1
LT1218/LT1219
Rail-to-Rail Input and Output
90
µ
V V
OS(MAX)
for V
CM
= V
to V
+
High Common Mode Rejection Ratio: 97dB Min
C-Load
TM
Stable Version (LT1219)
High A
VOL
: 500V/mV Minimum Driving 10k Load
Wide Supply Range:
2V to ±15V (LT1218/LT1219)
2V to ±5V (LT1218L/LT1219L)
Shutdown Mode: I
S
< 30µA
Low Supply Current: 420µA Max
Low Input Bias Current: 18nA Typical
300kHz Gain-Bandwidth Product (LT1218)
Slew Rate: 0.10V/µs (LT1218)
FEATURES
DESCRIPTION
U
The LT
®
1218/LT1219 are bipolar op amps which combine
rail-to-rail input and output operation with precision speci-
fications. Unlike other rail-to-rail amplifiers, the LT1218/
LT1219’s input offset voltage is a low 90µV across the
entire rail-to-rail input range, not just a portion of it. Using
a patented technique, both input stages of the LT1218/
LT1219 are trimmed: one at the negative supply and the
other at the positive supply. The resulting common mode
rejection of 97dB minimum is much better than other rail-
to-rail input op amps. A minimum open-loop gain of
500V/mV into a 10k load virtually eliminates all gain error.
The LT1218 has conventional compensation which
assures stability for capacitive loads of 1000pF or less.
The LT1219 has compensation that requires the use of a
0.1µF output capacitor, which improves the amplifier’s
supply rejection and reduces output impedance at high
frequencies. The output capacitor’s filtering action also
reduces high frequency noise, which is beneficial when
driving A/D converters.
High and low voltage versions of the devices are offered.
Operation is specified for 3V, 5V and ±5V supplies for the
LT1218L/LT1219L and 3V, 5V and ±15V for the LT1218/
LT1219.
APPLICATIONS
U
Driving A/D Converters
Test Equipment Amplifiers
MUX Amplifiers
Precision Rail-to-Rail Input
and Output Op Amps
C-Load is a trademark of Linear Technology Corporation.
, LTC and LT are registered trademarks of Linear Technology Corporation.
Voltage Follower Input to Output ErrorMUX Amplifier
TYPICAL APPLICATION
U
+
+
LT1218L
LT1218L
V
OUT
V
IN1
V
IN2
INPUT
SELECT
5V
5V
74HCO4 1218/19 • TA01
SHDN
MAXIMUM IN 
TO OUT ERROR
= 110µV FOR 
0.05V V
IN
4.8V
R
L
= 10k
SHDN
INPUT VOLTAGE (V)
0
ERROR (mV)
1234
LT1218/19 • TA02
5
VS = 5V
AV = 1
NO LOAD
10
1.0
0.1
0.01
0.05 4.95
MAX ERROR = 110µV
0.05V VIN 4.8V
2
LT1218/LT1219
ABSOLUTE MAXIMUM RATINGS
W
WW
U
PACKAGE/ORDER INFORMATION
W
UU
Supply Voltage
LT1218/LT1219 ................................................. ±18V
LT1218L/LT1219L ............................................... ±8V
Input Current ......................................................±15mA
Output Short-Circuit Duration (Note 1).........Continuous
Operating Temperature Range ................ 40°C to 85°C
Specified Temperature Range (Note 3)... 40°C to 85°C
Storage Temperature Range ................. 65°C to 150°C
Junction Temperature...........................................150°C
Lead Temperature (Soldering, 10 sec).................. 300°C
ORDER PART
NUMBER
LT1218CN8
LT1218CS8
LT1218LCN8
LT1218LCS8
LT1219CN8
LT1219CS8
LT1219LCN8
LT1219LCS8
S8 PART MARKING
1
2
3
4
8
7
6
5
TOP VIEW
V
OS
TRIM
IN
+IN
V
V
OS
TRIM
V
+
OUT
SHDN
N8 PACKAGE
8-LEAD PDIP S8 PACKAGE
8-LEAD PLASTIC SO
T
JMAX
= 150°C, θ
JA
= 130°C/ W (N8)
T
JMAX
= 150°C, θ
JA
= 190°C/ W (S8)
1218 1219
1218L 1219L
Consult factory for Industrial and Military grades.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
V
OS
Input Offset Voltage V
CM
= V
+
25 90 µV
V
CM
= V
25 90 µV
V
OS
Input Offset Voltage Shift V
CM
= V
to V
+
15 70 µV
I
B
Input Bias Current V
CM
= V
+
30 70 nA
V
CM
= V
70 18 nA
I
B
Input Bias Current Shift V
CM
= V
to V
+
50 140 nA
I
OS
Input Offset Current V
CM
= V
+
518nA
V
CM
= V
218nA
I
OS
Input Offset Current Shift V
CM
= V
to V
+
518nA
e
n
Input Noise Voltage Density f = 1kHz 33 nV/Hz
i
n
Input Noise Current Density f = 1kHz 0.09 pA/Hz
A
VOL
Large-Signal Voltage Gain V
S
= 5V, V
O
= 50mV to 4.8V, R
L
= 10k 250 1000 V/mV
V
S
= 3V, V
O
= 50mV to 2.8V, R
L
= 10k 200 750 V/mV
CMRR Common Mode Rejection Ratio V
S
= 5V, V
CM
= V
to V
+
97 110 dB
V
S
= 3V, V
CM
= V
to V
+
92 106 dB
PSRR Power Supply Rejection Ratio V
S
= 2.3V to 12V, V
CM
= 0V, V
O
= 0.5V 90 100 dB
V
OL
Output Voltage Swing LOW No Load 4 12 mV
I
SINK
= 0.5mA 45 90 mV
I
SINK
= 2.5mA 120 240 mV
V
OH
Output Voltage Swing HIGH No Load V
+
– 0.012 V
+
– 0.003 V
I
SOURCE
= 0.5mA V
+
– 0.130 V
+
– 0.065 V
I
SOURCE
= 2.5mA V
+
– 0.400 V
+
– 0.210 V
I
SC
Short-Circuit Current V
S
= 5V 5 10 mA
V
S
= 3V 4 7 mA
I
S
Supply Current V
S
= 5V 370 420 µA
V
S
= 3V 370 410 µA
Positive Supply Current, SHDN V
S
= 5V, V
SHDN
= 0V 9 30 µA
V
S
= 3V, V
SHDN
= 0V 6 20 µA
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V+, unless otherwise noted.
ELECTRICAL CHARACTERISTICS
3
LT1218/LT1219
ELECTRICAL CHARACTERISTICS
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V+, unless otherwise noted.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
SR Slew Rate (LT1218/LT1218L) A
V
= –1 0.10 V/µs
(LT1219/LT1219L) A
V
= –1 0.05 V/µs
GBW Gain Bandwidth Product
(LT1218/LT1218L) A
V
= 1000 0.30 MHz
(LT1219/LT1219L) A
V
= 1000 0.15 MHz
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
V
OS
Input Offset Voltage V
CM
= V
+
75 200 µV
V
CM
= V
75 200 µV
V
OS
TC Input Offset Drift (Note 2) 13µV/°C
V
OS
Input Offset Voltage Shift V
CM
= V
to V
+
25 80 µV
I
B
Input Bias Current V
CM
= V
+
30 75 nA
V
CM
= V
75 18 nA
I
B
Input Bias Current Shift V
CM
= V
to V
+
50 150 nA
I
OS
Input Offset Current V
CM
= V
+
525nA
V
CM
= V
325nA
I
OS
Input Offset Current Shift V
CM
= V
to V
+
525nA
A
VOL
Large-Signal Voltage Gain V
S
= 5V, V
O
= 50mV to 4.8V, R
L
= 10k 250 1000 V/mV
V
S
= 3V, V
O
= 50mV to 2.8V, R
L
= 10k 150 750 V/mV
CMRR Common Mode Rejection Ratio V
S
= 5V, V
CM
= V
to V
+
96 104 dB
V
S
= 3V, V
CM
= V
to V
+
91 106 dB
PSRR Power Supply Rejection Ratio V
S
= 2.3V to 12V, V
CM
= 0V, V
O
= 0.5V 88 100 dB
V
OL
Output Voltage Swing LOW No Load 414mV
I
SINK
= 0.5mA 45 100 mV
I
SINK
= 2.5mA 130 290 mV
V
OH
Output Voltage Swing HIGH No Load V
+
– 0.014 V
+
– 0.004 V
I
SOURCE
= 0.5mA V
+
– 0.150 V
+
– 0.075 V
I
SOURCE
= 2.5mA V
+
– 0.480 V
+
– 0.240 V
I
SC
Short-Circuit Current V
S
= 5V 47 mA
V
S
= 3V 36 mA
I
S
Supply Current V
S
= 5V 370 485 µA
V
S
= 3V 370 475 µA
Positive Supply Current, SHDN V
S
= 5V, V
SHDN
= 0V 936µA
V
S
= 3V, V
SHDN
= 0V 626µA
0°C TA 70°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V+, unless otherwise noted.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
V
OS
Input Offset Voltage V
CM
= V
+
– 0.15 400 µV
V
CM
= V
+ 0.15 400 µV
V
OS
TC Input Offset Drift (Note 2) 14µV/°C
V
OS
Input Offset Voltage Shift V
CM
= V
+
– 0.15 to V
+ 0.15 30 105 µV
I
B
Input Bias Current V
CM
= V
+
– 0.15 80 nA
V
CM
= V
+ 0.15 –80 nA
I
B
Input Bias Current Shift V
CM
= V
+
– 0.15 to V
+ 0.15 160 nA
I
OS
Input Offset Current V
CM
= V
+
– 0.15 40 nA
V
CM
= V
+ 0.15 40 nA
I
OS
Input Offset Current Shift V
CM
= V
+
– 0.15 to V
+ 0.15 40 nA
–40°C TA 85°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V+, unless otherwise noted. (Note 3)
4
LT1218/LT1219
ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
A
VOL
Large-Signal Voltage Gain V
S
= 5V, V
O
= 50mV to 4.8V, R
L
= 10k 150 500 V/mV
V
S
= 3V, V
O
= 50mV to 2.8V, R
L
= 10k 100 500 V/mV
CMRR Common Mode Rejection Ratio V
S
= 5V, V
CM
= V
+
– 0.15 to V
+ 0.15 93 102 dB
V
S
= 3V, V
CM
= V
+
– 0.15 to V
+ 0.15 88 100 dB
PSRR Power Supply Rejection Ratio V
S
= 2.3V to 12V, V
CM
= 0V, V
O
= 0.5V 86 100 dB
V
OL
Output Voltage Swing LOW No Load 515mV
I
SINK
= 0.5mA 50 105 mV
I
SINK
= 2.5mA 130 300 mV
V
OH
Output Voltage Swing HIGH No Load V
+
– 0.015 V
+
– 0.004 mV
I
SOURCE
= 0.5mA V
+
– 0.160 V
+
– 0.070 mV
I
SOURCE
= 2.5mA V
+
– 0.500 V
+
– 0.250 mV
I
SC
Short-Circuit Current V
S
= 5V 47 mA
V
S
= 3V 37 mA
I
S
Supply Current V
S
= 5V 410 505 µA
V
S
= 3V 400 495 µA
Positive Supply Current, SHDN V
S
= 5V, V
SHDN
= 0V 15 50 µA
V
S
= 3V, V
SHDN
= 0V 13 40 µA
–40°C TA 85°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V+, unless otherwise noted. (Note 3)
LT1218L/LT1219L only; TA = 25°C, VS = ±5V, VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
V
OS
Input Offset Voltage V
CM
= V
+
35 140 µV
V
CM
= V
35 140 µV
V
OS
Input Offset Voltage Shift V
CM
= V
to V
+
20 70 µV
I
B
Input Bias Current V
CM
= V
+
30 70 nA
V
CM
= V
70 18 nA
I
B
Input Bias Current Shift V
CM
= V
to V
+
50 140 nA
I
OS
Input Offset Current V
CM
= V
+
518nA
V
CM
= V
218nA
I
OS
Input Offset Current Shift V
CM
= V
to V
+
518nA
A
VOL
Large-Signal Voltage Gain V
O
= –4.7V to 4.7V, R
L
= 10k 500 2800 V/mV
V
O
= –4.5V to 4.5V, R
L
= 2k 300 1300 V/mV
CMRR Common Mode Rejection Ratio V
CM
= V
to V
+
103 114 dB
V
OL
Output Voltage Swing LOW No Load V
+ 0.004 V
+ 0.012 V
I
SINK
= 0.5mA V
+ 0.045 V
+ 0.090 V
I
SINK
= 5mA V
+ 0.180 V
+ 0.525 V
V
OH
Output Voltage Swing HIGH No Load V
+
– 0.012 V
+
– 0.003 V
I
SOURCE
= 0.5mA V
+
– 0.130 V
+
– 0.065 V
I
SOURCE
= 5mA V
+
– 0.800 V
+
– 0.350 V
I
SC
Short-Circuit Current 6 12 mA
I
S
Supply Current 400 430 µA
Positive Supply Current, SHDN V
SHDN
= 0V 10 40 µA
SR Slew Rate (LT1218/LT1218L) A
V
= –1, R
L
= Open, V
O
= ±3.5V 0.06 0.10 V/µs
(LT1219/LT1219L) A
V
= –1, R
L
= Open, V
O
= ±3.5V 0.03 0.05 V/µs
GBW Gain-Bandwidth Product
(LT1218/LT1218L) A
V
= 1000 0.2 0.30 MHz
(LT1219/LT1219L) A
V
= 1000 0.1 0.15 MHz
5
LT1218/LT1219
ELECTRICAL CHARACTERISTICS
LT1218L/LT1219L only; 0°C TA 70°C, VS = ±5V, VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
V
OS
Input Offset Voltage V
CM
= V
+
100 250 µV
V
CM
= V
100 250 µV
V
OS
Input Offset Voltage Shift V
CM
= V
to V
+
30 90 µV
I
B
Input Bias Current V
CM
= V
+
30 75 nA
V
CM
= V
75 18 nA
I
B
Input Bias Current V
CM
= V
to V
+
50 150 nA
I
OS
Input Offset Current V
CM
= V
+
525nA
V
CM
= V
325nA
I
OS
Input Offset Current Shift V
CM
= V
to V
+
520nA
A
VOL
Large-Signal Voltage Gain V
O
= –4.7V to 4.7V, R
L
= 10k 375 2800 V/mV
V
O
= –4.5V to 4.5V, R
L
= 2k 275 1300 V/mV
CMRR Common Mode Rejection Ratio V
CM
= V
to V
+
100 110 dB
V
OL
Output Voltage Swing LOW No Load V
+ 0.004 V
+ 0.014 V
I
SINK
= 0.5mA V
+ 0.045 V
+ 0.100 V
I
SINK
= 5mA V
+ 0.200 V
+ 0.580 V
V
OH
Output Voltage Swing HIGH No Load V
+
– 0.014 V
+
– 0.004 V
I
SOURCE
= 0.5mA V
+
– 0.150 V
+
– 0.075 V
I
SOURCE
= 5mA V
+
– 0.920 V
+
– 0.450 V
I
SC
Short-Circuit Current 510 mA
I
S
Supply Current 400 495 µA
Positive Supply Current, SHDN V
SHDN
= 0V 11 54 µA
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
V
OS
Input Offset Voltage V
CM
= V
+
– 0.15 125 500 µV
V
CM
= V
+ 0.15 125 500 µV
V
OS
Input Offset Voltage Shift V
CM
= V
+
– 0.15 to V
+ 0.15 35 120 µV
I
B
Input Bias Current V
CM
= V
+
– 0.15 80 nA
V
CM
= V
+ 0.15 –80 nA
I
B
Input Bias Current V
CM
= V
+
– 0.15 to V
+ 0.15 160 nA
I
OS
Input Offset Current Shift V
CM
= V
+
– 0.15 40 nA
V
CM
= V
+ 0.15 40 nA
I
OS
Input Offset Current Shift V
CM
= V
+
– 0.15 to V
+ 0.15 40 nA
A
VOL
Large-Signal Voltage Gain V
O
= –4.7V to 4.7V, R
L
= 10k 300 2000 V/mV
V
O
= –4.5V to 4.5V, R
L
= 2k 200 600 V/mV
CMRR Common Mode Rejection Ratio V
CM
= V
+
– 0.15 to V
+ 0.15 98 109 dB
V
OL
Output Voltage Swing LOW No Load V
+ 0.005 V
+ 0.015 V
I
SINK
= 0.5mA V
+ 0.050 V
+ 0.105 V
I
SINK
= 2.5mA V
+ 0.200 V
+ 0.620 V
V
OH
Output Voltage Swing HIGH No Load V
+
– 0.015 V
+
– 0.004 V
I
SOURCE
= 0.5mA V
+
– 0.160 V
+
– 0.070 V
I
SOURCE
= 2.5mA V
+
– 1.000 V
+
– 0.400 V
I
SC
Short-Circuit Current 510 mA
I
S
Supply Current 420 525 µA
Positive Supply Current, SHDN V
SHDN
= 0V 18 60 µA
LT1218L, LT1219L only; 40°C TA 85°C, VS = ±5V; VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted. (Note 3)
6
LT1218/LT1219
ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
V
OS
Input Offset Voltage V
CM
= V
+
85 200 µV
V
CM
= V
85 200 µV
V
OS
Input Offset Voltage Shift V
CM
= V
to V
+
30 70 µV
I
B
Input Bias Current V
CM
= V
+
30 70 nA
V
CM
= V
70 18 nA
I
B
Input Bias Current V
CM
= V
to V
+
50 140 nA
I
OS
Input Offset Current V
CM
= V
+
518nA
V
CM
= V
218nA
I
OS
Input Offset Current Shift V
CM
= V
to V
+
518nA
A
VOL
Large-Signal Voltage Gain V
O
= –14.7V to 14.7V, R
L
= 10k 1000 4000 V/mV
V
O
= –10V to 10V, R
L
= 2k 500 2000 V/mV
CMRR Common Mode Rejection Ratio V
CM
= V
to V
+
113 120 dB
PSRR Power Supply Rejection Ratio V
S
= ±5V to ±15V 100 110 dB
V
OL
Output Voltage Swing LOW No Load V
+ 0.004 V
+ 0.012 V
I
SINK
= 0.5mA V
+ 0.045 V
+ 0.090 V
I
SINK
= 5mA V
+ 0.270 V
+ 0.525 V
V
OH
Output Voltage Swing HIGH No Load V
+
– 0.012 V
+
– 0.003 V
I
SOURCE
= 0.5mA V
+
– 0.130 V
+
– 0.065 V
I
SOURCE
= 5mA V
+
– 0.800 V
+
– 0.580 V
I
SC
Short-Circuit Current 10 20 mA
I
S
Supply Current 425 550 µA
Positive Supply Current, SHDN V
SHDN
= 0V 15 40 µA
SR Slew Rate (LT1218/LT1218L) A
V
= –1 0.10 V/µs
(LT1219/LT1219L A
V
= –1 0.05 V/µs
GBW Gain Bandwidth Product
(LT1218/LT1218L) A
V
= 1000 0.28 MHz
(LT1219/LT1219L) A
V
= 1000 0.15 MHz
LT1218/LT1219 only; TA = 25°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
V
OS
Input Offset Voltage V
CM
= V
+
120 300 µV
V
CM
= V
120 300 µV
V
OS
Input Offset Voltage Shift V
CM
= V
to V
+
50 105 µV
I
B
Input Bias Current V
CM
= V
+
30 75 nA
V
CM
= V
75 18 nA
I
B
Input Bias Current V
CM
= V
to V
+
50 150 nA
I
OS
Input Offset Current V
CM
= V
+
525nA
V
CM
= V
325nA
I
OS
Input Offset Current Shift V
CM
= V
to V
+
520nA
A
VOL
Large-Signal Voltage Gain V
O
= –14.7V to 14.7V, R
L
= 10k 750 3000 V/mV
V
O
= –10V to 10V, R
L
= 2k 500 1500 V/mV
CMRR Common Mode Rejection Ratio V
CM
= V
to V
+
109 114 dB
PSRR Power Supply Rejection Ratio V
S
= ±5V to ±15V 97 110 dB
V
OL
Output Voltage Swing LOW No Load V
+ 0.004 V
+ 0.014 V
I
SINK
= 0.5mA V
+ 0.045 V
+ 0.100 V
I
SINK
= 5mA V
+ 0.310 V
+ 0.580 V
V
OH
Output Voltage Swing HIGH No Load V
+
– 0.014 V
+
– 0.003 V
I
SOURCE
= 0.5mA V
+
– 0.150 V
+
– 0.075 V
I
SOURCE
= 5mA V
+
– 0.920 V
+
– 0.700 V
LT1218/LT1219 only; 0°C TA 70°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted.
7
LT1218/LT1219
ELECTRICAL CHARACTERISTICS
LT1218/LT1219 only; 0°C TA 70°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
I
SC
Short-Circuit Current 817 mA
I
S
Supply Current 450 600 µA
Positive Supply Current, SHDN V
SHDN
= 0V 20 54 µA
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
V
OS
Input Offset Voltage V
CM
= V
+
– 0.15 150 600 µV
V
CM
= V
+ 0.15 150 600 µV
V
OS
Input Offset Voltage Shift V
CM
= V
+
– 0.15 to V
+ 0.15 50 165 µV
I
B
Input Bias Current V
CM
= V
+
– 0.15 80 nA
V
CM
= V
+ 0.15 –80 nA
I
B
Input Bias Current V
CM
= V
+
– 0.15 to V
+ 0.15 160 nA
I
OS
Input Offset Current V
CM
= V
+
– 0.15 40 nA
V
CM
= V
+ 0.15 40 nA
I
OS
Input Offset Current Shift V
CM
= V
+
– 0.15 to V
+ 0.15 40 nA
A
VOL
Large-Signal Voltage Gain V
O
= –14.7V to 14.7V, R
L
= 10k 500 3000 V/mV
V
O
= –10V to 10V, R
L
= 2k 400 1000 V/mV
CMRR Common Mode Rejection Ratio V
CM
= V
+
– 0.15 to V
+ 0.15 105 114 dB
PSRR Power Supply Rejection Ratio V
S
= ±5V to ±15V 96 110 dB
V
OL
Output Voltage Swing LOW No Load V
+ 0.005 V
+ 0.015 V
I
SINK
= 0.5mA V
+ 0.050 V
+ 0.105 V
I
SINK
= 2.5mA V
+ 0.200 V
+ 0.620 V
V
OH
Output Voltage Swing HIGH No Load V
+
– 0.015 V
+
– 0.004 V
I
SOURCE
= 0.5mA V
+
– 0.160 V
+
– 0.070 V
I
SOURCE
= 2.5mA V
+
– 1.000 V
+
– 0.400 V
I
SC
Short-Circuit Current 514 mA
I
S
Supply Current 650 µA
Positive Supply Current, SHDN V
SHDN
= 0V 60 µA
LT1218, LT1219 only; –40°C TA 85°C, VS = ±15V; VCM = 0V = VO = 0V, VSHDN = 15V, unless otherwise noted. (Note 3)
Note 2: This parameter is not 100% tested.
Note 3: The LT1218/LT1219 are designed, characterized and expected to
meet these extended temperature limits, but are not tested at –40°C and
85°C. Guaranteed I grade part are available: consult factory.
The denotes specifications which apply over the full operating
temperature range.
Note 1: A heat sink may be required to keep the junction temperature
below the Absolute Maximum Rating when the output is shorted
indefinitely.
8
LT1218/LT1219
TYPICAL PERFORMANCE CHARACTERISTICS
UW
VOS Distribution, VCM = 0V
INPUT OFFSET VOLTAGE (µV)
PERCENT OF UNITS (%)
30
25
20
15
10
5
060 20 20 60
LT1218/19 • TPC01
100100
V
S
= 5V, 0V
V
CM
= 0V
INPUT OFFSET VOLTAGE (µV)
PERCENT OF UNITS (%)
30
25
20
15
10
5
060 20 20 60
LT1218/19 • TPC03
100100
V
S
= 5V, 0V
V
CM
= 5V
VOS Distribution, VCM = 5V
INPUT OFFSET VOLTAGE (µV)
100
PERCENT OF UNITS (%)
40
35
30
25
20
15
10
5
060
LT1218/19 • TPC02
–60 –20 20
100
V
S
= 5V, 0V
V
CM
= 0V TO 5V
VOS Shift, VCM = 0V to 5V
Supply Current vs Temperature Input Bias Current vs
Common Mode VoltageMinimum Supply Voltage
TEMPERATURE (°C)
–40
SUPPLY CURRENT (µA)
500
400
300
200
100
0040 60
LT1218/19 • TPC04
–20 20 80 100
V
S
= ±15V
V
S
= ±2.5V
COMMON MODE VOLTAGE (V)
–1
INPUT BIAS CURRENT (nA)
7
LT1218/19 • TPC06
135
50
25
0
25
–50 0246
T
A
= 25°C
T
A
= 85°C
T
A
= –40°C
V
S
= 5V, 0V
T
A
= 25°C
TOTAL SUPPLY VOLTAGE (V)
1.0
CHANGE IN OFFSET VOLTAGE (µV)
200
150
100
50
0
–50 1.5 2.0 2.5
LT1218/19 • TPC05
3.53.0 4.0 4.5 5.0
T
A
= –40°C
T
A
= 25°C
T
A
= 85°C
LOAD CURRENT (mA)
0.001
0.001
SATURATION VOLTAGE (V)
0.1
10
0.10.01 10
LT1218/19 • TPC07
0.01
1
1
T
A
= 25°C
T
A
= 85°C
T
A
= –40°C
V
S
= 5V, 0V
Output Saturation Voltage vs
Load Current (Output Low) 0.1Hz to 10Hz Output
Voltage Noise
Output Saturation Voltage vs
Load Current (Output High)
LOAD CURRENT (mA)
0.001
0.001
SATURATION VOLTAGE (V)
0.1
10
0.10.01 10
LT1218/19 • TPC08
0.01
1
1
T
A
= 25°CT
A
= 85°C
T
A
= –40°C
V
S
= 5V, 0V
TIME (1s/DIV)
OUTPUT VOLTAGE (400nV/DIV)
LT1218/19 • TPC09
V
S
= ±2.5V
V
CM
= 0V
9
LT1218/LT1219
TYPICAL PERFORMANCE CHARACTERISTICS
UW
LT1218 Gain and Phase
Shift vs Frequency
FREQUENCY (kHz)
VOLTAGE GAIN (dB)
PHASE SHIFT (DEG)
70
60
50
40
30
20
10
0
10
20
–30
140
120
100
80
60
40
20
0
20
40
–60
1 100 1000 10000
LT1218/19 • TPC12
10
PHASE
GAIN
V
S
= ±2.5V
LT1219 Gain and Phase
Shift vs Frequency
FREQUENCY (kHz)
VOLTAGE GAIN (dB)
PHASE SHIFT (DEG)
70
60
50
40
30
20
10
0
10
20
–30
140
120
100
80
60
40
20
0
20
40
–60
1 100 1000 10000
LT1218/19 • TPC13
10
PHASE
GAIN
V
S
= ±2.5V
C
L
= 0.1µF
Noise Current Spectrum
FREQUENCY (Hz)
1
CURRENT NOISE (pA/Hz)
2.5
2.0
1.5
1.0
0.5
0
10 100 1000
LT1218/19 • TPC11
V
S
= 5V, 0V
V
CM
= 4V
V
CM
= 2.5V
Noise Voltage Spectrum
LT1218 Gain Bandwidth and
Phase Margin vs Supply Voltage
SUPPLY VOLTAGE (V)
0
FREQUENCY (kHz)
PHASE MARGIN (DEG)
15 25
LT1218/19 • TPC
510 20
400
350
300
250
200
150
100
50
0
80
70
60
50
40
30
20
10
0
30
PHASE MARGIN
GBW
LT1218 Common Mode Rejection
Ratio vs Frequency
FREQUENCY (kHz)
1
COMMON MODE REJECTION RATIO (dB)
100
90
80
70
60
50
40
30
20
10
010 100 1000
LT1218/19 • TPC15
V
S
= ±2.5V
LT1219 Power Supply Rejection
Ratio vs Frequency
FREQUENCY (kHz)
1
POWER SUPPLY REJECTION RATIO (dB)
100
90
80
70
60
50
40
30
20
10
010 100 1000
LT1218/19 • TPC16
V
S
= ±2.5V
POSITIVE SUPPLY
NEGATIVE SUPPLY
FREQUENCY (Hz)
1
NOISE VOLTAGE (nV/Hz)
100
90
80
70
60
50
40
30
20
10
010 100 1000
LT1218/19 • TPC10
V
S
= 5V, 0V
V
CM
= 4V
V
CM
= 2.5V
10
LT1218/LT1219
TYPICAL PERFORMANCE CHARACTERISTICS
UW
LT1218 Power Supply Rejection
Ratio vs Frequency LT1218 Closed Loop Output
Impedance vs Frequency LT1219 Closed Loop Output
Impedance vs Frequency
FREQUENCY (kHz)
1
POWER SUPPLY REJECTION RATIO (dB)
100
90
80
70
60
50
40
30
20
10
010 100 1000
LT1218/19 • TPC17
V
S
= ±2.5V
POSITIVE SUPPLY
NEGATIVE SUPPLY
FREQUENCY (kHz)
0.1
0.1
OUTPUT IMPEDANCE ()
10
1000
1 10 100 1000
LT1218/19 • TPC18
1.0
100
AV = 10
AV = 1
VS = ±2.5V
FREQUENCY (kHz)
0.1
0.1
OUTPUT IMPEDANCE ()
10
1000
1 10 100 1000
LT1218/19 • TPC19
1.0
100
V
S
= ±2.5V
C
L
= 0.1µF
A
V
= 10
A
V
= 1
LT1218 Capacitive Load Handling LT1219 Overshoot vs Load
Current, VS = ±2.5V LT1219 Overshoot vs Load
Current, VS = ±15V
LOAD CURRENT (mA)
–10
OVERSHOOT (%)
5
LT1218/19 • TPC21
–5 0 10
70
60
50
40
30
20
10
0
C
L
= 0.22µF
C
L
= 0.1µF
C
L
= 0.047µF
V
S
= ±2.5V
A
V
= 1
CAPACITIVE LOAD (pF)
OVERSHOOT (%)
80
70
60
50
40
30
20
10
010 1000 10000 100000
LT1218/19 • TPC20
100
A
V
= 1
A
V
= 5
A
V
= 10
V
S
= ±2.5V
Open-Loop Gain, VS = ±15V THD + Noise vs Frequency
OUTPUT VOLTAGE (V)
–20
OFFSET VOLTAGE CHANGE (µV)
20
LT1218/19 • TPC23
–10 010
40
30
20
10
0
10
20
30
–40 –15 –5 515
R
L
= 10k
R
L
= 2k
V
S
= ±15V
FREQUENCY (kHz)
0.01
0.001
THD + NOISE (%)
0.01
0.1
1
0.1 1 10
LT1218/19 • TPC25
VS = ±1.5V
VIN = 2VP-P
RL = 10k
AV = 1
AV = –1
Input Offset Drift vs Time
TIME AFTER POWER-UP (SEC)
CHANGE IN OFFSET VOLTAGE (µV)
40
30
20
10
0
10
20
30
–40
LT1218/19 • TPC24
0 20 40 60 80 100 120 140 180 200160
V
S
= ±15V
V
S
= ±2.5V
C
L
= 0.22µF
C
L
= 0.1µF
LOAD CURRENT (mA)
–10
OVERSHOOT (%)
5
LT1218/19 • TPC22
–5 0 10
70
60
50
40
30
20
10
0
C
L
= 0.047µF
V
S
= ±15V
A
V
= 1
11
LT1218/LT1219
TYPICAL PERFORMANCE CHARACTERISTICS
UW
THD + Noise vs
Peak-to-Peak Voltage Large-Signal Response
VS = ±15V
INPUT VOLTAGE (PEAK-TO-PEAK)
THD + NOISE (%)
10
1
0.1
0.01
0.001 02435
LT1218/19 • TPC26
1
V
S
= ±1.5V
A
V
= 1
V
S
= ±2.5V
A
V
= 1
V
S
= ±2.5V
A
V
= –1
V
S
= ±1.5V
A
V
= –1
f = 1kHz
R
L
= 10k
(ALL CURVES)
Small-Signal Response
VS = ±15V
A
V
= 1
V
S
= ±15V
LT1218/18 • TPC27
A
V
= 1
V
S
= ±15V
LT1218/18 • TPC28
APPLICATIONS INFORMATION
WUU U
Rail-to-Rail Operation
The LT1218/LT1219 differ from conventional op amps in
the design of both the input and output stages. Figure 1
shows a simplified schematic of the amplifier. The input
stage consists of two differential amplifiers, a PNP stage
Q1/Q2 and an NPN stage Q3/Q4, which are active over
different portions of the input common mode range.
Lateral devices are used in both input stages, eliminating
the need for clamps across the input pins. Each input stage
is trimmed for offset voltage. A complementary output
configuration (Q23 through Q26) is employed to create an
Q24
D7
Q23
Q25
V
V
V
V
+
V
+
V
+
V
+
V
C1
C2
Q26
D8
Q22
Q21
D6
Q17
Q16
Q18
Q15
Q19
Q20
D5D4
D7
Q11
I1 Q10
Q14
C
C
Q13
Q9
Q8
Q7
D2
Q1 Q2
Q5
D1
Q3 Q4
Q6
D3
Q12
OUT
V
+
– 300mV
V
+
V
IN
+
IN
LT1218/19 • F01
TRIM
SHDN
BIAS
CONTROL
Figure 1. LT1218 Simplified Schematic Diagram
12
LT1218/LT1219
APPLICATIONS INFORMATION
WUU U
output stage with rail-to-rail swing. The amplifier is fabri-
cated on Linear Technology’s proprietary complementary
bipolar process, which ensures very similar DC and AC
characteristics for the output devices Q24 and Q26.
A simple comparator Q5 steers current from current
source I
1
between the two input stages. When the input
common mode voltage V
CM
is near the negative supply,
Q5 is reverse biased, and I
1
becomes the tail current for the
PNP differential pair Q1/Q2. At the other extreme, when
V
CM
is within about 1.3V from the positive supply, Q5
diverts I
1
to the current mirror D3/Q6, which furnishes the
tail current for the NPN differential pair Q3/Q4.
The collector currents of the two input pairs are combined
in the second stage, consisting of Q7 through Q11. Most
of the voltage gain in the amplifier is contained in this
stage. Differential amplifier Q14/Q15 buffers the output of
the second stage, converting the output voltage to differ-
ential currents. The differential currents pass through
current mirrors D4/Q17 and D5/Q16, and are converted to
differential voltages by Q18 and Q19. These voltages are
also buffered and applied to the output Darlington pairs
Q23/Q24 and Q25/Q26. Capacitors C1 and C2 form local
feedback loops around the output devices, lowering the
output impedance at high frequencies.
Input Offset Voltage
Since the amplifier has two input stages, the input offset
voltage changes depending upon which stage is active.
The input offsets are random, but bounded voltages.
When the amplifier switches between stages, offset volt-
ages may go up, down or remain flat; but will not exceed
the guaranteed limits. This behavior is illustrated in three
distribution plots of input offset voltage in the Typical
Performance Characteristics section.
Overdrive Protection
Two circuits prevent the output from reversing polarity
when the input voltage exceeds the common mode range.
When the noninverting input exceeds the positive supply
by approximately 300mV, the clamp transistor Q12 (Fig-
ure 1) turns on, pulling the output of the second stage low,
which forces the output high. For input below the negative
supply, diodes D1 and D2 turn on, overcoming the satu-
ration of the input pair Q1/Q2.
When overdriven, the amplifier draws input current that
exceeds the normal input bias current. Figures 2 and 3
show typical input current as a function of input voltage.
The input current must be less than 10mA for the phase
reversal protection to work properly. When the amplifier is
severely overdriven, an external resistor should be used to
limit the overdrive current.
COMMON MODE VOLTAGE RELATIVE TO
NEGATIVE SUPPLY (mV)
800
–110
INPUT BIAS CURRENT (nA)
–90
–70
–50
–30
600 400
LT1218/19 • F03
200
–10
0
–20
–40
–60
–80
–100
V
S
200
T = –55°C T = 25°C
T = 85°C
+
T = 70°C
MEASURED AS A FOLLOWER
Figure 3. Input Bias Current vs Common Mode Voltage
COMMON MODE VOLTAGE RELATIVE TO
POSITIVE SUPPLY (mV)
500
0
INPUT BIAS CURRENT (nA)
20
40
60
80
300 100 VS
LT1218/19 • F02
100
100
110
90
70
50
30
10
300 500
T = –55°C
T = 25°C
T = 85°C
T = 70°C
MEASURED AS A 
FOLLOWER
+
Figure 2. Input Bias Current vs Common Mode Voltage
13
LT1218/LT1219
Shutdown
The biasing of the LT1218/LT1219 is controlled by the
SHDN pin. When the SHDN pin is low, the part is shut
down. In the shutdown mode, the output looks like a 40pF
capacitor and the supply current is less than 30µA. The
SHDN pin is referenced to the positive supply through an
internal bias circuit (see Figure 1). The SHDN pin current
with the pin low is typically 3µA.
The switching time between the shutdown and active
states is about 20µs, however, the total time to settle will
be greater by the slew time of the amplifier. For example,
if the DC voltage at the amplifier output is 0V in shutdown
and –2V in the active mode, an additional 20µs is required.
Figures 4a and 4b show the switching waveforms for a
sinusoidal and a –2V DC input to the LT1218.
The SHDN pin can be driven directly from CMOS logic if the
logic and the LT1218/LT1219 are operated from the same
supplies. For higher supply operation, an interface is
required. An easy way to interface between supplies is to
use open-drain logic, an example is shown in Figure 5.
Because the SHDN pin is referenced to the positive supply,
the logic used should have a breakdown voltage greater
than the positive supply.
APPLICATIONS INFORMATION
WUU U
V
OUT
SHDN
R
L
= 10V
V
S
= ±2.5V LT1218/19 • F04a
Figure 4a
V
OUT
SHDN
R
L
= 10V
V
S
= ±2.5V LT1218/19 • F04a
Figure 4b
0V
0V
0V
0V
+
–15V
15V
LT1218/
LT1219
LT1218/19 • F05
SHDN
5V
SHDN 74C906
Figure 5. Shutdown Interface
Trim Pins
Trim pins are provided for compatibility with other single
op amps. Input offset voltage can be adjusted over a
±2.3mV range with a 10k potentiometer.
+
2
3
4
1
87
10k
V
OUT
V
+
LT1218/
LT1219
LT1218/19 • F06
Figure 6. Optional Offset Nulling
Improved Supply Rejection in the LT1219
The LT1219 is a variation of the LT1218 offering greater
supply rejection and lower high frequency output imped-
ance. The LT1219 requires a 0.1µF load capacitance for
14
LT1218/LT1219
APPLICATIONS INFORMATION
WUU U
compensation. The output capacitance forms a filter,
which reduces pickup from the supply and lowers the
output impedance. This additional filtering is helpful in
mixed analog/digital systems with common supplies or
systems employing switching supplies. Filtering also
reduces high frequency noise, which may be beneficial
when driving A/D converters.
Figures 7a and 7b show the outputs of the LT1218/LT1219
perturbed by a 200mV
P-P
50kHz square wave added to the
positive supply. The LT1219 power supply rejection is
about ten times greater than that of the LT1218 at 50kHz.
Note the 5-to-1 scale change in the output voltage traces.
The tolerance of the external compensation capacitor is
not critical. The plots of Overshoot vs Load Current in the
Typical Performance Characteristics section illustrate the
effect of a capacitive load.
LT1218/19 • F07a
Figure 7a. LT1218 Power Supply Rejection Test
LT1218/19 • F07b
Figure 7b. LT1219 Power Supply Rejection Test
TYPICAL APPLICATIONS
U
Buffer for 12-Bit A/D Converter
V
REF
+IN
IN
GND
V
CC
CLK
D
OUT
CS/SHDN
1
2
3
4
8
7
6
5
LTC1285
+
TO µP
1µF
0.1µF
0.1µF
3V
V
IN
LT1219
LT1218/19 • TA03
High-Side Current Source
+
LT1218
1k
R
SENSE
0.2
40k
Q1
MTP23P06
I
LOAD
5V < V
CC
< 30V
0A < I
LOAD
< 1A AT V
CC
= 5V
0mA < I
LOAD
< 160mA AT V
CC
= 30V
Q2
2N4340
V
CC
100
0.0033µF
LT1004-1.2
R
P
10k
LT1218/19 • TA04
V
+
(AC)
V
OUT
V
+
(AC)
V
OUT
15
LT1218/LT1219
TYPICAL APPLICATIONS
U
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG # 05-08-1610)
1234
0.150 – 0.157**
(3.810 – 3.988)
8765
0.189 – 0.197*
(4.801 – 5.004)
0.228 – 0.244
(5.791 – 6.197)
0.016 – 0.050
0.406 – 1.270
0.010 – 0.020
(0.254 – 0.508)× 45°
0°– 8° TYP
0.008 – 0.010
(0.203 – 0.254)
SO8 0996
0.053 – 0.069
(1.346 – 1.752)
0.014 – 0.019
(0.355 – 0.483)
0.004 – 0.010
(0.101 – 0.254)
0.050
(1.270)
TYP
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH 
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD 
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
*
**
Positive Supply Current Sense
+
LT1218 Q1
TP0610L
VO = (ILOAD)(RS)R2
R1
()
= (ILOAD)(20)
1218/19 • TA06
RS
0.2
LOAD
ILOAD
VCC R1
200
R2
20k
VO
Dimensions in inches (millimeters) unless otherwise noted.
PACKAGE DESCRIPTION
U
N8 Package
8-Lead PDIP (Narrow 0.300)
(LTC DWG # 05-08-1510)
N8 0695
0.005
(0.127)
MIN
0.100 ± 0.010
(2.540 ± 0.254)
0.065
(1.651)
TYP
0.045 – 0.065
(1.143 – 1.651)
0.130 ± 0.005
(3.302 ± 0.127)
0.015
(0.380)
MIN
0.018 ± 0.003
(0.457 ± 0.076)
0.125
(3.175)
MIN
12 34
8765
0.255 ± 0.015*
(6.477 ± 0.381)
0.400*
(10.160)
MAX
0.009 – 0.015
(0.229 – 0.381)
0.300 – 0.325
(7.620 – 8.255)
0.325 +0.025
0.015
+0.635
0.381
8.255
()
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
16
LT1218/LT1219
12189f LT/TP 0697 7K • PRINTED IN USA
LINEAR TECHNOLOGY CORPORATION 1997
Linear Technology Cor poration
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900
FAX: (408) 434-0507
TELEX: 499-3977
www.linear-tech.com
TYPICAL APPLICATION
U
8-Channel, 12-Bit Data Acquisition System with Programmable Gain
1218/19 • TA05
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
20
21
22
23
24
1
2
3
64R
32R
16R
8R
4R
2R
R
R
+
8 COM
18 MUXOUT
GND
4, 9
10
6
5, 14
11
7
CSADC
CSMUX
CLK
D
OUT
D
IN
12
13
NC
NC
12-BIT
SAMPLING
ADC
8-CHANNEL
MUX
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
LTC1391
8-CHANNEL
MUX
5V
1µF
ADCIN
17 16 15, 19 1µF
0.1µF
5V
1µF
5V
V
REF
V
CC
+
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
V+
D
V
D
OUT
D
IN
CS
CLK
GND
LT1219L
LTC1598
µP/µC
INPUTS
 GAIN
MUX 
CHANNEL GAIN
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
PART NUMBER DESCRIPTION COMMENTS
LTC®1152 Rail-to-Rail Input and Output, Zero-Drift Op Amp High DC Accuracy, 10µV V
OS(MAX)
, 100nV/°C Drift, 0.7MHz GBW, 0.5V/µs
Slew Rate, Maximum Supply Current 3mA
LT1366/LT1367 Dual/Quad Precision, Rail-to-Rail Input and Output 475µV V
OS(MAX)
, 400kHz GBW, 0.13V/µs Slew Rate,
Op Amps Maximum Supply Current 520µA per Op Amp
LT1466/LT1467 Dual/Quad Micropower, Rail-to-Rail Input and Output Maximum Supply Current 75µA per Op Amp, 390µV V
OS(MAX)
,
Op Amps 120kHz Gain Bandwidth
RELATED PARTS