
),
P
in
=
20 dBm
MARKER 1 f = 1.9 GHz
V
CC
= 3.0 V
,
V
AGC
= 3.0 V (G
PMAX
),
P
in
=
20 dBm
MARKER 1 f = 1.9 GHz
V
CC
= 3.0 V
,
V
AGC
= 3.0 V (G
PMAX
),
P
in
=
20 dBm
MARKER 1 f = 1.9 GHz
V
CC
= 3.0 V
,
V
AGC
= 3.0 V (G
PMAX
),
P
in
=
20 dBm
MARKER 1 f = 1.9 GHz
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS
12
µ
PC8204TK
–10
–20
10
20
0
V
AGC
= 0 to 1.1 V
V
AGC
= 1.5 V
V
AGC
= 1.9 V
V
AGC
= 3.0 to 2.6 V
V
AGC
= 2.1 V
1
START 100.000 000 MHz STOP 3 100.000 000 MHz
S
22
log MAG 5 dB/ REF 0 dB 1 :
18.049
dB
S
22
–FREQUENCY
V
CC
= 3.0 V
,
P
in
=
20 dBm
MARKER 1 f = 1.9 GHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
–40
–20
0
20
40
1
V
AGC
= 2.2 V
V
AGC
= 3.0 V
V
AGC
= 1.9 V
V
AGC
= 1.4 V
V
AGC
= 1.3 V
V
AGC
= 1.2 V
V
AGC
= 1.7 V
V
AGC
= 1.5 V
V
AGC
= 0 to 0.8 V
V
AGC
= 1.1 V
S21 log MAG 10 dB/ REF 0 dB 1 :
14.513
dB
S
21
–FREQUENCY
V
CC
= 3.0 V
,
P
in
=
20 dBm
MARKER 1 f = 1.9 GHz
–20
–40
20
40
0
START 100.000 000 MHz STOP 3 100.000 000 MHz
1
V
AGC
= 3.0 to 2.5 V
V
AGC
= 0 to 1.5 V
V
AGC
= 2.1 V
VAGC = 1.8 V
S11 log MAG 10 dB/ REF 0 dB 1 :
11.011
dB
S
11
–FREQUENCY
V
CC
= 3.0 V
,
P
in
=
20 dBm
MARKER 1 f = 1.9 GHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
–40
–20
0
20
40
1
V
AGC
= 3.0 to 2.4 V V
AGC
= 0 to 1.4 V
S
12
log MAG 10 dB/ REF 0 dB 1 :
30.587
dB
S
12
–FREQUENCY
V
CC
= 3.0 V
,
P
in
=
20 dBm
MARKER 1 f = 1.9 GHz
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS 13
µ
PC8204TK
–40
–35
–30
–25
–20
–15
–10
–5
0
5
10
15
20
01234
V
CC
= 3.3 V
V
CC
= 3.0 V
V
CC
= 2.7 V
–40
–35
–30
–25
–20
–15
–10
–5
0
5
10
15
20
01234
T
A
= +25˚C
T
A
= +85˚C
T
A
= –25˚C
T
A
= –40˚C
Pin =
20 dBm,
V
CC
= 3.0 V
f = 1.9 GHz
–40
–35
–30
–25
–20
–15
–10
–5
0
5
10
15
20
01234
T
A
= –40˚C
T
A
= –25˚C
T
A
= +85˚C
T
A
= +25˚C
Pin =
20 dBm
,
V
CC
= 3.3 V
f = 1.9 GHz
01234
–40
–35
–30
–25
–20
–15
–10
–5
0
5
10
15
20
T
A
= +25˚C
T
A
= +85˚C
T
A
= –40˚C
T
A
= –25˚C
Pin =
20 dBm
,
V
CC
= 2.7 V
f = 1.9 GHz
Pin =
20 dBm
f = 1.9 GHz
POWER GAIN vs. GAIN CONTROL VOLTAGE POWER GAIN vs. GAIN CONTROL VOLTAGE
POWER GAIN vs. GAIN CONTROL VOLTAGE
POWER GAIN vs. GAIN CONTROL VOLTAGE
Power Gain G
P
(dB)
Power Gain G
P
(dB)
Power Gain G
P
(dB)
Power Gain G
P
(dB)
Gain Control Voltage V
AGC
(V)
Gain Control Voltage V
AGC
(V) Gain Control Voltage V
AGC
(V)
Gain Control Voltage V
AGC
(V)
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS
14
µ
PC8204TK
–50
–45
–40
–35
–30
–55
–60
–65
–70
–75
–80
–50
–45
–40
–35
–30
–30 –25 –20 –15 –10 –5 0 0 10
–55
–60
–65
–70
–75
–80
–50
–45
–40
–35
–30
–55
–60
–65
–70
–75
–80
–30 –25 –20 –15 –10 –5 0
–30 –25 –20 –15 –10 –5 0
T
A
= –40˚C,
G
PMAX
TYP.
f = 1.9 GHz
T
A
= +25˚C,
G
PMAX
TYP.
f = 1.9 GHz
–15
–10
–10 –20 –30
–5
0
–15
–10
10
–5
5
0
10
5
3.3 VPO
3.0 VPO
3.0 VP
O
3.3 VP
O
3.3 VP
O
3.0 VP
O
2.7 VP
O
2.7 VPO
2.7 VPadj
900 k
3.0 VPadj
600 k
3.3 VPadj
600 k
3.3 VP
adj
600 k
3.0 VP
adj
600 k
3.0 VPadj
900 k
3.3 VPadj
900 k
3.3 VP
adj
900 k
3.3 VP
adj
900 k 3.0 VP
adj
900 k
2.7 VP
adj
900 k
3.3 VP
adj
600 k
2.7 VP
adj
600 k
3.0 VP
adj
600 k
2.7 VP
adj
900 k
2.7 VPadj
600 k
0
–15
–10
10
–5
5
0
–15
–10
10
–5
5
2.7 VP
adj
600 k
T
A
= 85˚C
T
A
= +25˚C
T
A
= –40˚C
3.0 VP
adj
900 k
2.7 VP
O
V
CC
= V
AGC
= 3.0 V
f = 1.9 GHz
T
A
= +85˚C,
G
PMAX
TYP.
f = 1.9 GHz
ADJACENT CHANNEL POWER LEAKAGE,
OUTPUT POWER vs. INPUT POWER
ADJACENT CHANNEL POWER LEAKAGE,
OUTPUT POWER vs. INPUT POWER
ADJACENT CHANNEL POWER LEAKAGE,
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
Adjacent Channel Power Leakage P
adj
(dBc)Adjacent Channel Power Leakage P
adj
(dBc)Adjacent Channel Power Leakage P
adj
(dBc)
Input Power P
in
(dBm)
Input Power P
in
(dBm)
Input Power P
in
(dBm)
Input Power P
in
(dBm)
Output Power P
out
(dBm)Output Power P
out
(dBm)Output Power P
out
(dBm)
Output Power P
out
(dBm)
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS 15
µ
PC8204TK
0
010
10
–10
–10
–20
–20
–30
–30
–40
–50
–60
0
0
10
–10
–20
–30
–30
–40
–50
–60
10
–10
–20
–30
–40
–50
–60
–30
0
10
–10
–20
–30
–40
–50
–60
0
10
–10
–20
–30
–40
–50
–60
010
–10
–20
–30 010
–10
–20
01 –10 –20
–30 01
–10
–20
–30 01
–10
–20
0
0
0
VAGC = 3.3 V
VAGC = 3.3 V
VAGC = 3.3 V VAGC = 3.0 V
VAGC = 1.7 V
VAGC = 1.9 V
VAGC = 2.0 V
VAGC = 1.4 V
VAGC = 0 V
VAGC = 0 V
VAGC = 0 V
VAGC = 0 V
VAGC = 1.9 V
VAGC = 0 V
V
AGC
= 1.7 V
VAGC = 1.5 V
VAGC = 1.6 V
VAGC = 3.0 V
V
AGC
= 1.4 V
V
AGC
= 1.3 V
VAGC = 0 V
V
AGC
= 1.7 V
V
AGC
= 1.7 V
V
AGC
= 1.5 V
V
AGC
= 1.2 V
VAGC = 3.0 V
VAGC = 1.7 V
VAGC = 1.4 V
VAGC = 1.4 V
V
AGC
= 1.2 V
VCC = 3.0 V, TA = +85˚C
f = 1.9 GHz
VCC = 3.3 V, TA = +85˚C
f = 1.9 GHz
VCC = 3.3 V, TA = –40˚C
f = 1.9 GHz VCC = 3.0 V, TA = –40˚C
f = 1.9 GHz
VCC = 3.3 V, TA = +25˚C
f = 1.9 GHz VCC = 3.0 V, TA = +25˚C
f = 1.9 GHz
OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
Output Power Pout (dBm)
Output Power Pout (dBm)Output Power Pout (dBm)
Input Power Pin (dBm) Input Power Pin (dBm)
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
Output Power Pout (dBm)
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
Output Power Pout (dBm)
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
Output Power Pout (dBm)
Input Power Pin (dBm)
20
10
0
10
20
30
40
50
60
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS
16
µ
PC8204TK
0
10
–10
–20
–30
–40
–50
–60
0
10
–10
–20
–30
–40
–50
–60
–30 01
–10
–20
–30
0
10
–10
–20
–30
–40
–50
–60
–30 –20 –10 0 10
01
–10
–20
0
0
VAGC = 2.7 V
VAGC = 1.5 V
VAGC = 1.2 V VAGC = 0 V
VAGC = 0 V
V
AGC
= 1.0 V
V
AGC
= 2.7 V
VAGC = 0 V
V
AGC
= 1.2 V
V
AGC
= 1.1 V
VAGC = 2.7 V
VAGC = 1.2 V
VAGC = 1.5 V
V
AGC
= 1.0 V
VAGC = 1.4 V
VCC = 2.7 V, TA = –40˚C
f = 1.9 GHz
VCC = 2.7 V, TA = +85˚C
VCC = 2.7 V, TA = +25˚C
f = 1.9 GHz
OUTPUT POWER vs. INPUT POWER
Output Power Pout (dBm)
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
Output Power Pout (dBm)
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
Output Power Pout (dBm)
Input Power Pin (dBm)
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS 17
µ
PC8204TK
OIP
3
OIP
3
P
O (IM3)
P
O (IM3)
P
out
(f1, f2)
Output Power P
out
(dBm)
3rd Order Intermodulation Distortion Power P
O (IM3)
(dBm)
Output 3rd Order Intercept Point OIP
3
(dBm)
0
10
20
–10
–20
–30
–30 –25 –20 –15 –10 –5 0
–40
–50
–60
–70
–80
0
10
20
–10
–20
–30
–40
–50
–60
–70
–80
–30 –25 –20 –15 –10 –5 0
OIP
3
P
O (IM3)
P
out
(f1, f2)
0
10
20
–10
–20
–30
–40
–50
–60
–70
–80
–30 –25 –20 –15 –10 –5 0
V
CC
= 3.0 V,
V
AGC
= 3.0 V
(G
PMAX
)
f1 = 1 900 MHz
f2 = 1 901 MHz
IM
3
= 1 902 MHz,
1 899 MHz
V
CC
= 2.7 V,
V
AGC
= 2.7 V
(G
PMAX
)
f1 = 1 900 MHz
f2 = 1 901 MHz,
IM
3
= 1 902 MHz,
1 899 MHz
V
CC
= 3.3 V,
V
AGC
= 3.3 V
(G
PMAX
)
f1 = 1 900 MHz
f2 = 1 901 MHz,
IM
3
= 1 902 MHz,
1 899 MHz
P
out
(f1, f2)
OUTPUT POWER, P
O (IM3)
, OIP
3
vs.
INPUT POWER
Output Power P
out
(dBm)
3rd Order Intermodulation Distortion Power P
O (IM3)
(dBm)
Output 3rd Order Intercept Point OIP
3
(dBm)
OUTPUT POWER, P
O (IM3)
, OIP
3
vs.
INPUT POWER
Input Power P
in
(dBm)
Output Power P
out
(dBm)
3rd Order Intermodulation Distortion Power P
O (IM3)
(dBm)
Output 3rd Order Intercept Point OIP
3
(dBm)
OUTPUT POWER, P
O (IM3)
, OIP
3
vs.
INPUT POWER
Input Power P
in
(dBm)
Input Power P
in
(dBm)
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS
18
µ
PC8204TK
–20
–30
–40
–50
–60
–70
–80
–10
–10 –15 –20 –25 –30 –5 0
0
10
20
–20
–30
–40
–50
–60
–70
–80
–10
–30
0
10
20
–20
–30
–40
–50
–60
–70
–80
–10
–30
0
10
20
–20
–30
–40
–50
–60
–70
–80
–10
–30
0
10
20
–10 –15 –20 –25 –5 0 –10 –15 –20 –25 –5 0
–10 –15 –20 –25 –5 0
OIP
3
P
O (IM3)
P
O (IM3)
OIP
3
OIP
3
OIP
3
V
CC
= 3.0 V,
V
AGC
= 1.6 V,
G
P
= –1 dB
V
CC
= 3.0 V,
V
AGC
= 1.2 V,
G
P
= –20 dB
V
CC
= 3.0 V,
V
AGC
= 1.4 V,
G
P
= –10
dB
V
CC
= 3.0 V,
V
AGC
= 0 V,
G
P
= –28 dB
f1 = 1 900 MHz
f2 = 1 901 MHz,
IM
3
= 1 902 MHz,
1 899 MHz
f1 = 1 900 MHz
f2 = 1 901 MHz,
IM
3
= 1 902 MHz,
1 899 MHz
f1 = 1 900 MHz
f2 = 1 901 MHz,
IM
3
= 1 902 MHz,
1 899 MHz
f1 = 1 900 MHz
f2 = 1 901 MHz,
IM
3
= 1 902 MHz,
1 899 MHz
P
out
(f1, f2)
P
out
(f1, f2)
P
out
(f1, f2)
P
out
(f1, f2)
P
O (IM3)
P
O (IM3)
Output Power P
out
(dBm)
3rd Order Intermodulation Distortion Power P
O (IM3)
(dBm)
Output 3rd Order Intercept Point OIP
3
(dBm)
OUTPUT POWER, P
O (IM3)
, OIP
3
vs.
INPUT POWER
Input Power P
in
(dBm)
Output Power P
out
(dBm)
3rd Order Intermodulation Distortion Power P
O (IM3)
(dBm)
Output 3rd Order Intercept Point OIP
3
(dBm)
OUTPUT POWER, P
O (IM3)
, OIP
3
vs.
INPUT POWER
Input Power P
in
(dBm)
Output Power P
out
(dBm)
3rd Order Intermodulation Distortion Power P
O (IM3)
(dBm)
Output 3rd Order Intercept Point OIP
3
(dBm)
OUTPUT POWER, P
O (IM3)
, OIP
3
vs.
INPUT POWER
Input Power P
in
(dBm)
Output Power P
out
(dBm)
3rd Order Intermodulation Distortion Power P
O (IM3)
(dBm)
Output 3rd Order Intercept Point OIP
3
(dBm)
OUTPUT POWER, P
O (IM3)
, OIP
3
vs.
INPUT POWER
Input Power P
in
(dBm)
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS 19
µ
PC8204TK
–55
–60
–65
–70
–75
–8001 01234 2
12
34
34
–50
–55
–60
–65
–70
–75
–80
–50
–55
–60
–65
–70
–75
–80
–50
–55
–60
–65
–70
–75
–80
–55
–60
–65
–70
–75
–80
–55
–60
–65
–70
–75
–80
0
–10
–20
–30
–40
–50
0
–10
–20
–30
–40
–50
0
–10
–20
–30
–40
–50
01234
01234
P
out
P
out
P
out
600 k
900 k
900 k
600 k
900 k
600 k
0
1234
0
–40˚C
600 k
–40˚C
600 k
+85˚C
600 k
+25˚C
600 k
+85˚C
900 k
+25˚C
900 k
–40˚C
900 k
+85˚C
900 k
–40˚C
900 k
+25˚C
900 k
–40˚C
600 k
+25˚C
600 k
+85˚C
6
00 k
+85˚C
600 k
+85˚C
900 k
+25˚C
900 k
–40˚C
900 k
+25˚C
600 k
V
CC
=
3.3 V,
P
in
= –20 dBm
f = 1.9 GHz
V
CC
= 3.3 V,
P
in
= –20 dBm
f = 1.9 GHz
V
CC
= 3.0 V,
P
in
= –20 dBm
f = 1.9 GHz
V
CC
=
3.0 V,
P
in
= –20 dBm
f = 1.9 GHz
V
CC
= 2.7 V,
P
in
= –20 dBm
f = 1.9 GHz
V
CC
= 2.7 V,
P
in
= –20 dBm
f = 1.9 GHz
Gain Control Voltage V
AGC
(V)
Output Power P
out
(dBm)
Adjacent Channel Power Leakage P
adj
(dBc)
ADJACENT CHANNEL POWER
LEAKAGE, OUTPUT POWER vs.
GAIN CONTROL VOLTAGE
Gain Control Voltage V
AGC
(V)
Output Power P
out
(dBm)
Adjacent Channel Power Leakage P
adj
(dBc)
ADJACENT CHANNEL POWER
LEAKAGE, OUTPUT POWER vs.
GAIN CONTROL VOLTAGE
Gain Control Voltage V
AGC
(V)
Output Power P
out
(dBm)
Adjacent Channel Power Leakage P
adj
(dBc)
ADJACENT CHANNEL POWER
LEAKAGE, OUTPUT POWER vs.
GAIN CONTROL VOLTAGE
Gain Control Voltage V
AGC
(V)
Adjacent Channel Power Leakage P
adj
(dBc)
ADJACENT CHANNEL POWER
LEAKAGE vs. GAIN CONTROL
VOLTAGE
Gain Control Voltage V
AGC
(V)
Adjacent Channel Power Leakage P
adj
(dBc)
ADJACENT CHANNEL POWER
LEAKAGE vs. GAIN CONTROL
VOLTAGE
Gain Control Voltage V
AGC
(V)
Adjacent Channel Power Leakage P
adj
(dBc)
ADJACENT CHANNEL POWER
LEAKAGE vs. GAIN CONTROL
VOLTAGE
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS
20
µ
PC8204TK
6001234
5
10
15
20
25
6.5
7
7.5
8
8.5
9
2.6 2.8 3 3.2 3.4
2.7 V
V
CC
= 3.3 V
3.0 V
VAGC = VCC
f = 1.9 GHz
VAGC = VCC
f = 1.9 GHz
Gain Control Voltage V
AGC
(V)
NOISE FIGURE vs.
GAIN CONTROL VOLTAGE
Noise Figure NF (dB)
Noise Figure NF (dB)
NOISE FIGURE vs. SUPPLY VOLTAGE
Supply Voltage V
CC
(V)
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS 21
µ
PC8204TK
6. 3 Output port matching at f = 2.4 GHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
0
20
40
20
40
0
20
20
–40
40
0
20
20
–40
40
1
S22
–FREQUENCY
S12
–FREQUENCY
START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
S
11
log MAG 10 dB/ REF 0 dB 1 :
13.57 dB
S22 log MAG 10 dB/ REF 0 dB 1 :
25.31 dB
S12 log MAG 10 dB/ REF 0 dB 1 :
29.904 dB
11
1
V
CC
= 3.0 V,
V
AGC
= 3.0 V
(G
PMAX
)
P
in
=
20 dBm
V
CC
= 3.0 V,
V
AGC
= 3.0 V
(G
PMAX
)
P
in
=
20 dBm
MARKER 1
2.4 GHz MARKER 1
2.4 GHz
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
1:
35.053
17.631
3.7613 pF
1: 49.477
3.582
18.513 pF
1
S11
–FREQUENCY
S22
–FREQUENCY
S11
–FREQUENCY
VCC = 3.0 V,
VAGC = 3.0 V (GPMAX),
Pin = –20 dBm
MARKER 1 f = 2.4 GHz
VCC = 3.0 V,
VAGC = 3.0 V (GPMAX),
Pin = –20 dBm
MARKER 1 f = 2.4 GHz
VCC = 3.0 V,
VAGC = 3.0 V (GPMAX),
Pin = –20 dBm
MARKER 1 f = 2.4 GHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
1
S
21
log MAG 10 dB/ REF 0 dB 1 : 14.409 dB
0
20
40
60
20
40
VAGC = 3.0 V
S21
–FREQUENCY
VCC = 3.0 V,
Pin = –20 dBm
MARKER 1 f = 2.4 GHz
VAGC = 0 V
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS
22
µ
PC8204TK
0
2
4
6
8
10
12
14
16
18
20
–40
–20
20
40
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
S
21
log MAG 2 dB/ REF 0 dB 1 : 14.353 dB
S
11
log MAG 5 dB/ REF 0 dB 1 :
14.244 dB
0
–20
–10
10
20
0
1
1
1
1
T
A
= +85˚C
T
A
= –40˚C
T
A
= +25˚C
S
11
–FREQUENCY
S
21
–FREQUENCY
S
22
–FREQUENCY
S
12
–FREQUENCY
S12 log MAG 10 dB/ REF 0 dB 1 :
29.44
dB
S
22
log MAG 5 dB/ REF 0 dB 1 :
21.973
dB
T
A
= +85˚C
T
A
= +25˚C
T
A
= –40˚C
T
A
= +25˚C
T
A
= –40˚C
T
A
= +85˚C
T
A
= –40˚C
T
A
= +85˚C
T
A
= +25˚C
V
CC
= 3.0 V,
V
AGC
= 3.0 V (G
PMAX
),
P
in
= –20 dBm
MARKER 1 f = 2.4 GHz
V
CC
= 3.0 V,
V
AGC
= 3.0 V (G
PMAX
),
P
in
= –20 dBm
MARKER 1 f = 2.4 GHz
V
CC
= 3.0 V,
V
AGC
= 3.0 V (G
PMAX
),
P
in
= –20 dBm
MARKER 1 f = 2.4 GHz
V
CC
= 3.0 V,
V
AGC
= 3.0 V (G
PMAX
),
P
in
= –20 dBm
MARKER 1 f = 2.4 GHz
–20
–10
10
20
0
1
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS 23
µ
PC8204TK
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
1
1
1
S21 log MAG 2 dB/ REF 0 dB 1 : 14.384 dB
S11 log MAG 5 dB/ REF 0 dB 1 :
13.523 dB
S22 log MAG 5 dB/ REF 0 dB 1 :
25.388 dB
S
12
log MAG 10 dB/ REF 0 dB 1 :
29.974 dB
0
2
4
6
8
10
12
14
16
18
20
VCC = 2.7 V
VCC = 3.3 V
VCC = 3.0 V
–20
–10
10
20
0
–20
–10
10
20
0
–40
40
–20
20
0
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
VCC = 2.7 to 3.3 V
VCC = 2.7 V
VCC = 3.3 V
VCC = 3.0 V
S
11
–FREQUENCY
S
21
–FREQUENCY
S
22
–FREQUENCY
S
12
–FREQUENCY
VCC = VAGC (GPMAX),
Pin = –20 dBm
MARKER 1 f = 2.4 GHz
VCC = VAGC (GPMAX),
Pin = –20 dBm
MARKER 1 f = 2.4 GHz
1
VCC = VAGC (GPMAX),
Pin = –20 dBm
MARKER 1 f = 2.4 GHz
VCC = VAGC (GPMAX),
Pin = –20 dBm
MARKER 1 f = 2.4 GHz
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS
24
µ
PC8204TK
–40
–20
0
20
40
–40
40
–20
20
0
–20
–10
10
20
0
–20
20
–40
40
0
START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
S
21
log MAG 10 dB/ REF 0 dB 1 :
14.448
dB
S12 log MAG 10 dB/ REF 0 dB 1 :
29.693
dB
S22 log MAG 5 dB/ REF 0 dB 1 :
25.329
dB
S11 log MAG 10 dB/ REF 0 dB 1 :
–13.457
dB
1
1
1.5 V
1.4 V
1.3 V
1.0 V
VAGC = 1.6 V
VAGC = 2.0 V
1
VAGC = 1.5 V
VAGC = 2.3 V
VAGC = 2.0 V
VAGC = 3.0 to 2.7 V
VAGC = 0 to 1.2 V
VAGC = 3.0 to 2.4 V
VAGC = 0 to 1.5 V
1
VAGC = 3.0 to 2.6 V
VAGC = 0 to 1.6 V
0 to 0.7 V
S21
–FREQUENCY
S11
–FREQUENCY
S12
–FREQUENCY
S22
–FREQUENCY
VCC = 3.0 V,
Pin = –20 dBm
MARKER 1 f = 2.4 GHz
VCC = 3.0 V,
Pin = –20 dBm
MARKER 1 f = 2.4 GHz
VCC = 3.0 V,
Pin = –20 dBm
MARKER 1 f = 2.4 GHz
VCC = 3.0 V,
Pin = –20 dBm
MARKER 1 f = 2.4 GHz
1.2 V
1.6 V
1.9 V
2.2 V
VAGC = 3.0 V
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS 25
µ
PC8204TK
20
15
10
5
0
01234
–5
–10
–15
–20
–25
–30
–35
–40
10
5
0
–5
–10
–15
–30 –20 –10 0 10
10
5
0
–5
–10
–15
VCC = 2.7 V
VCC = 3.0 V
VCC = 3.3 V
–30 –20 –10 0 10
Pin = –20 dBm,
f = 2.4 GHz
TA = +85˚C
TA = –40˚C
TA = +25˚C
Vcc = 2.7 V
Vcc = 3.0 V
Vcc = 3.3 V
VCC = VAGC = 3.0 V
f = 2.4 GHz
20
15
10
5
0
–5
–10
–15
–20
–25
–30
–35
–4001234
VCC = 3.0 V,
Pin = –20 dBm
f = 2.4 GHz
TA = +85˚C TA = +25˚C
TA = –40˚C
TA = –25˚C
0
20
15
10
5
–5
–10
–15
–20
–25
–30
–35
–4001234
TA = +85˚C
TA = –40˚C
TA = +25˚C
TA = –25˚C
VCC = 3.3 V,
Pin = –20 dBm
f = 2.4 GHz
20
15
10
5
0
–5
–10
–15
–20
–25
–30
–35
–4001234
TA = –40˚C
TA = +25˚C
TA = +85˚C
TA = –25˚C
VCC = 2.7 V,
Pin = –20 dBm
f = 2.4 GHz
VCC = VAGC
f = 2.4 GHz
POWER GAIN vs. GAIN CONTROL VOLTAGE
Power Gain GP (dB)
Gain Control Voltage VAGC (V)
POWER GAIN vs. GAIN CONTROL VOLTAGE
Power Gain GP (dB)
Gain Control Voltage VAGC (V)
POWER GAIN vs. GAIN CONTROL VOLTAGE
Power Gain GP (dB)
Gain Control Voltage VAGC (V)
POWER GAIN vs. GAIN CONTROL VOLTAGE
Power Gain GP (dB)
Gain Control Voltage VAGC (V)
Input Power Pin (dBm)
Output Power Pout (dBm)
OUTPUT POWER vs. INPUT POWER
Input Power Pin (dBm)
Output Power Pout (dBm)
OUTPUT POWER vs. INPUT POWER
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS
26
µ
PC8204TK
–60
–30 –20 –10 010
–50
–40
–30
–20
–10
0
10
0
–60
–50
–40
–30
–20
–10
10
–30 –20 –10 0 10
VAGC
= 3.0 V
VAGC
= 1.7 V
VAGC
= 1.4 V
VAGC
= 0 V
VAGC
= 1.2 V
–60
–30 –20 –10 010
–50
–40
–30
–20
–10
0
10
–60
–50
–40
–30
–20
–10
0
10
–30 –20 –10 010
VAGC = 0 V
VAGC = 1.5 V
VAGC = 1.7 V
VAGC = 3.3 V
VAGC = 1.9 V VAGC = 3.0 V
VAGC = 1.2 V
VAGC = 1.7 V
VAGC = 1.4 V
VAGC = 0 V
– 60
–30 –20 –10 –30 –20 –10 010 0
–50
–40
–30
–20
–10
0
10
–60
–50
–40
–30
–20
–10
0
10
10
VAGC = 1.5 V
VAGC = 0 V
VAGC = 1.8 V
VAGC = 3.3 V
VAGC = 1.6 V
VAGC = 3.0 V
VAGC = 1.6 V
VAGC = 1.4 V
VAGC
=
1.3
V
VAGC = 0 V
VAGC = 3.3 V
VAGC = 1.9 V
VAGC = 0 V
VAGC = 1.4 V
VCC = 3.3 V,
TA = –40˚C
f = 2.4 GHz
VCC = 3.0 V,
TA = –40˚C
f = 2.4 GHz
VCC = 3.0 V,
TA = +25˚C
f = 2.4 GHz
VCC = 3.0 V,
TA = +85˚C
f = 2.4 GHz
VCC = 3.3 V,
TA = +25˚C
f = 2.4 GHz
VCC = 3.3 V,
TA = +85˚C
f = 2.4 GHz
VAGC = 1.6 V
Input Power Pin (dBm)
Output Power Pout (dBm)
OUTPUT POWER vs. INPUT POWER
Input Power Pin (dBm)
Output Power Pout (dBm)
OUTPUT POWER vs. INPUT POWER
Input Power Pin (dBm)
Output Power Pout (dBm)
OUTPUT POWER vs. INPUT POWER
Input Power Pin (dBm)
Output Power Pout (dBm)
OUTPUT POWER vs. INPUT POWER
Input Power Pin (dBm)
Output Power Pout (dBm)
OUTPUT POWER vs. INPUT POWER
Input Power Pin (dBm)
Output Power Pout (dBm)
OUTPUT POWER vs. INPUT POWER
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS 27
µ
PC8204TK
0
–60
–50
–40
–30
–20
–20
–10
10
–30 –20 –10010
VAGC = 2.7 V
VAGC= 1.5 V
VAGC = 1.0 V
VAGC = 0 V
VAGC = 1.2 V
–60
–30 –20 –10010
–30 –20 –10010
–50
–40
–30
–20
–10
10
0
VAGC = 1.2 V
VAGC = 1.0 V
VAGC = 0 V
VAGC = 2.7 V
VAGC = 1.4 V
0
–60
–50
–40
–30
–10
10
VAGC = 2.7 V
VAGC = 1.4 V
VAGC = 1.2 V VAGC = 1.1 V
VAGC = 0 V
VCC = 2.7 V,
TA = –40˚C
f = 2.4 GHz
VCC = 2.7 V,
TA = +25˚C
f = 2.4 GHz
VCC = 2.7 V,
TA = +85˚C
f = 2.4 GHz
Input Power Pin (dBm)
Output Power Pout (dBm)
OUTPUT POWER vs. INPUT POWER
Input Power Pin (dBm)
Output Power Pout (dBm)
OUTPUT POWER vs. INPUT POWER
Input Power Pin (dBm)
Output Power Pout (dBm)
OUTPUT POWER vs. INPUT POWER
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS
28
µ
PC8204TK
0
10
20 10
20
–10
–20
0
–10
–20
–30
–30 –25 –20 –30 –25 –20 –15 –10 –5 0
–25 –20 –15 –10 –5 0
–15 –10 –5 0
–40
–50
–30
–40
–50
–60
–70
–80
–60
–70
–80
0
10
20
–10
–20
–30
–30
–40
–50
–60
–70
–80
OIP
3
OIP
3
OIP
3
P
O (IM3)
P
O (IM3)
P
O (IM3)
V
CC
= 3.3 V,
V
AGC
= 3.3 V
(G
PMAX
)
f1
=
2 400 MHz
f2
=
2 401 MHz,
IM
3
= 2 399 MHz,
2 402 MHz
V
CC
= 2.7 V,
V
AGC
= 2.7 V
(G
PMAX
)
f1
=
2 400 MHz
f2
=
2 401 MHz,
IM
3
= 2 399 MHz,
2 402 MHz
V
CC
= 3.0 V,
V
AGC
= 3.0 V
(G
PMAX
)
f1
=
2 400 MHz
f2
=
2 401 MHz,
IM
3
= 2 399 MHz,
2 402 MHz
P
out
(f1, f2) P
out
(f1, f2)
P
out
(f1, f2)
Output Power P
out
(dBm)
3rd Order Intermodulation Distortion Power P
O (IM3)
(dBm)
Output 3rd Order Intercept Point OIP
3
(dBm)
OUTPUT POWER, P
O (IM3)
, OIP
3
vs.
INPUT POWER
Input Power P
in
(dBm)
Output Power P
out
(dBm)
3rd Order Intermodulation Distortion Power P
O (IM3)
(dBm)
Output 3rd Order Intercept Point OIP
3
(dBm)
OUTPUT POWER, P
O (IM3)
, OIP
3
vs.
INPUT POWER
Input Power P
in
(dBm)
Output Power P
out
(dBm)
3rd Order Intermodulation Distortion Power P
O (IM3)
(dBm)
Output 3rd Order Intercept Point OIP
3
(dBm)
OUTPUT POWER, P
O (IM3)
, OIP
3
vs.
INPUT POWER
Input Power P
in
(dBm)
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS 29
µ
PC8204TK
0
10
20
0
10
20
0
10
20
0
10
20
–10
–20
–30 –25 –20
–30 –25 –20
–30 –25 –20
–15 –10 –5 –15 –10 –5
0
–15 –10 –5 0
2.6 2.8 3.0 3.2 3.4 1 2 34
–30 –25 –20 –15 –10 –5 0
0
–30
–10
–20 –10
–20
–30
–10
–20
–30
–40
–50
–40
–30
–40
–50
–60
–40
–50
–60
–70
–80
–60
–50
–60
–70
–80
9.0
8.5
8.0
7.5
7.0
6.5
6.0 0
25
20
15
10
5
0
–70
–80
–70
–80
OIP3
OIP3
OIP3OIP3
f = 2.4 GHz f = 2.4 GHz
VCC = 2.7 V
VCC = 3.3 V
VCC = 3.0 V
VCC = 3.0 V,
VAGC = 1.6 V,
GP
=
0
dB
f1 = 2 400 MHz
f2 = 2 401 MHz,
IM3 = 2 399 MHz,
2 402 MHz
f1
=
2 400 MHz
f2
=
2 401 MHz,
IM3 = 2 399 MHz,
2 402 MHz
PO (IM3)
PO (IM3)
PO (IM3)
PO (IM3)
f1
=
2 400 MHz
f2
=
2 401 MHz,
IM3 = 2 399 MHz,
2 402 MHz
f1
=
2 400 MHz
f2
=
2 401 MHz,
IM3 = 2 399 MHz,
2 402 MHz
VCC = 3.0 V,
VAGC = 1.4 V,
GP = –9 dB
VCC = 3.0 V
VAGC = 1.2 V
GP = –20 dB
VCC = 3.0 V,
VAGC = 0 V,
GP = –28 dB
Pout (f1, f2)
Pout (f1, f2)
Pout (f1, f2)
Pout (f1, f2)
Output Power Pout (dBm)
3rd Order Intermodulation Distortion Power PO (IM3) (dBm)
Output 3rd Order Intercept Point OIP3 (dBm)
OUTPUT POWER, PO (IM3), OIP3 vs.
INPUT POWER
Input Power Pin (dBm)
Output Power Pout (dBm)
3rd Order Intermodulation Distortion Power PO (IM3) (dBm)
Output 3rd Order Intercept Point OIP3 (dBm)
OUTPUT POWER, PO (IM3), OIP3 vs.
INPUT POWER
Input Power Pin (dBm)
Output Power Pout (dBm)
3rd Order Intermodulation Distortion Power PO (IM3) (dBm)
Output 3rd Order Intercept Point OIP3 (dBm)
OUTPUT POWER, PO (IM3), OIP3 vs.
INPUT POWER
Input Power Pin (dBm)
Output Power Pout (dBm)
3rd Order Intermodulation Distortion Power PO (IM3) (dBm)
Output 3rd Order Intercept Point OIP3 (dBm)
OUTPUT POWER, PO (IM3), OIP3 vs.
INPUT POWER
Input Power Pin (dBm)
Noise Figure NF (dB)
NOISE FIGURE vs. SUPPLY VOLTAGE
Supply Voltage VCC (V) Gain Control Voltage VAGC (V)
NOISE FIGURE vs.
GAIN CONTROL VOLTAGE
Noise Figure NF (dB)
Remark The graphs indicate nominal characteristics.
Data Sheet PU10408EJ02V0DS
30
µ
PC8204TK
7. PACKAGE DIMENSIONS
6-PIN LEAD-LESS MINIMOLD (1511 PKG) (UNIT: mm)
0.48±0.050.48±0.05
1.5±0.1
1.3±0.05
1.1±0.1
0.55±0.03
0.11+0.1
–0.05 0.16±0.05
0.9±0.10.2±0.1
(Bottom View)
(Top View)
Data Sheet PU10408EJ02V0DS 31
µ
PC8204TK
8. NOTES ON CORRECT USE
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation).
All the ground pins must be connected together with wide ground pattern to decrease impedance difference.
(3) The bypass capacitor should be attached to the VCC terminal.
(4) Impedance matching circuit must be each externally attached to input and output ports.
(5) The DC capacitor must be attached to input terminal.
9. RECOMMENDED SOLDERING CONDITIONS
This product should be soldered and mounted under the following recommended conditions. For soldering
methods and conditions other than those recommended below, contact your nearby sales office.
Soldering Method Soldering Conditions Condition Symbol
Infrared Reflow Peak temperature (package surface temperature) : 260°C or below
Time at peak temperature : 10 seconds or less
Time at temperature of 220°C or higher : 60 seconds or less
Preheating time at 120 to 180°C : 120±30 seconds
Maximum number of reflow processes : 3 times
Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below
IR260
Wave Soldering Peak temperature (molten solder temperature) : 260°C or below
Time at peak temperature : 10 seconds or less
Preheating temperature (package surface temperature) : 120°C or below
Maximum number of flow processes : 1 time
Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below
WS260
Partial Heating Peak temperature (terminal temperature) : 350°C or below
Soldering time (per side of device) : 3 seconds or less
Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below
HS350
Caution Do not use different soldering methods together (except for partial heating).
Data Sheet PU10408EJ02V0DS
32
µ
PC8204TK
When the product(s) listed in this document is subject to any applicable import or export control laws and regulation of the authority
having competent jurisdiction, such product(s) shall not be imported or exported without obtaining the import or export license.
M8E 00. 4 - 0110
The information in this document is current as of October, 2005. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd.
and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for
NEC (as defined above).
Data Sheet PU10408EJ02V0DS 33
µ
PC8204TK
NEC Compound Semiconductor Devices Hong Kong Limited
E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general)
Hong Kong Head Office
Taipei Branch Office
Korea Branch Office
TEL: +852-3107-7303
TEL: +886-2-8712-0478
TEL: +82-2-558-2120
FAX: +852-3107-7309
FAX: +886-2-2545-3859
FAX: +82-2-558-5209
NEC Electronics (Europe) GmbH http://www.ee.nec.de/
TEL: +49-211-6503-0 FAX: +49-211-6503-1327
California Eastern Laboratories, Inc. http://www.cel.com/
TEL: +1-408-988-3500 FAX: +1-408-988-0279 0504
NEC Compound Semiconductor Devices, Ltd. http://www.ncsd.necel.com/
E-mail: salesinfo@ml.ncsd.necel.com (sales and general)
techinfo@ml.ncsd.necel.com (technical)
Sales Division TEL: +81-44-435-1573 FAX: +81-44-435-1579
For further information, please contact
4590 Patrick Henry Drive
Santa Clara, CA 95054-1817
Telephone: (408) 919-2500
Facsimile:
(
408
)
988-0279
Subject: Compliance with EU Directives
CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant
with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous
Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive
2003/11/EC Restriction on Penta and Octa BDE.
CEL Pb-free products have the same base part number with a suffix added. The suffix –A indicates
that the device is Pb-free. The –AZ suffix is used to designate devices containing Pb which are
exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals.
All devices with these suffixes meet the requirements of the RoHS directive.
This status is based on CEL’s understanding of the EU Directives and knowledge of the materials that
go into its products as of the date of disclosure of this information.
Restricted Substance
per RoHS Concentration Limit per RoHS
(values are not yet fixed) Concentration contained
in CEL devices
-A -AZ
Lead (Pb) < 1000 PPM Not Detected (*)
Mercury < 1000 PPM Not Detected
Cadmium < 100 PPM Not Detected
Hexavalent Chromium < 1000 PPM Not Detected
PBB < 1000 PPM Not Detected
PBDE < 1000 PPM Not Detected
If you should have any additional questions regarding our devices and compliance to environmental
standards, please do not hesitate to contact your local representative.
Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance
content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information
provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better
integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate
information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL
suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for
release.
In no event shall CEL’s liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to
customer on an annual basis.
See CEL Terms and Conditions for additional clarification of warranties and liability.
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
CEL:
UPC8204TK-EV24 UPC8204TK-EV19