October 2004 i
© 2004 Actel Corporation See Actel’s website for the latest version of the datasheet
RadTolerant FPGAs
Features
General Characteristics
Tested Total Ionizing Dose (TID) Survivability Level
No Single Event Latch-Up Below a Minimum LET
(Linear Energy Transfer) Threshold of 80 MeV-cm
2
/mg
for All RT (RadTolerant) Devices
Packages: 84-Pin, 132-Pin, 172-Pin, 196-Pin, and
256-Pin Ceramic Quad Flat Pack
Offered as Class B and E-Flow (Actel Space Level
Flow)
QML Certified Devices
100% Military Temperature Tested (–55°C to
+125°C)
High Density and Performance
4,000 to 20,000 Logic Equivalent Gates
2,000 to 10,000 ASIC Equivalent Gates
Up to 85 MHz Internal Performance
Up to 60 MHz System Performance
Up to 228 User I/Os
Up to Four Fast, Low-Skew Clock Networks
Easy Logic Integration
Nonvolatile, User Programmable
Pin-Compatible Commercial Devices Available for
Prototyping
Highly Predictable Performance with 100%
Automatic Place-and-Route
100% Resource Utilization with 100% Pin-Locking
Secure Programming Technology Prevents Reverse
Engineering and Design Theft
Permanently Programmed for Operation on
Power-Up
Unique In-System Diagnostic and Verification
Capability with Silicon Explorer
Product Family Profile
Table 1 RadTolerant Family
Device RT1020 RT1280A RT1425A RT1460A RT14100A
Capacity
System Gates
Logic Gates
ASIC Equivalent Gates
PLD Equivalent Gates
TTL Equivalent Package
20-Pin PAL Equivalent Packages
6,000
4,000
2,000
5,000
50
20
24,000
16,000
8.000
20,000
200
80
7,500
5,000
2,500
6,250
60
25
18,000
12,000
6,000
15.000
150
60
30,000
20,000
10,000
25,000
250
100
Logic Modules
S-Modules
C-Modules
547
N/A
547
1,232
624
608
310
160
150
848
432
416
1,377
697
680
User I/Os (Maximum) 69 140 100 168 228
Performance
System Speed (Maximum) 20 MHz 40 MHz 60 MHz 60 MHz 60 MHz
Packages (by Pin Count)
CQFP 84 172 132 196 256
v3.1
RadTolerant FPGAs
ii v3.1
Ordering Information
Device Resources
Contact your Actel sales representative for product availability.
Part Number
Speed Grade
Package Type
Package Lead Count
Application (Temperature Range)
RT1280A E
CQ
-172
CQ = Ceramic Quad Flat Pack (CQFP)
C = Commercial (0 to +70˚C)
M = Military (-55 to +125˚C)
B = MIL-STD-883 Class B
E = Extended Flow (Space Level)
RT1020 = 4,000 Gates—RadTolerant ACT 1
RT1280A = 16,000 Gates—RadTolerant ACT 2
RT1425A = 5,000 Gates—RadTolerant ACT 3
RT1460A = 12,000 Gates—RadTolerant ACT 3
RT14100A = 20,000 Gates—RadTolerant ACT 3
A1020B = 4,000 Gates—ACT 1
A1280A = 16,000 Gates—ACT 2
A1425A = 5,000 Gates—ACT 3
A1460A = 12,000 Gates—ACT 3
A14100A = 20,000 Gates—ACT 3
Std = Standard Speed
-1 = Approximately 15% Faster than Standard
FPGA Device Type Logic Modules
Gate Array
Equivalent
Gates
User I/Os
CQFP
84-Pin
CQFP
132-Pin
CQFP
172-Pin
CQFP
196-Pin
CQFP
256-Pin
RT1020/A1020B 547 2,000 69
RT1280A/A1280A 1,232 8,000 140
RT1425A/A1425A 310 2,500 100
RT1460A/A1460A 848 6,000 168
RT14100A/A14100A 1,377 10,000 228
Note: Package Definition: CQFP = Ceramic Quad Flat Pack
RadTolerant FPGAs
v3.1 iii
Product Plan
Speed Grade Application
Std –1* Commercial Military MIL-STD-883
Extended
Flow
ACT 1 RT1020 Device
84-Pin Ceramic Quad Flat Pack (CQFP) –– ✓✓
A1020B Device (Prototyping Use)
84-Pin Ceramic Quad Flat Pack (CQFP) ✓✓✓
ACT 2 RT1280A Device
172-Pin Ceramic Quad Flat Pack (CQFP) ✓✓ ––✓✓
A1280A Device (Prototyping Use)
172-Pin Ceramic Quad Flat Pack (CQFP) ✓✓✓
ACT 3 RT1425A Device
132-Pin Ceramic Quad Flat Pack (CQFP) ✓✓ ––✓✓
A1425A Device (Prototyping Use)
132-Pin Ceramic Quad Flat Pack (CQFP) ✓✓✓
RT1460A Device
196-Pin Ceramic Quad Flat Pack (CQFP) ✓✓ ––✓✓
A1460A Device (Prototyping Use)
196-Pin Ceramic Quad Flat Pack (CQFP) ✓✓✓
RT14100A Device
256-Pin Ceramic Quad Flat Pack (CQFP) ✓✓ ––✓✓
A14100A Device (Prototyping Use)
256-Pin Ceramic Quad Flat Pack (CQFP) ✓✓✓
Note: Contact your Actel sales representative for product availability. Availability: = Available, – Symbol = Not Planned
* Speed Grade: –1 = Approx. 15% faster than Standard
iv v3.1
Table of Contents
RadTolerant FPGAs
RadTolerant FPGAs
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Radiation Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
QML Certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Development Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
RadTolerant Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Logic Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
The RT1020 Logic Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Parameter Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
Sequential Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
RT1020, A1020B Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17
RT1280A, A1280A Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19
RT1425A, A1425A Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22
RT1460A, A1460A Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25
RT14100A, A14100A Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31
Package Pin Assignments
84-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
132-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
172-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
196-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
256-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Export Administration Regulations (EAR) or International Traffic in Arms
Regulations (ITAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
RadTolerant FPGAs
v3.1 1-1
RadTolerant FPGAs
General Description
Actel builds the most reliable field programmable gate
arrays (FPGAs) in the industry, with overall antifuse
reliability ratings of less than 10 failures-in-time (FITs),
corresponding to a useful life of more than 40 years.
Actel FPGAs are production-proven, with more than five
million devices shipped and more than one trillion
antifuses manufactured. Actel devices are fully tested
prior to shipment, with an outgoing defect level of only
122 ppm (further reliability data is available in the Actel
Device Reliability Report).
Additionally, the programmable architecture of these
devices offers high performance, design flexibility, and
fast and inexpensive prototyping—all without the
expense of test vectors, NRE charges, long lead times,
and schedule and cost penalties for design refinements.
Device Description
The RT1020 device contains the same architecture as the
A1020, A1020A, and A1020B devices. The architecture, a
combinatorial logic module, is a logic structure with 8 inputs
and 1 output. The logic itself is comprised of a 4-input MUX,
as described in
Figure 1-3 on page 1-4.
In addition, since
the RT1020 device contains the same number of gates and
I/Os and has the same operating voltage as its commercial
equivalent (A1020B), an inexpensive commercial grade
A1020B-CQ84 device can be used during the prototype
phase, and replaced by the RT1020 in the flight units.
The RT1280A device uses the A1280A die from the ACT 2
family of FPGAs. It utilizes a two-module architecture,
consisting of combinatorial modules (C-modules) and
sequential modules (S-modules) optimized for both
combinatorial and sequential designs. Based on Actel’s
patented channeled array architecture, the RT1280A has
8,000 ASIC-equivalent gates and 140 user I/Os.
The RT1280A device is fully pin- and function-compatible
with the commercially-equivalent A1280A-CQ172C device
for easy, inexpensive prototyping.
The RT1425A, RT1460A and RT14100A devices use the
A1425A, A1460A and A14100A dies, respectively. These
devices are derived from the ACT 3 family of FPGAs,
which also utilizes the two-module channeled array
architecture, and offers faster performance than the
RT1280A.
These devices also have fully pin- and function-
compatible commercially-equivalent devices for easy and
inexpensive prototyping. The A1425A-CQ132C is used for
the RT1425A, the A1460A-CQ196C is used for the
RT1460A, and the A14100A-CQ256C is used for the
RT14100A.
Radiation Survivability
Total dose results are summarized in two ways. The first
method summarizes by the maximum total dose level
that is reached when the parts fail to meet a device
specification but remain functional. For Actel FPGAs, the
parameter that exceeds the specification first is the
standby supply current (ICC). The second method
summarizes by the maximum total dose that is reached
prior to the functional failure of the device.
The Actel RT devices have varying total-dose radiation
survivability. The ability of these devices to survive
radiation effects is both device- and lot-dependent. The
user must evaluate and determine the applicability of
these devices for specific design and environmental
requirements.
Typical results for the RT1020 device are ~100krads (Si)
for standby ICC and >100krads for functional failure. The
RT1280A device has results from 4 to 10krads (Si) for
standby ICC, and 7 to 18krads for functional failure.
Typical results for ACT 3 devices are 10 to 28krads for ICC,
and 20 to 77krads for functional failure.
Actel will provide total dose radiation testing along with
the test data on each pedigreed lot that is available for
sale. These reports are available on our website, or you
can contact your local sales representative to receive a
copy. A listing of available lots and devices is also
provided. These results are provided only for reference
and for customer information.
For a radiation performance summary, see Radiation
Performance of Actel Products on the Actel Website. This
summary also shows single event upset (SEU) and single
event latch-up (SEL) testing that has been performed on
Actel FPGAs.
RadTolerant FPGAs
1-2 v3.1
QML Certification
Actel has achieved full QML certification, demonstrating
that quality management, procedures, processes, and
controls are in place and comply with MIL-PRF-38535, the
performance specification used by the Department of
Defense for monolithic integrated circuits. QML
certification is an example of Actel's commitment to
supplying the highest quality products for all types of
high-reliability, military and space applications.
Many suppliers of microelectronics components have
implemented QML as their primary worldwide business
system. Appropriate use of this system not only helps in
the implementation of advanced technologies, but also
allows for quality, reliable and cost-effective logistics
support throughout the QML products life cycles.
Disclaimer
All radiation performance information is provided for
information purposes only and is not guaranteed. The
total dose effects are lot-dependent, and Actel does not
guarantee that future devices will continue to exhibit
similar radiation characteristics. In addition, actual
performance can vary widely due to a variety of factors,
including but not limited to characteristics of the orbit,
radiation environment, proximity to satellite exterior,
amount of inherent shielding from other sources within
the satellite, and actual bare die variations. For these
reasons, Actel does not guarantee any level of radiation
survivability, and it is solely the responsibility of the
customer to determine whether the device will meet the
requirements of the specific design.
Development Tool Support
T
he HiRel devices are fully supported by both the Actel
Libero™ Integrated Design Environment (IDE) and
Designer FPGA Development software. Actel Libero IDE
is a design management environment, seamlessly
integrating design tools while guiding the user through
the design flow, managing all design and log files, and
passing necessary design data among tools. Libero IDE
allows users to integrate both schematic and HDL
synthesis into a single flow and verify the entire design
in a single environment. Libero IDE includes Synplify® for
Actel from Synplicity®, ViewDraw® for Actel from
Mentor Graphics, ModelSim® HDL Simulator from
Mentor Graphics®, WaveFormer Lite™ from
SynaptiCAD™, and Designer software from Actel. Refer
to the Libero IDE flow diagram for more information.
Actel's Designer software is a place-and-route tool and
provides a comprehensive suite of backend support tools
for FPGA development. The Designer software includes
timing-driven place-and-route, and a world-class
integrated static timing analyzer and constraints editor.
With the Designer software, a user can select and lock
package pins while only minimally impacting the results of
place-and-route. Additionally, the back-annotation flow is
compatible with all the major simulators and the
simulation results can be cross-probed with Silicon Explorer
II, Actel’s integrated verification and logic analysis tool.
Another tool included in the Designer software is the
ACTgen macro builder, which easily creates popular and
commonly used logic functions for implementation into
your schematic or HDL design. Actel's Designer software is
compatible with the most popular FPGA design entry and
verification tools from companies such as Mentor Graphics,
Synplicity, Synopsys, and Cadence Design Systems. The
Designer software is available for both the Windows and
UNIX operating systems.
RadTolerant Architecture
The Actel architecture is composed of fine-grained logic
modules that produce fast, efficient logic designs. All
devices are composed of logic modules, routing
resources, clock networks, and I/O modules, which are
the building blocks for fast logic designs.
Logic Modules
These RadTolerant devices contain two types of logic
modules, combinatorial (C-modules) and sequential
(S-modules). RT1020 and A1020B devices contain only C-
modules.
The C-module, shown in Figure 1-1, implements EQ 1-1:
Y = !S1*!S0*D00+!S1*S0*D01+S1*!S0*D10+S1*S0*D11
EQ 1-1
where:
S0 = A0 * B0
S1 = A1+ B1
Figure 1-1 C-Module Implementation
D00
D01
D10
D11
S0
S1
Y
A0
B0
A1
B1
RadTolerant FPGAs
v3.1 1-3
The S-module, shown in Figure 1-2, is designed to
implement high-speed sequential functions within a
single logic module. The S-module implements the same
combinatorial logic function as the C-module while
adding a sequential element. The sequential element can
be configured as either a D-type flip-flop or a
transparent latch. To increase flexibility, the S-module
register can be bypassed so it implements purely
combinatorial logic.
Flip-flops can also be created using two C-modules. The
SEU characteristics differ between an S-module flip-flop
and a flip-flop created using two C-modules. For details
see the Design Techniques for RadHard Field
Programmable Gate Arrays application note.
Figure 1-2 S-Module Implementation
D11
D01
D00
D10 YOUT
S1
S0
Up to 7-Input Function Plus D-Type Flip-Flop with Clear
D11
D01
D00
D10 Y
S1
S0
Up to 7-Input Function Plus Latch
Y
Up to 4-Input Function Plus Latch with Clear
D11
D01
D00
D10
YOUT
S1
S0
Up to 8-Input Function (Same as C-Module)
S
D1
D0
CLR
DQ
OUT
CLR
DQ
OUT
GATE
DQ
GATE
RadTolerant FPGAs
1-4 v3.1
The RT1020 Logic Module
The RT1020 logic module is an 8-input, 1-output logic
circuit chosen for the wide range of functions it
implements and for its efficient use of interconnect
routing resources (Figure 1-3).
The logic module can implement the four basic logic
functions (NAND, AND, OR, and NOR) in gates of two,
three, or four inputs. Each function may have many
versions, with different combinations of active low
inputs. The logic module can also implement a variety of
D-latches, exclusivity functions, AND-ORs, and OR-ANDs.
No dedicated hardwired latches or flip-flops are required
in the array, since latches and flip-flops may be
constructed from logic modules wherever needed in the
application.
I/O Modules
I/O modules provide the interface between the device
pins and the logic array. A variety of user functions,
determined by a library macro selection, can be
implemented in the module (refer to the Macro Library
Guide for more information). I/O modules contain a
tristate buffer, and input and output latches that can be
configured for input, output, or bidirectional pins
(Figure 1-4).
The RadTolerant devices contain flexible I/O structures in
that each output pin has a dedicated output enable
control. The I/O module can be used to latch input and/or
output data, providing a fast setup time. In addition, the
Actel Designer software tools can build a D-flip-flop,
using a C-module, to register input and/or output
signals.
The Actel Designer software development tools provide
a design library of I/O macros. The I/O macro library
provides macro functions that can implement all I/O
configurations supported by the RadTolerant FPGAs.
Routing Structure
The RadTolerant device architecture uses vertical and
horizontal routing tracks to interconnect the various
logic and I/O modules. These routing tracks are metal
interconnects that may either be of continuous length or
broken into segments. Varying segment lengths allow
over 90% of the circuit interconnects to be made with
only two antifuse connections. Segments can be joined
together at the ends, using antifuses to increase their
length up to the full length of the track. All
interconnects can be accomplished with a maximum of
four antifuses.
Horizontal Routing
Horizontal channels are located between the rows of
modules, and are composed of several routing tracks.
The horizontal routing tracks within the channel are
divided into one or more segments. The minimum
horizontal segment length is the width of a module-pair,
and the maximum horizontal segment length is the full
length of the channel. Any segment that spans more
than one-third the row length is considered a long
horizontal segment. A typical channel is shown in
Figure 1-5 on page 1-5. Non-dedicated horizontal
routing tracks are used to route signal nets. Dedicated
routing tracks are used for the global clock networks,
and for power and ground tie-off tracks.
Vertical Routing
Another set of routing tracks runs vertically through the
module. There are three types of vertical tracks that can
be divided into one or more segments: input, output,
and long. Each segment in an input track is dedicated to
the input of a particular module. Each segment in an
Figure 1-3 RT1020 Logic Module
Figure 1-4 I/O Module
G/CLK*
QD
EN
PAD
* Can be configured as a Latch or D-Flip-Flop
From Array
To Array
(Using C-Module)
G/CLK*
QD
RadTolerant FPGAs
v3.1 1-5
output track is dedicated to the output of a particular
module. Long segments are uncommitted and can be
assigned during routing. Each output segment spans
four channels (two above and two below), except near
the top and bottom of the array where edge effects
occur. Long vertical tracks contain either one or two
segments. An example of vertical routing tracks and
segments is shown in Figure 1-5.
Antifuse Structures
An antifuse is a "normally open" structure as opposed to
the normally closed fuse structure used in PROMs
(programmable read-only memory) or PALs (programmed
array logic). The use of antifuses to implement a PLD
(programmable logic device) results in highly testable
structures, as well as efficient programming algorithms.
The structure is highly testable because there are no pre-
existing connections, enabling temporary connections to
be made using pass transistors. These temporary
connections can isolate individual antifuses to be
programmed, and also isolate individual circuit structures
to be tested. This can be done both before and after
programming. For example, all metal tracks can be tested
for continuity and shorts between adjacent tracks, and
the functionality of all logic modules can be verified.
Figure 1-5 Routing Structure
Vert ical Routing Tracks
Segmented
Horizontal
Routing
Tracks
Logic
Modules
Antifuses
Table 1-1 Actel MIL-STD-883 Product Flow
Step Screen 883 Method
883 - Class B
Requirement
1. Internal Visual 2010, Test Condition B 100%
2. Temperature Cycling 1010, Test Condition C 100%
3. Constant Acceleration 2001, Test Condition D or E, Y1, Orientation Only 100%
4. Seal
a. Fine
b. Gross
1014
100%
100%
5. Visual Inspection 2009 100%
6. Pre-Burn-In Electrical Parameters In accordance with applicable Actel device specification 100%
7. Burn-in Test 1015, Condition D, 160 hours @ 125°C or 80 hours @ 150°C 100%
8. Interim (Post-Burn-In) Electrical
Parameters
In accordance with applicable Actel device specification 100%
9. Percent Defective Allowable 5% All Lots
10. Final Electrical Test
a. Static Tests
(1) 25°C (Subgroup 1, Table I)
(2) –55°C and +125°C
(Subgroups 2, 3, Table I)
b. Functional Tests
(1) 25°C (Subgroup 7, Table I)
(2) –55°C and +125°C
(Subgroups 8A and 8B, Table I)
c. Switching Tests at 25°C
(Subgroup 9, Table I)
In accordance with applicable Actel device specification, which
includes a, b, and c:
5005
5005
5005
5005
5005
100%
100%
100%
11. External Visual 2009 100%
Note: When Destructive Physical Analysis (DPA) is performed on Class B devices, the step coverage requirement as specified in Method
2018 must be waived.
RadTolerant FPGAs
1-6 v3.1
Table 1-2 Actel Extended Flow1
Step Screen Method Requirement
1. Wafer Lot Acceptance25007 with Step Coverage Waiver All Lots
2. Destructive In-Line Bond Pull32011, Condition D Sample
3. Internal Visual 2010, Condition A 100%
4. Serialization 100%
5. Temperature Cycling 1010, Condition C 100%
6. Constant Acceleration 2001, Condition D or E, Y1 Orientation Only 100%
7. Particle Impact Noise Detection 2020, Condition A 100%
8. Radiographic 2012 100%
9. Pre-Burn-In Test In accordance with applicable Actel device specification 100%
10. Burn-in Test 1015, Condition D, 240 hours @ 125°C minimum 100%
11. Interim (Post-Burn-In) Electrical Parameters In accordance with applicable Actel device specification 100%
12. Reverse Bias Burn-In 1015, Condition C, 72 hours @ 150°C minimum 100%
13. Interim (Post-Burn-In) Electrical Parameters In accordance with applicable Actel device specification 100%
14. Percent Defective Allowable (PDA)
Calculation
5%, 3% Functional Parameters @ 25°C All Lots
15. Final Electrical Test
a. Static Tests
(1) 25°C (Subgroup 1, Table1)
(2) –55°C and +125°C
(Subgroups 2, 3, Table 1)
b. Functional Tests
(1) 25°C (Subgroup 7, Table 15)
(2) –55°C and +125°C
(Subgroups 8A and B, Table 1)
c. Switching Tests at 25°C
(Subgroup 9, Table 1)
In accordance with Actel applicable device specification,
which includes a, b, and c:
5005
5005
5005
5005
5005
100%
100%
100%
100%
16. Seal
a. Fine
b. Gross
1014 100%
17. External Visual 2009 100%
Notes:
1. Actel offers the extended flow for customers that require additional screening beyond the requirements of MIL-STD-883, Class B.
Actel is compliant to the requirements of MIL-STD-883, Paragraph 1.2.1, and MIL-I-38535, Appendix A. Actel is offering this
extended flow incorporating the majority of the screening procedures as outlined in Method 5004 of MIL-STD-883 Class S. The
exceptions to Method 5004 are shown in notes 2 and 3 below.
2. Wafer lot acceptance is performed to Method 5007; however, the step coverage requirement as specified in Method 2018 must be
waived.
3. Method 5004 requires a 100 percent, non-destructive bond pull (Method 2023). Actel substitutes a destructive bond pull (Method
2011), Condition D on a sample basis only.
RadTolerant FPGAs
v3.1 1-7
Absolute Maximum Ratings
Stresses beyond those listed in this table may cause permanent damage to the device. Exposure to absolute maximum
rated conditions for extended periods may affect device reliability. Devices should not be operated outside the
recommended operating conditions.
Table 1-3 Free Air Temperature Range
Symbol Parameter Limits Units
VCC DC Supply Voltage1, 2, 3 –0.5 to +7.0 V
VIInput Voltage –0.5 to VCC +0.5 V
VOOutput Voltage –0.5 to VCC +0.5 V
IIO I/O Source Sink Current4±20 mA
TSTG Storage Temperature –65 to +150 °C
Notes:
1. VPP = VCC, except during device programming
2. VSV = VCC, except during device programming
3. VKS = GND, except during device programming
4. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V
or less than GND – 0.5 V, the internal protection diode will be forward-biased and can draw excessive current.
Table 1-4 Recommended Operating Conditions
Parameter Commercial Military Units
Temperature Range10 to +70 –55 to +125 °C
Power Supply Tolerance2±5 ±10 %VCC
Notes:
1. Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used for military
2. All power supplies must be in the recommended operating range. For more information, refer to the Power-Up and Power-Down
Behavior of 54SX and RT54SX Devices application note.
Table 1-5 Electrical Specifications
Symbol Parameter Test Condition
Commercial Military
UnitsMin. Max. Min. Max.
VOH1, 2 HIGH Level Output IOH = –4 mA (CMOS) 3.7 V
IOH = –6 mA (CMOS) 3.84 V
VOL1, 2 LOW Level Output IOL = +6 mA (CMOS) 0.33 0.4 V
VIH HIGH Level Input TTL Inputs 2.0 VCC + 0.3 2.0 VCC + 0.3 V
VIL LOW Level Input TTL Inputs –0.3 0.8 –0.3 0.8 V
IIN Input Leakage VI = VCC or GND –10 +10 –10 +10 µA
IOZ 3-State Output Leakage VO = VCC or GND –10 +10 –10 +10 µA
CIO I/O Capacitance3, 4 10 10 pF
ICC(S) Standby VCC Supply Current VI = VCC or GND, IO = 0 mA 2 20 mA
ICC(D) Dynamic VCC Supply Current See "Power Dissipation" on page 1-8.
Notes:
1. Actel devices can drive and receive either CMOS or TTL signal levels. No assignment of I/Os as TTL or CMOS is required.
2. Tested one output at a time, VCC = min.
3. Not tested; for information only
4. VOUT = 0V, f = 1 MHz
RadTolerant FPGAs
1-8 v3.1
Package Thermal Characteristics
The device junction to case thermal characteristic is θjc,
and the junction to ambient air characteristic is θja. The
thermal characteristics for θja are shown with two
different air flow rates.
Maximum junction temperature is 150°C.
A sample calculation of the absolute maximum power
dissipation allowed for a CQFP 172-pin package at
military temperature is as follows:
EQ 1-2
Power Dissipation
General Power Equation
P = [ICCstandby + ICCactive] * VCC + IOL * VOL * N +
IOH * (VCC – VOH) * M
EQ 1-3
where:
•I
CCstandby is the current flowing when no inputs
or outputs are changing.
•I
CCactive is the current flowing due to CMOS
switching.
•I
OL, IOH are TTL sink/source currents.
•V
OL, VOH are TTL level output voltages.
N equals the number of outputs driving TTL loads
to VOL.
M equals the number of outputs driving TTL loads
to VOH.
Accurate values for N and M are difficult to determine
because they depend on the family type, on design
details, and on the system I/O. The power can be divided
into two components: static and active.
Static Power Component
Actel FPGAs have small static power components that
result in power dissipation lower than that of PALs or
PLDs. By integrating multiple PALs or PLDs into one
FPGA, an even greater reduction in board-level power
dissipation can be achieved.
The power due to standby current is typically a small
component of the overall power. Standby power is
calculated below for commercial, worst-case conditions.
The static power dissipated by TTL loads depends on the
number of outputs driving HIGH or LOW and on the DC
load current. Again, this value is typically small. For
instance, a 32-bit bus sinking 4 mA at 0.33 V will
generate 42 mW with all outputs driving LOW, and
140 mW with all outputs driving HIGH.
Table 1-6 Package Thermal Characteristics
Package Type Pin Count θjc
θja
Still Air
θja
300 ft./min. Units
Ceramic Quad Flat Pack 8 7.8 40 30 °C/W
132 7.2 35 25 °C/W
172 6.8 25 20 °C/W
196 6.4 23 15 °C/W
256 6.2 20 10 °C/W
Max. junction temp. (°C) – Max. military temp.
θja °C/W()
-----------------------------------------------------------------------------------------------------------------------150°C 125°C
25°C/W
---------------------------------------1.0W==
ICC VCC Power
2 mA 5.25 V 10.5 mW
RadTolerant FPGAs
v3.1 1-9
Active Power Component
Power dissipation in CMOS devices is usually dominated
by the active (dynamic) power dissipation. This
component is frequency-dependent, a function of the
logic and the external I/O. Active power dissipation
results from charging internal chip capacitances of the
interconnect, unprogrammed antifuses, module inputs,
and module outputs, plus external capacitance due to PC
board traces and load device inputs. An additional
component of the active power dissipation is the totem
pole current in CMOS transistor pairs. The net effect can
be associated with an equivalent capacitance that can be
combined with frequency and voltage to represent
active power dissipation.
Equivalent Capacitance
The power dissipated by a CMOS circuit can be expressed
by EQ 1-4:
Power (uW) = CEQ * VCC2 * F
EQ 1-4
where:
Equivalent capacitance is calculated by measuring I
CC
active
at a specified frequency and voltage for each circuit
component of interest. Measurements are made over a
range of frequencies at a fixed value of V
CC
. Equivalent
capacitance is frequency-independent, so the results can
be used over a wide range of operating conditions.
Equivalent capacitance values are shown in
Table 1-7
.
CEQ = Equivalent capacitance in pF
VCC = Power supply in volts (V)
F = Switching frequency in MHz
Table 1-7 CEQ Values for Actel FPGAs
RT1020,
A1020B
RT1280A,
A1280A
RT1425A, A1425A, RT1460A,
A1460A, RT14100A, A14100A
Modules (CEQM)3.7 5.8 6.7
Input Buffers (CEQI) 22.1 12.9 7.2
Output Buffers (CEQO) 32.1 23.8 10.4
Routed Array Clock Buffer Loads (CEQCR)4.6 3.9 1.6
Dedicated Clock Buffer Loads (CEQCD) n/a n/a 0.7
I/O Clock Buffer Loads (CEQCI) n/a n/a 0.9
RadTolerant FPGAs
1-10 v3.1
To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic
must be known. EQ 1-5 shows a piece-wise linear summation over all components. Since the RT1280A and A1280A
have two routed array clocks, the dedicated_Clk and IO_Clk terms do not apply. For all other devices all terms apply.
Power = VCC2 * [(m * CEQM* fm)modules + (n * CEQI* fn)inputs + (p * (CEQO+ CL) * fp)outputs + 0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1
*fq1)routed_Clk1 + 0.5 * (q2 * CEQCR * fq2)routed_Clk2 + (r2 * fq2)routed_Clk2 + 0.5 * (s1 * CEQCD * fs1)dedicated_Clk + (s2 * CEQCI * fs2)IO_Clk]
EQ 1-5
where:
m = Number of logic modules switching at fm
n = Number of input buffers switching at fn
p = Number of output buffers switching at fp
q1= Number of clock loads on the first routed array
clock
q2= Number of clock loads on the second routed array
clock (not applicable for RT1020 or A1020B)
r1= Fixed capacitance due to first routed array clock
r2= Fixed capacitance due to second routed array clock
(not applicable for RT1020 or A1020B)
s1= Fixed number of clock loads on the dedicated array
clock (not applicable for RT1020, A1020B,
RT1280A, or A1280A)
s2= Fixed number of clock loads on the dedicated
I/O clock (not applicable for RT1020, A1020B,
RT1280A, or A1280A)
CEQM = Equivalent capacitance of logic modules in pF
CEQI = Equivalent capacitance of input buffers in pF
CEQO = Equivalent capacitance of output buffers in pF
CEQCR = Equivalent capacitance of routed array clock in pF
CEQCD = Equivalent capacitance of dedicated array clock
in pF
CEQCI = Equivalent capacitance of dedicated I/O clock in pF
CL= Output lead capacitance in pF
fm= Average logic module switching rate in MHz
fn= Average input buffer switching rate in MHz
fp= Average output buffer switching rate in MHz
fq1 = Average first routed array clock rate in MHz
fq2 = Average second routed array clock rate in MHz (not
applicable for RT1020 or A1020B)
fs1 = Average dedicated array clock rate in MHz (not
applicable for RT1020, A1020B, RT1280A, or
A1280A)
fs2 = Average dedicated I/O clock rate in MHz
(not applicable for RT1020, A1020B, RT1280A, or
A1280A)
Table 1-8 Fixed Capacitance Values for Actel FPGAs (pF)
Device Type
r1
routed_Clk1
r2
routed_Clk2
RT1020, A1020B 69 n/a
RT1280A, A1280A 168 168
RT1425A, A1425A 75 75
RT1460A, A1460A 165 165
RT14100A, A14100A 195 195
Table 1-9 Fixed Clock Loads (s1/s2 ACT 3 Only)
Device Type
s1
Clock Loads
on Dedicated
Array Clock
s2
Clock Loads
on Dedicated
I/O Clock
RT1425A, A1425A 160 100
RT1460A, A1460A 432 168
RT14100A, A14100A 697 228
RadTolerant FPGAs
v3.1 1-11
Determining Average Switching Frequency
To determine the switching frequency for a design, you must have a detailed understanding of the data input values
to the circuit. The guidelines below are meant to represent worst-case scenarios; they can be generally used to predict
the upper limits of power dissipation.
RT1020, A1020B, RT1280A, A1280A
RT1425A, A1425A, RT1460A, A1460A, RT14100A, A14100A
Logic Modules (m) = 80% of Combinatorial Modules
Input Switching (n) = # Inputs/4
Outputs Switching (p) = # Outputs/4
First Routed Array Clock Loads (q1) = 40% of Sequential Modules
Second Routed Array Clock Loads (q2) = 40% of Sequential Modules
Load Capacitance (CL) = 35 pF
Average Logic Module Switching Rate (fm)=F/10
Average Input Switching Rate (fn)=F/5
Average Output Switching Rate (fp)=F/10
Average First Routed Array Clock Rate (fq1)=F
Average Second Routed Array Clock Rate (fq2)=F/2
Average Dedicated Array Clock Rate (fs1)=n/a
Average Dedicated I/O Clock Rate (fs2)=n/a
Logic Modules (m) = 80% of Combinatorial Modules
Input Switching (n) = # Inputs/4
Outputs Switching (p) = # Outputs/4
First Routed Array Clock Loads (q1) = 40% of Sequential Modules
Second Routed Array Clock Loads (q2) = 40% of Sequential Modules
Load Capacitance (CL)=35 pF
Average Logic Module Switching Rate (fm)=F/10
Average Input Switching Rate (fn)=F/5
Average Output Switching Rate (fp)=F/10
Average First Routed Array Clock Rate (fq1)=F/2
Average Second Routed Array Clock Rate (fq2)=F/2
Average Dedicated Array Clock Rate (fs1)=F
Average Dedicated I/O Clock Rate (fs2)=F
RadTolerant FPGAs
1-12 v3.1
Figure 1-6 RT1020, A1020B Timing Model
Notes:
1. *Values shown for RT1280A –1 at worst-case military conditions.
2. † Input module predicted routing delay
Figure 1-7 RT1280A, A1280A Timing Model*
tIRD1 = 1.1 ns
tIRD4 = 3.9 ns
tIRD8 = 8.1 ns
tPD = 3.6 ns
tCO = 3.6 ns
Output DelayInput Delay
I/O Module Logic Module I/O Module
ARRAY
CLOCK
Predicted
Routing
Delays
FO = 128
Internal Delays
tRD1 = 1.1 ns
tRD2 = 1.8 ns
tRD4 = 3.9 ns
tRD8 = 8.1 ns
tENHZ = 12.3 ns
tDLH = 8.3 ns
tIRD2 = 1.9 ns
tINYL = 3.9 ns
tCKH = 6.9 ns
FMAX = 55 MHz
tINYL = 3.6 ns
tINH = 2.5 ns
tINSU = 3.5 ns
tINGL = 6.6 ns
Output DelaysInput Delays
I/O Module
DQ
Internal Delays
Sequential
Logic Module
I/O Module
I/O Module
ARRAY
CLOCKS
DQ DQ
Predicted
Routing
Delays
G
G
FO = 32
tIRD2 = 7.2 ns
tPD1 = 5.2 ns
tRD1 = 2.4 ns
tRH2 = 3.4 ns
tRD4 = 5.1 ns
tRD8 = 9.2 ns
tDLH = 14.0 ns
tDLH = 14.0 ns
FMAX = 73 MHz
tCKH = 13.3 ns
tSUD = 0.5 ns
tHD = 0.0 ns
tCO = 5.2 ns
tRD1 = 2.4 ns
tOUTH = 0.0 ns
tOUTSU = 0.5 ns
tGLH = 12.5 ns
tENHZ = 9.8 ns
Combin-
atorial
Logic
included
in tSUD
Combinatorial
Logic Module
RadTolerant FPGAs
v3.1 1-13
Note: *Values shown for RT14100A –1 at worst-case military conditions.
Figure 1-8 RT1425A, A1425A, RT1460A, A1460A, RT14100A, A14100A Timing Model*
I/O CLOCK
FIOMAX = 100 MHz
tIOCKH = 3.5 ns
(pad-to-pad)
Combinatorial
Logic
included
in tSUD
DQ
tINY = 4.2 ns
Output DelaysInput Delays
I/O Module Combinatorial
Logic Module
I/O Module
ARRAY
CLOCK
DQ
Predicted
Routi ng
Delays
tIRD2 = 1.9 ns
tPD = 3.0 ns
tRD1 = 1.3 ns
tRD4 = 2.6 ns
tRD8 = 4.2 ns
tDHS = 9.2 ns
FHMAX = 100 MHz
tHCKH = 5.5 ns
tCO = 3.0 ns
tRD1 = 1.3 ns
tENZHS = 7.7 ns
Internal Delays
tSU = 1.0 ns
tHD = 0.6 ns
tDHS = 9.2 ns
tINH = 0.0 ns
tINSU = 2.1 ns
tICKY = 7.0 ns
Sequential
Logic Module
I/O Module
tOUTH = 1.2 ns
tOUTSU = 1.2 ns
tCKHS = 14.4 ns
DQ
RadTolerant FPGAs
1-14 v3.1
Parameter Measurement
Figure 1-9 Output Buffer Delays
Figure 1-10 AC Test Load
To AC Test Loads (shown below)
PAD
D
E
TRIBUFF
In 50%
PAD 1.5V
50%
1.5V
E50%
PAD 1.5V
50%
10%
E50%
PAD
GND 1.5V
50%
90%
tDLH tDHL tENZL tENLZ tENZH tENHZ
V
OH
V
OH
V
CC
V
CC
V
CC
GND GND GND
V
CC
V
OL
V
OL
Load 1
(Used to measure propagation delay)
Load 2
(Used to measure rising/falling edges)
50 pF
To the Output under Test
Ω
V
CC
GND
To the Output under Test
50 pF
R to V
CC
for tPLZ/tPZL
R to GND for tPHZ/tPZH
R = 1 k
Figure 1-11 Input Buffer Delays
PA D Y
INBUF
PAD
3V
0V
1.5V
Y
GND
VCC
50%
tINYH
1.5V
50%
tINYL
Figure 1-12 Combinatorial Macro Delays
S
A
B
Y
S, A or B
Y
50%
tPLH
Y
50%
50% 50%
50% 50%
tPHL
tPHL
tPLH
V
CC
GND
GND
V
CC
GND
V
CC
RadTolerant FPGAs
v3.1 1-15
Sequential Timing Characteristics
D represents all data functions involving A, B, and S for multiplexed flip-flops.
Figure 1-13 Flip-Flops and Latches (RT1280A, A1280A)
D represents all data functions involving A, B, and S for multiplexed flip-flops.
Figure 1-14 Flip-Flops and Latches (RT1425A, A1425A, RT1460A, A1460A, RT14100A, A14100A)
tRS
(Positive Edge Triggered)
D
CLK CLR
PRE Y
D1
G, CLK
Q
PRE, CLR
tWCLKA
tWASYN
t
HD
tSUD tA
t
tHENA
SUENA
tco
E
E
tCLR
(Positive Edge Triggered)
D
CLK CLR
PRESET Y
D
1
G, CLK
Q
CLR
tWCLKA
tWASYN
t
HD
tSUD tA
t
tHENA
SUENA
tCO
E
E
RadTolerant FPGAs
1-16 v3.1
Figure 1-15 Input Buffer Latches (R1280A, A1280A)
Figure 1-16 Output Buffer Latches (RT1280A, A1280A)
CLK
G
PAD
IBDL
PAD
G
tINH
tINSU
CLK
tHEXT
tSUEXT
PAD CLKBUF
D
G
PAD
OBDLHS
D
G
tOUTSU
tOUTH
RadTolerant FPGAs
v3.1 1-17
RT1020, A1020B Timing Characteristics
Table 1-10 RT1020, A1020B Logic and Input Modules
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C
Std Speed
Parameter Description Min. Max. Units
Logic Module Propagation Delays
tPD1 Single Module 3.6 ns
tPD2 Dual Module Macros 8.4 ns
tCO Sequential Clock to Q 3.6 ns
tGO Latch G to Q 3.6 ns
tRS Flip-Flop (Latch) Reset to Q 3.6 ns
Logic Module Predicted Routing Delays1
tRD1 FO=1 Routing Delay 1.1 ns
tRD2 FO=2 Routing Delay 1.8 ns
tRD3 FO=3 Routing Delay 2.6 ns
tRD4 FO=4 Routing Delay 3.9 ns
tRD8 FO=8 Routing Delay 8.1 ns
Logic Module Sequential Timing2
tSUD Flip-Flop (Latch) Data Input Setup 6.9 ns
tHD3Flip-Flop (Latch) Data Input Hold 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 6.9 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 8.4 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 8.4 ns
tAFlip-Flop Clock Input Period 17.5 ns
fMAX Flip-Flop (Latch) Clock Frequency (FO = 128) 55 MHz
Input Module Propagation Delays
tINYH Pad to Y High 3.9 ns
tINYL Pad to Y Low 3.9 ns
Input Module Predicted Routing Delays1, 3
tIRD1 FO=1 Routing Delay 1.1 ns
tIRD2 FO=2 Routing Delay 1.8 ns
tIRD3 FO=3 Routing Delay 2.6 ns
tIRD4 FO=4 Routing Delay 3.9 ns
tIRD8 FO=8 Routing Delay 8.1 ns
Notes:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
2. Setup times assume fanout of 3. Further testing information can be obtained from the Timer utility.
3. Optimization techniques may further reduce delays by 0 to 4ns.
4. The hold time for the DFME1A macro may be greater than 0ns. Use the Designer software 3.0 (or later) Timer to check the hold
time for this macro.
RadTolerant FPGAs
1-18 v3.1
Table 1-11 RT1020, A1020B Output Module
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C
Std Speed
Parameter Description Min. Max. Units
Global Clock Network
tCKH Input Low to High FO = 16
FO = 128
6.0
6.9
ns
tCKL Input High to Low FO = 16
FO = 128
7.9
8.7
ns
tPWH Minimum Pulse Width High FO = 16
FO = 128
8.0
8.4
ns
tPWL Minimum Pulse Width Low FO = 16
FO = 128
1.5
2.2
ns
tCKSW Maximum Skew FO = 16
FO = 128
1.5
2.3
ns
tPMinimum Period FO = 16
FO = 128
16.3
17.5
ns
fMAX Maximum Frequency FO = 16
FO = 128
60
50
MHz
TTL Output Module Timing1
tDLH Data to Pad High 8.3 ns
tDHL Data to Pad Low 9.3 ns
tENZH Enable Pad Z to High 8.1 ns
tENZL Enable Pad Z to Low 9.8 ns
tENHZ Enable Pad High to Z 12.3 ns
tENLZ Enable Pad Low to Z 11.1 ns
dTLH Delta Low to High 0.07 ns/pF
dTHL Delta High to Low 0.10 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 9.8 ns
tDHL Data to Pad Low 7.9 ns
tENZH Enable Pad Z to High 7.4 ns
tENZL Enable Pad Z to Low 10.2 ns
tENHZ Enable Pad High to Z 12.3 ns
tENLZ Enable Pad Low to Z 11.1 ns
dTLH Delta Low to High 0.13 ns/pF
dTHL Delta High to Low 0.07 ns/pF
Notes:
1. Delays based on 35pF loading.
2. SSO information can be found in the Simultaneously Switching Noise and Signal Integrity application note.
RadTolerant FPGAs
v3.1 1-19
RT1280A, A1280A Timing Characteristics
Table 1-12 RT1280A, A1280A Logic Module
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C
–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Units
Logic Module Propagation Delays1
tPD1 Single Module 5.2 6.1 ns
tCO Sequential Clock-to-Q 5.2 6.1 ns
tGO Latch G-to-Q 5.2 6.1 ns
tRS Flip-Flop (Latch) Reset-to-Q 5.2 6.1 ns
Logic Module Predicted Routing Delays2
tRD1 FO=1 Routing Delay 2.4 2.8 ns
tRD2 FO=2 Routing Delay 3.4 4.0 ns
tRD3 FO=3 Routing Delay 4.2 4.9 ns
tRD4 FO=4 Routing Delay 5.1 6.0 ns
tRD8 FO=8 Routing Delay 9.2 10.8 ns
Logic Module Sequential Timing 3, 4
tSUD Flip-Flop (Latch) Data Input Setup 0.5 0.5 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 1.3 1.3 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 7.4 8.6 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 7.4 8.6 ns
tAFlip-Flop Clock Input Period 16.4 22.1 ns
tINH Input Buffer Latch Hold 2.5 2.5 ns
tINSU Input Buffer Latch Setup 3.5 3.5 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 ns
tOUTSU Output Buffer Latch Setup 0.5 0.5 ns
fMAX Flip-Flop (Latch) Clock Frequency 60 41 MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be
obtained from the Timer utility.
4. Setup and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/
hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to
the G input subtracts (adds) to the internal setup (hold) time.
RadTolerant FPGAs
1-20 v3.1
Table 1-13 RT1280A, A1280A Input Module
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C
–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Units
Input Module Propagation Delays
tINYH Pad-to-Y HIGH 4.0 4.7 ns
tINYL Pad-to-Y LOW 3.6 4.3 ns
tINGH G-to-Y HIGH 6.9 8.1 ns
tINGL G-to-Y LOW 6.6 7.7 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 6.2 7.3 ns
tIRD2 FO=2 Routing Delay 7.2 8.4 ns
tIRD3 FO=3 Routing Delay 7.7 9.1 ns
tIRD4 FO=4 Routing Delay 8.9 10.5 ns
tIRD8 FO=8 Routing Delay 12.9 15.2 ns
Global Clock Network
tCKH Input LOW to HIGH FO = 32
FO = 384
13.3
17.9
15.7
21.1
ns
tCKL Input HIGH to LOW FO = 32
FO = 384
13.3
18.2
15.7
21.4
ns
tPWH Minimum Pulse Width HIGH FO = 32
FO = 384
6.9
7.9
8.1
9.3
ns
tPWL Minimum Pulse Width LOW FO = 32
FO = 384
6.9
7.9
8.1
9.3
ns
tCKSW Maximum Skew FO = 32
FO = 384
0.6
3.1
0.6
3.1
ns
tSUEXT Input Latch External Setup FO = 32
FO = 384
0.0
0.0
0.0
0.0
ns
tHEXT Input Latch External Hold FO = 32
FO = 384
8.6
13.8
8.6
13.8
ns
tPMinimum Period FO = 32
FO = 384
13.7
16.0
16.2
18.9
ns
fMAX Maximum Frequency FO = 32
FO = 384
73
63
62
53
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment. Optimization techniques may
further reduce delays by 0 to 4ns.
RadTolerant FPGAs
v3.1 1-21
Table 1-14 RT1280A, A1280A Output Module
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C
–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data-to-Pad HIGH 11.0 13.0 ns
tDHL Data-to-Pad LOW 13.9 16.4 ns
tENZH Enable-to-Pad Z to HIGH 12.3 14.4 ns
tENZL Enable-to-Pad Z to LOW 16.1 19.0 ns
tENHZ Enable-to-Pad HIGH to Z 9.8 11.5 ns
tENLZ Enable-to-Pad LOW to Z 11.5 13.6 ns
tGLH G-to-Pad HIGH 12.4 14.6 ns
tGHL G-to-Pad LOW 15.5 18.2 ns
dTLH Delta LOW to HIGH 0.09 0.11 ns/pF
dTHL Delta HIGH to LOW 0.17 0.20 ns/pF
CMOS Output Module Timing1
tDLH Data-to-Pad HIGH 14.0 16.5 ns
tDHL Data-to-Pad LOW 11.7 13.7 ns
tENZH Enable-to-Pad Z to HIGH 12.3 14.4 ns
tENZL Enable-to-Pad Z to LOW 16.1 19.0 ns
tENHZ Enable-to-Pad HIGH to Z 9.8 11.5 ns
tENLZ Enable-to-Pad LOW to Z 11.5 13.6 ns
tGLH G-to-Pad HIGH 12.4 14.6 ns
tGHL G-to-Pad LOW 15.5 18.2 ns
dTLH Delta LOW to HIGH 0.17 0.20 ns/pF
dTHL Delta HIGH to LOW 0.12 0.15 ns/pF
Notes:
1. Delays based on 50pF loading.
2. SSO information can be found in the Simultaneously Switching Noise and Signal Integrity application note.
RadTolerant FPGAs
1-22 v3.1
RT1425A, A1425A Timing Characteristics
Table 1-15 RT1425A, A1425A Logic and Input Modules
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C
–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Units
Logic Module Propagation Delays1
tPD Internal Array Module 3.0 3.5 ns
tCO Sequential Clock to Q 3.0 3.5 ns
tCLR Asynchronous Clear to Q 3.0 3.5 ns
Logic Module Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.3 1.5 ns
tRD2 FO=2 Routing Delay 1.9 2.1 ns
tRD3 FO=3 Routing Delay 2.1 2.5 ns
tRD4 FO=4 Routing Delay 2.6 2.9 ns
tRD8 FO=8 Routing Delay 4.2 4.9 ns
Logic Module Sequential Timing
tSUD Flip-Flop (Latch) Data Input Setup 0.9 1.0 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.9 1.0 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 3.8 4.4 ns
tWCLKA Flip-Flop Clock Pulse Width 3.8 4.4 ns
tAFlip-Flop Clock Input Period 7.9 9.3 ns
fMAX Flip-Flop Clock Frequency 125 100 MHz
Input Module Propagation Delays
tINY Input Data Pad to Y 4.2 4.9 ns
tICKY Input Reg IOCLK Pad to Y 7.0 8.2 ns
tOCKY Output Reg IOCLK Pad to Y 7.0 8.2 ns
tICLRY Input Asynchronous Clear to Y 7.0 8.2 ns
tOCLRY Output Asynchronous Clear to Y 7.0 8.2 ns
Input Module Predicted Routing Delays2, 3
tIRD1 FO=1 Routing Delay 1.3 1.5 ns
tIRD2 FO=2 Routing Delay 1.9 2.1 ns
tIRD3 FO=3 Routing Delay 2.1 2.5 ns
tIRD4 FO=4 Routing Delay 2.6 2.9 ns
tIRD8 FO=8 Routing Delay 4.2 4.9 ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Optimization techniques may further reduce delays by 0 to 4ns.
RadTolerant FPGAs
v3.1 1-23
Table 1-16 RT1425A, A1425A Logic and Input Modules
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C
–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Units
I/O Module Sequential Timing
tINH Input F-F Data Hold (w.r.t. IOCLK Pad) 0.0 0.0 ns
tINSU Input F-F Data Setup (w.r.t. IOCLK Pad) 2.1 2.4 ns
tIDEH Input Data Enable Hold (w.r.t. IOCLK Pad) 0.0 0.0 ns
tIDESU Input Data Enable Setup (w.r.t. IOCLK Pad) 8.7 10.0 ns
tOUTH Output F-F Data Hold (w.r.t. IOCLK Pad) 1.1 1.2 ns
tOUTSU Output F-F Data Setup (w.r.t. IOCLK Pad) 1.1 1.2 ns
tODEH Output Data Enable Hold (w.r.t. IOCLK Pad) 0.5 0.6 ns
tODESU Output Data Enable Setup (w.r.t. IOCLK Pad) 2.0 2.4 ns
TTL Output Module Timing1
tDHS Data to Pad, High Slew 7.5 8.9 ns
tDLS Data to Pad, Low Slew 11.9 14.0 ns
tENZHS Enable to Pad, Z to H/L, High Slew 6.0 7.0 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 10.9 12.8 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 9.9 11.6 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 9.9 11.6 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 10.5 11.6 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 15.7 17.4 ns
dTLHHS Delta Low to High, High Slew 0.04 0.04 ns/pF
dTLHLS Delta Low to High, Low Slew 0.07 0.08 ns/pF
dTHLHS Delta High to Low, High Slew 0.05 0.06 ns/pF
dTHLLS Delta High to Low, Low Slew 0.07 0.08 ns/pF
CMOS Output Module Timing1
tDHS Data to Pad, High Slew 9.2 10.8 ns
tDLS Data to Pad, Low Slew 17.3 20.3 ns
tENZHS Enable to Pad, Z to H/L, High Slew 7.7 9.1 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 13.1 15.5 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 9.9 11.6 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 10.5 11.6 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 12.5 13.7 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 18.1 20.1 ns
dTLHHS Delta Low to High, High Slew 0.06 0.07 ns/pF
dTLHLS Delta Low to High, Low Slew 0.11 0.13 ns/pF
dTHLHS Delta High to Low, High Slew 0.04 0.05 ns/pF
dTHLLS Delta High to Low, Low Slew 0.05 0.06 ns/pF
Note:
1. Delays based on 35pF loading.
RadTolerant FPGAs
1-24 v3.1
Table 1-17 RT1425A, A1425A Clock Networks
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C
–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Units
Dedicated (Hard-Wired) I/O Clock Network
tIOCKH Input Low to High
(Pad to I/O Module Input)
3.0 3.5 ns
tIOPWH Minimum Pulse Width High 3.9 4.4 ns
tIOPWL Minimum Pulse Width Low 3.9 4.4 ns
tIOSAPW Minimum Asynchronous Pulse Width 3.9 4.4 ns
tIOCKSW Maximum Skew 0.5 0.5 ns
tIOP Minimum Period 7.9 9.3 ns
fIOMAX Maximum Frequency 125 100 MHz
Dedicated (Hard-Wired) Array Clock Network
tHCKH Input Low to High
(Pad to S-Module Input)
4.6 5.3 ns
tHCKL Input High to Low
(Pad to S-Module Input)
4.6 5.3 ns
tHPWH Minimum Pulse Width High 3.9 4.4 ns
tHPWL Minimum Pulse Width Low 3.9 4.4 ns
tHCKSW Maximum Skew 0.4 0.4 ns
tHP Minimum Period 7.9 9.3 ns
fHMAX Maximum Frequency 125 100 MHz
Routed Array Clock Networks
tRCKH Input Low to High (FO=64) 5.5 6.4 ns
tRCKL Input High to Low (FO=64) 6.0 7.0 ns
tRPWH Minimum Pulse Width High (FO=64) 4.9 5.7 ns
tRPWL Minimum Pulse Width Low (FO=64) 4.9 5.7 ns
tRCKSW Maximum Skew (FO=128) 1.1 1.2 ns
tRP Minimum Period (FO=64) 10.1 11.6 ns
fRMAX Maximum Frequency (FO=64) 100 85 MHz
Clock-to-Clock Skews
tIOHCKSW I/O Clock to H-Clock Skew 0.0 3.0 0.0 3.0 ns
tIORCKSW I/O Clock to R-Clock Skew 0.0 3.0 0.0 3.0 ns
tHRCKSW H-Clock to R-Clock Skew
(FO = 64)
(FO = 50% max.)
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
ns
ns
Note: SSO information can be found in the Simultaneously Switching Noise and Signal Integrity application note.
RadTolerant FPGAs
v3.1 1-25
RT1460A, A1460A Timing Characteristics
Table 1-18 RT1460A, A1460A Logic and Input Modules
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C
–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Units
Logic Module Propagation Delays1
tPD Internal Array Module 3.0 3.5 ns
tCO Sequential Clock to Q 3.0 3.5 ns
tCLR Asynchronous Clear to Q 3.0 3.5 ns
Logic Module Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.3 1.5 ns
tRD2 FO=2 Routing Delay 1.9 2.1 ns
tRD3 FO=3 Routing Delay 2.1 2.5 ns
tRD4 FO=4 Routing Delay 2.6 2.9 ns
tRD8 FO=8 Routing Delay 4.2 4.9 ns
Logic Module Sequential Timing
tSUD Flip-Flop (Latch) Data Input Setup 0.9 1.0 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.9 1.0 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 4.8 5.6 ns
tWCLKA Flip-Flop Clock Pulse Width 4.8 5.6 ns
tAFlip-Flop Clock Input Period 9.9 11.6 ns
fMAX Flip-Flop Clock Frequency 100 85 MHz
Input Module Propagation Delays
tINY Input Data Pad to Y 4.2 4.9 ns
tICKY Input Reg IOCLK Pad to Y 7.0 8.2 ns
tOCKY Output Reg IOCLK Pad to Y 7.0 8.2 ns
tICLRY Input Asynchronous Clear to Y 7.0 8.2 ns
tOCLRY Output Asynchronous Clear to Y 7.0 8.2 ns
Predicted Input Routing Delays2, 3
tIRD1 FO=1 Routing Delay 1.3 1.5 ns
tIRD2 FO=2 Routing Delay 1.9 2.1 ns
tIRD3 FO=3 Routing Delay 2.1 2.5 ns
tIRD4 FO=4 Routing Delay 2.6 2.9 ns
tIRD8 FO=8 Routing Delay 4.2 4.9 ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Optimization techniques may further reduce delays by 0 to 4ns.
RadTolerant FPGAs
1-26 v3.1
Table 1-19 RT1460A, A1460A I/O and Output Modules
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C
–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Units
I/O Module Sequential Timing
tINH Input F-F Data Hold (w.r.t. IOCLK Pad) 0.0 0.0 ns
tINSU Input F-F Data Setup (w.r.t. IOCLK Pad) 2.1 2.4 ns
tIDEH Input Data Enable Hold (w.r.t. IOCLK Pad) 0.0 0.0 ns
tIDESU Input Data Enable Setup (w.r.t. IOCLK Pad) 8.7 10.0 ns
tOUTH Output F-F Data Hold (w.r.t. IOCLK Pad) 1.1 1.2 ns
tOUTSU Output F-F Data Setup (w.r.t. IOCLK Pad) 1.1 1.2 ns
tODEH Output Data Enable Hold (w.r.t. IOCLK Pad) 0.5 0.6 ns
tODESU Output Data Enable Setup (w.r.t. IOCLK Pad) 2.0 2.4 ns
TTL Output Module Timing1
tDHS Data to Pad, High Slew 7.5 8.9 ns
tDLS Data to Pad, Low Slew 11.9 14.0 ns
tENZHS Enable to Pad, Z to H/L, High Slew 6.0 7.0 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 10.9 12.8 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 11.5 13.5 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 10.9 12.8 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 11.6 13.4 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 17.8 19.8 ns
dTLHHS Delta Low to High, High Slew 0.04 0.04 ns/pF
dTLHLS Delta Low to High, Low Slew 0.07 0.08 ns/pF
dTHLHS Delta High to Low, High Slew 0.05 0.06 ns/pF
dTHLLS Delta High to Low, Low Slew 0.07 0.08 ns/pF
CMOS Output Module Timing1
tDHS Data to Pad, High Slew 9.2 10.8 ns
tDLS Data to Pad, Low Slew 17.3 20.3 ns
tENZHS Enable to Pad, Z to H/L, High Slew 7.7 9.1 ns
tENZLS Enable to Pad, Z to H/L, Low Slew 13.1 15.5 ns
tENHSZ Enable to Pad, H/L to Z, High Slew 10.9 12.8 ns
tENLSZ Enable to Pad, H/L to Z, Low Slew 10.9 12.8 ns
tCKHS IOCLK Pad to Pad H/L, High Slew 14.1 16.0 ns
tCKLS IOCLK Pad to Pad H/L, Low Slew 20.2 22.4 ns
dTLHHS Delta Low to High, High Slew 0.06 0.07 ns/pF
dTLHLS Delta Low to High, Low Slew 0.11 0.13 ns/pF
dTHLHS Delta High to Low, High Slew 0.04 0.05 ns/pF
dTHLLS Delta High to Low, Low Slew 0.05 0.06 ns/pF
Note:
1. Delays based on 35pF loading.
RadTolerant FPGAs
v3.1 1-27
Table 1-20 RT1460A, A1460A Clock Networks
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C
–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Units
Dedicated (Hard-Wired) I/O Clock Network
tIOCKH Input Low to High (Pad to I/O Module Input) 3.5 4.1 ns
tIOPWH Minimum Pulse Width High 4.8 5.7 ns
tIOPWL Minimum Pulse Width Low 4.8 5.7 ns
tIOSAPW Minimum Asynchronous Pulse Width 3.9 4.4 ns
tIOCKSW Maximum Skew 0.9 1.0 ns
tIOP Minimum Period 9.9 11.6 ns
fIOMAX Maximum Frequency 100 85 MHz
Dedicated (Hard-Wired) Array Clock Network
tHCKH Input Low to High
(Pad to S-Module Input) 5.5 6.4 ns
tHCKL Input High to Low
(Pad to S-Module Input) 5.5 6.4 ns
tHPWH Minimum Pulse Width High 4.8 5.7 ns
tHPWL Minimum Pulse Width Low 4.8 5.7 ns
tHCKSW Maximum Skew 0.9 1.0 ns
tHP Minimum Period 9.9 11.6 ns
fHMAX Maximum Frequency 100 85 MHz
Routed Array Clock Networks
tRCKH Input Low to High (FO=256) 9.0 10.5 ns
tRCKL Input High to Low (FO=256) 9.0 10.5 ns
tRPWH Min. Pulse Width High (FO=256) 6.3 7.1 ns
tRPWL Min. Pulse Width Low (FO=256) 6.3 7.1 ns
tRCKSW Maximum Skew (FO=128) 1.9 2.1 ns
tRP Minimum Period (FO=256) 12.9 14.5 ns
fRMAX Maximum Frequency (FO=256) 75 65 MHz
Clock-to-Clock Skews
tIOHCKSW I/O Clock to H-Clock Skew 0.0 3.0 0.0 3.0 ns
tIORCKSW I/O Clock to R-Clock Skew 0.0 5.0 0.0 5.0 ns
tHRCKSW H-Clock to R-Clock Skew
(FO = 64)
(FO = 50% max.)
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
ns
ns
Note: SSO information can be found in the Simultaneously Switching Noise and Signal Integrity application note.
RadTolerant FPGAs
1-28 v3.1
RT14100A, A14100A Timing Characteristics
Table 1-21 RT14100A, A14100A Logic and Input Modules
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C
–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Units
Logic Module Propagation Delays1
tPD Internal Array Module 3.0 3.5 ns
tCO Sequential Clock-to-Q 3.0 3.5 ns
tCLR Asynchronous Clear-to-Q 3.0 3.5 ns
Logic Module Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.3 1.5 ns
tRD2 FO=2 Routing Delay 1.9 2.1 ns
tRD3 FO=3 Routing Delay 2.1 2.5 ns
tRD4 FO=4 Routing Delay 2.6 2.9 ns
tRD8 FO=8 Routing Delay 4.2 4.9 ns
Logic Module Sequential Timing
tSUD Flip-Flop (Latch) Data Input Setup 1.0 1.0 ns
tHD Flip-Flop (Latch) Data Input Hold 0.6 0.6 ns
tSUENA Flip-Flop (Latch) Enable Setup 1.0 1.0 ns
tHENA Flip-Flop (Latch) Enable Hold 0.6 0.6 ns
tWASYN Asynchronous Pulse Width 4.8 5.6 ns
tWCLKA Flip-Flop Clock Pulse Width 4.8 5.6 ns
tAFlip-Flop Clock Input Period 9.9 11.6 ns
fMAX Flip-Flop Clock Frequency 100 85 MHz
Input Module Propagation Delays
tINY Input Data Pad-to-Y 4.2 4.9 ns
tICKY Input Reg IOCLK Pad-to-Y 7.0 8.2 ns
tOCKY Output Reg IOCLK Pad-to-Y 7.0 8.2 ns
tICLRY Input Asynchronous Clear-to-Y 7.0 8.2 ns
tOCLRY Output Asynchronous Clear-to-Y 7.0 8.2 ns
Input Module Predicted Routing Delays2, 3
tIRD1 FO=1 Routing Delay 1.3 1.5 ns
tIRD2 FO=2 Routing Delay 1.9 2.1 ns
tIRD3 FO=3 Routing Delay 2.1 2.5 ns
tIRD4 FO=4 Routing Delay 2.6 2.9 ns
tIRD8 FO=8 Routing Delay 4.2 4.9 ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route
timing is based on actual routing delay measurements performed on the device prior to shipment.
3. Optimization techniques may further reduce delays by 0 to 4ns.
RadTolerant FPGAs
v3.1 1-29
Table 1-22 RT14100A, A14100A I/O and Output Modules
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C
–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Units
I/O Module Sequential Timing
tINH Input Flip-Flop Data Hold 0.0 0.0 ns
tINSU Input Flip-Flop Data Setup 2.1 2.4 ns
tIDEH Input Data Enable Hold 0.0 0.0 ns
tIDESU Input Data Enable Setup 8.7 10.0 ns
tOUTH Output Flip-Flop Data Hold 1.2 1.2 ns
tOUTSU Output Flip-Flop Data Setup 1.2 1.2 ns
tODEH Output Data Enable Hold 0.6 0.6 ns
tODESU Output Data Enable Setup 2.4 2.4 ns
TTL Output Module Timing1
tDHS Data-to-Pad, High Slew 7.5 8.9 ns
tDLS Data-to-Pad, Low Slew 11.9 14.0 ns
tENZHS Enable-to-Pad, Z to H/L, High Slew 6.0 7.0 ns
tENZLS Enable-to-Pad, Z to H/L, Low Slew 10.9 12.8 ns
tENHSZ Enable-to-Pad, H/L to Z, High Slew 11.9 14.0 ns
tENLSZ Enable-to-Pad, H/L to Z, Low Slew 10.9 12.8 ns
tCKHS IOCLK Pad-to-Pad H/L, High Slew 12.2 14.0 ns
tCKLS IOCLK Pad-to-Pad H/L, Low Slew 17.8 17.8 ns
dTLHHS Delta LOW to HIGH, High Slew 0.04 0.04 ns/pF
dTLHLS Delta LOW to HIGH, Low Slew 0.07 0.08 ns/pF
dTHLHS Delta HIGH to LOW, High Slew 0.05 0.06 ns/pF
dTHLLS Delta HIGH to LOW, Low Slew 0.07 0.08 ns/pF
CMOS Output Module Timing1
tDHS Data-to-Pad, High Slew 9.2 10.8 ns
tDLS Data-to-Pad, Low Slew 17.3 20.3 ns
tENZHS Enable-to-Pad, Z to H/L, High Slew 7.7 9.1 ns
tENZLS Enable-to-Pad, Z to H/L, Low Slew 13.1 15.5 ns
tENHSZ Enable-to-Pad, H/L to Z, High Slew 11.6 14.0 ns
tENLSZ Enable-to-Pad, H/L to Z, Low Slew 10.9 12.8 ns
tCKHS IOCLK Pad-to-Pad H/L, High Slew 14.4 16.0 ns
tCKLS IOCLK Pad-to-Pad H/L, Low Slew 20.2 22.4 ns
dTLHHS Delta LOW to HIGH, High Slew 0.06 0.07 ns/pF
dTLHLS Delta LOW to HIGH, Low Slew 0.11 0.13 ns/pF
dTHLHS Delta HIGH to LOW, High Slew 0.04 0.05 ns/pF
dTHLLS Delta HIGH to LOW, Low Slew 0.05 0.06 ns/pF
Note:
1. Delays based on 35 pF loading.
RadTolerant FPGAs
1-30 v3.1
Table 1-23 RT14100A, A14100A Clock Networks
Worst-Case Military Conditions, VCC = 4.5 V, TJ = 125°C
–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Units
Dedicated (Hard-Wired) I/O Clock Network
tIOCKH Input LOW to HIGH
(Pad to I/O Module Input) 3.5 4.1 ns
tIOPWH Minimum Pulse Width HIGH 4.8 5.7 ns
tIOPWL Minimum Pulse Width LOW 4.8 5.7 ns
tIOSAPW Minimum Asynchronous Pulse Width 3.9 4.4 ns
tIOCKSW Maximum Skew 0.9 1.0 ns
tIOP Minimum Period 9.9 11.6 ns
fIOMAX Maximum Frequency 100 85 MHz
Dedicated (Hard-Wired) Array Clock Network
tHCKH Input LOW to HIGH
(Pad to S-Module Input) 5.5 6.4 ns
tHCKL Input HIGH to LOW
(Pad to S-Module Input) 5.5 6.4 ns
tHPWH Minimum Pulse Width HIGH 4.8 5.7 ns
tHPWL Minimum Pulse Width LOW 4.8 5.7 ns
tHCKSW Maximum Skew 0.9 1.0 ns
tHP Minimum Period 9.9 11.6 ns
fHMAX Maximum Frequency 100 85 MHz
Routed Array Clock Networks
tRCKH Input LOW to HIGH (FO=256) 9.0 10.5 ns
tRCKL Input HIGH to LOW (FO=256) 9.0 10.5 ns
tRPWH Min. Pulse Width HIGH (FO=256) 6.3 7.1 ns
tRPWL Min. Pulse Width LOW (FO=256) 6.3 7.1 ns
tRCKSW Maximum Skew (FO=128) 1.9 2.1 ns
tRP Minimum Period (FO=256) 12.9 14.5 ns
fRMAX Maximum Frequency (FO=256) 75 65 MHz
Clock-to-Clock Skews
tIOHCKSW I/O Clock to H-Clock Skew 0.0 3.5 0.0 3.5 ns
tIORCKSW I/O Clock to R-Clock Skew 0.0 5.0 0.0 5.0 ns
tHRCKSW H-Clock to R-Clock Skew
(FO = 64)
(FO = 50% max.)
0.0
0.0
1.0
3.0
0.0
0.0
1.0
3.0
ns
Note: SSO information can be found in the Simultaneously Switching Noise and Signal Integrity application note.
RadTolerant FPGAs
v3.1 1-31
Pin Descriptions
CLK Clock (Input)
RT1020 and A1020B only. TTL clock input for global clock
distribution networks. The clock input is buffered prior
to clocking the logic modules. This pin can also be used
as an I/O.
CLKA Clock A (Input)
Not applicable for RT1020 and A1020B. TTL clock input
for global clock distribution networks. The clock input is
buffered prior to clocking the logic modules. This pin can
also be used as an I/O.
CLKB Clock B (Input)
Not applicable for RT1020 and A1020B. TTL clock input
for global clock distribution networks. The clock input is
buffered prior to clocking the logic modules. This pin can
also be used as an I/O.
DCLK Diagnostic Clock (Input)
TTL clock input for diagnostic probe and device
programming. DCLK is active when the MODE pin is
HIGH. This pin functions as an I/O when the MODE pin is
LOW.
GND Ground
LOW supply voltage.
HCLK Dedicated (Hard-Wired) Array Clock
(Input)
Not applicable for RT1020, A1020B, RT1280A and
A1280A. TTL clock input for sequential modules. This
input is directly wired to each S-module, offering clock
speeds independent of the number of S-modules being
driven. This pin can also be used as an I/O.
I/O Input/Output (Input, Output)
I/O pin functions as an input, output, tristate, or
bidirectional buffer. Input and output levels are
compatible with standard TTL and CMOS specifications.
In the RT1020, A1020B, RT1280, and A1280A devices,
unused I/O pins are automatically driven LOW. In the
RT1425, A1425A, RT1460, A1460A, RT14100, and
A14100A devices, unused I/O pins are automatically
tristated.
IOCLK Dedicated (Hard-Wired) I/O Clock (Input)
Not applicable for RT1020, A1020B, RT1280A and
A1280A. TTL clock input for I/O modules. This input is
directly wired to each I/O module, offering clock speeds
independent of the number of I/O modules being driven.
This pin can also be used as an I/O.
IOPCL Dedicated (Hard-Wired) I/O
Preset/Clear (Input)
Not applicable for RT1020, A1020B, RT1280A and
A1280A. TTL input for I/O preset or clear. This global
input is directly wired to the preset and clear inputs of all
I/O registers. This pin functions as an I/O when no I/O
preset or clear macros are used.
MODE Mode (Input)
The MODE pin controls the use of diagnostic pins (DCLK,
PRA, PRB, SDI). When the MODE pin is HIGH, the special
functions are active. When the MODE pin is LOW, the
pins function as I/Os. To provide debugging capability,
the MODE pin should be terminated to GND through a
10 kΩ resistor so that the MODE pin can be pulled HIGH
when required.
NC No Connection
This pin is not connected to circuitry within the device.
PRA, I/O Probe A (Output)
The Probe A pin is used to output data from any user-
defined design node within the device. This independent
diagnostic pin can be used in conjunction with the Probe
B pin to allow real-time diagnostic output of any signal
path within the device. The Probe A pin can be used as a
user-defined I/O when verification has been completed.
The pin’s probe capabilities can be permanently disabled
to protect programmed design confidentiality. PRA is
accessible when the MODE pin is HIGH. This pin functions
as an I/O when the MODE pin is LOW.
PRB, I/O Probe B (Output)
The Probe B pin is used to output data from any user-
defined design node within the device. This independent
diagnostic pin can be used in conjunction with the Probe
A pin to allow real-time diagnostic output of any signal
path within the device. The Probe B pin can be used as a
user-defined I/O when verification has been completed.
The pin’s probe capabilities can be permanently disabled
to protect programmed design confidentiality. PRB is
accessible when the MODE pin is HIGH. This pin functions
as an I/O when the MODE pin is LOW.
SDI Serial Data Input (Input)
Serial data input for diagnostic probe and device
programming. SDI is active when the MODE pin is HIGH.
This pin functions as an I/O when the MODE pin is LOW.
VCC 5.0 V Supply Voltage
HIGH supply voltage.
RadTolerant FPGAs
v3.1 2-1
Package Pin Assignments
84-Pin CQFP
Figure 2-1 84-Pin CQFP (Top View)
Pin #1
Index
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
84-Pin
CQFP
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64
RadTolerant FPGAs
2-2 v3.1
84-Pin CQFP
Pin
Number
A1020B
Function
RT1020
Function
1NCNC
2I/OI/O
3I/OI/O
4I/OI/O
5I/OI/O
6I/OI/O
7GNDGND
8GNDGND
9I/OI/O
10 I/O I/O
11 I/O I/O
12 I/O I/O
13 I/O I/O
14 VCC VCC
15 VCC VCC
16 I/O I/O
17 I/O I/O
18 I/O I/O
19 I/O I/O
20 I/O I/O
21 I/O I/O
22 VCC VCC
23 I/O I/O
24 I/O I/O
25 I/O I/O
26 I/O I/O
27 I/O I/O
28 I/O I/O
29 GND GND
30 I/O I/O
31 I/O I/O
32 I/O I/O
33 I/O I/O
34 I/O I/O
35 VCC VCC
36 I/O I/O
37 I/O I/O
38 I/O I/O
39 I/O I/O
40 I/O I/O
41 I/O I/O
42 I/O I/O
43 I/O I/O
44 I/O I/O
45 I/O I/O
46 I/O I/O
47 I/O I/O
48 I/O I/O
49 GND GND
50 GND GND
51 I/O I/O
52 I/O I/O
53 CLKA, I/O CLKA, I/O
54 I/O I/O
55 MODE MODE
56 VCC VCC
57 VCC VCC
58 I/O I/O
59 I/O I/O
60 I/O I/O
61 SDI, I/O SDI, Input
62 DCLK, I/O DCLK, Input
63 PRA, I/O PRA, I/O
64 PRB, I/O PRB, I/O
65 I/O I/O
66 I/O I/O
67 I/O I/O
68 I/O I/O
69 I/O I/O
70 I/O I/O
84-Pin CQFP
Pin
Number
A1020B
Function
RT1020
Function
71 GND GND
72 I/O I/O
73 I/O I/O
74 I/O I/O
75 I/O I/O
76 I/O I/O
77 VCC VCC
78 I/O I/O
79 I/O I/O
80 I/O I/O
81 I/O I/O
82 I/O I/O
83 I/O I/O
84 I/O I/O
84-Pin CQFP
Pin
Number
A1020B
Function
RT1020
Function
RadTolerant FPGAs
v3.1 2-3
132-Pin CQFP
Figure 2-2 132-Pin CQFP (Top View)
132-Pin
CQFP
Pin #1
Index
132131 130129 128127 126125 124 107106 105104103 102 101 100
34 35 36 37 38 39 40 41 42 59 60 61 62 63 64 65 66
67
68
69
70
71
72
73
74
75
92
93
94
95
96
97
98
99
33
32
31
30
29
28
27
26
25
8
7
6
5
4
3
2
1
RadTolerant FPGAs
2-4 v3.1
132-Pin CQFP
Pin
Number
A1425A
Function
RT1425A
Function
1NCNC
2GNDGND
3 SDI, I/O SDI, I/O
4I/OI/O
5I/OI/O
6I/OI/O
7I/OI/O
8I/OI/O
9 MODE MODE
10 GND GND
11 VCC VCC
12 I/O I/O
13 I/O I/O
14 I/O I/O
15 I/O I/O
16 I/O I/O
17 I/O I/O
18 I/O I/O
19 I/O I/O
20 I/O I/O
21 I/O I/O
22 VCC VCC
23 I/O I/O
24 I/O I/O
25 I/O I/O
26 GND GND
27 VCC VCC
28 I/O I/O
29 I/O I/O
30 I/O I/O
31 I/O I/O
32 I/O I/O
33 I/O I/O
34 NC NC
35 I/O I/O
36 GND GND
37 I/O I/O
38 I/O I/O
39 I/O I/O
40 I/O I/O
41 I/O I/O
42 GND GND
43 VCC VCC
44 I/O I/O
45 I/O I/O
46 I/O I/O
47 I/O I/O
48 PRB, I/O PRB, I/O
49 I/O I/O
50 HCLK, I/O HCLK, I/O
51 I/O I/O
52 I/O I/O
53 I/O I/O
54 I/O I/O
55 I/O I/O
56 I/O I/O
57 I/O I/O
58 GND GND
59 VCC VCC
60 I/O I/O
61 I/O I/O
62 I/O I/O
63 I/O I/O
64 IOPCL, I/O IOPCL, I/O
65 GND GND
66 NC NC
67 NC NC
68 I/O I/O
69 I/O I/O
70 I/O I/O
132-Pin CQFP
Pin
Number
A1425A
Function
RT1425A
Function
71 I/O I/O
72 I/O I/O
73 I/O I/O
74 GND GND
75 VCC VCC
76 I/O I/O
77 I/O I/O
78 VCC VCC
79 I/O I/O
80 I/O I/O
81 I/O I/O
82 I/O I/O
83 I/O I/O
84 I/O I/O
85 I/O I/O
86 I/O I/O
87 I/O I/O
88 I/O I/O
89 VCC VCC
90 GND GND
91 VCC VCC
92 GND GND
93 I/O I/O
94 I/O I/O
95 I/O I/O
96 I/O I/O
97 I/O I/O
98 IOCLK, I/O IOCLK, I/O
99 NC NC
100 NC NC
101 GND GND
102 I/O I/O
103 I/O I/O
104 I/O I/O
105 I/O I/O
132-Pin CQFP
Pin
Number
A1425A
Function
RT1425A
Function
RadTolerant FPGAs
v3.1 2-5
106 GND GND
107 VCC VCC
108 I/O I/O
109 I/O I/O
110 I/O I/O
111 I/O I/O
112 I/O I/O
113 I/O I/O
114 I/O I/O
115 I/O I/O
116 CLKA, I/O CLKA, I/O
117 CLKB, I/O CLKB, I/O
118 PRA, I/O PRA, I/O
119 I/O I/O
120 I/O I/O
121 I/O I/O
122 GND GND
123 VCC VCC
124 I/O I/O
125 I/O I/O
126 I/O I/O
127 I/O I/O
128 I/O I/O
129 I/O I/O
130 I/O I/O
131 DCLK, I/O DCLK, I/O
132 NC NC
132-Pin CQFP
Pin
Number
A1425A
Function
RT1425A
Function
RadTolerant FPGAs
2-6 v3.1
172-Pin CQFP
Figure 2-3 172-Pin CQFP (Top View)
172-Pin
CQFP
Pin #1
Index
172 171 170 169 168 167 166 165 164 137 136 135 134 133 132 131 130
44 45 46 47 48 49 50 51 52 79 80 81 82 83 84 85 86
87
88
89
90
91
92
93
94
95
122
123
124
125
126
127
128
129
43
42
41
40
39
38
37
36
35
8
7
6
5
4
3
2
1
RadTolerant FPGAs
v3.1 2-7
172-Pin CQFP
Pin
Number
A1280A
Function
RT1280A
Function
1 MODE MODE
2I/OI/O
3I/OI/O
4I/OI/O
5I/OI/O
6I/OI/O
7GNDGND
8I/OI/O
9I/OI/O
10 I/O I/O
11 I/O I/O
12 VCC VCC
13 I/O I/O
14 I/O I/O
15 I/O I/O
16 I/O I/O
17 GND GND
18 I/O I/O
19 I/O I/O
20 I/O I/O
21 I/O I/O
22 GND GND
23 VCC VCC
24 VCC VCC
25 I/O I/O
26 I/O I/O
27 VCC VCC
28 I/O I/O
29 I/O I/O
30 I/O I/O
31 I/O I/O
32 GND GND
33 I/O I/O
34 I/O I/O
35 I/O I/O
36 I/O I/O
37 GND GND
38 I/O I/O
39 I/O I/O
40 I/O I/O
41 I/O I/O
42 I/O I/O
43 I/O I/O
44 I/O I/O
45 I/O I/O
46 I/O I/O
47 I/O I/O
48 I/O I/O
49 I/O I/O
50 VCC VCC
51 I/O I/O
52 I/O I/O
53 I/O I/O
54 I/O I/O
55 GND GND
56 I/O I/O
57 I/O I/O
58 I/O I/O
59 I/O I/O
60 I/O I/O
61 I/O I/O
62 I/O I/O
63 I/O I/O
64 I/O I/O
65 GND GND
66 VCC VCC
67 I/O I/O
68 I/O I/O
69 I/O I/O
70 I/O I/O
172-Pin CQFP
Pin
Number
A1280A
Function
RT1280A
Function
71 I/O I/O
72 I/O I/O
73 I/O I/O
74 I/O I/O
75 GND GND
76 I/O I/O
77 I/O I/O
78 I/O I/O
79 I/O I/O
80 VCC VCC
81 I/O I/O
82 I/O I/O
83 I/O I/O
84 I/O I/O
85 I/O I/O
86 I/O I/O
87 I/O I/O
88 I/O I/O
89 I/O I/O
90 I/O I/O
91 I/O I/O
92 I/O I/O
93 I/O I/O
94 I/O I/O
95 I/O I/O
96 I/O I/O
97 I/O I/O
98 GND GND
99 I/O I/O
100 I/O I/O
101 I/O I/O
102 I/O I/O
103 GND GND
104 I/O I/O
105 I/O I/O
172-Pin CQFP
Pin
Number
A1280A
Function
RT1280A
Function
RadTolerant FPGAs
2-8 v3.1
106 GND GND
107 VCC VCC
108 GND GND
109 VCC VCC
110 VCC VCC
111 I/O I/O
112 I/O I/O
113 VCC VCC
114 I/O I/O
115 I/O I/O
116 I/O I/O
117 I/O I/O
118 GND GND
119 I/O I/O
120 I/O I/O
121 I/O I/O
122 I/O I/O
123 GND GND
124 I/O I/O
125 I/O I/O
126 I/O I/O
127 I/O I/O
128 I/O I/O
129 I/O I/O
130 I/O I/O
131 SDI, I/O SDI, I/O
132 I/O I/O
133 I/O I/O
134 I/O I/O
135 I/O I/O
136 VCC VCC
137 I/O I/O
138 I/O I/O
139 I/O I/O
140 I/O I/O
172-Pin CQFP
Pin
Number
A1280A
Function
RT1280A
Function
141 GND GND
142 I/O I/O
143 I/O I/O
144 I/O I/O
145 I/O I/O
146 I/O I/O
147 I/O I/O
148 PRA, I/O PRA, I/O
149 I/O I/O
150 CLKA, I/O CLKA, I/O
151 VCC VCC
152 GND GND
153 I/O I/O
154 CLKB, I/O CLKB, I/O
155 I/O I/O
156 PRB, I/O PRB, I/O
157 I/O I/O
158 I/O I/O
159 I/O I/O
160 I/O I/O
161 GND GND
162 I/O I/O
163 I/O I/O
164 I/O I/O
165 I/O I/O
166 VCC VCC
167 I/O I/O
168 I/O I/O
169 I/O I/O
170 I/O I/O
171 DCLK, I/O DCLK, I/O
172 I/O I/O
172-Pin CQFP
Pin
Number
A1280A
Function
RT1280A
Function
RadTolerant FPGAs
v3.1 2-9
196-Pin CQFP
Figure 2-4 196-Pin CQFP (Top View)
196-Pin
CQFP
Pin #1
Index
196 195 194 193 192 191 190 189 188 155 154 153 152 151 150 149 148
50 51 52 53 54 55 56 57 58 91 92 93 94 95 96 97 98
99
100
101
102
103
104
105
106
107
140
141
142
143
144
145
146
147
49
48
47
46
45
44
43
42
41
8
7
6
5
4
3
2
1
RadTolerant FPGAs
2-10 v3.1
196-Pin CQFP
Pin
Number
A1460A
Function
RT1460A
Function
1GNDGND
2 SDI, I/O SDI, I/O
3I/OI/O
4I/OI/O
5I/OI/O
6I/OI/O
7I/OI/O
8I/OI/O
9I/OI/O
10 I/O I/O
11 MODE MODE
12 VCC VCC
13 GND GND
14 I/O I/O
15 I/O I/O
16 I/O I/O
17 I/O I/O
18 I/O I/O
19 I/O I/O
20 I/O I/O
21 I/O I/O
22 I/O I/O
23 I/O I/O
24 I/O I/O
25 I/O I/O
26 I/O I/O
27 I/O I/O
28 I/O I/O
29 I/O I/O
30 I/O I/O
31 I/O I/O
32 I/O I/O
33 I/O I/O
34 I/O I/O
35 I/O I/O
36 I/O I/O
37 GND GND
38 VCC VCC
39 VCC VCC
40 I/O I/O
41 I/O I/O
42 I/O I/O
43 I/O I/O
44 I/O I/O
45 I/O I/O
46 I/O I/O
47 I/O I/O
48 I/O I/O
49 I/O I/O
50 I/O I/O
51 GND GND
52 GND GND
53 I/O I/O
54 I/O I/O
55 I/O I/O
56 I/O I/O
57 I/O I/O
58 I/O I/O
59 VCC VCC
60 I/O I/O
61 I/O I/O
62 I/O I/O
63 I/O I/O
64 GND GND
65 I/O I/O
66 I/O I/O
67 I/O I/O
68 I/O I/O
69 I/O I/O
70 I/O I/O
196-Pin CQFP
Pin
Number
A1460A
Function
RT1460A
Function
71 I/O I/O
72 I/O I/O
73 I/O I/O
74 I/O I/O
75 PRB, I/O PRB, I/O
76 I/O I/O
77 HCLK, I/O HCLK, I/O
78 I/O I/O
79 I/O I/O
80 I/O I/O
81 I/O I/O
82 I/O I/O
83 I/O I/O
84 I/O I/O
85 I/O I/O
86 GND GND
87 I/O I/O
88 I/O I/O
89 I/O I/O
90 I/O I/O
91 I/O I/O
92 I/O I/O
93 I/O I/O
94 VCC VCC
95 I/O I/O
96 I/O I/O
97 I/O I/O
98 GND GND
99 I/O I/O
100 IOPCL, I/O IOPCL, I/O
101 GND GND
102 I/O I/O
103 I/O I/O
104 I/O I/O
105 I/O I/O
196-Pin CQFP
Pin
Number
A1460A
Function
RT1460A
Function
RadTolerant FPGAs
v3.1 2-11
106 I/O I/O
107 I/O I/O
108 I/O I/O
109 I/O I/O
110 VCC VCC
111 VCC VCC
112 GND GND
113 I/O I/O
114 I/O I/O
115 I/O I/O
116 I/O I/O
117 I/O I/O
118 I/O I/O
119 I/O I/O
120 I/O I/O
121 I/O I/O
122 I/O I/O
123 I/O I/O
124 I/O I/O
125 I/O I/O
126 I/O I/O
127 I/O I/O
128 I/O I/O
129 I/O I/O
130 I/O I/O
131 I/O I/O
132 I/O I/O
133 I/O I/O
134 I/O I/O
135 I/O I/O
136 I/O I/O
137 VCC VCC
138 GND GND
139 GND GND
140 VCC VCC
196-Pin CQFP
Pin
Number
A1460A
Function
RT1460A
Function
141 I/O I/O
142 I/O I/O
143 I/O I/O
144 I/O I/O
145 I/O I/O
146 I/O I/O
147 I/O I/O
148 IOCLK, I/O IOCLK, I/O
149 GND GND
150 I/O I/O
151 I/O I/O
152 I/O I/O
153 I/O I/O
154 I/O I/O
155 VCC VCC
156 I/O I/O
157 I/O I/O
158 I/O I/O
159 I/O I/O
160 I/O I/O
161 I/O I/O
162 GND GND
163 I/O I/O
164 I/O I/O
165 I/O I/O
166 I/O I/O
167 I/O I/O
168 I/O I/O
169 I/O I/O
170 I/O I/O
171 I/O I/O
172 CLKA, I/O CLKA, I/O
173 CLKB, I/O CLKB, I/O
174 PRA, I/O PRA, I/O
175 I/O I/O
196-Pin CQFP
Pin
Number
A1460A
Function
RT1460A
Function
176 I/O I/O
177 I/O I/O
178 I/O I/O
179 I/O I/O
180 I/O I/O
181 I/O I/O
182 I/O I/O
183 GND GND
184 I/O I/O
185 I/O I/O
186 I/O I/O
187 I/O I/O
188 I/O I/O
189 VCC VCC
190 I/O I/O
191 I/O I/O
192 I/O I/O
193 GND GND
194 I/O I/O
195 I/O I/O
196 DCLK, I/O DCLK, I/O
196-Pin CQFP
Pin
Number
A1460A
Function
RT1460A
Function
RadTolerant FPGAs
2-12 v3.1
256-Pin CQFP
Figure 2-5 256-Pin CQFP (Top View)
256-Pin
CQFP
Pin #1
Index
256 255 254 253 252 251 250 249 248 200 199 198 197 196 195 194 193
65 66 67 68 69 70 71 72 73 121 122 123 124 125 126 127 128
129
130
131
132
133
134
135
136
137
185
186
187
188
189
190
191
192
64
63
62
61
60
59
58
57
56
8
7
6
5
4
3
2
1
RadTolerant FPGAs
v3.1 2-13
256-Pin CQFP
Pin
Number
A14100A
Function
RT14100A
Function
1GNDGND
2 SDI, I/O SDI, I/O
3I/OI/O
4I/OI/O
5I/OI/O
6I/OI/O
7I/OI/O
8I/OI/O
9I/OI/O
10 I/O I/O
11 MODE MODE
12 I/O I/O
13 I/O I/O
14 I/O I/O
15 I/O I/O
16 I/O I/O
17 I/O I/O
18 I/O I/O
19 I/O I/O
20 I/O I/O
21 I/O I/O
22 I/O I/O
23 I/O I/O
24 I/O I/O
25 I/O I/O
26 I/O I/O
27 I/O I/O
28 VCC VCC
29 GND GND
30 VCC VCC
31 GND GND
32 I/O I/O
33 I/O I/O
34 I/O I/O
35 I/O I/O
36 I/O I/O
37 I/O I/O
38 I/O I/O
39 I/O I/O
40 I/O I/O
41 I/O I/O
42 I/O I/O
43 I/O I/O
44 I/O I/O
45 I/O I/O
46 VCC VCC
47 I/O I/O
48 I/O I/O
49 I/O I/O
50 I/O I/O
51 I/O I/O
52 I/O I/O
53 I/O I/O
54 I/O I/O
55 I/O I/O
56 I/O I/O
57 I/O I/O
58 I/O I/O
59 GND GND
60 I/O I/O
61 I/O I/O
62 I/O I/O
63 I/O I/O
64 I/O I/O
65 I/O I/O
66 I/O I/O
67 I/O I/O
68 I/O I/O
69 I/O I/O
70 I/O I/O
256-Pin CQFP
Pin
Number
A14100A
Function
RT14100A
Function
71 I/O I/O
72 I/O I/O
73 I/O I/O
74 I/O I/O
75 I/O I/O
76 I/O I/O
77 I/O I/O
78 I/O I/O
79 I/O I/O
80 I/O I/O
81 I/O I/O
82 I/O I/O
83 I/O I/O
84 I/O I/O
85 I/O I/O
86 I/O I/O
87 I/O I/O
88 I/O I/O
89 I/O I/O
90 PRB, I/O PRB, I/O
91 GND GND
92 VCC VCC
93 GND GND
94 VCC VCC
95 I/O I/O
96 HCLK, I/O HCLK, I/O
97 I/O I/O
98 I/O I/O
99 I/O I/O
100 I/O I/O
101 I/O I/O
102 I/O I/O
103 I/O I/O
104 I/O I/O
105 I/O I/O
256-Pin CQFP
Pin
Number
A14100A
Function
RT14100A
Function
RadTolerant FPGAs
2-14 v3.1
106 I/O I/O
107 I/O I/O
108 I/O I/O
109 I/O I/O
110 GND GND
111 I/O I/O
112 I/O I/O
113 I/O I/O
114 I/O I/O
115 I/O I/O
116 I/O I/O
117 I/O I/O
118 I/O I/O
119 I/O I/O
120 I/O I/O
121 I/O I/O
122 I/O I/O
123 I/O I/O
124 I/O I/O
125 I/O I/O
126 I/O I/O
127 IOPCL, I/O IOPCL, I/O
128 GND GND
129 I/O I/O
130 I/O I/O
131 I/O I/O
132 I/O I/O
133 I/O I/O
134 I/O I/O
135 I/O I/O
136 I/O I/O
137 I/O I/O
138 I/O I/O
139 I/O I/O
140 I/O I/O
256-Pin CQFP
Pin
Number
A14100A
Function
RT14100A
Function
141 VCC VCC
142 I/O I/O
143 I/O I/O
144 I/O I/O
145 I/O I/O
146 I/O I/O
147 I/O I/O
148 I/O I/O
149 I/O I/O
150 I/O I/O
151 I/O I/O
152 I/O I/O
153 I/O I/O
154 I/O I/O
155 I/O I/O
156 I/O I/O
157 I/O I/O
158 GND GND
159 VCC VCC
160 GND GND
161 VCC VCC
162 I/O I/O
163 I/O I/O
164 I/O I/O
165 I/O I/O
166 I/O I/O
167 I/O I/O
168 I/O I/O
169 I/O I/O
170 I/O I/O
171 I/O I/O
172 I/O I/O
173 I/O I/O
174 VCC VCC
175 GND GND
256-Pin CQFP
Pin
Number
A14100A
Function
RT14100A
Function
176 GND GND
177 I/O I/O
178 I/O I/O
179 I/O I/O
180 I/O I/O
181 I/O I/O
182 I/O I/O
183 I/O I/O
184 I/O I/O
185 I/O I/O
186 I/O I/O
187 I/O I/O
188 IOCLK, I/O IOCLK, I/O
189 GND GND
190 I/O I/O
191 I/O I/O
192 I/O I/O
193 I/O I/O
194 I/O I/O
195 I/O I/O
196 I/O I/O
197 I/O I/O
198 I/O I/O
199 I/O I/O
200 I/O I/O
201 I/O I/O
202 I/O I/O
203 I/O I/O
204 I/O I/O
205 I/O I/O
206 I/O I/O
207 I/O I/O
208 I/O I/O
209 I/O I/O
210 I/O I/O
256-Pin CQFP
Pin
Number
A14100A
Function
RT14100A
Function
RadTolerant FPGAs
v3.1 2-15
211 I/O I/O
212 I/O I/O
213 I/O I/O
214 I/O I/O
215 I/O I/O
216 I/O I/O
217 I/O I/O
218 I/O I/O
219 CLKA, I/O CLKA, I/O
220 CLKB, I/O CLKB, I/O
221 VCC VCC
222 GND GND
223 VCC VCC
224 GND GND
225 PRA, I/O PRA, I/O
226 I/O I/O
227 I/O I/O
228 I/O I/O
229 I/O I/O
230 I/O I/O
231 I/O I/O
232 I/O I/O
233 I/O I/O
234 I/O I/O
235 I/O I/O
236 I/O I/O
237 I/O I/O
238 I/O I/O
239 I/O I/O
240 GND GND
241 I/O I/O
242 I/O I/O
243 I/O I/O
244 I/O I/O
245 I/O I/O
256-Pin CQFP
Pin
Number
A14100A
Function
RT14100A
Function
246 I/O I/O
247 I/O I/O
248 I/O I/O
249 I/O I/O
250 I/O I/O
251 I/O I/O
252 I/O I/O
253 I/O I/O
254 I/O I/O
255 I/O I/O
256 DCLK, I/O DCLK, I/O
256-Pin CQFP
Pin
Number
A14100A
Function
RT14100A
Function
RadTolerant FPGAs
v3.1 3-1
Datasheet Information
List of Changes
The following table lists critical changes that were made in the current version of the document.
Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet
Supplement." The definitions of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advanced or production) containing general product
information. This brief gives an overview of specific device and family information.
Advanced
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.
Unmarked (production)
This datasheet version contains information that is considered to be final.
Datasheet Supplement
The datasheet supplement gives specific device information for a derivative family that differs from the general family
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and
for specifications that do not differ between the two families.
Export Administration Regulations (EAR) or International Traffic in
Arms Regulations (ITAR)
The product described in this datasheet could be subject to either the Export Administration Regulations (EAR) or in
some cases the International Traffic in Arms Regulations (ITAR). They could require an approved export license prior to
export from the United States. An export includes release of product or disclosure of technology to a foreign national
inside or outside the United States.
Previous Version Changes in Current Version (v3.1 ) Page
v3.0 The following pins changed in the "84-Pin CQFP" table:
Pin 61 change to SDI, Input for the RT1020 device.
Pin 62 change to DCLK, Input for the RT1020 device.
2-2
The following pins changed in the "256-Pin CQFP" table:
Pin 124 change to I/O for the A14100A and RT14100A devices.
Pin 127 changed to IOPCL for the A14100A and RT14100A devices.
2-14
5172139-4/10.04
http://www.actel.com
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
Actel Corporation
2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600
Actel Europe Ltd.
Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0)1276 401 450
Fax +44 (0)1276 401 490
Actel Japan
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
Actel Hong Kong
39th Floor, One Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852.227.35712
Fax +852.227.35999